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Abstract

It is not known what the limitations are on using quantum computation to speed
up classical computation. An example would be the power to speed up PSPACE-
complete computations. It is also not known what the limitations are on the duration
of time over which classical general relativity can describe the interior geometry of
black holes. What is known is that these two questions are closely connected: the
longer GR can describe black holes, the more limited are quantum computers. This
conclusion, formulated as a theorem, is a result of unpublished work done by Scott
Aaronson and myself which I explain here.
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1 Introduction

Several years ago I askd Scott Aaronson a question: Can it be proved that the complexity

of a universal quantum circuit, such as those that have been conjectured to describe black

holes, grows at the fastest possible rate—linearly with time—until it saturates at the

maximum complexity (exponential in the number of qubits)? The result was a theorem

(mainly due to Aaronson) connecting the growth of complexity with certain plausible

properties of complexity classes. In this note I explain the theorem and its importance in

a way that I hope can be understood both by physicists and complexity theorists.

I will begin by explaining intuitively why one might expect such a connection. Let us

suppose that a universal quantum circuit, when run for exponential time failed to produce

complexity greater than polynomial in the number of qubits. Consider some problem which

is classically hard, i.e., it takes exponential time ∼ cN to solve it. We could obviously

solve the problem in time cN with the quantum computer by running it in classical mode.

However, by assumption the (quantum) complexity at time cN is polynomial in N . It

follows that there is a way to get to the answer in a polynomial number of steps running

the computer as a quantum computer.

As we will see the argument also goes in the other direction: If the universal quantum

computer produces greater than polynomial complexity in exponential time, then certain

hard problems (PSPACE-complete) cannot be solved in polynomial time by a quantum

computer. Later this will be formulated as a precise theorem.

What does this have to do with black holes? We will see shortly.

2 Two Conjectures

According to classical general relativity the volume of space behind the horizon of a black

hole grows linearly (with time), into the eternal future [1]. The two-sided black hole in

gauge-gravity duality (AdS/CFT) [2] is the best studied example of this growth, and we

will refer to it throughout. The Einstein-Rosen bridge (ERB) connecting the black holes

on either side grows so that its length, volume, and action, all increase proportional to

the time defined on the AdS boundaries. The phenomenon is illustrated in the Penrose

diagram shown in blue in figure 1. The spacetime is sliced by smooth space-like slices1

1A useful geometric way of defining the slices is to make them maximal. That means for given anchoring
time at the boundaries the space-like slices should have maximum spatial volume. An alternative quantity
is the action of a Wheeler-DeWitt patch as explained in [3][4].
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anchored at the boundary at a series of increasing times.

Figure 1: Penrose diagram for a “two-sided” black hole. The spacetime is sliced by maximal
space-like slices anchored on the boundaries. It is obvious that the portions of the slices
behind the horizon grow with time.

At a particular time t the ERB is defined as the intersection of the slice t with the

interior region. In other words the ERB is the portion of the slice (shown in darker blue

in figure 1) that lies behind the horizon. It is evident from the figure that the ERB grows

with time and an easy general relativity calculation [1] shows that the growth is linear in

time.

When quantum theory is introduced it becomes natural to ask what property of the

instantaneous Schrodinger-picture state encodes the size of the ERB? The proposed answer

is quantum computational complexity [1][5][6][7][3][4], also known as gate complexity or

circuit complexity2. By definition it is the minimum number of gates needed to prepare

the quantum state from some initial simple state.

The indefinite growth of an ERB predicted by general relativity is an artifact of classical

physics. On a sufficiently large time scale a closed system of finite entropy must undergo

quantum recurrences. Whatever the connection is between the quantum state and the

size of the ERB, on quantum recurrence time scales it must be quasiperiodic—a distinctly

non-classical behavior. If the connection is through complexity, the time scale for general

2From now on I will just use the term complexity.
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relativity to break down has to be less than some exponential of the entropy S, since the

maximum possible complexity for a closed system is exponential in S.

In this paper we will consider the relation between two kinds of conjectures: on the one

hand, conjectures about the time scale for the breakdown of classical gravity; and on the

other hand, conjectures about the inclusion properties of certain quantum and classical

complexity classes. The basic gravitational conjecture can be stated as follows:

Conjecture:

Classical general relativity governs the behavior of an ERB for as long as possible.

This means that the size of the ERB grows linearly for as long as quantum mechanics

allows. Assuming the duality between ERB geometry and complexity, the linear growth

continues until the volume is exponential in the entropy S. Stated in terms of complexity,

the complexity of the quantum state grows linearly until it reaches its maximum possible

value eS

If, as believed, black holes can be modeled as systems of qubits evolving by unitary

evolution, the conjecture can be re-stated in the form:

Conjecture:

The complexity of certain quantum circuits grows linearly with the number of time-steps,

until it reaches its maximum value, exponential in the number of qubits.

Here, the phrase, certain quantum circuits, refers to the type of circuits that govern

the evolution of a black hole in anti de Sitter space. In particular we expect that they are

computationally universal.

The conjecture has interesting implications for complexity theory. I will state one

here and generalize it later. It implies that the classical complexity class PSPACE is not

contained in the quantum complexity class BQP/poly. Roughly stated, there are problems

that can be solved by classical circuits with width N and arbitrary depth that cannot be

solved with a quantum computer in polynomial time with polynomial advice3. Thus a

physics conjecture about the limits of classical gravity is directly related to a conjecture

about the limits of quantum computation:

Conjecture

PSPACE is not contained in BQP/poly.

3See appendix for definition of advice.
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There are more general statements that tend even more strongly in the same direction,

namely the longer the linear growth of ERBs prevails, the less powerful quantum computers

are for solving PSPACE complete problems.

3 Qubits and Black Holes

Here we will review a few relevant things about the qubit description of black holes. It

is commonly believed that black holes can be modeled as systems of N qubits with N is

of order the entropy of the black hole. (An example is the SYK model [8][9] at infinite

temperature.) The initial state of the two-sided system is the maximally entangled state

of 2N qubits which can be written as a product of N Bell pairs shared between the left

and right sides. This is the thermofield-double state at infinite temperature. It may also

be written in the form,

|Ψ(0)〉 =
∑
ij

δij|i, j〉 (3.1)

where i, j label basis states in the left and right Hilbert spaces.

The system evolves with time so that after time t the state becomes,

|Ψ(t)〉 =
∑
ij

Uij|i, j〉 (3.2)

where the unitary matrix U is given by,

Uij = 〈i|e−2iHt|j〉. (3.3)

The restricted complexity of the state |Ψ(t)〉 will be defined as the minimal number of

2-local gates that it takes to prepare |Ψ(t)〉 starting with the simple state |Ψ(0)〉, assuming

the following restriction: No gates are allowed to couple the left qubits to the right qubits.

This restriction makes sense if we think of the two subsets of qubits as being spatially very

far from one another.

With this restriction it is clear that the complexity of the state |Ψ(t)〉 is the complexity

of the time development operator U(2t) = e−2iHt for a one-sided system. In other words the

restricted state-complexity of the two-sided system is the same as the operator complexity

of the one-sided evolution operator. From now on we concentrate of the complexity of U.
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There are many N -qubit circuits that can generate U. This is obvious because we can

always gratuitously insert a gate and its inverse. Therefore the number of gates in the

circuit that generates a given unitary operator U is not a well defined concept. What is

well defined is the number of gates in the smallest quantum circuit that generates U. The

smallest circuit is called AU and the number of gates in it is the complexity of U. Call it

CU .

Assume U is generated by some dynamics that can be represented by a quantum circuit

that successively repeats a low-depth circuit u in the form ut ( u raised to the power t).

The number of gates in ut is an upper bound on C(U) and obviously grows linearly with t.

Our goal is to understand the complexity of |Ψ(t)〉 which as we’ve seen is the same as

the complexity of U(2t)

C(|Ψ(t)〉) = CU(2t). (3.4)

The black hole conjecture says that the complexity of U(t) grows linearly with t for a

time exponential in N.

4 The Complexity Hypotheses

We will be interested in the complexity of U after an exponential time t = cN with

1 < c < 2,

CU(cN).

By the weak complexity hypothesis (WCH) we will mean that CU(cN) grows faster than

any power of N.

Theorem 1 :

The WCH is true if and only if PSPACE is not contained in BQP/poly. Equivalently we

can state this in contrapositive form:

PSPACE is not contained in BQP/poly iff the WCH is false.
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5 Proof of Theorem 1

5.1 The L Problem

In proving Theorem 1 it will be useful to define a PSPACE-complete problem. Proving a

PSPACE-complete problem is in a given complexity class (BQP/poly for example) proves

that all of PSPACE is in that class. Thus we begin by defining a specific PSPACE-complete

problem L :

Let W be a unitary transformation on N qubits, which applies a single step of a

reversible computationally-universal classical cellular automaton (one for which predicting

the behavior of N cells after ∼ 2N time steps is a PSPACE-complete problem). There are

many examples of such automata (and the assumption of reversibility doesn’t harm the

PSPACE-completeness, by a theorem of Lange, McKenzie, and Tapp [10]). Let W t be the

result of applying W repeatedly t times (see figure 2.

Figure 2: A circuit built by repeating a finite depth circuit W . W t is the unitary evolution
operator after t discrete time steps.

Let the input state for the cellular automaton be a bit-string x of length N. Sometimes

we will call the bit-string |x〉 when we want to emphasize its role as a quantum state. The

problem L is to determine the ith bit of the string

(W )c
N |x〉.
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This problem is PSPACE-complete.

In order to label things precisely we will use the index i = 1, ....., N to label the bits.

The problem Li is that of determining the ith bit of

W cN |x〉.

First suppose that PSPACE is contained in BQP/poly (quantum computers are powerful).

Under that hypothesis we will show that there is a polynomial-size quantum circuit A that

can implement W cN .

By hypothesis the problem Li can be solved by a polynomial-size unitary quantum

circuit which we will call Ci. What the circuit Ci does when it act on |x〉 is to produce a

state in which the first slot of the register contains the ith bit of W cN |x〉. What occurs in

the other slots is a definite quantum state |ψi〉 but we will not need its form.

It is of course necessary to encode the protocol for Ci as additional data. This informa-

tion is the advice indicated by the notation /poly. Since by assumption Ci is polynomial

in N and the index i runs over N values, the advice is indeed polynomial.

Furthermore the hypothesis implies that there is a second polynomial quantum circuit

Bj (also part of the advice) which can be applied to A|x〉 which will give the jth bit of |x〉.
We want to show that there is a polynomial quantum circuit that takes |x〉 to W cN |x〉 for

any input x. In other words there is a polynomial circuit that computes W cN .

The construction is as follows:

First copy the string |x〉 N times into registers r1, r2, ...., rN . Note that this is not

forbidden quantum-cloning since the string x is given in the classical or computational

basis4

Now act in parallel with Ci on the ith copy of |x〉. The result will be that the ith

register will have as its first entry the ith bit of W cN |x〉. Now it is a simple matter to

sequentially copy the the first bit of each register into a special output register ro, thus

encoding W cN |x〉 in the register r0.

However we are not finished. We need to get rid of all the left over junk in r1, r2, ...., rN .

Each of these registers can be acted upon by C−1 to return it to |x, i〉. Since |x〉 is

diagonal in the computational basis, the many copies can be classically “condensed” to a

single copy.

The steps are shown in the first circuit of figure 3.

4In order to label the copies we from 1 to N we also need to add some additional bits. The additional
number is small and can be ignored.
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Figure 3: Polynomial size circuit described in the text that can compute A|x〉 under the
stated hypothesis that Li can be solved by a polynomial size quantum circuit C.

Finally the last part of the protocol is to transform each of the bits of |x〉 to 0 thus

effectively erasing them. This can be done by the addition of the cicuit shown in the lower

half of figure 3. The resulting circuit acts on any |x〉 to give W cN |x〉. Moreover the total

number of gates is polynomial in N.

Thus we have shown that under the stated hypothesis, the complexity of W cN is poly-

nomial. This proves that PSPACE-in-BQP/poly implies that the complexity of W 2N is

polynomial. Equivalently, the hypothesis that the complexity of W 2N is greater than any

polynomial implies that PSPACE is not in BQP/poly.
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Next we need to prove that the hypothesis CW 2N in polynomial implies that PSPACE is

contained in BQP/poly. This is straightforward. Suppose there is a polynomial quantum

circuit that implements W 2N . Then it can be used to solve the PSPACE-COMPLETE

problem L in an obvious way. Under the stated hypothesis this proves that PSPACE is in

BQP/poly.

Thus we have proved Theorem 1: The weak complexity hypothesis is equivalent to the

statement that PSPACE is not contained in BQP/poly.

6 Stronger Hypothesis

That PSPACE should not be in BQP/poly is not a surprise and is considered highly

plausible. But if we assume the conjecture that complexity grows linearly with time until

it reaches its maximum value, there are much stronger implications. For example suppose

we replace the WCH with the stronger assumption that CU(cN) grows faster than any

sub-exponential. Call it the stronger complexity hypothesis (SerCH). Then by the same

reasoning as in the previous section we prove:

Theorem 2 :

The SerCH is true if and only if PSPACE is not contained in BQSUBEXP/subexp. Equiv-

alently we can state this in contrapositive form:

PSPACE is not contained in BQSUBEXP/subexp iff the SerCH is false.

Although PSPACE not in BQSUBEXP/subexp may be plausible it is a much stronger

statement than PSPACE not in BQP/poly. For that reason complexity theory cannot be

said to confirm the black hole conjecture. On the other hand, the assumption that general

relativity holds for a long as possible would put very strong constraints on complexity

theory and implies PSPACE not in BQSUBEXP/subexp.

7 Conclusion

We have not proved that the complexity of a universal quantum circuit becomes maximally

large after an exponential time. This is a very difficult problem. From Nielsen’s geometric

approach to complexity [11] it is possible to prove that C(t) increases linearly for some

non-zero time interval, but thats all. We have been able to make a small step by relating

the issue to a conjecture about complexity classes.
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The problem was motivated by a question about the limits of classical general relativity:

For how long a time does classical GR hold during the evolution of a black hole? This

connection between black holes and complexity classes is unexpected, and in my opinion

very remarkable. Broadly speaking it says that the longer classical general relativity

describes the interior of black holes, the less quantum computers have power to solve

PSPACE-complete problems.
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A Some Black Hole Terminology

In this appendix a brief explanation of some terminology is given, first black holes:

• AdS: Anti de Sitter space is a spacetime with uniform negative curvature. It may

contain black holes. AdS has a causal boundary.

• AdS/CFT: Quantum gravity in AdS is described by a conformal quantum field theory

(CFT) located on the boundary. The duality between quantum gravity in AdS and

quantum field theory on the boundary is often called gauge/gravity duality. A black

hole in AdS is dual to a thermal state of the CFT.

• Einstein-Rosen bridge: An ERB is a wormhole connecting two entangled black holes

at either of the ends of the wormhole. The ERB grows in length with time. Classically

it grows forever.

• Thermofield Double state: The quantum state of a pair of entangled black holes

at time t = 0 is called the Thermofield Double (TFD). As time evolves to greater

complexity corresponding to the growth of the volume of the ERB. In gauge/gravity

duality the TFD is a state of a pair of CFTs thought of as living on two disconnected

and non-interacting boundaries. The only connection between the two CFTs is that

they are entangled.
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B Some Complexity Terminology

I will now give a brief explanation of some complexity terminology which occurs in the

main body of this paper. More complete information can be found in “The Complexity

Zoo” [12]

• Input Size: The input data for a problem is usually in the form of a bit-string. The

size on an instance n is the number of bits in the input string for that instance.

• Decision problems: Problems with a yes-no answer. Example: Is the ith decimal

coefficient of π even? Note that the term decision problem does not apply to a single

instance but to an infinite set of problems.

• Advice: Advice means a set of bit-strings which serve as information that a computer

can refer to. Generally there is not an advice bit-string for each instance of a problem.

Rather there is a single advice string for each size of the problem. Polynomial advice

refers to advice strings that grow no faster than a power of the input size n.

• Non-uniform Advice: Non-uniform advice allows the advice string for each n to be

specified independently, i.e., with no uniform rule.

• PSPACE: The set of decision problems that can be solved by a Turing machine using

a polynomial size memory. Note that the limit is on the memory size, not on the

length of time the machine can run.

• PSPACE-complete is the class of problems in PSPACE that every other problem

in PSPACE can be transformed into in polynomial time. If a PSPACE-complete

problem is an a complexity class, then PSPACE itself is in that class.

• BQP: The class of decision problems solvable by a quantum computer in polynomial

time, with an error probability of at most ε for all instances. The number ε is

arbitrary.

• BQP/poly: The class of decision problems solvable by a BQP machine supplemented

with non-uniform polynomial advice.

• Computational Basis: The class of quantum states that are eigenstates of all qubit

Z operators. They are essentially the same as the states of a classical bit system.
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• Computationally Universal: This refers to the ability of a machine to solve any

problem that a Turing machine can solve. More exactly a computationally universal

machine can calculate any Turing-computable function.

References

[1] L. Susskind, “Computational Complexity and Black Hole Horizons,” arXiv:1402.5674

[hep-th].

[2] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 0304, 021 (2003)

[hep-th/0106112].

[3] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Holographic

Complexity Equals Bulk Action?,” Phys. Rev. Lett. 116, no. 19, 191301 (2016)

doi:10.1103/PhysRevLett.116.191301 [arXiv:1509.07876 [hep-th]].

[4] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Com-

plexity, action, and black holes,” Phys. Rev. D 93, no. 8, 086006 (2016)

doi:10.1103/PhysRevD.93.086006 [arXiv:1512.04993 [hep-th]].

[5] D. Stanford and L. Susskind, “Complexity and Shock Wave Geometries,” Phys. Rev.

D 90, no. 12, 126007 (2014) doi:10.1103/PhysRevD.90.126007 [arXiv:1406.2678 [hep-

th]].

[6] D. A. Roberts, D. Stanford and L. Susskind, “Localized shocks,” JHEP 1503, 051

(2015) doi:10.1007/JHEP03(2015)051 [arXiv:1409.8180 [hep-th]].

[7] L. Susskind, “Entanglement is not enough,” Fortsch. Phys. 64, 49 (2016)

doi:10.1002/prop.201500095 [arXiv:1411.0690 [hep-th]].

[8] S. Sachdev and J. w. Ye, “Gapless spin fluid ground state in a ran-

dom, quantum Heisenberg magnet,” Phys. Rev. Lett. 70, 3339 (1993)

doi:10.1103/PhysRevLett.70.3339 [cond-mat/9212030].

[9] A. Kitaev, A simple model of quantum holography.

http://online.kitp.ucsb.edu/online/entangled15/kitaev/,http: //on-

line.kitp.ucsb.edu/online/entangled15/kitaev2/. Talks at KITP, April 7, 2015

and May 27, 2015.

12



[10] K.J. Lange, P. McKenzie, and A. Tapp, “ Reversible space equals deterministic space,”

Proc. 28th ACM Symp. Theory of Computing (1996) 212-219.

[11] M. Dowling and M Nielsen,

“The geometry of quantum computation” arXiv:quant-ph/0701004

[12] Scott Aaronson, “The Complexity Zoo”

13


	1 Introduction
	2 Two Conjectures
	3 Qubits and Black Holes
	4 The Complexity Hypotheses
	5 Proof of Theorem 1
	5.1 The L Problem

	6 Stronger Hypothesis
	7 Conclusion
	A Some Black Hole Terminology
	B Some Complexity Terminology

