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The Einstein-Cartan-Kibble-Sciama theory of gravity provides a simple scenario in early cosmol-
ogy which is alternative to standard cosmic inflation and does not require scalar fields. The torsion
of spacetime prevents the appearance of the cosmological singularity in the early Universe filled
with Dirac particles averaged as a spin fluid. Instead, its expansion starts from a state at which
the Universe has a minimum but finite radius. We show that the dynamics of the closed Universe
immediately after this state naturally solves the flatness and horizon problems in cosmology because
of an extremely small and negative torsion density parameter, ΩS ≈ −10−69. This scenario also
suggests that the contraction of our Universe preceding the state of minimum radius could corre-
spond to the dynamics of matter inside the event horizon of a newly formed black hole existing in
another universe.

ECKS gravity. The Einstein-Cartan-Kibble-Sciama
(ECKS) theory of gravity naturally extends Einstein’s
general relativity to include matter with intrinsic angular
momentum, providing a more complete account of local
gauge invariance with respect to the Poincaré group [1–
4]. It is a viable theory, which differs significantly from
general relativity only at densities of matter much larger
than the density of nuclear matter. This theory is advan-
tageous over general relativity because torsion appears to
prevent the formation of singularities from matter com-
posed of particles with half-integer spin and averaged as
a spin fluid [5–7], and to introduce an effective ultraviolet
cutoff in quantum field theory for fermions [8].

The ECKS gravity is based on the Lagrangian density
of the gravitational field that is proportional to the Ricci
scalar R, as in general relativity. However, this theory re-
moves the general-relativistic restriction of the symmetry
of the affine connection Γ k

i j , that is, of the vanishing of

the torsion tensor Sk
ij = Γ k

[i j]. Instead, the torsion ten-
sor is regarded as a dynamical variable, in addition to the
metric tensor gij . Varying the total action for the gravi-
tational field and matter with respect to the metric gives
the Einstein field equations that relate the curvature of
spacetime to the canonical energy-momentum tensor of
matter σij = Tij/

√−g (we use the notation of [4]):

Rik −
1

2
Rgik = κσik, (1)

where Rik is the Ricci tensor of the Riemann-Cartan con-
nection

Γ k
i j = { k

i j} + Ck
ij . (2)

Here { k
i j} are the Christoffel symbols of the metric and

Ck
ij = Sk

ij + 2S
k

(ij) (3)

is the contortion tensor. Varying the total action with
respect to the torsion gives the Cartan field equations

that relate (algebraically) the torsion of spacetime to the

canonical spin tensor of matter s k
ij = S k

ij /
√−g:

Sj
ik − Siδ

j
k + Skδ

j
i = −1

2
κs j

ik , (4)

where Si = Sk
ik.

The conservation law for the spin tensor is

∇∗

ks
k

ij = σij − σji, (5)

where ∇∗

k = ∇k − 2Sk and ∇k denotes the covariant
derivative with respect to the affine connection Γ k

i j . The
canonical energy-momentum tensor can be symmetrized
using the Belinfante-Rosenfeld relation

Tik = σik − 1

2
∇∗

j (s j
ik − s j

k i + sjik), (6)

where Tik is the symmetric energy-momentum tensor of
general relativity [9]. Substituting (2) and (3) into (1)
and using (4) and (6) gives

Pik − 1

2
Pgik = κ(Tik + Uik), (7)

where Pik is the general-relativistic Ricci tensor of the
Christoffel connection and

U ik = κ

(

−sij[ls
kl
j] −

1

2
sijlskjl +

1

4
sjlis k

jl

+
1

8
gik(4s l

j [msjml] + sjlmsjlm)

)

(8)

is the correction to the energy-momentum tensor from
the intrinsic spin [2, 6].
Spin fluid. Since Dirac fields couple minimally to the

torsion tensor, the torsion of spacetime at microscopic
scales is nonzero in the presence of fermions. At macro-
scopic scales, such particles can be averaged and de-
scribed as a spin fluid [10]. If the spin orientation of
particles is random then the macroscopic spacetime av-
erage of the spin and of the spin gradients vanish. On
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the contrary, the terms in Uik are quadratic in the spin
tensor and they do not vanish after averaging [6]. The
tensor Uik differs significantly from zero only at densities
of matter much larger than the density of nuclear matter.
We show now the steps in [6] that lead to the combined
energy-momentum tensor of a spin fluid T ij + U ij . The
macroscopic canonical energy-momentum tensor of a spin
fluid is given by

σ j
i = Πicu

j − phj
i , (9)

while its macroscopic canonical spin tensor is given by

s k
ij = siju

k, (10)

siju
j = 0, (11)

where Πi is the four-momentum density of the fluid, ui

its four-velocity, sij its spin density, p its pressure, and
hij = gij −uiuj is the projection tensor [6]. Substituting
(10) into (4) and using (11) gives Si = 0 and ∇∗

i = ∇i.
Accordingly, the torsion tensor is

Sj
ik = −1

2
κsiku

j . (12)

Putting (9) into (5) gives c(Πiuj − Πjui) = ∇k(siju
k),

which leads to

cΠi = ǫui + ∇ksiju
kuj, (13)

where ǫ = cΠiu
i is the rest energy density of the fluid.

Substituting (13) into (9) and using (6) gives Tij =
ǫuiuj −phij −∇k(sk(iuj))+∇k(silu

k)uluj − 1
2∇k(siju

k).
The last two terms on the right of this equation are equal
to −∇k(sl(iu

k)uluj) = −∇l(s
k
(iuj))uku

l, so the tensor

T ij becomes

T ij = ǫuiuj − phij − (δlk + uku
l)∇l(s

k(iuj)). (14)

The last term on the right of (14) can be decomposed
according to (2) into −(δlk + uku

l)Dl((s
k(iuj)) − (δlk +

uku
l)(Ck

mls
m(iuj) + Ci

mls
k(muj) + Cj

mls
k(ium)), where

Dk denotes the general-relativistic covariant deriva-
tive with respect to the Christoffel symbols. This
term reduces, using (3), (11) and (12), to −(δlk +

uku
l)Dl((s

k(iuj)) − Ci
mks

k(muj) − Cj
mks

k(ium)) =

−(δlk +uku
l)Dl((s

k(iuj))− 1
2κ(skls

kluiuj − siksjk). Thus
(14) becomes

T ij = ǫuiuj − phij − (δlk + uku
l)Dl(s

k(iuj))

−κs2uiuj +
1

2
κsiksjk, (15)

where

s2 =
1

2
sijsij > 0 (16)

is the square of the spin density.

Substituting (12) into (8) gives

U ij =
1

2
κs2uiuj +

1

4
κs2gij − 1

2
κsiksjk. (17)

Adding (15) and (17) brings the combined energy-
momentum tensor T ij + U ij in the Einstein field equa-
tions (7) to the form obtained in [6]:

T ij + U ij =
(

ǫ− 1

4
κs2

)

uiuj −
(

p− 1

4
κs2

)

hij

−(δlk + uku
l)Dl(s

k(iuj)). (18)

If the spin orientation of particles in a spin fluid is random
then the last term in (18) vanishes after averaging. Thus
the combined energy-momentum tensor of such a spin
fluid describes a perfect fluid with the effective energy
density ǫ − 1

4κs
2 and the effective pressure p − 1

4κs
2 [6,

11, 12].
Friedman equations with torsion. A closed, homo-

geneous and isotropic universe is described by the
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric
which, in the isotropic spherical coordinates, is given by

ds2 = c2dt2 − a2(t)

(1 + kr2/4)2
(dr2 + r2dθ2 + r2sin2θdφ2),

(19)
where a(t) is the scale factor and k = 1, and the energy-
momentum tensor in the rest frame: u0 = 1, uα = 0
(α = 1, 2, 3) [9]. The Einstein field equations (7) for this
metric and for the combined energy-momentum tensor
(18) turn into the Friedman equations [5, 7, 11]:

ȧ2 + 1 =
1

3
κ
(

ǫ − 1

4
κs2

)

a2, (20)

ȧ2 + 2aä + 1 = −κ
(

p− 1

4
κs2

)

a2, (21)

where the dot denotes the differentiation with respect to
ct. These equations yield the conservation law

(

(ǫ− κs2/4)a3
)

·

+ (p− κs2/4)
(

a3
)

·

= 0, (22)

which can be used instead of the second Friedman equa-
tion (21).

The energy density is the sum ǫ = ǫR + ǫM + ǫΛ of the
energy density of radiation ǫR, energy density of mat-
ter ǫM , and energy density associated with the cosmo-
logical constant ǫΛ = Λ/κ. The pressure is the sum
p = pR +pM +pΛ of the pressure of radiation pR = ǫR/3,
pressure of matter pM = 0, and pressure associated with
the cosmological constant pΛ = −ǫΛ. Applying (22) to
each component of the energy density and pressure sep-
arately leads to ǫR ∝ a−4, ǫM ∝ a−3, ǫΛ ∝ a0, and

ǫS = −1

4
κs2 ∝ a−6, (23)

which is consistent with the conservation of the particle
number because

s2 =
1

8
(h̄cn)2, (24)
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where n ∝ a−3 is the particle number density [11, 12].
Thus the total effective energy density is given by

ǫ + ǫS = ǫR0â
−4 + ǫM0â

−3 + ǫΛ + ǫS0â
−6, (25)

where â = a/a0 is the normalized scale factor and the
subscripts 0 denote quantities measured at the present
time (when â = 1).

The first Friedman equation (20) can be written as

H2 +
c2

a2
=

1

3
κ(ǫ + ǫS)c2, (26)

where H = cȧ/a is the Hubble parameter. The present-
day total density parameter, Ω = (ǫ0 + ǫS0)/ǫc, where
ǫc = 3H2

0/(κc2) is the present-day critical energy density,
gives a0H0

√
Ω − 1 = c, as in general-relativistic cosmol-

ogy [13]. The total density parameter at any instant,

Ω(â) =
κc2

3H2
(ǫ + ǫS), (27)

satisfies

a|H |
√

Ω(â) − 1 = c, (28)

Using the present-day density parameters for each com-
ponent, Ωa = ǫa0/ǫc, in (25) brings (26) to

|H | = H0

(

ΩRâ
−4+ΩS â

−6+ΩM â−3+ΩΛ−(Ω−1)â−2
)

1

2

.

(29)
The relations (28) and (29) give

Ω(â) = 1 +
(Ω − 1)â4

ΩRâ2 + ΩS + ΩM â3 + ΩΛâ6 − (Ω − 1)â4
.

(30)
Since the energy-density contribution from torsion ǫS is
negative, so is the torsion density parameter

ΩS = ǫS0/ǫc. (31)

Density parameters. Seven-year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) observations show
that our Universe may be indeed closed, with Ω = 1.002
and ΩM = 0.27 [14]. The WMAP data give also
H−1

0 = 4.4 × 1017 s and ΩR = 8.8 × 10−5. Thus
a0 = 2.9 × 1027 m. To estimate ΩS , we use the relic
background neutrinos which are the most abundant
fermions in the Universe, with n = 5.6 × 107 m−3 for
each type (out of 6) [13]. Equations (23) and (24) then
give

ΩS = −8.6 × 10−70. (32)

While in general relativity the torsion density parame-
ter ΩS vanishes, the ECKS theory of gravity gives ΩS a
nonzero, though extremely small, negative value.

Flatness problem. For the early Universe, â ≪ 1.
Thus we can neglect the terms with ΩM , ΩΛ and Ω − 1
in (29), simplifying it to

|H | = H0(ΩRâ
−4 + ΩS â

−6)
1

2 . (33)

This equation shows that the expansion of the Universe
started when H = 0, at which â = âm, where

âm =

√

−ΩS

ΩR
= 3.1 × 10−33, (34)

corresponding to the minimum but finite scale factor (ra-
dius of a closed universe) am = 9×10−6 m. Before reach-
ing its minimum size, the Universe was contracting with
H < 0. The total density parameter corresponding to
(33) is

Ω(â) = 1 +
(Ω − 1)â4

ΩRâ2 + ΩS
. (35)

If we choose t = 0 at â = âm then integrating (33) for
t > 0 gives

− Ω
3/2
R H0

ΩS
t = f(x) =

x

2

√

x2 − 1 +
1

2
ln|x +

√

x2 − 1|,
(36)

where x = â/âm. When x ≫ 1, f(x) ≈ x2/2, yielding
the usual evolution of the radiation-dominated Universe,
a ∼ t1/2.

In general relativity, ΩS = 0, from which it follows
that Ω(â) − 1 tends to zero as â → 0 according to
Ω(â) − 1 = (Ω − 1)â2/ΩR, which introduces the flat-
ness problem in Big-Bang cosmology. Ω(â) at the GUT
epoch must have been tuned to 1 to a precision of more
than 52 decimal places in order for Ω to be near 1 today.
This problem can be solved by cosmic inflation, accord-
ing to which the Universe in the very early stages of its
evolution exponentially expanded (which involved false
vacuum or scalar fields) by a factor of at least 1026, mak-
ing Ω(â) sufficiently close to 1 at the GUT epoch [15].

In the ECKS gravity, where ΩS < 0, Ω(â) is infinite
at â = âm. The function (35) has a local minimum at
â =

√
2âm, where it is equal to

Ω(
√

2âm) = 1 +
4ΩS(Ω − 1)

Ω2
R

= 1 + 8.9 × 10−64. (37)

As the Universe expands from âm to
√

2âm, Ω(â) rapidly
decreases from infinity to the value (37) which appears to
be tuned to 1 to a precision of about 63 decimal places.
This stage takes

t = − ΩS

Ω
3/2
R H0

f(
√

2) = 5.3 × 10−46 s. (38)

During this time, the Universe expands only by a fac-
tor of

√
2 which is much less than 1026 in the inflation-

ary scenario. Thus the apparent fine tuning of Ω(â)
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in the very early Universe is naturally caused by the
extremely small and negative torsion density parameter

(32) originating from the torsion of spacetime in the
ECKS gravity, without needing the inflationary dynam-
ics. As the Universe expands further, ΩRâ

2 becomes
much greater than |ΩS | and Ω(â)− 1 increases according
to Ω(â)− 1 = (Ω− 1)â2/ΩR, until the Universe becomes
dominated by matter and the full (30) must be used.
Horizon problem. The relations (28) and (37) give

ȧ =
1

√

Ω(â) − 1
. (39)

The velocity of the point that is antipodal to the coor-
dinate origin, va = πcȧ [9, 13], has a local maximum at
â =

√
2âm, where it is equal to

va =
ΩR

2
√

ΩS(Ω − 1)
c = 1.1 × 1032 c. (40)

As the closed Universe expands from âm to
√

2âm, va
rapidly increases from zero to the enormous value (40).
During this time, the Universe is accelerating: ä > 0.
As the Universe expands further, va decreases according
to va =

√
πcΩRâ

−1/
√

Ω − 1, until the Universe becomes
dominated by matter and the full (29) must be used.
During this time, the Universe is decelerating: ä < 0,
until the cosmological constant becomes dominant.

If the closed Universe was causally connected at some
instant t < 0, then it remains causally connected during
its contraction until t = 0 and also during the subse-
quent expansion until va reaches c. After that moment,
the point at the origin cannot communicate with points
in space receding with velocities greater than c. That is,
the Hubble radius dH = c/H becomes smaller than the
physical distance to the antipodal point da = πa. The
Universe contains N ≈ (va/c)

3 = (da/dH)3 causally dis-
connected volumes. At t given by (38), da is 32 orders of
magnitude greater than dH and N ≈ 1096. Again, it is
the extremely small and negative torsion density param-

eter (32) that naturally causes how such a large num-
ber of causally disconnected volumes arises from a single
causally connected region of spacetime, without needing
the inflationary dynamics. As the Universe expands fur-
ther, |ΩS | becomes negligible and N decreases according
to standard cosmology. For example, at recombination,
â = 9.2 × 10−4 [14] gives da/dH = 1.4 × 103.
Discussion. An extremely small and negative torsion

density parameter ΩS ≈ −10−69, arising from a very
weak and repulsive spin-spin interaction predicted by the
ECKS theory of gravity, provides a simple mechanism for
the apparent fine tuning of the total density parameter in
the early closed Universe and for an enormous number of
causally disconnected volumes in the Universe originating
from a single causally connected region. The expansion
of the Universe in the presence of torsion differs from that
in Big-Bang cosmology only when the Universe is near its

minimum size; after that, the Universe smoothly enters
the radiation-domination epoch. This mechanism, based
on the geometrical effects of spin angular momentum, is
thus a compelling alternative to the standard inflation-
ary scenario because it does not require introducing false
vacuum or scalar fields.

According to (29), the contraction of the Universe be-
fore t = 0 looks like the time reversal of the following
expansion. However, the idea of a universe contracting
from infinity in the past does not explain what caused
such a contraction, just like Big-Bang cosmology can-
not explain what happened before the Big Bang. Fortu-
nately, two mechanisms can cause the dynamics asymme-
try between the contraction and expansion. First, when
the Universe has the minimum radius (34), the radiation
energy density is ǫR = 1.1×10116 J m−3, which is greater
than the Planck energy density by a few orders of magni-
tude. Thus it is also significantly greater than the density
threshold for pair production [2, 16]. Such pair produc-
tion would increase ΩS . If the contracting Universe was
anisotropic in the past, the pair production in the pres-
ence of extremely large tidal forces would also increase
the energy density to the values sufficient for isotropiza-
tion of the subsequent expansion [16]. Second, the elec-
troweak interactions between fermions in the early Uni-
verse could cause their spins to align, making the last
term on the right of (18) nonzero. This term would in-
troduce in the Friedman equations a time asymmetry
with respect to the transformation t → −t, H → −H .
Also, the spin tensor in this term acts like viscosity, which
would increase the entropy of the Universe.

We propose the following scenario. A massive star,
that is causally connected, collapses gravitationally to a
black hole and an event horizon forms. Inside the hori-
zon, spacetime is nonstationary and matter contracts to
an extremely dense, but because of torsion, finite-density
state. In the frame locally moving with matter, this con-
traction looks like the contraction of a closed universe
[9, 17]. Such a universe is initially causally connected and
anisotropic. Extremely large tidal forces cause an intense
pair production which generates the observed amount
of mass and increases the energy density, resulting in
isotropization of this universe [16]. Additional terms in
the Lagrangian density containing torsion could also gen-
erate massive vectors [18]. The spin density increases,
magnifying the repulsive spin-fluid forces due to the neg-
ative ǫS . The pair production does not change the total
(matter plus gravitational field) energy of the resulting
FLRW universe, which is zero if we neglect the cosmo-
logical constant [19]. After reaching its minimum size,
the homogeneous and isotropic universe starts expand-
ing. Such an expansion is not visible for observers out-
side the black hole, for whom the horizon’s formation
and all subsequent processes occur after infinite time [9].
The new universe is thus a separate spacetime branch
with its own timeline; it can last infinitely long and grow
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infinitely large if dark energy is present.
As the universe in a black hole expands to infinity, the

boundary of the black hole becomes an Einstein-Rosen
bridge connecting this universe with the outer universe
[20]. We recently suggested that all astrophysical black
holes may be Einstein-Rosen bridges (wormholes), each
with a new univserse inside that formed simultaneously
with the black hole [21]. Accordingly, our own Universe
may be the interior of a black hole existing in another uni-
verse, and the time asymmetry of motion at the boundary
of this black hole may cause the perceived arrow of cos-
mic time. This description is possible because the torsion
of spacetime, which is produced by the intrinsic spin of
fermions, prevents the formation of singularities. Thus
the gravitational collapse of a star composed of quarks
and leptons to a black hole does not create a singularity
[8], allowing matter inside the event horizon to reexpand.

Since most stars rotate, most astrophysical black holes
are rotating black holes. A universe born from a rotat-
ing black hole should inherit its preferred direction, re-
lated to the axis of rotation. Such a preferred direction
should introduce small corrections to the FLRW metric
(19), containing the Kerr radius a = M/(mc), where M
is the angular momentum of a rotating black hole and m
is its mass [9, 22]. These corrections could then couple to
other fields, allowing to verify whether our Universe was
born in a black hole. GRS 1915+105, which is the heav-
iest and fastest spinning, known stellar black hole in the
Milky Way Galaxy, has a < 26 km [23]. Lighter or slower
spinning black holes have smaller values of a. To com-
pare, the preferred-frame parameter 2.4 × 10−19 GeV in
a model for neutrino oscillations using Lorentz violation
[24] corresponds to the length of 820 m.

The proposed description of the origin of our Universe
may explain the arrow of time. Although the laws of the
ECKS theory of gravity are time-symmetric, the bound-
ary conditions of the Universe are not, because the mo-
tion of matter through the event horizon of a black hole
is unidirectional and thus it can define the arrow of time.
The arrow of cosmic time of a universe inside a black hole
would then be fixed by the time-asymmetric collapse of
matter through the event horizon, before the subsequent
expansion. Such an arrow of time would also be entropic:
although black holes are states of maximum entropy in
the frame of outside observers, new universes expanding
inside black holes would allow entropy to increase further.
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