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Possible wormholes in a brane world
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The condition R = 0, where R is the four-dimensional scalar curvature, is used for obtaining a
large class (with an arbitrary function of r) of static, spherically symmetric Lorentzian wormhole
solutions. The wormholes are globally regular and traversable, can have throats of arbitrary size
and can be both symmetric and asymmetric. These solutions may be treated as possible wormhole
solutions in a brane world since they satisfy the vacuum Einstein equations on the brane where
effective stress-energy is induced by interaction with the bulk gravitational field. Some particular
examples are discussed.
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I. INTRODUCTION

Lorentzian wormholes as smooth bridges between dif-
ferent universes, or topological handles between remote
parts of a single universe, have gained much attention
since Morris, Thorne and Yurtsever discussed the connec-
tion between wormholes and time machines [1]; see [2, 3]
for reviews. It is well known that a wormhole geometry
can only appear as a solution to the Einstein equations
if the stress-energy tensor (SET) of matter violates the
null energy condition (NEC) at least in a neighborhood
of the wormhole throat [4].

Many versions of exotic matter, able to provide NEC
violation and to support wormholes, have been suggested.
One class of such sources is represented by so-called ghost
fields, i.e., fields with explicitly negative energy density,
including scalar-tensor theories of gravity with an anoma-
lous sign of the scalar field kinetic term in the Lagrangian
[5–13] Another class of static wormholes is obtained with
nonminimally coupled scalar fields [6, 14, 15] as a result
of conformal continuation [16]. The latter means that a
singularity occurring on a certain surface S in the Ein-
stein frame metric, is removed by a conformal mapping
to the Jordan frame, and the solution is then continued
beyond S. It has been shown [16] that a wormhole is a
generic result of a conformal continuation if its sufficient
conditions are satisfied. In all such cases, however, the
two wormhole mouths are located in regions with differ-
ent signs of the effective gravitational constant. In other
words, if one mouth is in a normal gravity region, the
other is in an antigravity region [16]. A related problem
is the instability of such wormholes caused by the field
behavior near the transition surface S [17].

Wormhole solutions have also been obtained in specific
versions of dilaton gravity [18] and gravity with torsion
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[19]. Another approach is to invoke quantum effects, con-
sidering wormholes as semiclassical objects [20–23] (see
also references therein). In all such cases, NEC viola-
tion is probably only possible in extremely strong grav-
ity regions, leading to throat radii close to the Planck
length. Wormholes thus seem to be an integral part of
the hypothetic space-time foam but their practicability
at macroscopic scales still remains vague.

In our view, a natural source of wormhole geometry can
be found in the framework of the rapidly developing ideas
of brane worlds ([24, 25], for reviews see [26]), inspired
by the progress in superstring and M-theory [27]. By this
concept, the observable world is a kind of domain wall in
a multidimensional space (5-dimensional in the simplest
case), with large or even infinite extra dimensions. The
standard-model fields are confined on the brane while
gravity propagates in the surrounding bulk. The gravita-
tional field on the brane itself can be described, at least
in models of the type of the second Randall-Sundrum
model [25], by the modified 4-dimensional Einstein equa-
tions derived by Shiromizu, Maeda and Sasaki [28] from
5-dimensional gravity with the aid of the Gauss and Co-
dazzi equations. In vacuum, when matter on the brane
is absent and the 4-dimensional cosmological constant is
zero (a natural assumption for scales much smaller than
the size of the Universe), these equations reduce to

Gµν = −Eµν , (1)

where Gµν is the 4-dimensional Einstein tensor corre-
sponding to the brane metric gµν while Eµν is the pro-
jection of the 5-dimensional Weyl tensor onto the brane.
The traceless tensor Eµν connects gravity on the brane
with the bulk geometry (and is sometimes called the
tidal SET), so that the set of equations (1) is not closed.
Due to its geometric origin, Eµν does not necessarily sat-
isfy the energy conditions applicable to ordinary matter.
Thus, examples are known [29] when negative energies
on the brane are induced by gravitational waves or black
strings in the bulk. Therefore, if the brane world concept
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is taken seriously, Eµν can be the most natural “matter”
supporting wormholes.

In this paper we study static, spherically symmetric,
asymptotically flat wormhole solutions to the equation
R = 0, where R is the 4-dimensional scalar curvature.
Since Eµν has zero trace, R = 0 is an immediate conse-
quence of (1). R = 0 is a single equation connecting two
metric functions, γ(r) and f(r), and can be solved with
respect to f for arbitrary γ. We show that almost any
γ(r) satisfying some minimal requirements (smoothness
and compatibility with asymptotic flatness) gives rise to
a family of wormhole solutions with the throat radius
as a free parameter. Both symmetric and asymmetric
wormholes are obtained. We consider some particular
examples, and, in addition to new wormhole metrics, re-
produce the results of the recent studies where some solu-
tions with R = 0 (though under other motivations) were
found [31–34]. As a by-product, some black hole solutions
and solutions with naked singularities are also obtained.
In the brane world framework, there remains a nontrivial
problem to be solved: to inscribe the intrinsic brane ge-
ometry of the above solutions into the full 5-dimensional
picture. Our 4-dimensional wormhole solution can have
an arbitrary size of the wormhole throat, but a restriction
can quite probably appear from 5-dimensional geometry.
Meanwhile, the present class of 4-metrics with zero scalar
curvature can be of interest by itself.

The paper is organized as follows. In Sec. 2 we solve
the equation R = 0 and formulate the conditions under
which the solution describes a symmetric or asymmetric
wormhole; in Sec. 3 we discuss a few particular exam-
ples; Sec. 4 contains some observations and concluding
remarks.

II. R = 0: THE GENERAL SOLUTION

The general static, spherically symmetric metric in 4
dimensions in the curvature coordinates has the form

ds2 = e2γ(r)dt2 − e2α(r)dr2 − r2dΩ2 (2)

where dΩ2 = dθ2 + sin2 θ dφ2 is the linear element on a
unit sphere[37].

The metric (2) gives, according to (1), the following
expressions for the components of the effective SET Eν

µ,

namely, the energy density ρ = Et
t , the radial pressure

prad = −Er
r and the lateral pressure p⊥ = −Eθ

θ = −Eφ
φ :

− ρ =
1

r2
( e−2α − 1) − 2αr

r
e−2α; (3)

prad =
1

r2
( e−2α − 1) +

2γr

r
e−2α; (4)

p⊥ = e−2α
(

γrr + γ2
r − αrγr +

γr − αr

r

)

, (5)

where the subscript r denotes d/dr. In case R = 0 one
evidently has 2p⊥ = ρ − prad.

Let us also write down the Kretschmann scalar for the
metric (2):

K = R ρσ
µν Rρσ µν = 4K2

1 + 8K2
2 + 8K2

3 + 4K2
4 ,

K1 = e−2α(γrr + γ2
r − αrγr), K2 = e−2α γr

r
,

K3 = −1

r
e−2ααr, K4 =

1

r2
(1 − e−2α). (6)

The finiteness of K is a natural regularity criterion for the
geometries to be discussed. Indeed, K is a sum of squares
of all components Rεσ

µν of the Riemann tensor for the
metric (2), therefore K < ∞ is necessary and sufficient
for finiteness of all algebraic curvature invariants.

The condition R = 0 which follows from (1) can be
written as a linear first-order equation with respect to

f(r)
def
= r e−2α:

fr(2 + rγr) + f(2rγrr + 2rγ2
r + 3γr) = 2, (7)

Its general solution is

f(r) =
2 e−2γ+3Γ

(2 + rγr)2

∫

(2 + rγr) e2γ−3Γ dr (8)

where

Γ(r) =

∫

γrdr

2 + rγr
. (9)

Thus, choosing the form of γ(r) arbitrarily, we obtain
f(r) from (8), and, after fixing the integration constant,
the metric is known completely at least in the region
where eγ and eα are smooth and nonzero.

Let us now make clear how to choose the function γ(r)
(the so-called redshift function) and the integration con-
stant in Eq. (8) in order to obtain a wormhole solution.
We note for reference purposes that in many papers de-
voted to wormholes, beginning with [1], the function e2α

is expressed as [1 − b(r)/r]−1 where b(r) is the so-called
shape function. Our f(r) is then equal to r − b(r).

The coordinate r, which proves to be convenient for
solving Eq. (7), is not an admissible coordinate in the
whole space for wormhole solutions since in this case r
has at least one minimum, and the solution in terms of
r therefore splits into at least two branches. As an ad-
missible coordinate one can take, e.g., the Gaussian co-
ordinate l (proper length along the radial direction) con-
nected with r by the relation l =

∫

eαdr, and the metric
is rewritten as

ds2 = e2γ(l)dt2 − dl2 − r2(l)dΩ2. (10)

We seek static, traversable, twice asymptotically flat
wormhole solutions. So we require: (i) there should be
two flat asymptotics: l ∈ R; r ≈ |l| → ∞ and γ =
const + O(r−1) as l → ±∞; (ii) both functions r(l) > 0
and γ(l) should be smooth (at least C2) in the whole
range l ∈ R. This guarantees the absence of curvature
singularities and horizons (the latter correspond to γ →
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−∞ which is ruled out). This also means that r(l) should
have at least one regular minimum, rmin > 0 (throat), at
some value of l. Moreover, returning to functions of r,
we see that at a flat asymptotic eα → 1 and f(r) ≈ r.

Suppose, without loss of generality, that a minimum of
r(l), that is, a wormhole throat, is located at l = 0. Then
r(0) = r0 > 0, rl(0) = 0 and (generically) rll(0) > 0,
where the subscript l denotes d/dl. Near l = 0 one has
r − r0 ∼ l2, hence the metric function e2α(r) behaves as
(r− r0)

−1, and f(r) = r e−2α ∼ r− r0. In other words, a
simple zero of f(r) is an indicator of a wormhole throat
provided γ(r) is smooth and finite at the same r.

On the other hand, the derivative γl(0) may be zero
(which is always the case if the wormhole is symmetric
with respect to the throat) or nonzero. If γl(0) = 0, we
shall have γr(r0) < ∞. If, on the contrary, γl(0) 6= 0,
then near r0 we have γr ∼ 1/|l| ∼ √

r − r0, so that

γ(r) ≈ γ(r0) + k
√

r − r0, k > 0. (11)

We cannot put k < 0 since then we would obtain the
expression 2 + rγr ranging from 2 (at spatial infinity) to
−∞ at r = r0, so that 2 + rγr would vanish at some
r > r0 causing a singularity in (8).

We are now ready to single out a class of symmetric
wormhole metrics (W1) and a class of potentially asym-
metric wormhole metrics (W2) on the basis of the solu-
tion (8).

W1. Specify the function γ(r), smooth in the range
r0 ≤ r < ∞, r0 > 0, in such a way that γ(∞) = 0,
γr(r0) < ∞, and 2 + rγr > 0 in the whole range. Fix
the integration constant in (8) by performing integration
from r0 to r. Then these γ(r) and f(r) determine a
wormhole which has a throat at r = r0 and is symmetric
with respect to it.

Indeed, by construction, f(r) ∼ r − r0 near r0. Intro-
ducing the new coordinate x by the relation r = r0 + x2,
we have e2αdr2 ∼ (r − r0)

−1dr2 = 4dx2, which leads to
a perfectly regular metric whose all coefficients are even
functions of x ∈ R. Both x → +∞ and x → −∞ are flat
asymptotics.

Each γ(r) chosen as prescribed creates a family of sym-
metric wormholes with zero scalar curvature. The family
is parametrized by the throat radius r0, taking arbitrary
values in the range where γ(r) is regular and 2+rγr > 0.

Another procedure is applicable to functions γ(r) be-
having according to Eq. (11).

W2-a. Specify the function γ(r), smooth in the range
r0 ≤ r < ∞, r0 > 0, such that γ(∞) = 0, 2 + rγr > 0
in the whole range, and Eq. (11) holds near r0. Then,
for proper values of the integration constant in (8), the
sphere r = r0 is a wormhole throat, and the solution is
smoothly continued beyond it.

Indeed, the solution (8) may be rewritten as follows:

f(r) =
e−2γ+3Γ

(1 + 1
2rγr)2

[
∫ r

r0

(1 + 1
2rγr) e2γ−3Γ dr + C

]

(12)

Suppose C > 0. Then f(r) behaves near r0 as r − r0 =:
x2, while γ = γ(r0) + kx + O(x2). The metric smoothly
behaves at r = r0 (x = 0) in terms of the new coordinate
x and can be continued through this sphere. One cannot,
however, guarantee that this continuation will lead to
another flat spatial infinity to yield an asymmetic worm-
hole, since the further behavior of γ(x) and f(x) may
lead to a horizon or to a singularity.

If we choose C ≤ 0 in (12), we obtain two other situa-
tions:

W2-b. If C < 0, then f(r0) < 0; recalling that f ∼ r at
large r, we see that f(r) = 0 at some value r = r1 > r0,
where γr is finite, and we return to the circumstances
described as W1, obtaining a symmetric wormhole with
r ≥ r1, and the sphere r = r1 is its throat.

W2-c. If C = 0, then near r0 we obtain f(r) ∼ (r −
r0)

3/2, and the metric is regularized at r = r0 by another
substitution: r − r0 = ξ4. As a result, Eq. (11) yields

γ = γ(r0) + kξ2 + further even powers of ξ,

and we again obtain a symmetric wormhole, but now with
a quartic behavior of r near its minimum as a function
of the admissible coordinate ξ ∈ R.

III. EXAMPLES

We will present expressions for the metric functions γ
and f , the effective “tidal” energy density ρ and the sum
ρ + prad, which characterizes violation of the null energy
condition (for static, spherically symmetric systems this
condition reduces to ρ + prad ≥ 0).

We use the time scale of a remote observer at rest and
so always assume that eγ → 1 as r → ∞.

1. The simplest example is obtained for γ ≡ 0. Choosing
any r0 > 0 and applying the W1 algorithm of Sec. 2,
we simply obtain f(r) = r − r0. This is a symmetric
wormhole solution known as the spatial Schwarzschild
geometry [31]:

ds2 = dt2 −
(

1 − r

r0

)−1

dr2 − r2dΩ2

= dt2 − 4(r0 + x2)dx2 − (r0 + x2)2dΩ2. (13)

The effective SET Eν
µ has the form T ν

µ =
diag(0, −pr, pr/2, pr/2) with the radial pressure

pr = −r0/r3. (14)

2. Our next example uses the Schwarzschild form of γ:

e2γ = 1 − 2m

r
, m > 0. (15)
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Choosing any r0 > 2m, we obtain according to the W1
prescription:

f(r) =
(r − 2m)(r − r0)

r − 3m/2
, (16)

ds2 =

(

1 − 2m

r

)

dt2 −

(

1 − 3m

2r

)

dr2

(

1 − 2m

r

)(

1 − r0

r

)

− r2dΩ2

=
x2 + r0 − 2m

r0 + x2
dt2

− 4(r0 + x2)(r0 + x2 − 3
2m)

x2 + r0 − 2m
dx2 − (x2 + r0)

2dΩ2. (17)

This is evidently a symmetric wormhole geometry for any
r0 > 2m ≥ 0, or for any r0 > 0 in case m < 0. The
Schwarzschild metric is restored from (17) in the special
case r0 = 3m/2.

The SET components of interest are

ρ =
m(r0 − 3

2m)

2r2(r − 3
2m)2

;

ρ + prad = − (r − 2m)(r0 − 3
2m)

r2(r − 3
2m)2

. (18)

The metric (17) was obtained by Casadio, Fabbri and
Mazzacurati [33] in search for new brane-world black
holes and by Germani and Maartens [34] as a possible ex-
ternal metric of a homogeneous star on the brane, but the
existence of traversable wormhole solutions for r0 > 2m
(in the present notations) was not mentioned. It was
supposed in [33] that the post-Newtonian parameters of
the metric must be close to their Einstein values for ex-
perimental reasons and therefore restricted their study
to configurations close to Schwarzschild. Then r0 must
be close to 3m/2. In this case, as in the Schwarzschild
metric, r = 2m is an event horizon, but, according to
[33], the space-time structure depends on the sign of
η = r0 − 3m/2. If η < 0, the structure is that of a
Schwarzschild black hole, but the curvature singularity
is located at r = 3m/2 instead of r = 0. If η > 0, the
solution describes a nonsingular black hole with a worm-
hole throat at r = r0 inside the horizon, in other words,
a non-traversable wormhole [33].

We would here remark that, in our view, such hypo-
thetic objects as brane-world black holes or wormholes,
not necessarily of astrophysical size, need not necessarily
conform to the restrictions on the post-Newtonian pa-
rameters obtained from the Solar system and binary pul-
sar observations, and it therefore makes sense to discuss
the full range of parameters which are present in the so-
lutions.

3. Consider the extreme Reissner-Nordström form of
γ(r):

e2γ =

(

1 − 2m

r

)2

, m > 0. (19)

The W1 procedure now leads to

f(r) =
(r − r0)(r − r1)

r
, r1

def
=

mr0

r0 − m
; (20)

ds2 =

(

1 − 2m

r

)2

dt2 − r2 dr2

(r − r0)(r − r1)
− r2dΩ2

=

(

1 − 2m

r0+x2

)2

dt2 − 4
(r0+x2)2dx2

r0 − r1 + x2
− (r0+x2)dΩ2.

(21)

where we assume r0 > 2m, so that r1 < r0. This is a
symmetric wormhole metric. The SET components of
interest are

ρ =
mr2

0

r4(r0 − m)
,

ρ + prad = − (r0 − 2m)2

r2(r − 2m)(r0 − m))
. (22)

In the solution (20), r0 may be regarded as an in-
tegration constant, so it is of interest what happens
if r0 ≤ 2m. Evidently, r0 = 2m leads to the ex-
treme Reissner-Nordström black hole metric (which is
well known to possess a zero Ricci scalar, as does the gen-
eral Reissner-Nordström metric). In case 2m > r0 > m,
we have r1 > 2m, and we again obtain a symmetric
wormhole, but now r ranges from r1 to infinity and r = r1

is the throat. Actually, r0 and r1 exchange their roles as
compared with the case r0 > 2m. This property was ex-
pected due to symmetry between r0 and r1 in the metric
(21).

The value r0 = m is meaningless. Lastly, r0 < m leads
either to r1 < 0 (for r0 ≥ 0) or to 0 < r1 < 2m (for
r0 < 0). The solution exists in both cases for r > 2m
only, and r = 2m turns out to be a naked singularity, as
is confirmed by calculating the Kretschmann scalar.

4. Consider an example belonging to class W2 described
in the previous section. Namely, let us choose

e2γ =
(

1 − b + b
√

1 − 2m/r
)2

, (23)

with b = const 6= 0. The special cases b = 0 and b = 1
nave been already discussed in Examples 1 and 2, respec-
tively. The form (23) of eγ(r) has been found [31, 32, 33]
by solving the equation R = 0 under the condition that
the energy density T 0

0 is zero, whence it followed that
e−2α = 1 − 2m/r, and, in our notation, f(r) = r − 2m.
Note that the Schwarzschild mass, found from the large
r behavior of γ(r), is equal to bm rather than m.

Knowing that f(r) = r − 2m is a special solution to
the inhomogeneous equation (7) with γ(r) given by (23),
we can make easier the integration in (8) by writing the
solution as f(r) = 2r − m + f1(r) where f1 is a general
solution to the corresponding homogeneous equation. We
obtain

f(r) = r − 2m + C
e−2γ+3Γ

(2 + rγr)2
, (24)
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where C1 = const and Γ has been defined in (9). The

form of Γ(r) depends on the constant c
def
= 2(1 − b)/b

(the case b = 0 is excluded):

e3Γ =


























(1 + 2cv + 3v2) exp

[

−2c

c′
arctan

c+3v

c′

]

, c <
√

3;

(1 +
√

3v)2 exp
[

2/(1 +
√

3v)
]

c =
√

3;

(1 + 2cv + 3v2)

[

c + 3v + c′

c + 3v − c′

]−c/c′

, c >
√

3,

(25)

where we have denoted

c′ =
√

|c2 − 3|, v =

√

1 − 2m

r
. (26)

For all three cases in (25), depending on the integration
constant C1, one can single out the behaviors of classes
W2-a, W2-b and W2-c (in their description in Sec. 2 one
should substitute r0 = 2m). The critical value of C1,
corresponding to C = 0 in Eq. (12), is

C1cr = −2m e−3Γ
∣

∣

∣

v=0
. (27)

It corresponds to integration in Eq. (8) from r0 to r, and
the solution then belongs to class W2-c, a symmetric
wormhole with a quartic dependence of r on the admis-
sible coordinate ξ.

The case C1 < C1cr corresponds to integration in (8)
from some C1-dependent radius r1 > 2m to r, and the so-
lution belongs to type W2-b equivalent to W1: a symmet-
ric wormhole with an arbitrary throat radius r1 > 2m.
We will not write down the full cumbersome expressions
for the metric for C1 ≤ C1cr since the qualitative prop-
erties of the solutions are already clear.

Of greater interest are solutions with C1 > C1cr, for
which r = 2m is an asymmetric throat [class W2-a]. This
is the only class in which the metric continued beyond
the throat behaves “individually”, i.e., depends on the
specific choice of γ(r) and C1 rather than follows the
above general description.

A good coordinate for passing the throat r = 2m, more
convenient than the previously used coordinate x, is v
defined in (26). We have r(v) = 2m/(1−v2); the original
spatial asymptotic corresponds to v = 1, the throat is
located at v = 0, and another spatial asymptotic can be
located at v = −1 if the metric avoids singularities on
the way to it. Let us find out whether it is the case.

The requirement eγ > 0 at v ≥ −1 leads to b < 1/2,
hence c > 2, and we are left with the third line in the
expression (25) for Γ(v). Then the metric coefficient gvv

is given by

− gvv =
16m2

(1 − v2)2

×
[

1 + C1
1 − v2

6m
(v−v−)3v−/c′(v−v+)−3v+/c′

]−1

,(28)

where v± are roots of the trinomial P (v) = 3v2 +2cv+1:

v± =
1

3

(

−c ±
√

c2 − 3
)

=
1

3
(−c ± c′).

For c > 2, we have v− < −1 whereas the other root
v+ lies between 0 and -1. On the other hand, −3v+/c′,
i.e., the exponent of the binomial (v − v+) in (28), is
a number between 0 and 1. Therefore gvv is finite at
v = v+ but has an infinite derivative with respect to v.
Transforming back to r (for v < 0, the transformation is

v = −
√

1 − 2m/r), we observe that the metric coefficient
grr = −e2α [see (2)] is singular at r = r+ = 2m/(1 −
v+)2. More precisely, e2α is finite but contains a term
proportional to (r − r+)k where 0 < k < 1, hence αr ∼
(r − r+)k−1 → ∞, and the Kretschman scalar (6) blows
up due to the divergence of its constituents K1 and K3.

We conclude that, under the choice (23) of γ(r), the
class of solutions (W2-a) does not contain wormhole so-
lutions. Having passed the throat at r = 2m (v = 0),
we ultimately arrive at a singularity or maybe a horizon,
which is not excluded in case b > 1/2.

An exception is the case C1 = 0, when we return to
the solution known from Refs. [31, 32, 33], which has been
described at length in these papers. We will only mention
the main points in our notations. The metric in terms of
v is

ds2 = (1 − b + bv)2dt2 − 16 m2

(1 − v2)4
dv2 − 4m2

(1 − v2)2
dΩ2.

(29)
In case b = 1 it is another form of the Schwarzschild
metric. For b > 1/2 but b 6= 1, the sphere v = (b − 1)/b
is a naked singularity, as may be concluded from the fact
that γr → ∞ while α and r are finite, hence the quantity
K2 in (6) blows up. This singularity is located at positive
v, i.e., before reaching the throat v = 0, if b > 1 and at
negative v, beyond the throat, if b < 1. Note that for
v < 0 we have in the curvature coordinates gtt = e2γ =
1 − b − b

√

1 − 2m/r.
In case b < 1/2 the metric (29) describes an asymmet-

ric wormhole even having different signs of mass at its
two flat asymptotics: the mass is equal to bm at v = 1
and to −bm/(1 − 2b) at v = −1.

Lastly, if b = 1/2, then v = −1 is a horizon having
an infinite area and zero Hawking temperature, like the
previously described cold black holes in scalar-tensor the-
ories of gravity [9]. The spatial part of the metric is flat
at v → −1. Moreover, as is directly verified, the canon-
ical parameter for timelike, spacelike or null geodesics
takes an infinite value at at v = 1, which means that
this space-time is geodesically complete (as are wormhole
space-times), and no further continuation is required.

IV. CONCLUDING REMARKS

We have seen that the equation R = 0 leads to a great
number of wormhole solutions. Symmetric wormhole so-
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lutions of class W1 can be obtained from any γ(r) provid-
ing asymptotic flatness; asymmetric wormhole solutions
belonging to class W2-a require somewhat more special
conditions. As follows from Examples 1-3, wormholes
are not always connected with negative (effective) en-
ergy densities ρ; they can appear with ρ > 0, but only
with comparatively large negative pressures maintaining
violation of the null energy condition. Example 3 shows
that, for given γ(r), sometimes even more wormhole so-
lutions can be obtained than was expected in search for
class W1 solutions. Example 4 shows that asymmetric
wormholes are more difficult to obtain from the general
solution (8) than symmetric ones.

Black-hole solutions can also be obtained from (8) but
under more restrictive conditions. Indeed, given a spe-
cific function eγ(r) increasing from zero at some r = rh

to 1 at r = ∞, a wormhole solution to R = 0 can be
obtained with a throat at any r > rh whereas in a black
hole solution the event horizon is fixed at r = rh. Posi-
tive functions eγ(r) lead to numerous wormhole solutions
but not black hole ones. Thus, roughly speaking, worm-
holes as solutions to R = 0 are more numerous than black
holes.

All this referred to metrics satisfying the condition
R = 0 in 4 dimensions, which admits an interpreta-
tion as the brane metric. It has been claimed that
“any 4-dimensional space-time with R = 0 gives rise
to a 3-brane world without surface stresses embedded
in a 5-dimensional space-time” [35] since the embed-
ding contains a very significant arbitrariness. Never-

theless, a complete model requires knowledge of the full
5-dimensional space-time. In other words, one should
“evolve” the 4-metric into the bulk, using this 4-matric
as initial data for the 5-dimensional equations. It is
rather a difficult task, as was demonstrated in a study
of particular black hole solutions in Refs. [30, 36]. There
are, however, two favorable circumstances. One is the
wealth of wormhole solutions: there is actually an arbi-
trary function γ(r) leading to wormholes on the brane,
which must in turn lead to a wide choice of suitable bulk
functions. The other is the global regularity of wormhole
space-times, and one can expect that the bulk incorpo-
rating them will also be regular. (It may be recalled that
it was the singular nature of black hole solutions that
caused some technical difficulties in Ref. [30].) We hope
that it will be possible to obtain meaningful complete
wormhole models within the brane world concept; the
work is in progress.
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