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We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell
theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to
a model with two massive fermions in a singlet spinor state, we show the existence of spherically
symmetric asymptotically flat configurations which are free of singularities, representing localized
states. These solutions satisfy a generalized Smarr relation, being connected with the extremal
Reissner-Nordstréom black holes. They also possess a finite mass M and electric charge Q., with
Qe/M > 1. An exact wormhole solution with ungauged, massless fermions is also reported.

Introduction.— The wormholes (WHs) have en-
tered modern physics soon after the discovery of black
holes (BHs) [1,12]. In both cases it took decades to un-
derstand their rich physical content and to realize that
they may play a role in Nature. However, while there
is increasing evidence for the existence of (astrophys-
ical) BHs, the (Lorentzian, traversable) WHs remain
so far rather an interesting possibility, although with
observational implications [3]. A basic difference be-
tween these two types of solutions occurs already at
the level of energy-momentum supporting the corre-
sponding geometries. While the BHs exist in vacuum,
being the end point of (normal matter’s) gravitational
collapse, the traversable WHs necessarily require a
matter content violating the null energy condition [4],
[5]. Restricting to a field theory source and a classical
setting, the (bosonic) matter fields necessarily possess
a non-standard Lagrangian (e.g. 'phantom’ fields [6]),
or one has to consider extensions of gravity beyond
general relativity (see e.g. [1], [8]).

However, as we shall prove in this work, the sit-
uation changes for fermions, with the existence of
traversable WHs solutions of the Einstein-Dirac equa-
tions. In our approach, the Dirac matter is described
by a quantum wave function rather than a quantum
field. This results in a more tractable model, with
the backreaction of the matter to spacetime geometry
being taken into account. Moreover, the inclusion of
an electric charge leads to ‘smooth’ geometries, with-
out the presence of a thin shell of extra-matter at the
throat of the WH.

Einstein-Dirac-Maxwell model.— We consider
a model with two gauged relativistic fermions, the spin
of which is taken to be opposite in order to satisfy
spherical symmetry. Working in units with G = ¢ =
h =1, the action of the corresponding Einstein-Dirac-

Maxwell (EDM) model reads
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where R is the Ricci scalar of the metric g, Fj, =
OuA, — 0, A, is the field strength tensor of the U(1)
field A, and
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where v¥ are the curved space gamma matrices [9]
and p is the mass of both spinors We_; 5. Also, ﬁu =
Oy + Ty —igA,, where I', are the spinor connection
matrices, and ¢ is the gauge coupling constant. The
resulting field equations are
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Restricting to static, spherically-symmetric solu-
tions of the field equations, we consider a general met-
ric ansatz ds? = gy (r)dt? + gr(1)dr? + gaa(r)dQ?,
where r and ¢ are the radial and time coordinates,
and dQ? = d#? + sin® fdp?. The U(1) field is purely
electric, with A = V(r)dt. A general spinors Ansatz
compatible with the symmetries of the considered line
element is [11]

with the current j”¥ =
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with k = +1. Also, assuming r > 0, one considers the
usual tetrad choice, with e” = ,/g,.dr, e? = Vgaado,
e? = \/gaa sinfdp, e = /=gy dt.

A useful parametrization in the numerics is ¢ =
|plei®/? = eim/4*F — ¢~i"/4G. Then the entire mat-
ter content of the model is encoded in the two real
fermion functions F(r), G(r), together with the elec-
trostatic potential V' (r). This is essentially the frame-
work used in [12] to construct (topologically trivial)
particle-like solutions of the EDM system. In what fol-
lows we show that the system possess also traversable
WH configurations [13].

An exact solution.— The resulting EDM equa-
tions can be solved analytically in the ¢ = 0 limit, the
spinor fields being massless, with w = 0. The solution
has the metric and the U(1) potential

M dr?

ds®> = —(1— —=)2dt* + +r2dQ?, (5)
r Q2 ’
r (1—-")01-32)
o Q2 : 2Q%rg
= 2=y - e h M= =20
V(r) 0. ( " )( 7“07“>’ wit QR+

while the spinor functions are
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with ¢g # 0 an arbitrary constant. This describes
a (regular) traversable WH solution, with 7y the
throat’s radius and Q. < rg the electric charge, while
M is the ADM mass (note that Q./M > 1). The
WH geometry is supported by the spinors contribu-
tion to the total energy-momentum tensor, being reg-
ular everywhere. As Q. — 79, the extremal Reissner-
Nordstrém (RN) BH is approached, while T\\5) — 0.

Although this solution captures some basic proper-
ties of the general configurations below, it also pos-
sesses some undesirable features. In particular, the
spinor wave function is not normalizable, since |¢|
does not vanish as r — oo. However, the situation
changes in a model with massive fermions, they be-
coming exponentially localized.

G(r)

The general case.— The generic solutions have
uw# 0, ¢ # 0 and are found numerically, by employ-
ing a metric ansatz which makes transparent the WH
structure and simplifies the numerics [7]

ds? = = dt* + f(r)dr® + (r* +15)dQ?,  (6)

with r9 > 0 the radius of the throat, which is located
at 7 = 0 (with A7 = 4mr2 the throat area). The
WH consists in two different regions ¥4 of the same
Universe. The ‘up’ region is found for 0 < r < o0;
there is also a ’"down’ region, with —oo < r < 0. How-
ever, in general the joining at » = 0 of these regions
is not ‘smooth’, with a discontinuity of the metric
derivatives. This implies the presence of a thin mass
shell structure at the throat, with a d-source added
to the action () (e.g. the surface energy density is
er = —41/(0)/4/ f(0)). The condition for a ‘smooth’
geometry is v/(0) =0

Also, we shall consider the case of a symmetric WH,
the geometry (@) and the energy-momentum tensor
being invariant under the transformation r — —r.
The sign change of r at the WH’s throat reflects
in a change of sign of the tetrad [16]. Then the
matter functions transform as V(r') = —V(r) and
o(r') = i¢(r) (with ' = —r > 0), while k — —x and
w — —w. As such, in what follows we shall report
results mainly for the r > 0 region.

With this framework, the problem reduced to
solving a system of four first order equations for
{v, f, F,G} and a second order equation for V [1§].
These equations are invariant under the transforma-
tion w = w+ B,V = V + 3/q (with 8 an arbitrary
constant), which is fixed by imposing the electric po-
tential to vanish at the throat.

The only global charges are the mass M and the
electric charge @)., which are read from the far field
asymptotics. For the ‘up’ region, one finds v —
—M/r, f 5> 14+2M/r, V — ® — Q./r, (with ® the
electrostatic potential). The spinor functions decay
as e M7 /r, where p, = \/u? — (w — ®/q)? (with the
bound state condition u? > 0).

An approximate solution can also be found close
the throat, with the boundary conditions v(0) = vy,
f(0) = fo, F(0) =0, G(0) = Go and V(0) = 0 (vo,
fo, Go being nonzero constants).

The WHs satisfy a Smarr law, the mass being the
sum of an electrostatic term and a bulk contribution

M =2Q. + M(B)a (7)
with
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By integrating the Maxwell equations, one finds

Qe =29Qn + Qr, (8)



where @y is the Noether charge of a spinor (or number
of particles)

Qn = —
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and Qr = V'(0)e=*(r2/,/f(0). Similar relations
hold for the r» < 0 region, with mass, electric charge
and Noether charge changing sign.

The equations of the model are invariant un-
der the scaling transformation (the variables and
quantities which are not specified remain invariant):
(r,r0) = Mryro), (F,G) — (F,G)/VX, (1, q,w) —
(4, g, w)/ A, where A is a positive constant, while var-
ious quantities of interest transform as (M,Q.) —
AM,Q.), (Qn,An) — N(Qn,An). Only quanti-
ties which are invariant under this transformation (like
M/Q.) are relevant.

As with the solitons [12], [17], [20], this transfor-
mation is used to impose the one particle condition,
QN =1, for each spinor in both "up’ or 'down’ regions.
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FIG. 1. The scaled thin layer energy density at the throat,
er, is shown as a function of the scaled throat area Ar for
several sets of solutions at fixed frequencies.

The solutions.— We have solved the EDM for
various values of the model’s constants (i, q). In par-
ticular, WH solutions exist also in the ED limit (i.e.
g = 0 and V = 0). However, as seen in the inlet
of Fig. 1, those solutions have always v'(0) # 0,
and thus require the presence of extra-matter at the
throat. The ‘smooth’ configurations necessarily pos-
sess a nonzero electric charge and have y > 0 (al-
though ¢ can vanish), the profile of a typical such
configuration (marked with a star in Fig. 3). being
displayed in Fig. 2.

In our approach, apart from (g, 1), the other input
parameters are {Q., o, w}, all other quantities (e.g.
M and @Qy) being read from the numerical output.
As shown in Fig. 1, our results indicate that for fixed
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FIG. 2. The profile of a typical wormhole solution is dis-
played together with the Ricci and Kretschmann scalars
(with = 2 arctan(r/ro) a compactified radial coordi-
nate). The violation of the null energy condition is also
shown.

electric charge and field frequency, a solution with no
extra-matter at the throat exists for a unique value of
the throat size [21].

As such, when varying w, a continuous set of
’smooth’ solutions is found, the corresponding picture
in terms of mass vs. throat area being shown in Fig.
3 (with the quantities given in units of the electric
charge). A curve there interpolates between the ex-
tremal RN BH (in which limit 9 becomes the horizon
radius while the spinor fields vanish), and a critical
configuration with p, — 0. This behaviour is generic,
being found for all considered values of (g, 1). The set
of all critical configurations forms the critical line. Al-
though they still possesses a smooth geometry, their
ADM mass is negative, a feature shared by a set of
solutions close to them. Also, we have found that
all solutions constructed so far have Q./M > 1 and
q/p <1

A complementary picture is shown in the inset of
Fig. 3, with the quantities given in Planck units (with
the one particle condition imposed for each spinor).



FIG. 3. The scaled area of the throat vs. the scaled ADM
mass is shown for families of wormhole solutions. The
curves starts from the extremal Reissner-Nordstrom black
hole and end in a critical line where the spatial localization
of the spinors is lost.

FIG. 4. A sequence of isometric embeddings, with a
zoomed throat region, is shown for the wormhole solution
in Fig. 2. The color map shows the absolute value of the
Noether charge density.

When the mass p of the spinors is made smaller and
smaller, the solutions get arbitrarily close to extremal
RN BHs, while the ADM mass appears to increase
without bounds (note that, since the product Q.gq is
constant along the colored lines in Fig. 2, Q. and ¢
behaves in this limit as M and u, respectively). On
the other hand, the largest values found for p are of
order 102Mp;, being approached at the critical line.

Essential for the existence of the WH solution is the
violation of the null energy condition T}, n*n" > 0,
for any null vector field n# [5]. The violation of this
condition is displayed in Fig. 2, with 7" — T} < 0.
The isometric embedding of the same WH solution is
shown in Fig. 4, where the § = 7/2 plane is con-
sidered. The (absolute value of the) Noether charge
density is also plotted there as a colour map (note
that the maximal value of this quantity is approached
outside the throat).

EDM WHs and entanglement.— In addi-
tion, the ‘smooth’, symmetric WHs have the Dirac
fields at each side of the throat entangled in a par-
ticular way. Let us introduce two observers (Alice
and Bob), which live in the asymptotically flat re-
gions, where the solutions are approximately those of
the flat space. Alice (at r — o00) sees the fermions
in the state ¥4 = |w, ), while Bob (at r — —00)
sees the fermions in a state with opposite numbers,
U5 = |-w, —k). The full asymptotic states will be-
long to the product of Alice and Bob Hilbert spaces,
with Uc(|r| = 00) = VA @ UE = |w, k) ® |~w, —K).
This corresponds to an entangled particle/antiparticle
state of opposite chiralities HE] The WHs cannot
be ‘smooth’ unless the fermions are entangled in such
a way. Also, since the electric flux smoothly enters
the throat on one side and exits on the other, Bob
observes the opposite electric flux and also measures
opposite charges with respect to Alice (their frames
being flipped).

Conclusions.— All known examples of traversable
WHs with (classic) bosonic fields require some ex-
otic matter and/or non-standard Lagrangians. How-
ever, the results in this work show that the situation
changes for a fermionic matter content. WH solutions
were found in the (standard) EDM theory, without
introducing extra-matter in the bulk or at the throat,
providing an explicit realization of Wheeler’s idea of
“electric charge without charge” @] For the WHs to
be ‘smooth’, the presence of a total electric charge is
crucial, while to be traversable, the mass-charge ratio
has to be smaller than one.

A semiclassical approach has been used, in which
case the Dirac-Maxwell and Einstein equations are
coupled, the fermionic matter being treated as a quan-
tum wave function, a treatment which may provide
a reasonable approximation under certain conditions

|. However, we expect such configurations to exist
as well in a more complete setting, with fully quan-
‘iiﬁed matter fields M], as suggested by the results in

].

Also, although we considered a simple toy model
with two localized fermions, this study can be ex-
tended to states with an arbitrary number of fermions,
which would enhance the size of quantum effects,
while retaining the simplifications offered by spherical
symmetry [17], [2§. EDM WHs with a single spinor
should also exist, possessing an intrinsic angular mo-
mentum @] Generalizations of such WH solutions
for the full matter content of the Standard Model are
also likely to exist.
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