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ABSTRACT. We discuss the idea of black hole complemen-
tarity, recently suggested by Susskind et al., and the notion of
stretched horizon, in the light of the generalized uncertainty prin-
ciple of quantum gravity. We discuss implications for the no-hair
theorem and we show that within this approach quantum hair
arises naturally.

PACS categories: 04.60, 12.25, 97.60.

http://arxiv.org/abs/hep-th/9310157v1
http://arxiv.org/abs/hep-th/9310157


The problems related to the application of quantum mechanics to black
holes rank between the most challenging in theoretical physics. Despite great
effort, it has not yet been reached a consensus on the validity of Hawking’s
claim [1] that the evolution of states in the presence of black holes violates
unitarity. Recently, an extremely interesting proposal, close in spirit to pre-
vious work of ’t Hooft [2], has been put forward by Susskind and coworkers
[3-6] and termed “black hole complementarity”. The basic observation is
that physics looks very different to an observer in free fall in a black hole and
to a “fiducial observer” at rest with respect to the black hole, outside the
horizon. Crossing the horizon of a very massive black hole, the free falling
observer should not experience anything out of the ordinary. If the mass of
the hole M is much larger than Planck mass MPl a classical description of
the black hole should be adequate, and in classical general relativity the hori-
zon merely represents a coordinate singularity, while physical quantities like
the curvature are non-singular. Furthermore, from the point of view of the
free falling observer, the flux of Hawking radiation is switched off when he
approaches the horizon. This can be shown observing that near the horizon,
with an appropriate change of variables, the Schwarzschild metric approaches
the Rindler metric, and a free falling observer in Schwarzschild spacetime be-
comes a free falling observer in flat Minkowski space – and certainly does not
detect any radiation. The point of view of a fiducial observer is dramatically
different. In Schwarzschild coordinates, a fiducial observer at a distance r
from a Schwarzschild black hole measures an effective temperature

T = (1−
2GM

r
)−1/2 TH , (1)

where TH = h̄/(8πGM) is Hawking temperature. Climbing out of the gravi-
tational potential well, the radiation is gravitationally red-shifted by a factor
(1− 2GM

r
)1/2 and is seen by an observer at infinity as having temperature TH .

Instead, at the horizon r = 2GM the temperature measured by a fiducial
observer diverges. For a fiducial observer, this temperature is certainly a very
real effect. If too close to the horizon, he would be killed by the eccessive
heat. From this point of view, a fiducial observer regards the black hole hori-
zon as a physical membrane, endowed with real physical properties. More in
general, within the membrane paradigm [7] all interactions of a black hole
with the external environment, as seen by a fiducial observer, are described in
terms of a two-dimensional membrane endowed with properties like electric
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conductivity, viscosity, entropy and temperature.
The difference between the point of view of free falling and fiducial ob-

servers can be of relevance to the information loss problem. There are various
approaches to this problem (for reviews see e.g. [8]), and each one has its own
difficulties; in particular, if one assumes that the black hole evaporates com-
pletely then the core of the information loss problem is that it appears very
difficult to reconcile the point of view of the free falling and fiducial observers,
without questioning basic postulates of quantum mechanics. In fact, as dis-
cussed in [3], the assumption that the evolution of states is unitary, togheter
with the superposition principle, forces upon us the conclusion that all dis-
tinctions between the infalling states must be obliterated soon after they
cross the horizon; this is certainly very difficult to reconcile with the point
of view of the free falling observer and with the equivalence principle, since
to the free falling observer the horizon is no special place. Of course, after
passing the horizon the free falling observer cannot communicate anymore
with fiducial observers, so that no immediate logical contradiction arises; for
instance, the free falling observer cannot report on the lack of substance of
the membrane. More in general, the investigation of various gedanken exper-
iments carried out in [5] indicates that “apparent logical contradictions can

always be traced to unsubstantiated assumptions about physics at or beyond

the Planck scale” [5, 9]. This implies that, contrarily to the common opin-
ion, the information loss paradox cannot be addressed without a detailed
knowledge of a full quantum theory of gravity.

Both in the membrane paradigm and in discussing black hole comple-
mentarity a key role is played by the concept of stretched horizon. It has
been found [7] that the description of the black hole in terms of a membrane
takes a much simpler and elegant form if the horizon is stretched, i.e. if the
surface of the black hole is moved at a slightly larger radius, and a set of
membrane-like conditions are imposed at the stretched horizon. This allows
to get rid of many irrelevant details of the infalling fields and at the same
time “regularizes” the infinities coming from the infinite red-shift factor be-
tween r = 2GM and r = ∞.1 In particular, the temperature measured by a
fiducial observer at the stretched horizon is large but finite. The amount of
stretching is however rather arbitrary. Because of this, and because the free
falling observer would not agree on its existence, the membrane has been con-

1A conceptually similar approach is given by the “brick wall” model of ’t Hooft [2].
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sidered as a useful mathematical construction rather than a physical object:
for instance (see [7], pag. 31) “...it is very useful to regard these boundary
conditions as arising from physical properties of a fictitious membrane resid-
ing at the location of the stretched horizon. More specifically, it is useful
to pretend that the stretched horizon is endowed with a surface density of
electric charge ...” (our italics). However, performing a gedanken experiment
aimed at measuring the radius of the horizon with the best possible accuracy,
we have recently found [10], using only rather general arguments, that the
error ∆x on the radius of the horizon is subject to a generalized uncertainty
principle,

∆x ≥
h̄

∆p
+ const. G∆p (2)

which implies the existence of a minimum error on the order of the Planck
length times a numerical constant, which is shown in [10] to be larger than
one. It is tempting to assume that eq. (2) actually represents a generalized
uncertainty principle which governs all measurements in quantum gravity;
a similar uncertainty principle has been found in string theory [11-14]. In-
dependently of the correctness of the latter assumption, eq. (2) holds for
the measurement of a black hole radius, which is the case in which we are
now interested. More exactly, eq. (2) only holds for ∆p not large compared
with MPl, since ∆p is the error on the momentum of a particle emitted by
the black hole and detected at infinity, and we do not really know how to
describe the particle if its energy is super-planckian. The two terms on the
right-hand side can be considered as the first terms in an expansion in pow-
ers of ∆p/MPl. The knowledge of the exact expression would in principle
require a full quantum theory of gravity. In the following we will assume
that the exact expression valid for arbitrarily large values of ∆p/MPl does
not spoil the main result which can be inferred from eq. (2), namely the fact
that there exists a minimum error on the horizon radius. We can also try
to guess the exact form of the generalized uncertainty principle making the
assumption that it can be derived from an algebraic structure, in the same
sense in which the standard uncertainty principle is a consequence of the
Heisenberg algebra. In [15] we have found that there is indeed an appropri-
ate algebraic structure, and it is given by a deformation of the Heisenberg
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algebra involving a deformation parameter κ with dimensions of mass,

[xi, xj ] = −
h̄2

κ2
iǫijkJk (3)

[xi, pj] = ih̄δij(1 +
E2

κ2
)1/2 . (4)

(E is the energy and Ji the angular momentum). In the limit κ → ∞ it
reduces to the Heisenberg algebra. In the following κ will be identified with
MPl, apart from numerical factors (alternatively, we can identify h̄/κ with
the string length times a numerical factor of order one, in order to recover
the string uncertainty principle). It is remarkable that, under relatively mild
assumptions, this deformed algebra is unique, essentially because the Jacobi
identities provide very stringent requirements on the possible deformations
of an algebra.

From eq. (4) we immediately derive the generalized uncertainty principle

∆xi∆pj ≥
h̄

2
δij〈

(

1 +
E2

κ2

)1/2

〉 . (5)

Expanding the square root in powers of (E/κ)2 and using 〈p2〉 = p2+(∆p)2,
where (∆p)2 = 〈(p− 〈p〉)2〉, at first order one obtains

∆xi∆pj ≥
h̄

2
δij

(

1 +
E2 + (∆p)2

2κ2

)

. (6)

which reproduces eq. (2) in the limit E ≪ κ,∆p
<
∼ κ. Instead, in the limit

〈p〉2 ∼ (∆p)2 ≫ κ2 one obtains

∆x ≥ const×
h̄

κ
. (7)

These results suggest that the horizon is subject to irreducible quantum fluc-
tuations which provides it with a physical thickness. In this case, we can
attempt to promote the membrane from a useful mathematical construction
to a real physical entity: in spite of the fact that the nature of its micro-
physical degrees of freedom is at present quite elusive, still from the point
of view of fiducial observers the membrane has definite and real physical
properties, and it has a physical thickness and a location in space which are
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well defined and determined by physics, rather than by our “regularization”
procedure. In particular, we see that it extends beyond the nominal horizon
by a few Planck lengths (if we choose κ ∼MPl). This agrees with the choice
suggested in [3] in the case of two-dimensional dilaton gravity, while in [7]
the stretched horizon is assumed to extend outward by a finite fraction of
the Schwarzschild radius. It is important to observe that the thickness of
the membrane is independent of the black hole mass; this implies that even
the horizon of a “classical” black hole, with M ≫ MPl, acquires a thickness
because of quantum effects.

Of course, the membrane does not exists for the free falling observer;
however, the principle of black hole complementarity protects us from logical
inconsistencies. To ask whether the membrane exists or not is like asking
whether a photon went through a specific arm of an interferometer. The
answer depends on the setting of the experiment. In our case, on whether
the observer is in free fall or not.

Promoting the membrane to a real, physical object implies a radical re-
vision of some of the common wisdom concerning black holes. In particular,
one realizes that there is no reason to expect that the classical no-hair theo-
rem extends in the quantum domain as well. Let us remind the form of the
classical no-hair theorem for the simple case of a massive scalar field (see [18]
for a discussion of the relevance of the no-hair theorem to the information
loss problem and to the possible relation between black holes and elementary
particles). Introducing the tortoise coordinate

r∗ = r + 2GM log
r − 2GM

2GM
(8)

the wave equation for a scalar field of mass µ in the Schwarzschild back-
ground, after expanding in partial waves, reads

(

−
∂2

∂t2
+

∂2

∂r2
∗

)

ψl,m =
(

1−
2GM

r

)

(

µ2 +
2GM

r3
+
l(l + 1)

r2

)

ψl,m . (9)

In the zero-frequency limit the second derivatives with respect to r∗ is always
positive. However, the domain 2GM ≤ r < ∞ corresponds to −∞ < r∗ <
∞, and therefore a solution which decreases exponentially at r = ∞ must
blow up at the horizon. Thus there is no physically acceptable static solution:
“a black hole has no hair”. In the quantum case, of course the right-hand side
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of eq. (9) receives corrections, which we cannot control. However, it is usually
argued that these corrections should not alter the asymptotic behavior at
spatial infinity, nor close to the horizon, where the dominant effect is given
by the factor 1−2GM/r. Then, the no-hair theorem simply follows from the
fact that r∗ ranges from −∞ to +∞.

From the membrane point of view, it is not difficult to see where this
argument can fail. Physically, we are not allowed to extrapolate the solution
inside the membrane. Such an extrapolation would imply to enter a region
of super-planckian temperatures and therefore to make assumptions about
physics beyond the Planck scale – which is just what the principle of black
hole complementarity warns us not to do. As long as we stop at the border
of the membrane, as determined physically by the generalized uncertainty
principle, r∗ only covers a semi-infinite range, and a solution which decays
exponentially at spatial infinity is finite on the stretched horizon. Thus,
there is no reason to expect that the no-hair theorem goes through even in
quantum gravity.

The fact that the membrane paradigm makes possible to violate the no-
hair theorem at the quantum level is not at all surprising. After all, in the
approach of refs. [3-6] the membrane is just the place where the infalling
information is stored, before being re-radiated in such a way as to preserve
quantum coherence, according to the mechanism suggested by Page [19]. The
various states of the membrane correspond to different internal states of the
black hole, and the difference between the internal states manifest itself to
an observer at infinity through differences in the Hawking radiation; this is
nothing but quantum hair.

Another point which deserves attention is that, at least as far as the ra-
dius of the black hole horizon is concerned, there exists a minimal spatial
distance on the order of the Planck length. This has the surprising con-
sequence (already pointed out in this context by Susskind [6]) that at this
length scale Lorentz transformations must saturate. This implies a deep re-
vision of kinematics at the Planck scale. A possible example of a different
kinematic framework is provided by quantum deformations of the Poincaré
algebra [16]. In [17] we found in fact that, in the κ-deformed Poincaré alge-
bra, the κ-deformed Newton-Wigner position operator and the generators of
translations and rotations actually obey the algebra (3,4). Another possible
kinematic framework is provided by string theory, see below.

The principle of black hole complementarity has also important conse-
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quences for the mental image that we have of black holes. The important
lesson that we learn is that we should be very careful not to mix up the point
of view of free falling observers with that of fiducial observers. Much of the
seemingly paradoxical features of the information loss problem come from a
confusion between these two points of view and is rooted in the implicit and
seemingly undisputable assumption that there exists a notion of invariant
event. However, Susskind [6] has made the crucial observation that black
hole complementarity implies that even the notion of invariant event cannot
be anymore relied upon. He further observes that string theory has just the
properties required by black hole complementarity, as far as the notion of
event is concerned: if a string falls toward a black hole, an observer at infin-
ity sees the string spreading when it reaches the stretched horizon, until it
covers the horizon completely, while a free falling observer sees a string with
constant transverse and longitudinal size which crosses the horizon without
any peculiar behavior. We wish to point out that the non-invariance of the
concept of event in string theory can be seen also at a more fundamental level
and is in fact well-known (see [20], pag. 29). In general, events are defined in
terms of interactions: in classical physics the collision between two billiard
balls constitues a typical event. In quantum field theory, a typical event
is the emission of a photon by a source. If we represent it by a Feynman
diagram, the vertex of the interaction defines the spacetime location of the
event. We can describe this location in different reference frames, but the
location itself has an invariant meaning. In string theory, we must instead
consider the splitting of strings as defining events. However, the point in
spacetime at which a string splits into two strings appears different to differ-
ent observers (see fig. 1.6 of ref. [20]) and correspondingly there is no Lorentz
invariant notion of event. Thus, the non-invariance of the notion of event is
not specific to physics in the vicinity of black holes, although black holes act
as a sort of magnifier of this effect.
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