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Kerr Geometry

Ata Özdemir
Department of Physics

Bilkent University
(Dated: May 24, 2019)

This paper presents a structural analysis of the space-time around a rotating black hole in vacuum
with no electrical charge, namely of the Kerr Metric, followed by certain physical calculations around
it as the final report for the PHYS492-Senior Project II course under the supervision of Prof. Ahmet
Züfer Eriş.

I. INTRODUCTION

Although General Relativity as a theory of gravitation,
and Schwarzschild solution which provides a solution for
a non-rotating chargeless black hole in vacuum has been
around since 1915, and 1916 respectively; notion of a
black hole, as an actual astrophysical object has just been
around for less than half a century.

When the Schwarzschild first proposed his solution, it
was just thought as the metric around any non-rotating
massive object in vacuum; and having any object smaller
than 2µ was rather unfathomable to both Einstein, and
perhaps Schwarzschild himself, along with nearly all
the astrophysicists at the time. Therefore any physical
calculation that can be done beyond that point using
Schwarzschild’s solution was considered as nothing more
than a mathematical fantasy.

This way of approaching to the solutions of the Ein-
stein’s field equations, to perhaps misfortune of Einstein,
did not change up until a couple of years after his death.
Yet, when Roy Kerr, a not-so-famous mathematician
back then, finally solved the Einstein’s field equations
in a coordinate system that he proposed himself, for a
rotating massive object in vacuum; an exact solution of
the Einstein’s field equations were not reached for a ro-
tating massive object for nearly half a century, although
it was tried very hard by many renowned physicists such
as Achilles Papapetrou. And again around those times
the idea of a black hole was in its baby steps. Thus, luck-
ily, Kerr’s solution born into a scientific environment, in
which it could be physically analyzed to most of its po-
tential.

Therefore, in this paper, we revisit some physical con-
sequences displayed by the Kerr metric, namely the met-
ric around a rotating black hole with no electrical charge,
in vacuum.

II. KERR METRIC

In general, Kerr solution assumes a stationary, axially
symmetric metric, and making the solution is rather a
straightforward procedure, such that one first calculates
the Christoffel symbols for that general metric;

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 + grrdr
2 + gθθdθ

2

Then using these Christoffel symbols, the Ricci Tensor
components Rµν are calculated, and since again we are
interested in vacuum solution, Einstein’s field equations
to solve reduce to;

Rµν = 0

Yet, one part that I although did not lie; did certainly
mislead the reader is that I stated that the solution was
straightforward. This statement might cause one to think
that it is easy to follow the procedure as it is given, while
it is anything but easy, and actually near impossible to
solve in the stated form of the given metric due to result-
ing extremely complicated partial differential equations
to solve. Hence, a method which is easier and actually
the way this solution was first achieved is to transform
this metric to Kerr-Schild form, and then follow the given
procedure; which is not explicitly done here.

Yet again, it should also be noted that, the form of
the metric as given in the beginning (Boyer-Lindquist
coordinates) is as powerful in discussing the physics part
of the problem, as it is easy to make a solution in Kerr-
Schild form.

Therefore, given the Kerr Metric in Boyer-Lindquist
coordinates[1][6];

ds2 =
∆− a2 sin2 θ

ρ2
c2dt2 +

4µar sin2 θ

ρ2
cdtdφ

− ρ2

∆
dr2 − ρ2dθ2 − Σ2 sin2 θ

ρ2
dφ2

(1)

where ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2µr + a2 and Σ2 =
(r2 + a2)2 − a2∆ sin2 θ.

Or, restructured in a tidier form;

ds2 =
ρ2∆

Σ2
c2dt2 − Σ2 sin2 θ

ρ2
(dφ− ωdt)2

− ρ2

∆
dr2 − ρ2dθ2

(2)

where the extra physical parameter ω = 2µcra/Σ2 is in-
troduced, we can start the discussion on the Kerr Geom-
etry.
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III. STRUCTURE OF THE SPACETIME
AROUND THE KERR BLACK HOLES

A. Intrinsic and Coordinate Singularities

From the eq(1) we can observe that a singularity oc-
curs in the metric when either ρ = 0 or ∆ = 0. Yet,
although it will not be explicitly done here, calculating
the Ricci Scalar shows that only ρ = 0 is an intrinsic
singularity, and ∆ = 0 is a coordinate singularity. Hence
remembering;

ρ2 = r2 + a2 cos2 θ

it can be seen that ρ = 0 when, r = 0 and θ = π
2 .

Then noting that in Boyer-Lindquist coordinates r = 0
describes a disc of radius a in the equatorial plane, it
can be said that the intrinsic singularity, perhaps sur-
prisingly, occurs at a ring of radius a in the equatorial
plane, since θ = 0; instead of a single point at the center
as in the Schwarzschild Geometry.

Then, giving the condition for an event horizon to oc-
cur as grr =∞, where again from eq(1);

grr = −ρ
2

∆

it is seen that the coordinate singularity occuring at ∆ =
0 mentioned above, is also the result for event horizons.
Therefore setting;

∆ = r2 − 2µr + a2 = 0

we find that the two surfaces described by;

r+ = µ+
√
µ2 − a2 (3)

r− = µ−
√
µ2 − a2 (4)

are the event horizons for a Kerr black hole, of which
geometry is described by the 2D surface line elements;

dσ2 = ρ2
+dθ

2 +
(2µr+

ρ+

)2

sin2 θdφ2 (5)

dσ2 = ρ2
−dθ

2 +
(2µr−
ρ−

)2

sin2 θdφ2 (6)

which are when embedded in a 3D Euclidian Space, re-
semble axisymmetric ellipsoids which are flattened along
the rotation axis.

Discussion

From equations (3) and (4) we can observe that a con-
dition for event horizons to exist is;

a2 < µ2

since real r± values do not exist for µ2 < a2

Yet, if the case where a2 > µ2 is still considered, then it
is found that ∆ > 0 throughout the space, which means,
as we have inferred above, that event horizons disappear,
although ring singularity remains and becomes visible to
the outside world, which is called a naked singularity.
Yet, some astrophysical calculations suggests a limit for
the value of a as a ≈ 0.998µ, which is within the bound-
aries of the condition for a real valued event horizon.

B. Stationary Limit Surfaces

For a general axially symmetric metric, the condition
for both a surface of infinite redshift and a stationary
limit surface is gtt = 0. Therefore, again from the eq(1),
this condition can be written as;

∆− a2 sin2 θ = 0

Rearranging the equation by inserting the expression for
∆, we rewrite the condition as;

r2 − 2µr + a2 cos2 θ = 0

and see that the solution for both the surface of infinite
redshift and stationary limit surface is;

rS+ = µ+
√
µ2 − a2 cos2 θ (7)

rS− = µ−
√
µ2 − a2 cos2 θ (8)

again of which 2D surface line elements are;

dσ2 = ρ2
S±dθ2

+
[2µrS±(2µrS± + 2a2 sin2 θ)

ρ2
S±

]
sin2 θdφ2

(9)

And again, as was the case for eq(5) and eq(6), these line
elements given in eq(9), when embedded in 3D Euclidean
space, describes not spherically but axially symmetric
ellipsoid 2-surfaces, which are oblate around the rotation
axis.

Discussion

If we were to take the limits of the expressions given
in equations (3-4) and (7-8) as a→ 0, which means that
the angular momentum approaches to 0, it can be, as ex-
pected, seen that the structure of a Schwarzschild Black
Hole would be recovered; as the outer surface of redshift
reduces rS+ = 2µ, and inner surface of redshift reduces
to rS− = 0. And again it can be observed that these
surfaces coincides with the event horizons at the given
limit (Schwarzschild Black Holes).

Again returning back to the case with an angular mo-
mentum, it can also be observed that, in the equatorial
plane, inner stationary limit surface coincides with the
ring singularity and again coincides with the inner event



3

horizon at the poles, and remains inside the inner event
horizon otherwise (the statement can be checked by re-
placing the θ in eq(8) by first π/2, then by 0).

Then if we were to discuss the outer surface of the
infinite redshift (outer stationary limit surface), we can
again doing the same as above, only this time with eq(7)
and eq(3), we again observe that outer stationary limit
surface coincides with the outer event horizon at the
poles, but this time encloses the outer event horizon en-
tirely otherwise, and this enclosed region between outer
stationary limit surface and outer event horizon is then
called the ergoregion where some interesting physics lies.

C. The Ergoregion

The main property of the ergoregion is that, it is a
region where gtt starts to act like a spatial component,
such that gtt < 0, while other components’ signs do not
change, which means; being still outside of the horizon,
a particle can still escape from this region.

An immediate consequence of gtt being smaller than
zero is that a particle cannot stay immobile at a position
(r, θ, φ), even if it can produce any arbitrary force to
move (such as an arbitrarily powerful rocket), since the
condition ~u.~u = gtt(u

t)2 = c2 cannot be satisfied for a
particle with 4-velocity;

[uµ] = (ut, 0, 0, 0) (10)

if gtt < 0.
Yet, it is possible for such a particle to remain at fixed

(r, θ), if it rotates around the black hole in the same
direction of the Black Hole’s rotation, with respect to
an infinitely distant observer, which is also a prominent
example of dragging of inertial frames.

More mathematically, the 4-velocity of such a particle
could be written as;

[uµ] = ut(1, 0, 0,Ω) (11)

where, Ω is the angular velocity (Ω = dφ/dt) of the par-
ticle around the black hole, with respect to an infinitely
distant observer. The condition for such a configuration
is again ~u.~u = gµνu

µuν = c2, therefore, opening up the
expression;

gtt(u
t)2 + 2gtφu

tuφ + gφφ(uφ)2

= c2 = (ut)2(gtt + 2gtφΩ + gφφΩ2)
(12)

Then, it can be observed that, the following condition
should be satisfied for ut to be real valued;

gtt + 2gtφΩ + gφφΩ2 > 0 (13)

Since gtt is smaller than 0, it then follows that the
left hand side of the inequality is a downward opening

parabola, which means that the permitted range of an-
gular velocities will be contained between the roots of the
function on the left hand side of the inequality, namely
Ω− < Ω < Ω+, where;

Ω± = − gtφ
gφφ
±

√( gtφ
gφφ

)2

− gtt
gφφ

= ω ±
√
ω2 − gtt

gφφ

(14)

From eq(14), it is easy to see that there are two special
cases that stand out; one gtt = 0, and other ω2 = gtt/gφφ.

For the first case, the results are;

Ω− = 0

Ω+ = 2ω

and we know that the gtt = 0 is the defining property of
the stationary limit surfaces. Therefore, the results that
we have in this special case is the range of permitted
angular momentum values on the outer stationary limit
surface (outer surface of the ergoregion), and the Ω− = 0
is actually the physical definition of a stationary limit
surface, such that having 0 angular momentum in the φ
direction becomes possible on this surface, and inside of
this surface, a particle has to rotate in the same direction
as the black hole rotates; such that a negative value of Ω
only becomes possible for r values larger than rS+ .

Passing onto the other special case, the result is simply;

Ω± = ω

As we can check, for the condition for this result to hold,
we must have ∆ = 0, such that;

ω2 =
gtt
gφφ(2µcra

Σ2

)2

=
a2c2

Σ2
for ∆ = 0

where again when we insert Σ2 = (2µr)2 for ∆ = 0, we
see that the above equation holds. Therefore, ∆ = 0
being the condition for the occurrence of event horizons,
we immediately observe that the condition for Ω± = ω
holds on the outer event horizon, such that continuing
from above;

ω2 =
a2c2

(2µr)2

Hence;

Ω± = ΩH = ω(r+, θ) =
ac

2µr+
(15)

Finally, with this calculation, we put a better limit for
the maximum permitted angular velocity for a particle
at fixed (r, θ) within ergoregion, which is ΩH .
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Discussion

Another interesting consequence of the existence of an
ergoregion is that it allows for a process by which energy
can be extracted from a spinning black hole; which is
called Penrose process.

The process, basically, can be summarized as;

1. A particle enters the ergoregion

2. Particle, at some point, divides/decays into two
particles

3. One of those two particles escapes ergoregion and
reaches to a stationary infinitely distant observer
and other falls into the black hole further

4. At the end of this process the particle escaping
the region ends up having more energy than it had
when it was entering the ergoregion together with
its other part.

5. This process occurs at the expense of the rotational
energy of the black hole.

Then, let us continue with a more sound discussion on
the Penrose process.

IV. PENROSE PROCESS[6][8]

Imagine a particle A fired from the fixed position of an
infinitely distant observer to the Kerr black hole’s ergore-
gion. In the reference frame of the observer at the event
of emission E , the energy measured by that observer will
be written as;

E(A) = p(A)(E) · ~uobserver = p
(A)
t (E) (16)

where p(A)(E) is the particle’s 4-momentum at the
given event and ~uobserver is the 4-velocity of the observer.
And since we have assumed an stationary, infinitely dis-
tant observer, the components for the 4-velocity of such
an observer will be;

[uµobserver] = (1, 0, 0, 0)

Now, imagine somewhere in the ergoregion, particle
A divides into two different particles, let say, B and C.
At the event of division, by using the conservation of
momentum, we can write;

p(A)(D) = p(B)(D) + p(C)(D) (17)

Then, if this division realizes in such a way that, let say,
particle-C reaches back to an infinitely distant observer,
that observer at the receiving end can write the particle’s
energy in that receiving event R as;

E(C) = p
(C)
t (R) = p

(C)
t (D)

where we were able to write the last part of the equation;
having the knowledge that covariant time component of
the 4-momentum of a particle along the geodesics of the
Kerr geometry is conserved, since the metric is stationary.
In a similar manner, we can also write for the initial
undivided particle;

E(A) = p
(A)
t (D) = p

(A)
t (R)

Hence, we can rewrite the condition for the conserva-
tion of momentum (eq(17)), for the time component as;

E(C) = E(A) − p(B)
t (D) (18)

where again, throughout the geodesic path pursued by

the particle-B, p
(B)
t is also conserved. Now, it is useful

to note that p
(B)
t = et · ~p(B), where et is the basis vector

for t-coordinate, of which squared length can be written
as;

et · et = gtt

Therefore, we can say, if the particle-B were to fall fur-
ther into black hole, unlike particle-C, it would stay in a
region where gtt < 0. Which would mean in turn that et
is spacelike in that region, and then p

(B)
t would be spatial

momentum component, which can be either positive or
negative. Thus, for a division event where it is negative,
looking back to eq(18) we see that E(C) > E(A); which
means, the divided part of the particle that managed to
escape the ergoregion, now has more energy than it had
when it was entering the ergoregion undivided, hence the
extraction of energy from the black hole.

Yet, there is a consequence of such a process for also the
black hole; such that the black hole loses some amount of
both total mass and angular momentum; as if the falling
particle had, interestingly enough, negative mass-energy,
which is, as now we know, possible in Kerr geometry. The
amount of change in both quantities are then written as;

M →M +
p

(B)
t

c2
(19)

J → J − p(B)
φ (20)

where we can cross-check that the total mass also re-
duces in the case that p

(B)
t is negative. And again it is

important to note that pφ is the particle’s angular mo-
mentum component along the black hole’s rotation axis,
multiplied by −1.

Now to demonstrate that the angular momentum also
decreases due to the falling particle, we first introduce an
observer in the ergoregion at a fixed position in (r, θ) co-
ordinates which observes the particle-B as particle passes
near it. As we have shown during the calculations for er-
goregion, such an observer’s 4-velocity is;

[uµ] = ut(1, 0, 0,Ω) (21)
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Then, the energy of particle-B can be written by this
observer as;

E(B) = p(B)
µ uµ = ut

(
p

(B)
t + p

(B)
φ Ω

)
Continuing, since E(B) must be positive, the following
condition can be introduced;

L <
p

(B)
t

Ω
(22)

where L = −p(B)
φ . Again remembering that p

(B)
t was

negative, and Ω has to be positive in the reference frame
of an observer in the ergoregion, we observe that L is
negative also. Hence the angular momentum of a falling
particle is negative, which in turn decreases the net an-
gular momentum of the black hole.

Finally, considering the calculations done in the pre-
vious section, we can actually put a better upper limit
for L, such that the eq(22) is expected to hold for any
observer at fixed (r, θ) in ergoregion. And since, the an-
gular velocity has the upper bound of Ω = ΩH at the
outer horizon r = r+, the condition in eq(22) can be
rewritten as;

δJ <
c2δM

ΩH
(23)

where δJ and δM denotes the changes in angular mo-
mentum and mass, respectively, which are both negative.

V. GEODESICS IN THE EQUATORIAL
PLANE[4][5][6]

For the Kerr geometry, since the metric is not spheri-
cally symmetric; it is unnecessarily complicated to work
over the entire space. Therefore, we confine the dis-
cussion to a much simpler case, which is the geodesics
for a constant θ value, namely π/2, hence the equato-
rial plane. Then, let us start by first rewriting the Kerr
metric (eq(1)) for constant value of θ = π/2;

ds2 = c2
(

1− 2µ

r

)
dt2 +

4µac

r
dtdφ

− r2

∆
dr2 −

(
r2 + a2 +

2µa2

r

)
dφ2

(24)

Then, we can use the Euler-Lagrange equation to write
the geodesics. Thus, writing the Lagrangian L as;

L =
1

2

( ds
dτ

)2

=
1

2

[
c2
(
1− 2µ

r

)
ṫ2 +

4µac

r
ṫφ̇

− r2

∆
ṙ2 −

(
r2 + a2 +

2µa2

r

)
φ̇2
] (25)

Then, the Euler-Lagrange equation for t and φ coordi-

nates are;

d

dτ

(∂L
∂ṫ

)
− ∂L
∂t

= c2
(

1− 2µ

r

)
ẗ+

2µac

r
φ̈ = 0 (26)

d

dτ

(∂L
∂φ̇

)
− ∂L
∂φ

=
2µac

r
ẗ+
(
r2 + a2 +

2µa2

r

)
φ̈ = 0

(27)

and first integrals of these equations being more useful,
we can rewrite equations (26) and (27) as;

pt = c2
(

1− 2µ

r

)
ṫ+

2µac

r
φ̇ = kc2 (28)

pφ =
2µac

r
ṫ+
(
r2 + a2 +

2µa2

r

)
φ̇ = −h (29)

Where we have introduce the constants k and h. And
finally the solutions for the coupled equations of (28) and
(29) are;

ṫ =
1

∆

[(
r2 + a2 +

2µa2

r

)
k − 2µa

cr
h

]
φ̇ =

1

∆

[
2µac

r
k +

(
1− 2µ

r

)
h

] (30)

Yet, for the case of r, it is more convenient to find
the first integral through the invariant length of the 4-
momentum ~p, rather than using Euler-Lagrange, since
the resulting equations from it are quite complicated to
solve. Thus, the useful form to use is;

gµνpµpν = ε2

where ε2 is c2 for a massive particle, and 0 for a photon.
Then, knowing that the pθ = 0 due to our choice of the
motion in the equatorial plane, this expression opens up
as;

gtt(pt)
2 + 2gtφptpφ + gφφ(pφ)2 + grr(pr)

2 = ε2 (31)

where the contravariant metric components gµν are;

gtt =
1

c2∆

(
r2 + a2 +

2µa2

r

)
gtφ =

2µa

cr∆

grr = −∆

r2

gφφ = − 1

∆

(
1− 2µ

r

)
for again constant θ = π/2. Yet, before placing the val-
ues of the contravariant metric components, it is wiser
to massage the eq(31) a little bit further by other sub-
stitutions. Noting that pt = kc2 and pφ = −h; and
remembering that pr = grr ṙ, where grr = 1/grr, we may
obtain the following equation;

ṙ2 = grr(ε2 − gttc4k2 + 2gtφc2kh− gφφh2) (32)
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Now, substituting the contravariant components of the
metric tensor into eq(32), we get;

ṙ2 = c2k2−ε2+
2ε2µ

r
+
a2(c2k2 − ε2)− h2

r2
+

2µ(h− kca)2

r3

(33)
Since, as the name of the section suggests, the discus-

sion was constrained to the equatorial plane, the equation
for θ is irrelevant, since it will not produce any indepen-
dent equation of motion. Therefore, the results as found
in eq(30) and eq(33), define the complete set of null and
non-null geodesics in the equatorial plane.

Before continuing with specific examples, two things
to note about the Kerr geometry are;

1. Equatorial trajectories are depended on if the par-
ticle/photon is co-rotating, or counter-rotating.

2. t and φ coordinates are both bad coordinates near
horizons, such that in terms of these coordinates,
particles/photons seems to take infinite amount of
spiral rotations, and infinite coordinate time to
cross the event horizons for an infinitely distant sta-
tionary observer (both around r− and r+), which is
not the case in the reference frame of these moving
particles/photons.

A. Equatorial Trajectories of Massive Particles

As mentioned in the general discussion about the equa-
torial geodesics, the massive particle trajectories are ob-
tained by replacing ε2 with c2 in eq(33), such that the
equation concerning the energy becomes;

ṙ2 = c2(k2−1)+
2c2µ

r
+
a2(c2(k2 − 1))− h2

r2
+

2µ(h− kca)2

r3

(34)
where, kc2 and h are respectively the energy and angular
momentum per unit mass of the particle, whose trajec-
tory is being defined.

Eq(34), then can be rearranged as;

1

2
ṙ2 + Veff(r;h, k) =

1

2
c2(k2 − 1) (35)

where the effective potential energy per unit mass is de-
fined as;

Veff = −µc
2

r
+
h2 − a2c2(k2 − 1)

2r2
− µ(h− kca)2

r3
(36)

Veff in the Kerr case also clearly reduces to that of the
Schwarzschild case;

Veff(S) = −µc
2

r
+

h2

2r2
− µh2

r3

as a→ 0. Yet, it is important not to be careless about de-
ciphering eq(36) as an effective potential since it also has
k (energy of the particle per unit mass) dependence. But

still, it is mostly as useful as it is for the Schwarzschild
case to consider so.

One last comment on this section is that, a general set
of equations of motion will not be derived here, since it is
extremely complicated to do so. Hence, the interest will
be once more constrained to special cases.

1. Equatorial motion of massive particles with zero initial
angular momentum

For a particle in free fall with respect to a Kerr black
hole, with zero initial angular momentum, h is simply 0.
Then, for the sake of brevity, it is also useful to consider
the particle to start its motion at rest, from infinity, such
that k also becomes 1. Substituting these values, equa-
tions (30) and (34) become;

ṫ =
1

∆

(
r2 + a2 +

2µa2

r

)
(37)

φ̇ =
2µac

r∆
(38)

ṙ =
2µc2

r

(
1 +

a2

r2

)
(39)

As mentioned before, the fact that t and φ coordinates
are bad coordinates around the event horizons (∆ = 0),
becomes apparent with the equations (37) and (38), while
interestingly, this effect is not observed for the expression
of ṙ.

At this point, writing the equations for trajectories is
rather straightforward, making use of the chain rule, such
that;

dr

dt
=
ṙ

ṫ
= −∆

√
2µc2

r

(
1 +

a2

r2

)
·
(
r2 + a2 +

2µa2

r

)−1

(40)

dφ

dt
=
φ̇

ṫ
=

2µac

r
·
(
r2 + a2 +

2µa2

r

)−1

(41)

dφ

dr
=
φ̇

ṙ
= −2µa

r∆
·
[2µ

r

(
1 +

a2

r2

)]−1/2

(42)

And it is actually possible to observe frame dragging
property of the Kerr geometry from the above equations,
once they are numerically integrated and a plot of the
trajectory of the particle is obtained in the xy-plane.

2. Equatorial circular motion of massive particles

For the motion in a circular orbit, the condition is sim-
ply ṙ = 0, and radial acceleration r̈ should also vanish.
Therefore, in terms of the eq(36), for a circular orbit at
r = rc, the requirement is;

Veff(rc;h, k) =
1

2
c2(k2 − 1)

dVeff

dr
= 0 for r = rc

(43)
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Hence, after some careful but straightforward algebra, we
find the results for h and k for circular orbits as;

k =
1− 2µu∓ a

√
µu3√

1− 3µu∓ 2a
√
µu3

(44)

h = ∓
c
√
µ(1 + a2u2 ± 2a

√
µu3)√

u(1− 3µu∓ 2a
√
µu3)

(45)

Where u = 1/r and concerning ±and∓ signs; upper
signs denote counter-rotating, and lower signs denote co-
rotating circular orbits.

3. Stability of equatorial circular orbits of massive particles

In addition to the condition for a circular orbit as given
in eq(43), for a borderline stability the following condi-
tion should be satisfied;

d2Veff

dr2
=
d2Veff

du2

(du
dr

)2

+
dVeff

du

d2u

dr2

= u3
(
u
d2Veff

du2
+ 2

dVeff

du

)
= 0

(46)

Then, again following a careful, yet straightforward cal-
culation; the implicit equation for the innermost stable
coordinate radius for a circular orbit becomes

r2 − 6µr − 3a2 ∓ 8a
√
µr = 0 (47)

where again, the upper sign denotes counter-rotating,
while minus sign denotes co-rotating circular orbit.

Finally, substituting two extremes of the Kerr metric;

1. At a = 0, we recover the result for the
Schwarzschild case that r = 6µ

2. while at a = µ, we find that r = µ for co-rotating,
and r = 9µ for counter-rotating massive particle.

The general solution is also analytically possible and
straightforward to obtain, yet the result is unnecessary to
calculate at this point, where a numerical plot provides
a better demonstration;

FIG. 1. r/µ for the innermost stable orbit as a function of
a/µ

A similar plot of k vs a/µ can be drawn using eq(44),
which I will not do here, but using that, efficiency of
the accretion disk around a Kerr black hole can also be
calculated as;

εacc = 1− k (48)

and for the extreme case of a = µ, this value would be;

εacc = 1− 1√
3
≈ 42%

yet, again more realistically, for a Kerr black hole, this
value would be at maximum ≈ 32% with a

µ ≈ 0.998.

B. Equatorial Trajectories of Photons

The procedure to follow for this section is nearly iden-
tical to the calculations done for the massive particles,
yet of course with some differences. Hence, intermediate
steps are going to be omitted through most of this sec-
tion, since an outline of the calculations and results would
suffice due to similarities with the previous section.

The main equations to write for the photon trajectories
are again simply the eq(30), and eq(33) with ε2 = 0 now.
Thus, the eq(33) with the given condition is rewritten as;

ṙ2 = c2k2 +
k2c2a2 − h2

r2
+

2µ(h− kca)2

r3
(49)

Then, for the calculations, it is helpful to introduce b =
h/(ck). In the limit r → ∞, b can be interpreted as a
parameter of impact, and since k has a positive sign in
this limit, the sign of b is also the same as the sign of φ̇

After these explanations, eq(49) can be restated as;

ṙ2

h2
+ Veff(r; b) =

1

b2
; (50)



8

where;

Veff(r; b) =
1

r2

[
1−

(a
b

)2

− 2µ

r

(
1− a

b

)2]
(51)

The most comments that were done for the equatorial
trajectories of massive particles are also valid here, such
that the results approach to that of Schwarzschild metric,
in the limit a→ 0, yet it is important to be careful when
interpreting Veff as the efficien potential energy, for a 6= 0;
yet still, it is mostly useful to do so.

1. Equatorial principle photon geodesics

Although radial photon geodesics, as expected, do
not exist on the equatorial plane of the Kerr geometry
due to dragging of inertial frames, it is still possible to
have a knowledge about the radial variation of the light-
cone structure through investigation of the principal null
geodesics. With the defining condition that b = a, the
equations (30) and (33) becomes;

ṫ =
k

∆
(r2 + a2) (52)

φ̇ =
kca

∆
(53)

ṫ = ±ck (54)

where in eq(54), where + sign denotes outgoing, and −
sign denotes incoming photons. Then, let say, for the
ṙ = +ck, we can write;

dt

dr
=
ṫ

ṙ
=

(r2 + a2)

c∆
(55)

dφ

dr
=
φ̇

ṙ
=

a

∆
(56)

Then, with the knowledge that ∆ > 0 for r+ < r < ∞,
it follows that dr

dt > 0, hence also verifies that the photon

is outgoing. Confining the interest to again a2 < µ2, we
can outright integrate the equations (55) and (56), and
find;

ct = r + µ
(

1 +
µ√

µ2 − a2

)
ln
∣∣∣ r
r+
− 1
∣∣∣

+ µ
(

1− µ√
µ2 − a2

)
ln
∣∣∣ r
r−
− 1
∣∣∣+ C

(57)

φ =
a

2
√
µ2 − a2

ln
∣∣∣r − r+

r − r−

∣∣∣+ C (58)

where C’s are simply integration constants and not nec-
essarily equal in two equations. The solution for the in-
coming photons can then also be calculated following the
same procedure.

2. Equatorial circular motion of photons

The conditions to write for the equatorial circular mo-
tion of photons is the same as it was for the massive
particles such that ṙ = 0 and r̈ also vanishes. Then in
terms of the eq(50), for a circular orbit at r = rc, the
condition to introduce becomes;

Veff(rc; b) =
1

b2

dVeff

dr
= 0 for r = rc

(59)

And after some not-so-long algebra, one might write the
result as;

rc = 2µ

[
1 + cos

[
2

3
cos−1

(
± a

µ

)]]
(60)

b = 3
√
µrc − a (61)

where the for ± + sign denotes retrograde orbit, and −
denotes prograde orbit. As always, for a → 0 we get
the results for the case in Schwarzschild metric. At this
point although making the similar calculations as we have
done for the case of massive particles on the stability
of equatorial photon orbits is possible and yields some
interesting results, we will suffice with stating that the
circular photon orbits are unstable in Kerr geometry, as
it is the case for the Schwarzschild geometry.

VI. ADMIRATION

After all these calculations were first done about half
a century ago, the author of this paper who has written
it for an undergraduate senior project, would like to take
a moment to appreciate the era he is hopeful to be a
physicist in; an era in which an image like FIG.2 is made
possible.

FIG. 2. First ever image of a black hole (a Kerr black hole in
particular) shadow and the accretion disk around it.
Credit:Event Horizon Telescope Colloboration
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