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@ Generalize Harmonic (GH) gauge conditions.
@ Constraint damping in the GH system.

@ Moving Black Holes.

@ Binary Black Hole Evolutions.
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Methods of Specifying Spacetime Coordinates

@ We often decompose the 4-metric into its 3+1 parts:
ds? = 1apdxdxP? = —N2dt? + g;j(dx' + N'dt)(dx) + N'dt).
The lapse N and shift N' specify how coordinates are laid out on
a spacetime manifold. Consider the unit timelike normal n:
n=0,=(0t/0r)0 + (0x*/0T)ok = (0 — N¥)/N.
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Methods of Specifying Spacetime Coordinates

@ We often decompose the 4-metric into its 3+1 parts:
ds? = Yapdx3dxP = —N2dt? + g;j(dx' + N'dt)(dx! + N!dt).
The lapse N and shift N' specify how coordinates are laid out on
a spacetime manifold. Consider the unit timelike normal n:
n=0,=(0t/0r)0 + (0x*/0T)ok = (0 — N¥)/N.

@ An alternate way to specify the coordinates is through the
generalized harmonic gauge source function H?:

@ Let H? denote the function obtained by the action of the scalar
wave operator on the coordinates x#:

H2 = VOVX2 — T2
where I = )°°[3,. and 14 is the 4-metric.

@ Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(X, 1) = ¥apHP, and requiring that
Ha(xa w) =—Ta= *rabcq/)bc-
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Important Properties of the GH Method

@ The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Rap = fgwc"dcadwab+v(arb) + Fap (1, 09),

where 1), is the 4-metric, and I, = )°°T ., . The vacuum
Einstein equation, R, = 0, has the same principal part as the
scalar wave equation when H,(x, ) = —[, is imposed.
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Important Properties of the GH Method

@ The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Ran = *EUCd OO0 ap + v(arb) + Fab(wa ()U)

where 1), is the 4-metric, and I, = )°°T ., . The vacuum
Einstein equation, R, = 0, has the same principal part as the
scalar wave equation when H,(x, ) = —[, is imposed.

@ Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, C, = O, where

Ca - Ha+ ra:

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints, M, — 0, are determined
by the derivatives of the gauge constraint Cj:

1
Ma = Gao® = | V(alh) — 5vaV°Ce |
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Constraint Damping Generalized Harmonic System

@ Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

1
0 = Ra— v(acb) + Y r](acb) - EUab n®Ce )
where n? is a unit timelike vector field. Since C, = H, + 4

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.
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Constraint Damping Generalized Harmonic System

@ Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

1
0 = Ra— v(acb) + Y r](acb) - EUab n®Ce )

where n? is a unit timelike vector field. Since C; = Hy + T4
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

@ Evolution of the constraints C, follow from the Bianchi identities:

1
0 = VCVCCa*Z’\/oVC [n(cCa)} JrCCV(CCa)*i Yo naCCCC.

This is a damped wave equation for C,, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for 7o > 0).
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Numerical Tests of the New GH System

@ 3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.

@ These evolutions are stable and convergent when o = v, = 1.
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Moving Black Holes in a Spectral Code

@ Spectral: Excision boundary is a smooth analytic surface.
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Moving Black Holes in a Spectral Code

@ Spectral: Excision boundary is a smooth analytic surface.

e Cannot add/remove individual grid points.

@ Straightforward method: re-grid when holes move too far.

@ Problems:

e Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.

e Causality trouble at leading edge of horizon.

@ Solution:
Choose coordinates that smoothly
track the location of the black hole.
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Evolving Black Holes in Rotating Frames

@ Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.

@ Evolutions of Schwarzschild in rotating coordinates are unstable.

10° : : : @ Evolutions shown use a
computational domain that
extends to r = 1000M.

10" @ Angular velocity needed to
e track the horizons of an equal
et mass binary at merger is
10" about 2 ~ 0.2/M.
| @ Problem caused by asymptotic
N0 =0.002/M behavior of metric in rotating

10" ' : : rdinates: Vi ~ p2Q?

10° 107 - 1" 1o coord atess Uit ~ p ,

t/M Vi ~ pS2, Y ~ 1.
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x® = {t,x"}, to define field components, U™ = {145, MNa5, Pox5 1
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

Ogua + AK &gaguﬂ =F%,
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x® = {t,x"}, to define field components, U™ = {145, MNa5, Pox5 1
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

(’)guf*‘ + AK &EORU‘ﬁ = F%,

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {t,x'} = x(x?), to represent these
components as functions, u® = u®(x?).
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
3 — [t,x"}, to define field components, U% = {155, M55, Posp b
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

OEU& + ARaBOEU‘B =F°,

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {t,x'} = x?(x?), to represent these
components as functions, u® = u®(x?).

@ These functions are determined by solving the transformed
Einstein equation:
X! 104

ohu® 4+ _(5a,+a

Ak(y a 3:Fd
ot koo '
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Testing Dual-Coordinate-Frame Evolutions

@ Single-frame evolutions of Schwarzschild in rotating coordinates

are unstable, while dual-frame evolutions are stable:
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@ Dual-frame evolution shown here uses a comoving frame with
2 = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Tracking Coordinates

@ Coordinates must be used that track the motions of the holes.

@ For equal mass non-spinning binaries, the centers of the holes
move only in the z = 0 orbital plane.

@ The coordinate transformation from inertial coordinates, (X,y,Z),
to co-moving coordinates (x,y,z),

X _ [ cosp(t) —sinp(t) O
y | = | sing(t) cosep(t) 0
z 0 0 1

with t = t, is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(t) and o(t).

NI << X

@ Since the motions of the holes are not known a priori, the
functions a(t) and ((t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates Il 5 _
P l}g
)
()
@ Measure the comoving centers of the holes: x.(t) and y¢(t), or

equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
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equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
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results in associated small changes in /Q* and /QY:
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Horizon Tracking Coordinates Il 5 _
¢ lyc
o)
()
@ Measure the comoving centers of the holes: x.(t) and y¢(t), or
equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
@ Changing the map parameters by the small amounts, da and d,
results in associated small changes in /Q* and /QY:
Q¥ = —da, 6QY = —dp.
@ Measure the quantities QY (t), dQY(t)/dt, d >QY(t)/dt?, and set
d 3 dQY d2Qy  d3QY
— =23QY +3X2—— +3)\ = -
gz N I g T e a3
The solutions to this “closed-loop” equation for QY have the form
QY(t) = (At? + Bt + C)e ™, so QY always decreases ast — .
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Horizon Tracking Coordinates Il
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = t;.
@ Inthe time interval t; <t <t ; we set:
dpi  (t—1t)2d%y

pl) = g+ (t-t)- g +5 "z
(t—t)® [, d?°Q"  ,dQ/ 3Q7iy
+ 5 A a2 + A at + A 3 |

where Q*, QY, and their derivatives are measured att = tj, so
these maps satisfy the closed loop
equation att = t;.
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Horizon Tracking Coordinates Il
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = t;.
@ Inthe timeinterval tj <t <t we set:

doi  (t—1t)2d2p

pl) = g+ (t-t)- g +5 "z
(t—t)® [, d?°Q"  ,dQ/ 3Q7iy
+ 5 A a2 + A at +A 3 |

where Q*, QY, and their derivatives are measured att = tl, o]
these maps satisfy the closed loop +°"

equation att = t;. ol ol

@ This works! We are now able
to evolve binary black holes using
horizon tracking coordinates until
just before merger.

ot
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Evolving Binary Black Hole Spacetimes
@ We can now evolve binary black hole spacetimes with excellent

accuracy and computational efficiency through many orbits.

5 10 15

Head-on Merger Movie Lapse-V¥, Movie
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Evolving Binary Black Hole Spacetimes Il

@ Gravitational waveform and frequency evolution for the equal
mass non-spinning BBH evolution.
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Evolving Binary Black Hole Spacetimes Il

@ Initial steps in convergence testing the 15 orbit evolution:
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Reducing Orbital Eccentricity

@ Astrophysical BBH systems are expected to have almost circular
orbits by the time of merger.

@ Commonly used “quasi-circular” initial data approximate the small
radiation reaction driven radial velocities by setting them to zero.

@ Our group (Pfeiffer and Lovelace) have constructed better BBH
initial data with radial velocities chosen to reduce the orbital
eccentricity.

10

-10
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Comparing Waveforms for Low Eccentricity Orbits

@ Orbital eccentricity has little effect on gravitational waveforms.

@ Overlap integrals between the low eccentricity orbit waveforms
and the “quasi-circular” waveforms are greater than 0.99.

@ Graphs compare low eccentricity waveforms (black) with
“auasi-circular” waveforms (red).
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