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Black holes drive powerful plasma jets to relativistic velocities. This plasma should be collisionless,
and self-consistently supplied by pair creation near the horizon. We present general-relativistic colli-
sionless plasma simulations of Kerr-black-hole magnetospheres which begin from vacuum, inject e±

pairs based on local unscreened electric fields, and reach steady states with electromagnetically pow-
ered Blandford-Znajek jets and persistent current sheets. Particles with negative energy-at-infinity
are a general feature, and can contribute significantly to black-hole rotational-energy extraction in
a variant of the Penrose process. The generated plasma distribution depends on the pair-creation
environment, and we describe two distinct realizations of the force-free electrodynamic solution.
This sensitivity suggests that plasma kinetics will be useful in interpreting future horizon-resolving
submillimeter and infrared observations.

The relativistic jets of plasma emanating from ac-
tive galactic nuclei and X-ray binary systems are widely
thought to be driven by magnetic fields threading a ro-
tating black hole, known as the Blandford-Znajek mech-
anism [1]. This process is generally studied using magne-
tohydrodynamics (MHD), a fluid approximation for the
plasma. While MHD has facilitated significant progress
in understanding black-hole accretion and jet production
[2–7], it suffers several shortcomings which limit its de-
scriptive power for this problem; for example, the pair-
creation process which supplies the jet with electron-
positron plasma [8–14] cannot be captured within MHD,
which therefore cannot predict the jet’s mass loading.

Furthermore, the jets have low densities and hence par-
ticles have large mean free paths between two-particle
collisions. The plasma is effectively collisionless, as is
that in many low-luminosity black-hole accretion flows,
including those of Sgr A* and M87 [15, 16], the targets of
ongoing campaigns to resolve horizon-scale structures by
the Event Horizon Telescope (EHT) [17, 18] and GRAV-
ITY [19, 20]. Collisionless plasmas support complex be-
havior that can only be reflected by the full system of
plasma kinetics, which can self-consistently describe the
non-ideal unscreened electric field, pair creation, particle
acceleration, and the emission of observable radiation.

Recently there has been progress on local, one-
dimensional simulations of the electrostatic physics of
black holes’ vacuum gaps [21–23], which must be embed-
ded in an assumed field and current configuration. Global
models are required to self-consistently include the feed-
back of the plasma on the magnetosphere, and have been
used to study the earth’s magnetosphere [24, 25] and
those of radio pulsars [26, 27]. Here we present the
first global, fully general-relativistic, multi-dimensional
kinetic simulations of black-hole magnetospheres.

We solve the kinetic system using the particle-in-cell
approach with a code based on zeltron [28], and express

the equations for the particles and fields using the 3+1
formalism. We use geometrized units with G = M = c =
1, where M is the black hole’s mass; lengths are given in
units of rg = GM/c2, and times are in rg/c. It is useful
to consider the local fiducial observer (FIDO) which is
normal to spatial hypersurfaces, having 4-velocity nµ =
(−α,0), nµ = (1,−β)/α.

The fields are evolved with Maxwell’s equations,

∂tB = −∇×E, (1)

∂tD = ∇×H − 4πJ , (2)

where B and D are the magnetic and electric fields
measured by FIDOs, and the auxiliary fields are H =
αB−β×D and E = αD+β×B [29]. The current mea-
sured by FIDOs is j = (J+ρeβ)/α, where 4πρe = ∇·D,
and the 4-current is Iµ = (ρe,J)/α.

The fields are staggered in space on a Yee mesh and
offset in time by half a step. They are evolved with a
new leapfrog integrator, which uses trapezoidal leapfrogs
for the β ×B and β ×D terms inside the curls.

The particles’ equations of motion can be written as
the Hamiltonian pair

dxi

dt
= vi =

α

Γ
γijuj − βi, (3)

dui
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
∂i(γ

lm)ulum +
α

m
Li, (4)

where γij is the inverse of the spatial 3-metric, uµ =
(ut, ui) is the particle’s 4-velocity, and the FIDO mea-
sures the particle’s Lorentz factor, Lorentz force, and 3-
velocity to be Γ =

√
1 + γijuiuj , L = e (D + V × B),

and V = (v+β)/α respectively. The particles have mass
m and charge e. They supply the current J required by
Eqn. (2), with the contribution from each particle being
proportional to ev and assigned to grid locations with
the volume-weighting technique; this closes the system.
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Gauss’s law is enforced by the frequent use of a Poisson
solver to correct the D field.

We evolve the particles with a time-symmetric Strang
splitting of Eqns. (3) and (4). First the momentum is
pushed forward by half a time step with the Lorentz force
term alone, using the Boris algorithm in the FIDO’s lo-
cal frame by means of a tetrad basis. Then the position
equation, and the gravitational and coordinate terms in
the momentum equation, are evolved together for a full
time step, using an iterative symplectic integrator. Fi-
nally the Lorentz force again acts on the momentum for
another half time step. This scheme conserves energy in
the absence of electric fields, and is relatively computa-
tionally cheap. The numerical methods developed for the
field and particle evolution will be described in detail in
a future paper.

Our initial field configuration is Wald’s stationary vac-
uum solution for a rotating black hole immersed in
an asymptotically uniform magnetic field, aligned with
the hole’s angular-momentum vector, which includes the
electric field generated by spacetime rotation [30]. There
are no particles in the initial state. We use the Kerr met-
ric with spin parameter a = 0.999 and the Kerr-Schild
spacetime foliation in spherical coordinates (r, θ, φ). Here
we focus on two high-resolution simulations; we also per-
formed several runs at lower resolution to infer the de-
pendence on various parameters.

We set the field strength at infinity to B0 = 103m/|e|,
so moderately relativistic particles initially have Larmor
radii rL,0 ∼ 10−3 and gyro frequencies ΩB0 = 103. This
provides a reference scale for many quantities, such as the
Goldreich-Julian number density n0 = ΩHB0/4πe, where
ΩH = a/(r2H + a2) is the angular velocity of the horizon
at r = rH, and the magnetization σ0 = B2

0/4πn0m =
ΩB0/ΩH ≈ 2000. These scales imply the astrophysically
relevant ordering rL,0 � δ0 � rg, where δ0 =

√
σ0 rL,0 is

the skin depth.

The axisymmetric computational domain covers
0.985 rH ≤ r ≤ 8 and 0 ≤ θ ≤ π. The grid consists of
Nr ×Nθ = 1280× 1280 cells, equally spaced in log r and
cos θ, which concentrates resolution toward the horizon
and the equator. The simulations have duration ∆t = 50.
Waves and particles are absorbed in a layer at the outer
boundary [31]. The inner boundary lies inside the horizon
and all equations are solved there without modification.

Plasma is introduced throughout the simulation in the
volume rH < r < 6. We defer a realistic treatment of
pair-creation physics to future work, and instead use a
simple prescription which allows us to specify how pre-
cisely the force-free D ·B = 0 condition is satisfied [32].
In each cell, at each time step, an electron-positron pair is
injected, with each particle conferring an effective FIDO-
measured density of

δninject =
R

4πe

|D ·B|
B

, (5)
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FIG. 1. Toroidal magnetic field, field-aligned current, and
4-current norm for the high-plasma-supply scenario in the
steady state. The ergosphere boundary is shown in green,
and magnetic flux surfaces are in black; dashed lines indicate
the same flux surfaces in the initial Wald state.

provided that |D·B|/B2 is greater than a threshold εD·B ,
and that the non-relativistic magnetization σ > σ0/20.
We set R = 0.5 and create two scenarios, motivated
by the range of pair-creation environments around as-
trophysical black holes: a “high plasma supply” scenario
with a small pair-creation threshold, εD·B = 10−3, and
one with “low plasma supply” where εD·B = 10−2. These
different pair-injection thresholds lead to two distinct
states of the system. The particles are injected with ve-
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FIG. 2. Steady-state FIDO-frame density, and average particle energy-at-infinity and radial velocity (Eqn. 3), for electrons
(−) and positrons (+) in the two plasma-supply scenarios. Note the regions where the average particle energy is negative —
the black hole’s rotational energy decreases when these particles cross the horizon. Gold lines indicate the inner light surface.

locities randomly drawn from a relativistic Maxwellian
of temperature kBT = 0.5m.

The evolution in the two plasma-supply scenarios is
similar in many respects. The Wald solution for a ∼ 1
has large parallel electric fields induced by spacetime ro-
tation, |D ·B| ∼ B2, and so when the simulation begins
the magnetosphere rapidly fills with plasma, following
Eqn. (5). This plasma produces currents which drive the
system away from the vacuum steady state. The mag-
netic field lines, which were originally nearly perfectly
excluded from the horizon, now bend back toward the
black hole and penetrate the horizon. The bending is
only severe inside the ergosphere, which extends to r = 2
on the equator. Plasma falls along the field lines toward
the hole, and accumulates at the equator on those ergo-
spheric field lines which do not yet cross the horizon. An
equatorial current sheet forms, initially at the horizon
and rapidly extending to the ergosphere boundary.

By t ∼ 20 almost all field lines which enter the ergo-
sphere also cross the horizon. The thin current sheet is
then disrupted by the drift-kink instability, which begins

at the horizon and moves outward. Magnetic reconnec-
tion occurs across the sheet, leading to the formation of
isolated plasmoids, which move inward and through the
horizon. The entire magnetosphere enters a long-term
quasi-equilibrium by t ∼ 40. All figures show the two
simulations at the same two steady-state reference times,
thighref ∼ 40 and tlowref ∼ 48.

In this approximate steady state, the toroidal mag-
netic field is large in the jet, which consists of those field
lines which enter the ergosphere, and very small outside
it (Fig. 1, top). There is a strong current layer along the
jet boundary as well as volume currents of both directions
inside the jet; the current is highly spacelike at the poles
and along the equatorial current sheet and the bound-
ary current layer, requiring the presence of both parti-
cle species, and nearly null elsewhere (Fig. 1, bottom).
In the high-supply case, the FIDO-measured density of
both species is well above the reference value everywhere,
n ∼ 10–100n0 (Fig. 2, upper left); there are ∼ 103 parti-
cles per species per cell, and ∼ 3× 109 particles in total.

The low-supply simulation initially evolves similarly,
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FIG. 3. Average FIDO-measured Lorentz factors in the two
steady states; the full potential corresponds to Γmax ∼ 103.

but starting at t ∼ 15 the density of both species inside
the jet begins to drop, and the electrons begin to flow
away from the hole. This counter-streaming allows the
limited charges to carry the current required by the global
magnetosphere, which is similar to that shown in Fig. 1,
though with more-diffuse high-current structures. This is
to be expected, as in both scenarios the deviations from
the force-free electrodynamic solution are small. Now the
densities are generally much lower and the jet is largely
charge-separated, with electrons in the polar region and
positrons in a thick layer along the jet boundary (Fig. 2,
lower left).

Both simulations contain particles which have nega-
tive energy-at-infinity e∞ = −ut, due to the action of
the Lorentz force (Fig 2, center). Penrose has proposed
the ingestion of these particles as a mechanism to extract
a black hole’s rotational energy [33]. MHD simulations
have shown bulk negative-energy regions in transient be-
havior [34, 35] but not in the steady state [36]. Our
kinetic simulations demonstrate that non-ideal electric
fields, from reconnection and charge starvation, continue
to push particles onto negative-energy trajectories. In
both scenarios, electrons are given negative energies in
the current sheet, where the average electron velocity is
toward the black hole. They cross the horizon and ex-
tract the hole’s energy and angular momentum. The low-
supply run also shows negative-energy electrons in the
electron-dominated part of the jet, with the 〈e∞−〉 < 0
region extending up to the ergosphere boundary, beyond
which this effect is impossible; angled brackets imply av-
eraging over the distribution within one cell.

Some of these polar negative-energy electrons also flow
into the hole. The electrons have a velocity-separation
surface in the jet coincident with the inner light sur-
face, at which corotation with the field lines at ΩF =
−Eθ/√γBr ≈ ΩH/2 and fixed (r, θ) is a null world-line
(Fig. 2, lower right). Electrons have 〈vr−〉 < 0 on field
lines close to the polar axis. The positrons also show
radial-velocity separation at the light surface, in the jet-
boundary region where their average velocity at large
radii is positive. In contrast, the high-supply scenario
shows negative radial velocity for both species through-
out the jet, with the current supported by comparatively
small velocity differences.

Particles are accelerated to high energies in the equa-
torial current sheet, with many reaching the approximate
limiting Lorentz factor implied by the total potential
drop, Γmax ∼ aΩB0 ∼ 103; see locally averaged values
in Fig. 3. In both scenarios the positrons have higher
FIDO-frame Lorentz factor in the current sheet. The
particles are roughly an order of magnitude more ener-
getic in the low-supply case, with accelerated electrons
(positrons) having positive 〈vr〉 in the jet (jet-boundary
current layer). In this scenario the region of positrons
accelerated to ∼ Γmax is much thicker than the current
sheet itself. In all cases the particle energies are low near
the polar axis.

The total flux of conserved energy-at-infinity passing
through spherical shells,

∫
T rt α
√
γ dθdφ where Tµν is the

total energy-momentum tensor of the plasma and the
fields, is roughly constant on average and of compara-
ble magnitude to the corresponding force-free solution,
LFFE ≈ 0.2B2

0 (Fig. 4), as found with the phaedra code
[37, 38]. Current-sheet instabilities produce fluctuations
inside the ergosphere at up to the 50% level, with varia-
tions in the high-supply scenario being generally larger.

Far from the horizon, the energy flux in the parti-
cles, given by T rt,±α = 〈e∞± vr±〉n±, is small and the jet
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FIG. 4. Flux of energy-at-infinity through spherical shells
in units of the force-free value, for two steady-state epochs
(solid curves: tref ; dashed curves: t = 50). Positive values at
rH ∼ 1 imply extraction of the black hole’s rotational energy.

power is almost entirely transmitted as Poynting flux,
with T rt,EMα = (E ×H)r/4π. Inside the ergosphere the
energy flux carried by the particles can be large.

In the denser high-supply simulation, the large in-
ward flux of positive particle energy from both species in
the jet usually, though not always, exceeds the energy-
extracting contribution from inflowing negative-energy
electrons in the current sheet. In the low-supply scenario,
the positron energy-flux contribution is usually small and
negative, while that from the electrons is almost invari-
ably positive and carries up to ∼ 0.5LFFE. This demon-
strates that the ingoing negative-energy “Penrose” par-
ticles can become the dominant component, making the
total particle population a net contributor to black-hole
rotational-energy extraction.

In other simulations, we inject particles isotropically in
the frame of the Boyer-Lindquist normal observer, lead-
ing to nearly identical results, including for the detailed
velocity structure shown in Fig. 2. Simulations with
lower B0, and hence lower σ0, confirm that as magne-
tization increases the fraction of the energy flux carried
by infalling positive-energy particles declines. At high B0

we expect the energy-extracting current-sheet electrons
to always dominate the particle energy flux.

We performed simulations in which α, β, and γij

were set to their flat-spacetime values inside the deriva-
tive terms in the particle momentum equation, Eqn. (4),

which removes all of the effective gravitational forces.
Now the particle evolution does not conserve energy and
momentum, and accelerated high-Γ particles, whose large
Larmor radii allow them to experience the incorrect gra-
dient terms, drive unphysical currents which eventually
destroy the solution. Additionally, the high-density re-
gion near the poles in the low-supply state, coincident
with the 〈vr−〉 < 0 polar region (Fig. 2), does not exist
without gravity; rather, both species have lower densities,
and electrons have positive radial velocities. We specu-
late that, near the pole, the nearly field-aligned gravita-
tional forces interfere with charge redistribution by the
parallel electric field, leading to less efficient screening,
more particle injection, and a polar region resembling
the high-supply state.

We have described the first direct plasma-kinetic sim-
ulations of the Blandford-Znajek process, in which a
plasma-filled magnetosphere mediates the extraction of
a black hole’s rotational energy and the launching of a
relativistic jet. We show that the plasma distribution
is sensitive to the pair-supply mechanism, and describe
two distinct states, both electrodynamically similar to
the force-free solution, which would lead to highly dis-
similar observable emission. When a particle species has
a velocity-separation surface in the jet, the jet’s currents
are partly carried by an ergospheric population with neg-
ative energy-at-infinity, implying a supporting role for
the Penrose process in general Blandford-Znajek jets.
Our simulations also have a current sheet at the equator,
where the Penrose effect can be responsible for a large
fraction of the total energy flux from the black hole. Fu-
ture simulations will include a more realistic treatment
of the pair-creation physics, allowing us to model the
accelerating electrostatic gaps, and the resulting photon
emission, in the context of a self-consistent global magne-
tosphere, enabling a rigorous interpretation of the EHT
and GRAVITY observations.
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