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We consider the Randall–Sundrum braneworld theory with a single extra dimension of infinite extent to
investigate generalized f (R) braneworld models in the presence of several real scalar fields. In particular,
we solve the modified Einstein equations for the case of flat brane, with zero cosmological constant, and
for the case of bent brane, with a nonvanishing cosmological constant. In both cases we found explicit
solutions for the scalar fields with analytical expressions for the respective warp factors.

© 2013 Elsevier B.V. All rights reserved.
The Randall–Sundrum (RS) theory [1] is one of the most inter-
esting modern concepts in high energy physics. In the RS work [1],
the authors propose a braneworld model with a single extra di-
mension of infinite extent. Following this concept, a key idea in
the cosmological description of the Universe is played by branes, so
that the usual fundamental interactions can propagate only in the
brane, the exception being gravity, which can propagate in the bulk
space. As a result, the Universe is described by a 3-brane embed-
ded into a higher-dimensional space, which is generally suggested
to be five-dimensional, with the three usual spatial coordinates,
one extra spatial coordinate and the time. The branes are known
to solve the problems of the cosmological constant and the mass
hierarchy [1].

In the RS theory, one describes a thin brane with one extra di-
mension of infinite extent, but we can also include scalar fields
to make the brane thick [2–6]. Several studies in this direction
have been based on models including only one scalar field [4–6].
Therefore, a natural development could consist, first, in the con-
sideration of a modified gravity model (say, f (R) model) instead
of the usual Einstein gravity used in the original paper [1], and
second, in the introduction of a set of several scalar fields [8].

Generalizations of the braneworld models have been carried out
by several authors: see, e.g., Refs. [9,10,7,8,11–13]. For instance, the
application of a f (R) modified gravity within the brane context
has been studied for the first time in the paper [9] (and further,
different aspects of such models have been considered in [10]);
the case of several scalar fields has been investigated in [8], where
the first-order formalism, based on the reduction of the equations
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of motion to first-order differential equations (see also [11] for dif-
ferent examples of application of the first-order formalism within
the gravity and cosmology contexts) has been successfully applied
for solving the equations of motion, see also Ref. [12] for other in-
teresting investigations on the subject.

A key issue concerning the first-order formalism is the essential
simplification of the equations of motion in the case of constant
scalar curvature of the bulk, that is, if the bulk represents itself
as either anti-de Sitter (adS), de Sitter (dS), or Minkowski space.
Therefore, it would be interesting to consider models incorporating
both these improvements, that is, modified gravity and the pres-
ence of the several dynamical scalar fields. From the physical point
of view, this study would correspond to consider more generic
cosmological models involving several types of matter within the
modified gravity context, on the constant curvature background.
This is just the problem we discuss in this work.

We start with the following action describing the f (R) brane
(cf. [9]):

S =
∫

d4x dy
√−g

(
−1

4
f (R) +L(φ1, . . . , φn)

)
, (1)

where y is the extra coordinate. For the interested reader, we re-
fer to [13] for a recent, very interesting review on f (R) theories.
One can choose different forms for the function f (R), with the re-
strictions that it should be continuous and differentiable and in
the small curvature limit, reproduce the standard Einstein gravity
with a cosmological term; also, it shouldn’t have negative power in
the scalar curvature, since in this case the model becomes unstable
[11]. We could also consider even more generic actions involving
other scalar invariants constructed from the Riemann tensor in the
Lovelock type gravity [14], but as we will discuss below, this does
not qualitatively change the general picture.
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In the case of flat brane, the line element which controls the
braneworld scenario is given by

ds2 = e2A(y)ηab dxa dxb − dy2, (2)

L is the Lagrange density restricted to represent scalar matter for
simplicity. It has the form

L = 1

2
g AB∂ Aφi∂ Bφi − V (φ1, . . . , φn), (3)

and it involves n scalar fields (summation convention for repeated
i-indices are assumed as well as for the space and time indices A
and B , with A, B = 0,1, . . . ,4), for the 5-dimensional metric ten-
sor g AB defined by the line element above. The scalar fields φi
in these equations represent the simplest extension of the origi-
nal braneworld model [1]; see, e.g., [2,3,8]. We assumed that they
only depend on the fifth coordinate, but they contribute to modify
the parameters of the standard model [15]. The modified Einstein
equations and the scalar field equations look like

A′′ f R − 1

3
A′ f ′

R + 1

3
f ′′

R = −2

3
φ′

iφ
′
i;(

A′′ + A′ 2) f R − 1

8
f (R) − A′ f ′

R = −1

4
φ′

iφ
′
i + 1

2
V (φ);

φ′′
i + 4A′φ′

i = ∂V

∂φi
. (4)

The prime denotes derivative with respect to the extra dimen-
sion y, and f R ≡ df (R)/dR . The scalar curvature is given in terms
of the warp factor as

R = 8A′′ + 20
(

A′)2
. (5)

It is easy to check that for f (R) = R , the well-known results
(see e.g. [8]; similar equations have been discussed before in [16],
within the domain wall context) are reproduced.

Let us comment on the structure of the equations of motion in
more generic Lovelock’s [14] gravitational models, involving other
scalar contractions of the Riemann tensor. For the class of geome-
tries that we considered, it is straightforward to see that R2 =
64(A′′)2 + 320A′′(A′)2 + 400(A′)4, and that: Rab Rab = 20(A′′)2 +
64A′′(A′)2 +32(A′)4 and Rabcd Rabcd = 4(A′′)2 +8A′′(A′)2 +28(A′)4.
Therefore, the linear combination of all invariants of the same or-
der will have, qualitatively, the same structure. So, it is natural to
expect that the results for models involving f (R) and others, in-
cluding functions of the other invariants, with the same power in
the warp factor and its derivatives, will be similar up to numerical
factors. We note however that this fact occurs for the very spe-
cific metric (2); in a more general geometry, the above similarity
among the invariants R2, Rab Rab and Rabcd Rabcd does not hold.

A first simplification that we can consider is the constant curva-
ture case (R ′ = 0 and so f ′

R = f ′′
R = 0) where the above equations

become

A′′ f R = −2

3
φ′

iφ
′
i ; (6)

A′ 2 f R − 1

8
f (R) = 5

12
φ′

iφ
′
i + 1

2
V (φ); (7)

φ′′
i + 4A′φ′

i = ∂V

∂φi
. (8)

To get solutions of these equations we follow [8], writing the fol-
lowing first-order equation:

A′(y) = W
(
φ(y)

)
. (9)

By using this ansatz into Eq. (6) we see that a possible solution can
be cast to the form
φ′
i = −3

2
f R

∂W

∂φi
, (10)

which substituted in Eq. (7) gives the following restriction for the
potential

V (φ) = −15

8
f 2

R

(
∂W

∂φi

∂W

∂φi

)
+ 2 f R W 2 − 1

4
f (R). (11)

It is easy to verify that in the case of one scalar field, these equa-
tions reproduce the results of the paper [9].

However, to solve these equations in a way consistent with the
constant curvature condition, we must choose the potential W (φi)

in a form compatible with the constant scalar curvature. Indeed,
since the curvature is given by Eq. (5), and A′′ = ∂W

∂φi
φ′

i , one can
employ (9), (11) to relate the W with the curvature through the
equation(

∂W

∂φi

∂W

∂φi

)
− 5

3 f R
W 2 + R

12 f R
= 0, (12)

where the sum over repeated indices i is assumed, and R and f R

are constants. For simplicity, let us consider the case W = W (Φ)

with Φ = αiφi = α1φ1 + α2φ2 + · · · + αnφn . This dependence on φi
suggests a symmetry among the several scalar fields and makes it
possible to carry out an explicit and exact solution for the equa-
tions of motion. In this case, one has

a
(
W ′)2 + bW 2 + c = 0, (13)

where a = αiαi , b = − 5
3 f R

, c = R
12 f R

, and W ′ is the derivative
of W with respect to its complete argument Φ . It is clear that
natural solutions of these equations are trigonometric, exponen-
tial and hyperbolic potentials, that is, either W = B sinh(α1φ1 +
α2φ2 + · · · + αnφn), or W = B cosh(α1φ1 + α2φ2 + · · · + αnφn), or
W = B sin(α1φ1 +α2φ2 +· · ·+αnφn), or W = B cos(α1φ1 +α2φ2 +
· · ·+αnφn), or W = B exp(α1φ1 +α2φ2 +· · ·+αnφn). Therefore, let
us restrict ourselves, for example, to the case of two scalar fields,
and test these possibilities.

First, we try the hyperbolic case: W = B sinh(αφ1 +βφ2) (in the
case of only one field, this solution has been considered in [9]). In
this case, the equations for the scalar fields are

φ′
1 = −3

2
f RαB cosh(αφ1 + βφ2);

φ′
2 = −3

2
f RβB cosh(αφ1 + βφ2). (14)

Multiplying the first by α, the second by β and adding the two
equations, we find

arctan sinhΦ = −3

2

(
α2 + β2) f R B(y − y0), (15)

where y0 is an integration constant. So

W = B sinh Φ = −B tan

[
3

2

(
α2 + β2) f R B(y − y0)

]
. (16)

Then, since A′ = W , we can also obtain the warp factor

A′(y) = −B tan
[
C(y − y0)

]
, (17)

where C = 3
2 (α2 + β2) f R B . Integrating this equation, one finds

A(y) = B

C
ln

∣∣cos C(y − y0)
∣∣

= 2
2 2

ln

∣∣∣∣cos

[
3 (

α2 + β2) f R B(y − y0)

]∣∣∣∣. (18)

3(α + β ) f R 2
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The potential V (Φ) becomes

V (Φ) = 5

32
f R R − 1

4
f (R) − 9

8
f R W 2(Φ). (19)

It is mandatory to verify that the above warp factor yields a
constant scalar curvature; using the expression (5), one finds

R = 20B2 − 8BC

cos2[C(y − y0)] − 20B2. (20)

The scalar curvature can be made constant by imposing the con-
dition 5B = 2C . We note that the restriction to constant scalar
curvatures is an important ingredient of the first-order formalism,
allowing us to obtain a great number of solutions in explicit form
[11]. Moreover, this choice rules out the singularity at y = y0. The
results is the negative constant R = −20B2. This condition is sat-
isfied if we have α2 + β2 = 5/(3 f R). It is clear that this solution
can be straightforwardly generalized for the case of several scalar
fields, with the differential equation for the i-th scalar field being
φ′

i = − 3
2 f Rαi B cosh(α jφ j) (the sum over repeated indices is as-

sumed), and then, everywhere in expressions for Φ and A, α2 +β2

being replaced by α jα j . We note that this potential is consistent
with Eq. (12) and with the condition of the constant (negative)
scalar curvature. Thus, such a configuration is completely consis-
tent.

Let us now try the trigonometric solution: W = B sin(αφ1 +
βφ2). The equations for the scalar fields are

φ′
1 = −3

2
f RαB cos(αφ1 + βφ2);

φ′
2 = −3

2
f RβB cos(αφ1 + βφ2) (21)

Introducing the field Φ = αφ1 + βφ2 and integrating the equation,
we arrive at

Φ = arcsin tanh

(
3

4
f R

(
α2 + β2)B(y − y0)

)
, (22)

which yields

W = B tanh

(
3

4
f R

(
α2 + β2)B(y − y0)

)
. (23)

Consequently, the warp factor is

A = B

D
ln cosh

(
D(y − y0)

)
= 4

3 f R(α2 + β2)
ln cosh

(
3

4
f R B

(
α2 + β2)(y − y0)

)
, (24)

with D = 3
4 f R B(α2 + β2). It is easy to check that the curvature in

this case is also constant and negative, R = −20B2, but in this case
2D = −5B . Again, the result can be straightforwardly generalized
for the case of sum of an arbitrary number of the scalar fields.

In the above cases, if we replace sinΦ by cosΦ , and sinh Φ

by cosh Φ , the curvature would stay constant, but positive, R =
20B2, and no brane world scenario would appear. Finally, for W =
B expΦ , the case of constant curvature yields R = 0.

Up to now, we succeeded to apply the first-order formalism for
the f (R) modified gravity in the case of several scalar fields. For
all these cases, we have found solutions, thus showing that the
first-order formalism is a very powerful tool for the study of the
RS braneworld model.

The above results can be generalized to the much harder case
of non-zero cosmological constant (Λ �= 0), corresponding to bent
branes [7]. The metric in the case of the de Sitter space looks
like [16]
ds2 = e2A(y)

[
dx2

0 − e2
√

Λx0

3∑
i=1

dx2
i

]
− dy2, (25)

and the scalar curvature now obeys

R = 8A′′ + 20
(

A′)2 − 12Λe−2A . (26)

The constant curvature condition yields the following solution for
the warp factor:

y = C1 +
∫

dA

[C2e−5A + Λe−2A + R
20 ]1/2

, (27)

where C1 and C2 are two constants (in principle one can choose
C2 = 0 but it will not essentially simplify the situation).

Then, for R constant, the modified Einstein equations are re-
duced to

f R(R)
[

A′′ + 4
(

A′)2 − 3Λe−2A] − 1

2
f (R) = 2

(
1

2
φ′

aφ
′
a + V (φ)

)
;

f R(R)
[

A′′ + (
A′)2] − 1

8
f (R) = −1

2

(
1

2
φ′

aφ
′
a − V (φ)

)
. (28)

In these equations, one can eliminate A′′ in favour of the curva-
ture:

f R(R)

[
R

8
+ 3

2

((
A′)2 − Λe−2A)] − 1

2
f (R) = φ′

aφ
′
a + 2V (φ);

4 f R(R)

[
R

8
− 3

2

((
A′)2 − Λe−2A)] − 1

2
f (R) = −φ′

aφ
′
a + 2V (φ).

(29)

Here we have multiplied the second equation by 4. Now, since A is
a known (while implicit, see (27)) function, one can find the solu-
tions for φa . We note that in the left-hand side of these equation,
we have known functions, thus, one can find appropriate solutions
for fields.

By taking into account that, for the warp factor (27), one has

3

2

((
A′)2 − Λe−2A) = 3R

40
+ 3

2
C2e−5A, (30)

our system of equations is then reduced to

f R(R)

[
R

5
+ 3

2
C2e−5A

]
− 1

2
f (R) = φ′

iφ
′
i + 2V (φ);

4 f R(R)

[
R

20
− 3

2
C2e−5A

]
− 1

2
f (R) = −φ′

iφ
′
i + 2V (φ). (31)

The left-hand side of these equations are known functions; so, it
remains to employ the equations of motion for the fields:

φ′′
i + 4A′φ′

i = dV

dφi
, (32)

where A can be read off from (27). One can comment that for the
set of n scalar fields φi , with i = 1 . . .n, we have the system of
n + 2 equations, that is, n equations for the scalar fields, and two
equations from the system (31). To provide the consistency of the
system, we should solve it for n+2 variables, with n of them being
the scalar fields, one the curvature function f (R), and the last one
the potential V (φ); thus, different forms of f (R) will correspond
to different potentials.

There is also a special case R = 0, corresponding to the warp
factor satisfying the equation

A′ = ±√
Λe−A, (33)
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that is, A = ln(
√

Λ(y − y0)), and (A′)2 − Λe−2A = 0. In this case,
one can try the function f (R) = (a + bR)n , so, for the zero cur-
vature, one has f (R) � an , and f R(R) � nan−1. The system (29) is
then reduced to

−1

2
an = φ′

iφ
′
i + 2V (φ);

−1

2
an = −φ′

iφ
′
i + 2V (φ). (34)

It is clear that the only solution in this case is the set of constant
fields φi = const . As we can see, for R = 0 the results do not repre-
sent a braneworld solution. The anti-de-Sitter case can be treated
in a similar way, with no additional difficulty.

A natural continuation of the present study is to follow the
lines of [8], attempting to solve the equations of motion numeri-
cally. Another study could correspond to the detailed consideration
of the renormalization group flow, as investigated, for instance, in
the second work in Ref. [8]. Also, in parallel to the conclusions
of [9], we hope that the f (R) modification of gravity, in the case
of several scalar fields coupled to it, would allow for a super-
symmetric extension. We are planning to investigate these issues
elsewhere. Several other studies on branes can be carried out, and
we can, for instance, consider the f (R) brane scenario studied in
the present work, within the diversity of contexts explored in [17],
including fermions and other fields. Also, we could use the present
approach to generalize investigations [18] which deal with interac-
tions between the dark matter and dark energy sectors.
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