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Spatially homogeneous cosmological models based on the Einstein-Cartan-Sciama-Kibble theory of spacetime are
considered. Exact solutions are obtained representing spinning ideal cosmic fluid in the presence of magnetic fields.

I. INTRODUCTION

The Einstein-Cartan-Sciama-Kibble (ECSK)
theory of spacetime,'™® in which the spin density
of matter becomes the source of spacetime’s
torsion, has attracted much interest in recent
years. From the standpoint of cosmology, this
interest stems from the fact that nonsingular
cosmological models based on the ECSK theory
have been explicitly constructed.*”® In most of
these models, the spin of the cosmic fluid is as-
sumed to be aligned along a particular direction
(see, however, Ref. 9). Since strong primordial
magnetic fields are the best candidates for the
source of spin alignment,® it is of interest to study
cosmological models containing both spinning mat-
ter and magnetic fields.

In this paper, we consider spatially homogeneous
models where the spin of the matter content is
aligned along, but not coupled to, the magnetic
field present. Since it has been shown'® that only
models of Bianchi types I, II, III, VI, and VI,
of symmetry admit solutions when a source-free
magnetic field is present, we restrict our con-
siderations to those models. Exact, though some-
times particular, solutions for a class of such
models are obtained. The structure of the paper
is the following. In Sec. II an outline of the ECSK
theory is given and the basic assumptions incor-
porated in the construction of the models are ex-
plicitly stated. In Sec. III the field equations for
types I, II, VI,, and VII, are set up and solved.
Section IV contains the field equations for models
of Bianchi type III, as well as their solution when
p=p. Each section contains a short discussion of
the main features of each of the constructed mod-
els.

II. ECSK THEORY

As in general relativity (GR), the model of
spacetime in the ECSK theory consists of a four-
dimensional manifold, which carries a linear con-
nection and a metric with Lorentz signature. Let
{ed, ®=0,1,2,3, be a set of basis vector fields
on this manifold, and {w"‘} the set of one-forms
dual to {ey}. If F“BY and g,p are the coefficients

23

of the linear connection and the metric tensor,
respectively, we have

Vees=T7gqe, (2.1)
and

dgap +W g +Wge=0, (2.2)
where V and d denote the covariant and exterior
derivative operations, respectively, while

Was=gouwp, w=T%,w. (2.3)

On the other hand,
dw®==-3Cg,wrw?, (2.4)

where the coefficients of structure, Cg,“, are
obtained from the commutation relations

[ea,ee]=Ca57e7. (2.5)
The torsion tensor, with components given by
T‘xs},Er‘aye*Faﬂr—Caya, (2.6)

is the geometric feature which distinguishes the
ECSK spacetime manifold from that of GR, since
the torsion is assumed to vanish identically in the
latter theory.

In terms of the quantities already defined we can
write Cartan’s “equations of structure”:

T*=3T%,wPAw’ =do*+w%Aw?, 2.7
Q%=3R% ;0" Awl=do+w% AwYy, (2.8)
where R, ; is the curvature tensor.
The field equations are
R% -38%R=t% (2.9)
and
T%, = 8§TH,, - 8T s, =S%, (2.10)

where ¢%g and $%,, are the tensors of stress-
energy density and spin density, respectively.
The units were chosen such that ¢ =1 =87G.

The solutions of Egs. (2.9) and (2.10) which are
presented in the following sections were obtained
under the following assumptions.

(i) Spacetime is spatially homogeneous. The
spacelike hypersurfaces of homogeneity, parame-
trized by the cosmic time variable £, are spanned
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by a set {Oi}, i=1,2,3, of one-forms, such that
doi=D;tol Aok, (2.11)

where the D;,"’s are the structure constants of the
three-parameter group of isometries which acts
simply transitively on these surfaces.

In terms of the invariant set {0*} the metric can
be written as

ds?=-dt®dt +g;;(t)0* ®0’. (2.12)

(ii) It is further assumed that g;;(f) is of the
form

gi;(t) = diag (a®, b, ¢?) , (2.13)
so that, relative to the frame {w % given by
wl=dt, w'=ao', w?=b0*, and w=cw?®,

(2.14)
the metric becomes

ds®=naew*®w®, neg=diag(-1,1,1,1).
(2.15)

(iii) The matter spin is described “classically,”
i.e.,

S%y =u0g,, Oagu”=0, (2.16)

where #® is the cosmic fluid velocity vector,
which is orthogonal to the hypersurfaces of homo-
geneity, so, relative to the frame {w%}, u®
=(1,0,0,0). Furthermore, the spin field itself

is homogeneous, so 0,g=0,4(¢) and points along
the direction of a magnetic field which is present
everywhere in the universe.

(iv) The magnetic field does. not couple to the
spin of the fluid particles. As shown in Ref. 10
this assumption implies that Maxwell’s equations
admit a solution only when the group of isometries
generating the hypersurfaces of homogeneity is of
Bianchi types I, II, III, VI, or VII,, For these
groups the invariant basis forms ¢* can be so
chosen that do* =0, for type I; do'=0%A 0%, do?
=e0'Ac®, and do°=0 for types I, VI,, and VII,,
when ¢=0, 1, and -1, respectively; and do*
=0'A 0%, d0*=0=do® for type III. (See Ref. 11, pp.
110-112 for details. Our relations for types VI,
and VII, follow from those given in Ref. 11 on
setting =-1, w'+w?=0", w'-w?=0% and =0,
w'=0?, w?=0" in the expressions given for types
VI and VII, respectively.)

In Ref. 10 it was also found that the components
h? of the magnetic field must satisfy the conditions

‘D=0, €*D,'n, =0, (2.17)
where €'* is the totally antisymmetric symbol.
Substitution of the values of the D;;*’s given by the
above choice of the do*’s in Eqs. (2.17) yields the
following results: When the group is of type II,

then %' =0, necessarily. Similarly, #'=0=k® when
the group type is III, VI,, or VII, It follows that
we can choose the direction of the magnetic field
to be along 02 in all cases. Then assumption (iii)
and Eq. (2.10) imply that the only nonvanishing
components of the torsion tensor are

T0,==T%,=25()=5",. : (2.18)

On the other hand, the magnetic field two-form
F=h{)w'A w® must satisfy Maxwell’s source-free
equations

dF=0=d*F, (2.19)
where *F is the dual of F. From these we obtain
h(t)=V8nH/ab (2.20)

where H is a constant. Accordingly, the contribu-
tion of the magnetic field to the stress-energy
tensor is given by

F H . :
the=(25 ) diag(1,1,1,-1). 2.21)

(v) Finally, the cosmic fluid is taken to be a
perfect one, so that, due to (2.15) (see Ref. 8 for
a detailed proof) (a) its stress-energy tensor takes
the simple form

tas=diag (0,0,0,p), (2.22)

where p=p(f) is the energy density measured on
the hypersurfaces of homogeneity and p =p (f) the
corresponding isotropic pressure, and (b) the
conservation equations for spin and matter-energy
density become

[In(sabc)],,=0 (2.23)
and ’
p.o+(p+p)|ln(adbc)] ,=0, (2.24)

respectively, where () ,=d()/dt. Equation (2.24)
reflects the fact that the matter energy of a fluid
element is conserved separately from the magnetic
field energy. This, in turn, is a consequence of
the assumption that the magnetic field does not
interact with the dipoles of the cosmic fluid par-
ticles.
III. FIELD EQUATIONS FOR BIANCHI TYPES
L II, VI, AND VI, MODELS
As mentioned in the previous section, when

dot=0%A03, (3.1)
do.2=eo.le-3’

and
d03=0’

we have a group of Bianchi types I, VI, and VII,
for e =0, 1, and -1, respectively.
Combining (3.1) with (2.12) we obtain
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dw’=0,
dw' = (Ina) w°Aw' + :—cwzl\ws ,
3.2)
dw?= (Ind) ,w°A w? +28 siaee ,
, ac
dw®=(Inc) (w°Aw®.

Using (3.2), (2.7), (2.18) and the fact that w
= —wg, , Which follows from (2.15) and (2.2), we
obtain

w;o=(Ina) (' - sw?,
Wao = Sw' + (Ind) (w?,

W3o = (]'nc), Ows ’

eb a (3.3)
— o —_ 3
Wgy =SW +<Zac 2bc)w ’

® ( a__eb )
3~ \2bc ' 2ac/)®
_ a  eb) ,
Was == (2bc+2ac) :

The curvature two-forms are determined from
the above expressions for the w,;’s, by using the
equations of structure (2.7) and (2.8). The final
result, with (2.21) and (2.22) taken into account,
is (see Ref. 8 for details)

=Ryo=[In(abc)] 4 +[(1na) ,J?
+[(Ind) o? + [(ine) , ] - 25

Hz
—%(P+3P)—%§,

Ry, =(Ina) o+ (1na)'o[1n(abc)],o + %
=3(p-p)+ 2b2 ’
Ryp = (Inb) o + (lnb),o[ln(abc)],o + f;:’;b;_cl:i
—Lo-p)+ 2;2, (3.4)
Rg3=(Inc) o, + (Inc) o[In(abe)] o - _(112;_+b%l;22_)2

2
=7 (P p) 2b2 ’
R,,=-s[In(sb?c)] ,=0=s[In(sa*c)] =Ry, .
The last two parts of Eqs. (3.4) imply that

s
s=-0_

azcy a:Ab, (3.5)

where s, and A are constants. Comparing, on the

other hand, the R, and R,, equations of (3.4) and
using (3.5), we obtain

a'-e?*=0, 3.6)

whereby we conclude that no solution is possible
for the Bianchi type-II model (e=0), while a=b
for types VI, and VII[,. This implies that the
models of the latter types are axially symmetric
about the spin-magnetic field axis.

On the basis of the above results Eqs. (3.4) re-
duce to

(Ina) o + (lna)'o[ln(azc)]’o =L(p-p)+ %;_,
(Inc) 40 + (1nc)"0[1n(a2c)]’0 - F:% (o-p) - H_: ,

2 (3.7)
(Ina) o[ln(ac®)] , - fzz +—s<12—_p +£;4_ 7

where k=1+e.

A. Type VII-I models

The VII, model, corresponding to =0, also ad-
mits a group of motions of type I, since it is ax-
ially symmetric #'? Thus, we are led to Ray-
chaudhuri’s magnetic universes with torsion 18

In the case of dust, p=0, it follows from (2.24)
that

M
P=73; R’=dc, @8.8)
R
where M is a constant, and Egs. (3.7) can be re-
duced to the following equation for the scale fac-
tor R:

R (R )2 MR, L B2t — 252
—200 20} 20
6 R 30 7 24 R‘* R3 Re 0.
(3.9)
Similarly, in the case of “stiff matter,” we
have :
M

and the equation for R becomes”

,&&)2 _240R,,  60®+2M - 25
R R* RS

v
+ =
6732 +30 0,

(3.11)

where o is a constant of integration. Raychaud-
huri'? obtained for (3.9) only a particular solution,
which has the form

R3=(s 22+ p?)t/2, (3.12)
and is valid in the neighborhood of =0, where R?

obtains the minimum value Rmm =u<1cmd He
also gives the general solution of (3.11), where
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R® obtains a minimum only if s2>M +3¢?, this
being the case when spin dominates over the ef-
fects of gravity and shear.

B. Type-VI, models

The nonvanishing of the terms of Egs. (3.7) in
volving the constant % in the case of the type-VI,
models makes the above equations quite compli-
cated. A simplification can be obtained with the
assumption p =yp, with vy a constant, and the use
of the new time variable 7, defined by d7= (a®/c)
dt. From the conservation equation (2.24) we ob-
tain

M
=@

where M is a constant. Adding and subtracting the
first two of Eqs. (3.7), we obtain, respectively,

A-y)M R

(3.13)

{a*[in(ac)]} = FT i Ty (3.14)
and
{a*[n(a/ )]’} = 212202 - ’; , (3.15)

where the prime denotes differentiation with re-

spect to 7.
Finally, the last of Eqs. (3.7) becomes
M H2%c? s
(lna)'[1n(ac®)] = 4 YR e —ag-—-—a%-. (3.16

We first consider the solution of Egs. (3.14)-
(3.16) for the case of ultrarelativistic fluid, when
y=1. Equation (3.14) gives

k(1 -1,)
2q¢

[In(ac))’ = (3.17)
where 7, is an integration constant which we set
equal to zero for convenience. Substituting (3.16)
and (3.17) into (3.15), we obtain, after some al-
gebra, )

a . (@) Kra  E s’ —M_0

a @& @  4a* a®@

(3.18)

Although we were not able to arrive at the general
solution of (3.18), one easily verifies that the ex-

pression
ad=a1%+8, (3.19)

where o and B are constants, satisfies the above
equation, provided

k? B= 12(sg® -

a=7, e (3.20)
It then follows from Eq. (3.17) that
c=1a?, (3.21)

where I is a constant, such that 3(1H)?=2, accord-
ing to (3.16).

For the case of dust, y=0, we also obtained only
a particular solution. Assuming that (3.21) holds
in this case, too, it follows from (3.14) that

T

3 (1 =7, +e,

(3.22)

where 7, and € are integration constants. Equation
(3.15), on the other hand, gives the condition

6H2?+M1—-Fk*=0, (3.23)
while (3.16) determines the value of e:
4sy’ (3.24)

TAHE A AMI+ R

Choosing /=1, for convenience, we can sum-
marize the above particular solutions of Eqgs.
(3.14)-(3.16) in the concise form

2(s? ~ M)
2?72+ 5005 fory=1
C=gt= ) (3.25)
(M+2H2)72+——4j’; for y=0
5(M +2H?) ’

The solution for dust (y=0) reduces to the one
obtained in Ref. 8 when no magnetic field is pres--
ent (H=0). Equation (3.25) for y=0 shows that
the effect of the magnetic field is to reduce the
value of the minimum volume. In the case of ul-
trarelativistic matter (y=1) the presence of the
magnetic field is essential in producing the pos-
sibility of a nonsingular solution, since the gen-
eral solution of the field equations when H=0 is
singular.® It follows from (3.25) that it is also
necessary that s> M for a nonsingular solution
to exist, exactly as in Raychaudhuri’s Bianchi
type-I model quoted in Sec. IITA.

1V. THE CASE OF BIANCHI TYPE-III MODELS

For Bianchi type-III models the exterior deriv-
atives of the invariant forms o are

do' =0'Ac?, do?=0=do®. (4.1)

Then,

dw' = (Ina) w°Aw' +b™'w'aw?,

dw® = (lnb)’ owA w?,

and (4.2)
dw®=(Inc) (w°Aw® .

Using the first set, (2.7), of the equations of
structure, we find that
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w;0=(Ina) (' - sw?,
Wgo = (Ind) (w* +sw*,
w3o=(Inc) (w®, ©(4.3)
wy, =sw® +b 10!,
13=0 = wag .

Substitution of expressions (4.3) into the second
set, (2.8), of the structure equations yields, after
some algebra, the curvature two-forms and the
Ricci tensor. As a final result we obtain the field
equations in the following form:

—Rg, =[1n(abc)] 40 +[(Ina) ]2

+[(lnbd) I + [(Inc) of? - 252

-3(p+3p) - azbz ’
Ry, =b"[In(ad™)] ,=R;,=0,

Ry, = (Ina) o, + (Ina) o[In(abe)] 5 -

=46 -+ 7,
(4.4)
R,; = —s[In(sb?c)] ,=0=R,, =sIn(sa®c)] ,,

Ryp =(Inb) g +(Ind) ,[In(abc)] , - bl_z

2
=m~m+§§,
Rgy=(Inc) o + (lnc) [ln(abc)],O

=3 s(p- P) azbz

It follows that
s=s,/dc, a=Ab, 4.5)

where s, and A are constants. We set A=1, which
is equivalent, according to (4.1), to using (o*)’
=Ac! in place of ¢! in our calculations.
Thus, Eqgs. (4.4) reduce to
1
2

(lha), oo +(Ina) [In(a?c)] o - == %(P -p)+ I:—-: ,

1 H*
(Inc) o + (Inc) o[In(a®c)] o =3 ~p) -5, (4.6)

2 2
(ina) ,[In(ac?)] o= ?}2— + % +p- a_ioci )

I was able to obtain the general solution of Eqs.
(4.6) only for the case of stiff matter, when p=p.
Changing variables, according to

x=ac, dt=d’cdr 4.7)

brings Egs. (4.6) to the form

(Inx)”=x2,
(Inc)” = —H?c, .8)
[(nx)’ 2 = [(Inc)’' P=x2+H2c? +M - 52,

where a prime denotes derivative with respect to
T.

The first two of Eqs. (4.8) have as first integrals
[Anx)'P=x2+cC,,
[(nc)'J?

where C, and C, are integration constants. The
first-order equation in (4.8) gives the condition

C,=C,+M —5s?2. (4.10)
Since c is a real function of 7, C, must be posi-

tive. Setting C,=1I?, we solve the second of Egs.
(4.9) and obtain

(4.9)
=-H%c*+C,,

c=£sech[l(7 -7,

7 (4.11)

where 7, is a constant of integration.

The solution of the first of Eqs. (4.9) depends on
C, being less than, equal to, or greater than zero.
Respectively, we obtain

x=Fksec(kr) for C,=~-F*
for C, =0,
x=Fkecsch(k|T|) for C, =%,

’

x=|7|"t (4.12)

where the integration constant was set equal to
zero, as it only determines the point on the 7 axis
where the argument of the above function vanishes.

It follows from Eqgs. (4.7), (4.11), and (4.12)
that when C, >0 the volume of this model universe
vanishes for some finite value of . When C, <0,
however, the model is nonsingular. It starts con-
tracting at = —=, goes through a density maxi-
mum, and then expands again as ¢ — +«.

When no magnetic field is present, then it fol-
lows from Eq. (4.9) that the expression (4.11) for
¢ is replaced by

c=cgzet!", (4.13)
where ¢, is constant, while the expressions (4.12)
for x are still valid. Comparison of this solution
with the previous one, where a magnetic field is
present, illustrates the fact that such a field acts
as a tension along its own direction.!**® This is
the physical reason why the presence of the mag-
netic field leads to the reversal of expansion along

its direction, illustrated by going from expression
(4.13) to (4.11).
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