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Abstract

Starting from Newton’s gravitational theory, we give a general in-
troduction into the spherically symmetric solution of Einstein’s vac-
uum field equation, the Schwarzschild(-Droste) solution, and into one
specific stationary axially symmetric solution, the Kerr solution. The
Schwarzschild solution is unique and its metric can be interpreted as
the exterior gravitational field of a spherically symmetric mass. The
Kerr solution is only unique if the multipole moments of its mass
and its angular momentum take on prescribed values. Its metric can
be interpreted as the exterior gravitational field of a suitably rotat-
ing mass distribution. Both solutions describe objects exhibiting an
event horizon, a frontier of no return. The corresponding notion of a
black hole is explained to some extent. Eventually, we present some
generalizations of the Kerr solution.
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1 Prelude1

In Sec.1.1, we provide some background material on Newton’s theory of grav-
ity and, in Sec.1.2, on the flat and gravity-free Minkowski space of special
relativity theory. Both theories were superseded by Einstein’s gravitational
theory, general relativity. In Sec.1.3, we supply some machinery for formu-
lating Einstein’s field equation without and with the cosmological constant.

1.1 Newtonian gravity

Newton’s gravitational theory is described—in particular tidal gravitational
forces—and applied to a spherically symmetric body (a“star”).

Gravity exists in all bodies universally and is proportional to the quan-
tity of matter in each [ . . . ] If two globes gravitate towards each other,
and their matter is homogeneous on all sides in regions that are equally
distant from their centers, then the weight of either globe towards the
other will be inversely as the square of the distance between the centers.

Isaac Newton[136] (1687)

The gravitational force of a point–like mass m2 on a similar one of mass
m1 is given by Newton’s attraction law,

F2→1 = −G m1m2

|r|2
r

|r|
, (1)

where G is Newton’s gravitational constant (CODATA 2010),

G
SI
= 6.67384(80)× 10−11 (m/s)4

N
.

The vector r := r1 − r2 points from m2 to m1, see the Fig. 1.
According to actio = reactio (Newton’s 3rd law), we have F2→1 = −F1→2.

Thus a complete symmetry exists of the gravitational interaction of the
two masses onto each other. Let us now distinguish the mass m2 as field–
generating active gravitational mass and m1 as (point–like) passive test–
mass. Accordingly, we introduce a hypothetical gravitational field as describ-
ing the force per unit mass (m2 ↪→M , m1 ↪→ m):

f :=
F

m
= −GM

|r|2
r

|r|
. (2)

With this definition, the force acting on the test–mass m is equal to field

1Parts of Secs.1 & 2 are adapted from our presentation[83] in Falcke et al.[56].
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Figure 1: Two mass points m1 and m2 attracting each other in 3-dimensional
space, Cartesian coordinates x, y, z.

M

m
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Figure 2: The “source” M attracts the test mass m.
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strength × gravitational charge (mass) or FM→m = m f , in analogy to elec-
trodynamics. The active gravitational mass M is thought to emanate a
gravitational field which is always directed to the center of M and has the
same magnitude on every sphere with M as center, see Fig. 2. Let us now in-
vestigate the properties of the gravitational field (2). Obviously, there exists
a potential

φ = −G M

|r|
, f = −∇φ . (3)

Accordingly, the gravitational field is curl-free: ∇× f = 0.
By assumption it is clear that the source of the gravitational field is the

mass M . We find, indeed,

∇ · f = −4π GM δ3(r) , (4)

where δ3(r) is the 3-dimensional (3d) delta function. By means of the Laplace
operator ∆ :=∇·∇, we infer for the gravitational potential

∆φ = 4π GM δ3(r) . (5)

The term M δ3(r) may be viewed as the mass density of a point mass. Eq.(5)
is a 2nd order linear partial differential equation for φ. Thus the gravitational
potential generated by several point masses is simply the linear superposition
of the respective single potentials. Hence we can generalize the Poisson
equation (5) straightforwardly to a continuous matter distribution ρ(r):

∆φ = 4π Gρ . (6)

This equation interrelates the source ρ of the gravitational field with the
gravitational potential φ and thus completes the quasi-field theoretical de-
scription of Newton’s gravitational theory.

We speak here of quasi–field theoretical because the field φ as such rep-
resents a convenient concept. However, it has no dynamical properties, no
genuine degrees of freedom. The Newtonian gravitational theory is an action
at a distance theory (also called mass-interaction theory). When we remove
the source, the field vanishes instantaneously. Newton himself was very un-
happy about this consequence. Therefore, he emphasized the preliminary
and purely descriptive character of his theory. But before we liberate the
gravitational field from this constraint by equipping it with its own degrees
of freedom within the framework of general relativity theory, we turn to some
properties of the Newtonian theory.

A very peculiar fact characteristic to the gravitational field is that the
acceleration of a freely falling test-body does not depend on the mass of

5



tidal acceleration
tidal

acceleration

Figure 3: Tidal forces emerging between two freely falling particles and de-
forming a spherical body.

this body but only on its position within the gravitational field. This comes
about because of the equality (in suitable units) of the gravitational and the
inertial mass:

inertial

m r̈ = F =
grav

m f . (7)

This equality has been well tested since Galileo’s time by means of pendulum
and other experiments with an ever increasing accuracy, see Will [189].

In order to allow for a more detailed description of the structure of a
gravitational field, we introduce the concept of tidal force. This can be best
illustrated by means of Fig. 3. In a spherically symmetric gravitational field,
for example, two test-masses will fall radially towards the center and thereby
get closer and closer. Similarly, a spherical drop of water is deformed to an
ellipsoidal shape because the gravitational force at its bottom is bigger than
at its top, which has a greater distance to the source. If the distance between
two freely falling test masses is relatively small, we can derive an explicit
expression for their relative acceleration by means of a Taylor expansion.
Consider two mass points with position vectors r and r + δr , with |δr| � 1.
Then the relative acceleration reads

δa = [f(r + δr)− f(r)] = δr · (∇f) . (8)

We may rewrite this according to (the sign is conventional, ∂/∂xa =: ∂a,
x1 =x, x2 =y, x3 =z)

Kab := − (∇f)ab = −∂a fb , a, b = 1, 2, 3 . (9)
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We call Kab the tidal force matrix. The vanishing curl of the gravitational
field is equivalent to its symmetry, Kab = Kba. Furthermore, Kab = ∂a ∂b φ.
Thus, the Poisson equation becomes,

3∑
a=1

Kaa = traceK = 4π Gρ . (10)

Accordingly, in vacuum Kab is trace-free.
Let us now investigate the gravitational potential of a homogeneous star

with constant mass density ρ� and total mass M� = (4/3) π R3
� ρ�. For

our Sun, the radius is R� = 6.9598 × 108 m and the total mass is M =
1.989× 1030 kg.

Outside the sun (in the idealized picture we are using here), we have
vacuum. Accordingly, ρ(r) = 0 for |r| > R�. Then the Poisson equation
reduces to the Laplace equation

∆φ = 0 , for r > R� . (11)

In 3d polar coordinates, the r-dependent part of the Laplacian has the form
(1/r2) ∂r (r2 ∂r). Thus (11) has the solution

φ =
α

r
+ β , (12)

where α and β are integration constants. Requiring that the potential tends
to zero as r goes to infinity, we get β = 0. The integration constant α will
be determined from the requirement that the force should change smoothly
as we cross the star’s surface, that is, the interior and exterior potential and
their first derivatives have to be matched continuously at r = R�.

Inside the star we have to solve

∆φ = 4π Gρ� , for r ≤ R� . (13)

We find

φ =
2

3
πGρ� r

2 +
C1

r
+ C2 , (14)

with integration constants C1 and C2. We demand that the potential in the
center r = 0 has a finite value, say φ0. This requires C1=0. Thus

φ =
2

3
π Gρ� r

2 + φ0 =
GM(r)

2r
+ φ0 , (15)

where we introduced the mass function M(r) = (4/3) πr3ρ� which measures
the total mass inside a sphere of radius r.
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Figure 4: Newtonian potential of a homogeneous star.

Continuous matching of φ and its first derivatives at r = R� finally yields:

φ(r) =


−G M�

|r| for |r| ≥ R� ,

G
M�
2R3
�
|r|2 − 3GM�

2R�
for |r| < R� .

(16)

The slope of this curve indicates the magnitude of the gravitational force, the
curvature (2nd derivative) the magnitude of the tidal force (or acceleration).
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1.2 Minkowski space

When, in a physical experiment, gravity can be safely neglected, we seem to
live in the flat Minkowski space of special relativity theory. We introduce
the metric of the Minkowksi space and rewrite it in terms of so-called null
coordinates, that is, we use light rays for a parametrization of Minkowski
space.

Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of
the two will preserve an independent reality.

Hermann Minkowski (1908)

It was Minkowski who welded space and time together into spacetime,
thereby abandoning the observer-independent meaning of spatial and tem-
poral distances. Instead, the spatio-temporal distance, the line element,

ds2 = −c2 dt2 + dx2 + dy2 + dz2

is distinguished as the invariant measure of spacetime. The Poincaré (or
inhomogeneous Lorentz) transformations form the invariance group of this
spacetime metric. The principle of the constancy of the speed of light is
embodied in the equation ds2 = 0. Suppressing one spatial dimension, the
solutions of this equation can be regarded as a double cone. This light cone
visualizes the paths of all possible light rays arriving at or emitted from
the cone’s apex. Picturing the light cone structure, and thereby the causal
properties of spacetime, will be our method for analyzing the meaning of the
Schwarzschild and the Kerr solution.

Null coordinates

We first introduce so-called null coordinates. The Minkowski metric (with
c = 1), in spherical polar coordinates reads

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
= −dt2 + dr2 + r2 dΩ2 . (17)

We define advanced and retarded null coordinates according to

v := t+ r , u := t− r , (18)

and find

ds2 = −dv du+
1

4
(v − u)2 dΩ2 . (19)

9



Figure 5: Minkowski spacetime in null coordinates

In Fig. 5 we show the Minkowski spacetime in terms of the new coordinates.
Incoming photons, that is, point-like particles with velocity ṙ = −c = −1,
move on paths with v = const. Correspondingly, we have for outgoing pho-
tons u = const. The special relativistic wave-equation is solved by any func-
tion f(u) and f(v). The surfaces f(u) = const. and f(v) = const. represent
the wavefronts which evolve with the velocity of light. The trajectory of ev-
ery material particle with ṙ < c = 1 has to remain inside the region defined
by the surface r = t. In an (r, t)-diagram this surface is represented by a
cone, the so-called light cone. Any point in the future light cone r = t can be
reached by a particle or signal with a velocity less than c. A given spacetime
point P can be reached by a particle or signal from the spacetime region
enclosed by the past light cone r = −t.
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Penrose diagram

We can map, following Penrose, the infinitely distant points of spacetime into
finite regions by means of a conformal transformation which leaves the light
cones intact. Then we can display the whole infinite Minkowski spacetime
on a (finite) piece of paper. Accordingly, introduce the new coordinates

ṽ := arctan v , ũ := arctan u , for − π/2 ≤ (ṽ , ũ) ≤ +π/2 . (20)

Then the metric reads

ds2 =
1

cos2 ṽ

1

cos2 ũ

[
−dṽ dũ+

1

4
sin2 (ṽ − ũ) dΩ2

]
. (21)

We can go back to time- and space-like coordinates by means of the trans-
formation

t̃ := ṽ + ũ , r̃ := ṽ − ũ , (22)

see (18). Then the metric reads,

ds2 =
−dt̃2 + dr̃2 + sin2 r̃ dΩ2

4 cos2 t̃+r̃
2

cos2 t̃−r̃
2

, (23)

that is, up to the function in the denominator, it appears as a flat metric.
Such a metric is called conformally flat (it is conformal to a static Einstein
cosmos). The back-transformation to our good old Minkowski coordinates
reads

t =
1

2

(
tan

t̃+ r̃

2
+ tan

t̃− r̃
2

)
, (24)

r =
1

2

(
tan

t̃+ r̃

2
− tan

t̃− r̃
2

)
. (25)

Our new coordinates t̃, r̃ extend only over a finite range of values, as can
be seen from (24) and (25). Thus, in the Penrose diagram of a Minkowski
spacetime, see Fig. 6, we can depict the whole Minkowski spacetime, with
a coordinate singularity along r̃ = 0. All trajectories of uniformly moving
particles (with velocity smaller than c) emerge form one single point, past
infinity I−, and all will eventually arrive at the one single point I+, namely
at future infinity. All incoming photons have their origin on the segment
I− (script I− or “scri minus”), light-like past-infinity, and will run into the
coordinate singularity on the t̃-axis . All outgoing photons arise from the
coordinate singularity and cease on the line I+, light-like future infinity (“scri
plus”). The entire spacelike infinity is mapped into the single point I0. For
later reference we collect these notions in a table:
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Figure 6: Penrose diagram of Minkowski spacetime.

Table 1. The different infinities in Penrose diagrams

I− timelike past infinity origin of all particles

I+ timelike future infinity destination of all particles

I0 spacelike infinity inaccessible for all particles

I− lightlike past infinity origin of all light rays

I+ lightlike future infinity destination of all light rays

Now, we have a really compact picture of the the Minkowski space. Next,
we would like to proceed along similar lines in order to obtain an analogous
picture for the Schwarzschild spacetime.
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1.3 Einstein’s field equation

We display our notations and conventions for the differential geometric tools
used to formulate Einstein’s field equation.

We assume that our readers know at least the rudiments of general relativ-
ity (GR) as represented, for instance, in Einstein’s Meaning of Relativity[50],
which we still recommend as a gentle introduction into GR. More advanced
readers may then want to turn to Rindler[165] and/or to Landau-Lifshitz[106].

We assume a 4d Riemannian spacetime with (Minkowski-)Lorentz signa-
ture (− + + +), see Misner, Thorne, and Wheeler[127]. Thus, the metric
field, in arbitrary holonomic coordinates xµ, with µ = 0, 1, 2, 3, reads

g ≡ ds2 = gµν dx
µ ⊗ dxν . (26)

By partial differentiation of the metric, we can calculate the Christoffel sym-
bols (Levi-Civita connection)

Γµαβ :=
1

2
gµγ (∂αgβγ + ∂βgγα − ∂γgαβ) . (27)

This empowers us to determine the geodesics (curves of extremal length) of
the Riemannian spacetime:

D2xα

Dτ 2
:=

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0 . (28)

This equation can be read as a vanishing of the 4d covariant acceleration. If
we define the 4-velocity uα := dxα/dτ , then the geodesics can be rewritten
as

Duα

Dτ
=
duα

dτ
+ Γαµνu

µuν = 0 . (29)

In a neighborhood of any given point in spacetime we can introduce
Riemannian normal coordinates, which are such that the Christoffels van-
ish at that point. In order to find a tensorial measure of the gravitational
field, we have to go one differentiation order higher. By partial differentiation
of the Christoffels, we find the Riemann curvature tensor2

Rµ
ναβ := 2

(
∂[αΓµ|ν|β] + Γµσ[αΓσ |ν|β]

)
. (30)

2Always symmetrizing of indices is denoted by parentheses, (αβ) := {αβ + βα}/2!,
antisymmetrization by brackets [αβ] := {αβ−αβ}/2!, with corresponding generalizations
(αβγ) := {+αβγ+βγα+γαβ+ · · · }/3!, etc.; indices standing between two vertical strokes
| | are excluded from the (anti)symmetrization process, see Schouten[170].
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The curvature is doubly antisymmetric, its two index pairs commute, and its
totally antisymmetric piece vanishes:

R(µν)αβ = 0 , Rµν(αβ) = 0 ; Rµναβ = Rαβµν ; R[µναβ] = 0 . (31)

If we define collective indices A,B, .. = 1, ..., 6 for the antisymmetric index
pairs according to the rule {01, 02, 03; 23, 31, 12} −→ {1, 2, 3; 4, 5, 6}, then
the algebraic symmetries of (31) can be rephrased as

RAB = RBA , trace(RAB) = 0. (32)

Thus, in 4d the curvature can be represented as a trace-free symmetric 6×6-
matrix. Hence it has 20 independent components.

With the curvature tensor, we found a tensorial measure for the grav-
itational field. Freely falling particles move along geodesics of Riemannian
spacetime. What about the tidal accelerations between two freely falling par-
ticles? Let the “infinitesimal” vector nα describe the distance between two
particles moving on adjacent geodesics. A standard calculation[127], linear
to the order of n, yields the geodesic deviation equation

D2nα

Dτ 2
= uβuγRα

βγδ n
δ . (33)

This equation describes the relative acceleration of neighboring particles,
similar as (8) and (9) in the Newtonian case. The role of the tidal matrix
Kab is taken over by Kαδ := uβuγRα

βγδ.
By contraction of the curvature, we can define the 2nd rank Ricci tensor

Rµν and the curvature scalar R, respectively:

Rµν := Rα
µαν , R := gµνRµν . (34)

For convenience, we can also introduce the Einstein tensor Gµν := Rµν −
1
2
gµνR. The curvature with its 20 independent components can be irreducibly

decomposed into smaller pieces according to 20 = 10 + 9 + 1. The Weyl
curvature tensor Cαβγδ is trace-free and has 10 independent components,
whereas the trace-free Ricci tensor has 9 components and the curvature scalar
just 1.

Now we have all the tools for displaying Einstein’s field equation. With G
as Newton’s gravitational constant and c as velocity of light, we define Ein-
stein’s gravitational constant κ := 8πG/c4. Then, the Einstein field equation
with cosmological constant Λ reads

Rµν −
1

2
gµνR + Λgµν = κTµν . (35)

14



The source on the right-hand side is the energy-momentum tensor of matter.
The vacuum field equation, without cosmological constant, simply reduces to
Rµν = 0. Mostly this equation will keep us busy in this article. A vanishing
Ricci tensor implies that only the Weyl curvature Cαβγδ 6= 0. Accordingly,
the vacuum field in GR (without Λ) is represented by the Weyl tensor.

Eq.(35) represents a generalization of the Poisson equation (10). There,
the contraction of the tidal matrix is proportional to the mass density; in
GR, the contraction of the curvature tensor is proportional to the energy-
momentum tensor.

The physical mass is denoted by M . Usually, we use the mass parameter,
m := GM

c2
. The Schwarzschild radius reads rS := 2m = 2GM

c2
. Usually we put

c = 1 and G = 1. We make explicitly use of G and c as soon as we stress
analogies to Newtonian gravity or allude to observational data.

15



2 The Schwarzschild metric (1916)

Spatial spherical symmetry is assumed and a corresponding exact solution
for Einstein’s theory searched for. After a historical outline (Sec.2.1), we
apply the equivalence principle to a freely falling particle and try to imple-
ment that on top of the Minkowskian line element. In this way, we heuristi-
cally arrive at the Schwarzschild metric (Sec.2.2). In Sec.2.3, we display the
Schwarzschild metric in six different classical coordinate systems. We out-
line the concept of a Schwarzschild black hole in Sec.2.4. In Secs.2.5 and 2.6,
we construct the Penrose diagram for the Schwarzschild(-Kruskal) spacetime.
We add electric charge to the Schwarzschild solution in Sec.2.7. The interior
Schwarzschild metric, with matter, is addressed in Sec.2.8.

It is quite a wonderful thing that from such an abstract
idea the explanation of the Mercury anomaly emerges so in-
evitably.

Karl Schwarzschild[171] (1915)

2.1 Historical remarks

The genesis of the Schwarzschild solution (1915/16) is described. In par-
ticular, we show that Droste, a bit later than Schwarzschild, arrived at the
Schwarzschild metric independently. He put the Schwarzschild solution into
that form in which we use it today.

The first exact solution of Einstein’s field equation was born in hospi-
tal. Unfortunately, the circumstances were more tragic than joyful. The
astronomer Karl Schwarzschild joined the German army right at the begin-
ning of World War I and served in Belgium, France, and Russia. At the
end of the year 1915, he was admitted to hospital with an acute skin dis-
ease. There, not far from the Russian front, enduring the distant gunfire,
he found time to “stroll through the land of ideas” of Einstein’s theory,
as he puts it in a letter to Einstein3 dated 22 December 1915. According
to this letter, Schwarzschild started out from the approximate solution in
Einstein’s “perihelion paper”, published November 25th. Since presumably
letters from Berlin to the Russian front took a few days, Schwarzschild[172]
found the solution within about a fortnight. Fortunately, the premature field
equation of the “perihelion paper” is correct in the vacuum case treated by
Schwarzschild.

3 The letters from and to Einstein can be found in Einstein’s Collected Works[51], see
also Schwarzschild’s Collected Works[171].
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In February 1916, Schwarzschild[173] submitted the spherically symmet-
ric solution with matter—the “interior Schwarzschild solution”—now based
on Einstein’s final field equation. In March 1916, he was sent home were he
passed away on 11 May 1916.

The field equation used by Schwarzschild requires det g = −1. To fulfill
this condition, he uses modified polar coordinates (Schwarzschild’s original
notation used),

x1 =
r3

2
, x2 = − cos θ , x3 = φ , x4 = t .

The spherically symmetric ansatz then reads

ds2 = f4 dx
2
4 − f1 dx

2
1 − f2

dx2
2

1− x2
2

− f3 dx
2
3 (1− x2

2) ,

where f1 to f4 are functions of x1 only. The solution turns out to be

f1 =
1

R4

1

1− α/R
, f2 = f3 = R2 , f4 = 1− α/R , R = (r3 + α3)1/3 .

In this article, as well as in his letter to Einstein, he eventually returns to
the usual spherical polar coordinates,

ds2 = (1− α/R) dt2 − dR2

1− α/R
−R2 (dθ2 + sin2 θ dφ2) , R = (r3 + α3)1/3 .

This looks like the Schwarzschild metric we are familiar with. One should
note, however, that the singularity at R = α is (as we know today) a coordi-
nate singularity, it corresponds to r = 0. In the early discussion the meaning
of such a singularity was rather obscure. Flamm[60] in his 1916 article on
embedding constant time slices of the Schwarzschild metric into Euclidean
space mentions “the oddity that a point mass has an finite circumference of
2πα”.

In 1917, Weyl[188] talks of the “inside” and “outside” of the point mass
and states that “in nature, evidently, only that piece of the solution is real-
ized which does not touch the singular sphere.” In Hilbert’s[86] opinion, the
singularity R = α indicates the illusiveness of the concept of a pointlike mass;
a point mass is just the limiting case of a spherically symmetric mass dis-
tribution. Illuminating the interior of “Schwarzschild’s sphere” took quite a
while and it was the discovery of new coordinates which brought first elucida-
tions. Lanczos[104], in 1922, clearly speaks out that singularities of the met-
ric components do not necessarily have physical significance since they may
vanish in appropriate coordinates. However, it took another 38 years to find
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a maximally extended fully regular coordinate system for the Schwarzschild
metric. We will become acquainted with these Kruskal/Szekeres coordinates
in Sec.2.5.

Schwarzschild’s solution, published in the widely read minutes of the
Prussian Academy, communicated by Einstein himself, nearly instantly trig-
gered further investigations of the gravitational field of a point mass. Already
in March 1916, Reissner[163], a civil engineer by education, published a gen-
eralization of the Schwarzschild metric, including an electrical charge; this
was later completed by Weyl[188] and by Nordström[140]. Today it is called
Reissner-Nordström solution.

Nevertheless, one should not ignore the Dutch twin of Schwarzschild’s
solution. On 27 May 1916, Droste[47] communicated his results on “the
field of a single centre in Einstein’s theory of gravitation, and the motion
of a particle in that field” to the Dutch Academy of Sciences. He presents
a very clear and easy to read derivation of the metric and gives a quite
comprehensive analysis of the motion of a point particle. Since 1913, he had
been working on general relativity under the supervision of Lorentz at Leiden
University. Published in Dutch, Droste’s results are fairly unknown today.
Einstein, probably informed by his close friend Ehrenfest, rather appreciated
Droste’s work, praising the graceful mathematical style. Weyl[188] also cites
Droste, but in Hilbert’s[86] second communication the reference is not found.
Einstein, Hilbert, and Weyl always allude to “Schwarzschild’s solution”.

After Droste took his PhD in 1916, he worked as school teacher and
eventually became professor for mathematics in Leiden. He never resumed his
work on Einstein’s theory and his name faded from the relativistic memoirs.
In Leiden, people like Lorentz, de Sitter, Nordström, or Fokker learned about
the gravitational field of a point mass primarily from Droste’s work. Thus,
the name “Schwarzschild–Droste solution” would be quite justified from a
historical point of view.

The importance of the Schwarzschild metric is made evident by the Birk-
hoff[16] theorem4: For vanishing cosmological constant, the unique spheri-
cally symmetric vacuum spacetime is the Schwarzschild solution, which can
be expressed most conveniently in Schwarzschild coordinates, see Table 3,
entry 1. Thus, a spherically symmetric body is static (outside the horizon).
In particular, it cannot emit gravitational radiation. Moreover, the asymp-
totic Minkowskian behavior of the Schwarzschild solution is dictated by the
solution itself, it is not imposed from the outside.

4The “Birkhoff” theorem was discovered by Jebsen[95], Birkhoff[16], and
Alexandrow[4]. For more details on Jebsen, see Johansen & Ravndal[96]. The objections
of Ehlers & Krasiński[48] appear to us as nitpicking.
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2.2 Approaching the Schwarzschild metric

We start from an ansatz for the metric of an accelerated motion in the radial
direction and combine it, in the sense of the equivalence principle, with the
free-fall velocity of a particle in a Newtonian gravitational field. In this way,
we find a curved metric that, after a coordinate transformation, turns out to
be the Schwarzschild metric.

Einstein, in his 1907 Jahrbuch article[49], suggests the generalization of
the relativity principle to arbitrarily accelerated reference frames.

A plausible notion of a (local) rest frame in general relativity is a frame
where the coordinate time is equal to the proper time (for an observer spa-
tially at rest, of course). For a purely radial motion, the following metric
would be an obvious ansatz, see also Visser[185]:

ds2 = −dt2 + [dr + f(r) dt]2 + r2 dΩ2 , with dΩ2 := dθ2 + sin2 θdφ2 .

For dφ = 0, dθ = 0, and dr/dt = −f(r), we have ds2 = −dt2. Thereby, −f(r)
is identified as a kind of “radial infall velocity”. Note also that constant time-
slices, dt = 0, are Euclidean.

In Newtonian gravity, a particle falling from infinity towards the origin
picks up a velocity

dr

dt
= v = −

√
2Φ(r) = −

√
2GM

r
⇐⇒ 1

2
mv2(r) = mΦ(r) = m

GM

r
.

(36)
Here, Φ is the absolute value of the Newtonian potential of a spherical body
with mass M .

Hence, in some Newtonian limit, we demand f(r)→
√

2Φ. This leads to
the metric

ds2 = −dt2 +
(
dr +

√
2ψ dt

)2
+ r2 dΩ2 , (37)

where we allow for an arbitrary potential ψ = ψ(r). This metric generates
curvature. The calculations can be conveniently done even by hand. The
Ricci tensor reads

R0
0 = R1

1 =
1

r
∂r∂r(r ψ) = 0 , R2

2 = R3
3 =

2∂r(r ψ)

r2
= 0 .

The equations R0
0 = 0 = R1

1 are mere integrability conditions of the R2
2 =

0 = R3
3 relations. Hence, rψ is determined by its first order approximation

alone and reads
ψ =

α

r
,
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with α as an unknown constant so far. By construction, we have

dr

dt
= −

√
2ψ = −

√
2α

r
!

= −
√

2GM

r
=⇒ α = GM =: m.

The metric (37), expanding the parenthesis and collecting the terms in
front of dt2, reads

ds2 = −
(

1− 2GM

r

)
dt2 + 2

√
2GM

r
dtdr + dr2 + r2dΩ2 . (38)

Using different methods, this metric was derived by Gullstrand[70] in May
1921. Gullstrand claimed to have found a new spherically symmetric solution
of Einstein’s field equation. In his opinion5, this showed the ambiguity of
Einstein’s field equation. However, the metric is of the form

ds2 = −Adt2 +2Bdt dr+dr2 +r2 dΩ2 , A := 1− 2GM

r
, B :=

√
2GM

r
,

and can be diagonalized by completing the square via

ds2 = −A
(
dt− B

A
dr

)2

+

(
1 +

B2

A

)
dr2 + r2 dΩ2 .

Introducing a new time coordinate,

dtS := dt− B

A
dr

or, explicitly, tS = t −
(

2r
√

2GM
r
− 4GM Artanh

√
2GM
r

)
, we arrive at (A

and B re-substituted)

ds2 = −
(

1− 2GM

r

)
dt2S +

(
1− 2GM

r

)−1

dr2 + r2 dΩ2 .

In contrast to what Gullstrand was aiming at, he “just” rederived the Schwarz-
schild metric.

Later, applying a coordinate transformation to the Schwarzschild met-
ric, Painlevé[147] obtained the metric (38) independently and presented his
result in October 1921. His aim was to demonstrate the vacuity of ds2 by

5Gullstrand, who was a member of the Nobel committee, was responsible that Einstein
did not get his Nobel prize for relativity theory. He thought that GR is untenable.
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showing that an exact solution does not determine the physical geometry
and is therefore meaningless. In a letter (Dec. 7th 1921) to Painlevé, Ein-
stein stresses on the contrary the meaninglessness of the coordinates! In the
words of Einstein himself (our translation): “. . . merely results obtained by
eliminating the coordinate dependence can claim an objective meaning.”

In the subsequent section, we will meet the Schwarzschild metric in many
different coordinate systems. All of them have their merits and their short-
comings.

Using Gullstrand-Painlevé coordinates for the Schwarzschild metric does
not change the physics, of course. However, as a coordinate system it is what
Gustav Mie[126] calls a sensible coordinate system. In contrast to many
other coordinate systems, the physics looks quite like we are used to. As an
example, we analyze the motion of a radial infalling particle in Schwarzschild
and Gullstrand-Painlevé coordinates.

The equations of motion for point particles in general relativity are ob-
tained via the geodesic equation (28). It can be shown that this equa-
tion is equivalent to the solution of the variational principle δ

∫
xα
ds2 =

δ
∫
ẋα ẋβ gαβ dτ

2. We choose the proper time τ for the parametrization of
the curve, the dot denotes the derivative with respect to τ . In the present con-
text, we are only interested in the velocity of particles along ingoing geodesics
(“freely falling particles”). For time-like geodesics we have −1 = ds2

dτ2
. This

allows the algebraic determination of ṙ provided we know ṫ. Since we con-

sider static metrics here, t is a cyclic variable and
(
∂
∂ṫ

ds2

dτ2

)
= K = const.

The constant is determined by the boundary condition ṙ = 0 for r → ∞.
The calculation yields:

Table 2. Velocities in different coordinate systems6

Schwarzschild Gullstrand-Painlevé
coordinate

velocity
dr
dt

±
(
1− 2GM

r

)√
2GM
r −

√
2GM
r

particles
proper
velocity

dr
dτ

±
√

2GM
r ±

√
2GM
r

light rays

coordinate
velocity

dr
dt

±(1− 2GM
r ) ±1−

√
2GM
r

6The velocities of outgoing particles are valid only for the boundary condition specified.
The coordinate velocity for outgoing particles in GP coordinates does not fit in our table
and is thus suppressed.

21



The difference between the coordinate systems appears in the first line
of Table 2: In Gullstrand-Painlevé coordinates, the coordinate velocity of a
freely infalling particle increases smoothly towards the center. Nothing spe-
cial happens at r = 2GM . From a given position, the particle will plunge into
the center in a finite time. Even numerically this looks quite Newtonian. In
contrast, the velocity with respect to Schwarzschild coordinates approaches
zero as the particle approaches r = 2GM . Hence, the particle apparently
will not be able to go further than r = 2GM .

For the Gullstrand-Painlevé metric for incoming light the radial coordi-
nate velocity is always larger in magnitude than −1, at r = 2GM it is −2,
for outgoing rays it vanishes at r = 2GM and is negative for r < 2GM .

Taking the mere numerical values is misleading. Contemplate for incom-
ing light (

dr
dt

)
particle(

dr
dt

)
light

=
1

1 +
√

r
2GM

≤ 1 .

So the particle is always slower than light, however it approaches the velocity
of light when approaching r = 0.

The Gullstrand-Painlevé form of the metric is regular at the surface r =
2GM . This shows that it is not any kind of barrier, but this observation was
not made until much later, see Eisenstaedt [52].

2.3 Six classical representations of the Schwarzschild
metric

As we mentioned, a coordinate system should be chosen according to its con-
venience for describing a certain situation. In the following table (Table 3),
we collect six widely used forms of the Schwarzschild metric.
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2.4 The concept of a Schwarzschild black hole

We first draw a simple picture of a black hole. The event horizon and the
stationary limit emerge as characteristic features. These are subsequently
defined in a more mathematical way.

In 1783 John Michell communicated his thoughts on the means of dis-
covering the Distance, magnitude, etc. of the fixed stars, in consequence of
the diminuation of the velocity of their light . . . [125] to the Royal Society
in London. In the context of Newton’s particle theory of light, he calcu-
lated that sufficiently massive stars exhibit a gravitational attraction to such
vast an amount that even light could not escape. A few years later (1796)
Pierre-Simon Laplace published similar ideas.

In modern notation, we may reconstruct the arguments as follows. We
throw a mass m from the surface of the Earth, assuming that there were no
air, in upward direction with an initial velocity v. It will always fall back,
unless its initial velocity reaches a sufficiently high value vescape providing
the mass with such a kinetic energy that it can overpower the gravitational
attraction of the Earth. Energy conservation yields then immediately the
formula

vescape =

√
2GM⊕
R⊕

,

where G is Newton’s gravitational constant and M and R⊕ the mass and the
radius of the spherically conceived Earth, respectively.

For the Earth we find vescape ≈ 11.2 km/s. If we now compress the Earth
appreciably (thought experiment!) until the escape velocity coincides with
the speed of light vescape = c, its compressed “Schwarzschild” radius becomes
r⊕ = 2GM⊕/c

2 ≈ 1 cm. For the Sun, with its mass M�, we have7

r� =
2GM�
c2

≈ 3 km .

At any smaller radius the light will be confined to the corresponding body.
This is an intuitive picture of a spherically symmetric invisible “black hole”.8

It is very intriguing to see how far-sighted Michell anticipated the status
of today’s observational black hole physics:

7For the sake of clarity, we display here the speed of light c explicitly.
8The phrase “black hole” is commonly associated with Wheeler (1968). It appears

definitely earlier in the literature: In the January 1964 edition of the Science News Letter
the journalist Ann Ewing entitled her report at the meeting of the American Association
for the Advancement of Science in Cleveland “Black Holes” in space. And if you have
a look into an arbitrary English language dictionary published before ca. 1970, you will
learn that “black hole” refers to a notorious dungeon in Calcutta (now Kolkata) in the
18th century, apparently a place of no return . . .
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If there should really exist in nature bodies, whose density is not less than that

of the sun, and whose diameters are more than 500 times the diameter of the sun,

since their light could not arrive at us; [. . . ] we could have no information from

sight; yet, if any other luminous bodies should happen to revolve about them we

might still perhaps from the motions of these revolving bodies infer the existence

of the central ones with some degree of probability . . .

This could be a verdict on the current observations of the black hole Sgr
A∗ (“Sagittarius A-star”) in the center of our Milky Way—and this is not a
thought experiment—for a popular account, see Sanders[168]. Sgr A∗ has a
mass of about 4 × 106M�. Thus its Schwarzschild radius is far from being
minute, it is about 3× 4× 106 km or about 17 solar radii.

Figure 7: Not quite seriously: “Schwarzschild” (left) versus “Kerr” (right)

A cautionary remark has to be made, though, see Penrose[150]. In New-
tonian gravity c has no absolute meaning like in special relativity. It is con-
ceivable that the speed of light in strong Newtonian gravitational fields could
be larger than c. Consequently, the Michell type argument becomes only per-
tinent if c is the maximal speed for all phenomena like in the Minkowski space
of special relativity, or, if gravity is involved, in the Riemannian space of GR.

Let us follow the way of visualizing the black hole concept by means of
everyday physics a bit further: We explore the Schwarzschild and, later in
Sec.3.4, the Kerr spacetime by boat. Schwarzschild spacetime is mimicked
by a hole in a lake in which the surrounding water plunges simply radially
without whirling around (Monticello Dam, California). The water flowing
towards the hole will drag our boat to the center. Our boat may move
around quite freely as long as the current is weak.

However, at some distance from the hole, the current becomes so strong
that our boat, engines working at their maximum power, merely can keep its
position. This is the stationary limit. In the case of our circularly symmetric
water hole the stationary limit forms a ring. Bad for the boat: The stationary
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limit is also the ring of no return. At best, the boat remains at its position,
it never will escape. Any millimeter across the stationary limit will doom the
boat, it will be inevitably sucked into the throat. Accordingly, the stationary
limit coincides in this spherically symmetric case with the so-called event
horizon.

Event horizon

In 1958, Finkelstein[59] characterized the surface r = 2m as a “semi-permeable
membrane” in spacetime, that is, a surface which can be crossed only in one
direction. As soon as our boat has passed the event horizon, it can never
come back. This property can be formulated in an invariant way: The light
cones at each point of the surface have to nestle tangentially to the mem-
brane. In 1964, Penrose[149] termed the null cone which divides observable
from unobservable regions an event horizon. Mathematically speaking, the
event horizon is characterized by having tangent vectors which are light-like
or null at all points. Therefore, the event horizon is a null hypersurface. This
is what is meant by a trapped surface[29], see Fig. 8 and Fig. 9, left image: a
compact, spacelike, 2-dimensional submanifold with the property that out-
going future-directed light rays converge in both directions everywhere on
the submanifold. All these characterizations quite intuitively show up in the
Penrose-Kruskal diagram to be discussed later.

In view of the preceding paragraph, we define a black hole as a region
of spacetime separated from infinity by an event horizon, see Carroll[29] and
Brill[22].

Observational evidence in favor of black holes was reviewed by Narayan
and McClintock[129].

Killing horizon

The stationary limit surface is rendered more precise in the notion of a Killing
horizon. A particle at rest (with respect to the infinity of an asymptotically
flat, stationary spacetime) is to be required to follow the trajectories of the
timelike Killing vector9. However, if we have a Killing vector K describing

9 Using the definitions of the covariant derivative and of the Christoffel symbols, we
can derive the following equation for an arbitrary vector K,

Kα∂α gµν = 2∇(µKν) − 2gα(µ∂ν)K
α . (39)

Assuming Kα and gµν to be constant in time, demands ∇(µKν) = 0. Hence K has to be
a Killing vector. In this coordinate system, we have KαKα = g00. Although K acts as
time translation, it is not necessarily timelike!
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a stationary spacetime, then at some points K may become lightlike, that
is KµKµ = 0. If all these points build up a hypersurface Σ, then this null
hypersurface is called a Killing horizon. Apparently, this notion is of a local
character, in contrast to the definition of an event horizon, the definition of
which refers to events in the future, it is of a nonlocal character, see Fig. 8.

As we will see for the Schwarzschild black hole, see Fig. 9, outside the
black hole the Killing vector is timelike, that is, KµKµ < 0, on the Killing
horizon it becomes null KµKµ = 0 (by definition of the horizon), and inside
it becomes spacelike KµKµ > 0.

In the Schwarzschild case it will turn out that the event horizon and
Killing horizon coincide, in the Kerr case they separate.

Surface gravity

From the definition of the Killing horizon it can be shown[29] that the quan-
tity

κ2 := −1

2
(∇µKν)(∇µKν) |Σ (40)

is constant on the Killing horizon and positive. The quantity κ is called
surface gravity. In simple cases, it has the interpretation of an acceleration
or gravitational force per unit mass on the horizon. In the Schwarzschild
spacetime it takes the value κ = 1/4m, which is the acceleration of a particle
with unit mass as seen from infinity, compare with the Newtonian “field
strength” (2) for r = 2m:

f =
GM

r2
=

m

(2m)2
=

1

4m
. (41)

In general, there is no such simple interpretation.

Infinite redshift

Another property associated with the surface KµKν = 0 is the infinite red-
shift. In view of the relation for the general relativistic time delay,

τ0(~xB) =

√
gtt(~xB)√
gtt(~xA)

τ0(~xA) .

gtt → 0 can be interpreted as follows. Consider τ0(~xB) the time measured by
a clock B resting well away from the Killing horizon, whereas clock A with
τ0(~xA) is nearly at the Killing horizon. If gtt(~xA) → 0 we get τ0(~xB) → ∞.
From the point of view of clock B, clock A’s last signal, right before A hits
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Figure 8: A null hypersurface is not necessarily an event horizon: Imagine
a light cone that touches a hypersurface along the line of contact. Thus, the
light cone is tangent as well as normal (in a spacetime sense) to the surface.
Consequently, all such surfaces are null hypersurfaces. In the cases A and
B, the light cone is entirely trapped inside the surface. Case A suggests that
the surface does not close in a finite region, therefore the enclosed volume
is not compact. Case B represents a (part of a) circle, which encloses all
tangential light cones, and this forms an (black hole) event horizon. In case
C, the light cone intersects the hypersurface. The white domain is outside
the null surface but inside the light cone and, thus, reachable from within
the enclosed domain.
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the Killing horizon, will not reach B in a finite time, that is, never. To put it
a little bit different: Signals sent with respect to A with constant frequency
arrive increasingly delayed at B; for B the frequency approaches zero. This
is called infinite redshift.

Let us work out these ideas for the Schwarzschild solution and let us take
“photons” in spacetime instead of boats on a lake.

2.5 Using light rays as coordinate lines

Schwarzschild coordinates exhibit a coordinate singularity at r = 2m. This
obstructs the discussion of the event horizon considerably. As we have seen,
light rays penetrate the horizon without difficulty. This suggests to use light
rays as coordinate lines. Therefore we introduce in- and outgoing Eddington-
Finkelstein coordinates. By combining both, we arrive at Kruskal-Szekeres
coordinates, which provide a regular coordinate system for the whole Schwarz-
schild spacetime.

Eddington-Finkelstein coordinates

In relativity, light rays, the quasi-classical trajectories of photons, are null
geodesics. In special relativity, this is quite obvious, since in Minkowski space
the geodesics are straight lines and “null” just means v = c. A more rigorous
argument involves the solution of the Maxwell equations for the vacuum
and the subsequent determination of the normals to the wave surface (rays)
which turn out to be null geodesics. This remains valid in general relativity.
Null geodesics can be easily obtained by integrating the equation 0 = ds.
We find for the Schwarzschild metric, specializing to radial light rays with
dφ = 0 = dθ,

t = ±
(
r + 2m ln

∣∣∣ r
2m
− 1
∣∣∣)+ const . (42)

If we denote with r0 the solution of the equation r + 2m ln
∣∣ r

2m
− 1
∣∣ = 0, we

have for the t-coordinate of the light ray t(r0) =: v. Hence, if r = r0, we can
use v to label light rays. In view of this, we introduce v and u

v := t+ r + 2m ln
∣∣∣ r
2m
− 1
∣∣∣ , (43)

u := t− r − 2m ln
∣∣∣ r
2m
− 1
∣∣∣ . (44)

Then ingoing null geodesics are described by v = const, outgoing ones by
u = const, see Fig. 9. We define ingoing Eddington-Finkelstein coordinates
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Figure 9: In- and outgoing Eddington-Finkelstein coordinates (where we
introduce t′ with v = t′ + r, u = t′ − r). The arrows indicate the direction
of the original Schwarzschild coordinate time (and thereby the direction of
the Killing vector ∂t). The left figure illustrates a black hole: All incoming
photons traverse the event horizon and terminate in the singularity. The
right figure illustrates a white hole: All outgoing photons emerge from the
singularity, cross the horizon, and propagate out to infinity.

by replacing the “Schwarzschild time” t by v. In these coordinates (v, r, θ, φ),
the metric becomes

ds2 = −
(

1− 2m

r

)
dv2 + 2dv dr + r2 dΩ2 . (45)

For radial null geodesics ds2 = dθ = dφ = 0, we find two solutions of (45),
namely v = const and v = 4m ln |r/2m− 1| + 2r + const. The first one de-
scribes infalling photons, i.e., t increases if r approaches 0. At r = 2m, there
is no singular behavior any longer for incoming photons. Ingoing Eddington-
Finkelstein coordinates are particular useful in order to describe the grav-
itational collapse. Analogously, for outgoing null geodesics take (u, r, θ, φ)
as new coordinates. In these outgoing Eddington-Finkelstein coordinates the
metric reads

ds2 = −
(

1− 2m

r

)
du2 − 2 du dr + r2 dΩ2 . (46)

Outgoing light rays are now described by u = const, ingoing light rays by
u = −(4m ln |r/2m− 1|+2r)+const. In these coordinates, the hypersurface
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r = 2m (the “horizon”) can be recognized as a null hypersurface (its normal
is null or lightlike) and as a semi-permeable membrane.

Kruskal-Szekeres coordinates

Next we try to combine the advantages of in- and outgoing Eddington-
Finkelstein coordinates in the hope to obtain a fully regular coordinate
system of the Schwarzschild spacetime. Therefore we assume coordinates
(u, v, θ, φ). Some (computer) algebra yields the corresponding representa-
tion of the metric:

ds2 = −
(

1− 2m

r(u, v)

)
du dv + r2(u, v) dΩ2 . (47)

Unfortunately, we still have a coordinate singularity at r = 2m. We can get
rid of it by reparametrizing the surfaces u = const and v = const via

ṽ = exp
( v

4m

)
, ũ = − exp

(
− u

4m

)
. (48)

In these coordinates, the metric reads (r = r(ũ, ṽ) is implicitly given by (48)
and (44), (43), rS = 2m)

ds2 = − 4r3
S

r(ũ, ṽ)
exp

(
−r(ũ, ṽ)

2m

)
dṽ dũ+ r2(ũ, ṽ) dΩ2 . (49)

Again, we go back from ũ and ṽ to time- and space-like coordinates:

t̃ :=
1

2
(ṽ + ũ) , r̃ :=

1

2
(ṽ − ũ) . (50)

In terms of the original Schwarzschild coordinates we have

r̃ =

√∣∣∣ r
2m
− 1
∣∣∣ exp

( r

4m

)
cosh

t

4m
, (51)

t̃ =

√∣∣∣ r
2m
− 1
∣∣∣ exp

( r

4m

)
sinh

t

4m
. (52)

The Schwarzschild metric

ds2 =
4r3

S

r
exp

(
− r

2m

) (
−dt̃ 2 + dr̃2

)
+ r2 dΩ2 , (53)

in these Kruskal-Szekeres coordinates (t̃, r̃, θ, φ), behaves regularly at the
gravitational radius r = 2m. If we substitute (53) into the Einstein equation
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(via computer algebra), then we see that it is a solution for all r > 0. Eqs.(51)
and (52) yield

r̃2 − t̃ 2 =
∣∣∣ r
2m
− 1
∣∣∣ exp

( r

2m

)
. (54)

Thus, the transformation is valid only for regions with |r̃| > t̃. However, we
can find a set of transformations which cover the entire (t̃, r̃)-space. They are
valid in different domains, indicated here by I, II, III, and IV, to be explained
below:

(I)

{
t̃ =

√
r

2m
− 1 exp

(
r

4m

)
sinh t

4m

r̃ =
√

r
2m
− 1 exp

(
r

4m

)
cosh t

4m

(55)

(II)

{
t̃ =

√
1− r

2m
exp

(
r

4m

)
cosh t

4m

r̃ =
√

1− r
2m

exp
(
r

4m

)
sinh t

4m

(56)

(III)

{
t̃ = −

√
r

2m
− 1 exp

(
r

4m

)
sinh t

4m

r̃ = −
√

r
2m
− 1 exp

(
r

4m

)
cosh t

4m

(57)

(IV)

{
t̃ = −

√
1− r

2m
exp

(
r

4m

)
cosh t

4m

r̃ = −
√

1− r
2m

exp
(
r

4m

)
sinh t

4m

(58)

The inverse transformation is given by( r

2m
− 1
)

exp
( r

2m

)
= r̃2 − t̃ 2 , (59)

t

4m
=

{
Artanh t̃/r̃ , for (I) and (III) ,

Artanh r̃/t̃ , for (II) and (IV) .
. (60)

The Kruskal-Szekeres coordinates (t̃, r̃, θ, φ) cover the entire spacetime, see
Fig. 10. By means of the transformation equations we recognize that we need
two Schwarzschild coordinate systems in order to cover the same domain.
Regions (I) and (III) both correspond each to an asymptotically flat universe
with r > 2m. Regions (II) and (IV) represent two regions with r < 2m. Since
t̃ is a time coordinate, we see that the regions are time reversed with respect
to each other. Within these regions, real physical singularities (corresponding
to r = 0) occur along the curves t̃ 2 − r̃2 = 1. From the form of the metric
we can infer that radial light-like geodesics (and therewith the light cones
ds = 0) are lines with slope 1. This makes the discussion of the causal
structure particularly simple.
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Figure 10: Kruskal-Szekeres diagram of the Schwarzschild spacetime.

2.6 Penrose-Kruskal diagram

We represent the Schwarzschild spacetime in a manner analogous to the Pen-
rose diagram of the Minkowski spacetime. To this end, we proceed along the
same line as in the Minkowskian case.

First, we switch again to null-coordinates v′ = t̃ + r̃ and u′ = t̃ − r̃
and perform a conformal transformation which maps infinity into the finite
(again, by means of the tangent function). Finally we return to a time-like
coordinate t̂ and a space-like coordinate r̂. We perform these transformations
all in one according to

t̃+ r̃ = tan
t̂+ r̂

2
, t̃− r̃ = tan

t̂− r̂
2

. (61,62)
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Figure 11: Penrose-Kruskal diagram of the Schwarzschild spacetime. Region
II corresponds to a black hole, region IV to a white hole. Regions I and III
correspond to two universes.

The Schwarzschild metric then reads

ds2 =
r3

S

r(r̂, t̂)

exp
(
− r(r̂,t̂)

2m

) (
−dt̂ 2 + dr̂2

)
cos2 t̂+r̂

2 cos2 t̂−r̂
2

+ r2(t̂, r̂) dΩ2 , (63)

where the function r(t̂, r̂) is implicitly given by( r

2m
− 1
)

exp
( r

2m

)
= tan

t̂+ r̂

2
tan

t̂− r̂
2

. (64)

The corresponding Penrose-Kruskal diagram is displayed in Fig. 11 . The
notations for the different infinities can be extracted from Table 1. In contrast
to Minkowski space, light rays and particles may not escape to infinity but
enter the black hole (II). Likewise, light rays and particles may not emerge
from infinity but from the white hole (IV).
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2.7 Adding electric charge and the cosmological con-
stant: Reissner Nordström

As mentioned in the historical remarks, soon after Schwarzschild’s solution,
the first generalizations, including electric charge and the cosmological con-
stant were published. We can be even quicker . . . We already calculated the
Ricci tensor for the Gullstrand-Painlevé ansatz. If we use the well-known
energy-momentum tensor for a point charge[81], the field equation may be
written as10

Rµ
ν − 1

2
Rδνµ + Λ δνµ = κλ0

q2

2r4
diag(−1,−1, 1, 1) . (65)

Taking the trace, we find R = 4Λ and arrive at

R2
2 = R3

3 =
2∂r(rψ)

r2
= Λ− q2

r4
. (66)

This equation can be integrated elementarily,

2ψ =
1

3
Λr2 − q2

r2
+

2α

r
. (67)

This function also solves the remaining two field equations. The integration
constant α is again the mass m. Substituted into (37) and transformed to
Schwarzschild coordinates (f = 1− 2ψ) the solution reads

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2 , (68)

with

f(r) := 1− 2m

r
+
q2

r2
− Λ

3
r2 . (69)

A detailed derivation using Schwarzschild coordinates and computer algebra
can be found in Puntigam et al.[158]

A discussion of the Reissner-Nordström(-de Sitter) solution can be found
in Griffiths & Podolsky[69], for example. We only remark, that we recover
the Schwarzschild solution for q = 0 and Λ = 0. The algebraic structure of
the solution is identical to the Schwarzschild case. Thus, we find, in general,
a singularity at r = 0. However, a pure cosmological solution, m = 0, q = 0

10Einstein’s gravitational constant is denoted by κ, λ0 =
√

ε0
µ0

is the admittance of the

vacuum. With c = 1 and G = 1 we have κλ0 = 2.
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and Λ 6= 0, possesses no singularity and no horizon! On the other hand, an
electrically charged black hole, Λ = 0, exhibits two horizons,

f(r) = 0 ⇔ r± = m±
√
m2 − q2 . (70)

In this respect, the charged black hole shows some similarities to a rotating
(Kerr) black hole. We will pick up this discussion in Sec.3.4.

2.8 The interior Schwarzschild solution and the TOV
equation

In the last section we investigated the gravitational field outside a spherically
symmetric mass-distribution. Now it is time to have a look inside matter,
see Adler, Bazin, and Schiffer [1]. Of course, in a first attempt, we have
to make decisive simplifications on the internal structure of a star. We will
consider cold catalyzed stellar material during the later phase of its evolution
which can be reasonably approximated by a perfect fluid. The typical mass
densities are in the range of ≈ 107 g/cm3 (white dwarfs) or ≈ 1014 g/cm3

(neutron stars, e.g., pulsars). In this context we assume vanishing angular
momentum.

We start again from a static and spherically symmetric metric

ds2 = −eA(r) c2 dt2 + eB(r) dr2 + r2 dΩ2 (71)

and the energy-momentum tensor

Tµν =
(
ρ+

p

c2

)
uµ uν + p gµν , (72)

where ρ = ρ(r) is the spherically symmetric mass density and p = p(r) the
pressure (isotropic stress). This has to be supplemented by the equation of
state which, for a simple fluid, has the form p = p(ρ).

We compute the non-vanishing components of the field equation by means
of computer algebra as (here κ = 8πG/c4 is Einstein’s gravitational constant
and ()′ = d/dr)

− eBκr2c2ρ+ eB +B′r − 1 = 0 , (73)

−eBκpr2 − eB + A′r + 1 = 0 , (74)

−4eBκpr + 2A′′r + (A′)2r − A′B′r + 2A′ − 2B′ = 0 . (75)

The (φ, φ)-component turns out to be equivalent to the (θ, θ)-component.
For convenience, we define a mass function m(r) according to

e−B =: 1− 2m(r)

r
. (76)
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We can differentiate (76) with respect to r and find, after substituting
(73), a differential equation for m(r) which can be integrated, provided ρ(r)
is assumed to be known

m(r) =

∫ r

0

κ

2
ρc2 ξ2 dξ . (77)

Differentiating (74) and using all three components of the field equation, we
obtain a differential equation for A:

A′ = − 2p′

p+ ρc2
. (78)

We can derive an alternative representation of A′ by substituting (76) into
(74). Then, together with (78), we arrive at the Tolman-Oppenheimer-Volkoff
(TOV) equation

p′ = −(ρc2 + p)(m + κ pr3/2)

r(r− 2m)
. (79)

Terms that survive in the Newtonian limit are emphasized by boldface letters.
The system of equations consisting of (77), (78), the TOV equation (79),
and the equation of state p = p(ρ) forms a complete set of equations for the
unknown functions A(r), ρ(r), p(r), and m(r), with

ds2 = −eA(r) c2 dt2 +
dr2

1− 2m(r)
r

+ r2 dΩ2 . (80)

These differential equations have to be supplemented by initial conditions.
In the center of the star, there is, of course, no enclosed mass. Hence we

demand m(0) = 0. The density has to be finite at the origin, i.e. ρ(0) = ρc,
where ρc is the density of the central region. At the surface of the star,
at r = R�, we have to match matter with vacuum. In vacuum, there is
no pressure which requires p(R�) = 0. Moreover, the mass function should
then yield the total mass of the star, m(R�) := GM�/c

2. Finally, we have
to match the components of the metric. Therefore, we have to demand
exp[A(r0)] = 1− 2m(R�)/R�.

Equations (73), (74), (75) and certain regularity conditions which gener-
alize our boundary conditions, that is,

• regularity of the geometry at the origin,

• finiteness of central pressure and density,

• positivity of central pressure and density,
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• positivity of pressure and density,

• monotonic decrease of pressure and density,

impose conditions on the functions ρ and p. Then, even without the explicit
knowledge of the equation of state, the general form of the metric can be
determined. For recent work, see Rahman and Visser [162] and the literature
given there.

We can obtain a simple solution, if we assume a constant mass density

ρ = ρ(r) = const. (81)

One should mention here that ρ is not the physically observable fluid density,
which results from an appropriate projection of the energy-momentum tensor
into the reference frame of an observer. Thus, this model is not as unphysical
as it may look at the first. However, there are serious but more subtle
objections which we will not discuss further in this context.

When ρ = const., we can explicitly write down the mass function (77),

m(r) =
r3

2R̂2
, with R̂ =

√
3

κρc2
, m� :=

R3
�

2R̂2
. (82)

This allows immediately to determine one metric function

eB =
1

1− r2

R̂2

. (83)

The TOV equation (79) factorizes according to

dp

dr
= −1

2
(ρc2 + p)(1 + κR̂2p)

r

R̂2 − r2
. (84)

It can be elementarily solved by separation of variables,

p(r) = ρc2

√
R̂2 −R2

� −
√
R̂2 − r2√

R̂2 − r2 − 3
√
R̂2 −R2

�

. (85)

Using (78) as A′ = −2 [ln(p+ ρc2)]
′

and continuous matching to the exte-
rior, eventually yields the interior & exterior Schwarzschild solution for a
spherically symmetric body [173]

ds2 =


−
(

3
2

√
1− R2

�

R̂2
− 1

2

√
1− r2

R̂2

)2

c2 dt2 + 1

1− r2

R̂2

dr2 + r2dΩ2 , r ≤ R� ,

−
(
1− 2m�

r

)
c2 dt2 + 1

1− 2m�
r

dr2 + r2 dΩ2 , r > R� .

(86)
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The solution is only defined for R� < R̂. For the Sun11 we have M� ≈
2 × 1030 kg, R� ≈ 7 × 108 m and accordingly ρ� ≈ 1.4 × 103 kg/m3. This

leads to R̂ ≈ 3 × 1011 m, that is, the radius of the star R� is much smaller
than R̂: R� < R̂. Hence the square roots in (86) remain real.

The condition R� < R̂ suggests that a sufficiently massive object cannot
be stable since no static gravitational field seems possible. This conjecture
can be further supported. Even before reaching R̂, the central pressure be-
comes infinite,

p(0) → ∞ for R� →
√

8

9
R̂ , or m� →

4

9
R� . (87)

If there is no static solution and the situation remains spherically symmetric,
we are forced to the conclusion that such a mass distribution must radially
collapse; either in an infinite time or to a single point in space. With reason-
able simplifications, it was first shown by Oppenheimer and Snyder[145] that
the second alternative is true: A very massive object collapses to a black
hole. As various singularity theorems show today, this behavior is indeed
generic, see Chruściel et al.[38] and Sec.3.10.

11To ascertain the consistency of dimensions and units, we recollect the basic definitions:

[G] =
(m/s)4

N
=

m3

kg s2
, κ =

8πG

c4
.

The mass M carries the unit kg, the mass parameter has the dimension of a length:

m :=
GM

c2
, [m] =

m3 kg s2

kg s2 m2
= m .

The definition of m(r) in Eq.(77) is consistent. For ρ = const, we have

m(r) =
κ

2
ρc2

1

3
r3 =

G

c2
4

3
π r3 ρ =

GM(r)

c2
.

Here ρ denotes the physical mass density, [ρ] = kg/m3. Thus

M(r) :=
4

3
π r3 ρ

is the physical mass with the unit kg.
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3 The Kerr metric (1963)

After some historical reminiscences (Sec.3.1), we point out how one can ar-
rive at the Kerr metric (Sec.3.2). For that purpose, we derive, in cylindrical
coordinates, the four corresponding partial differential equations and explain
how this procedure leads to the Kerr metric. In Sec.3.3, we display the Kerr
metric in three classical coordinate systems. Thereafter we develop the con-
cept of the Kerr black hole (Sec.3.4). In Secs.3.5 to 3.7, we depict and dis-
cuss the geometrical/kinematical properties of the Kerr metric. Subsequently,
in Sec.3.8, we turn to the multipole moments of the mass and the angular
momentum of the Kerr metric, stressing analogies to electromagnetism. In
Sec.3.9, we present the Kerr-Newman solution with electric charge. Even-
tually, in Sec.3.10, we wonder in which sense the Kerr black hole is distin-
guished from the other stationary axially symmetric vacuum spacetimes, and,
in Sec.3.11, we mention the rotating disk metric of Neugebauer-Meinel as a
relevant interior solution with matter.

....When I turned to Alfred Schild, who was still sitting in
the armchair smoking away, and said “Its rotating!” he was
even more excited than I was. I do not remember how we
celebrated, but celebrate we did!

Roy P. Kerr (2009)

3.1 Historical remarks

The search for axially symmetric solutions of the Einstein equation started
in 1917 with static and was extended in 1924 to stationary metrics. It cul-
minated in 1963 with the discovery of the Kerr metric.

The Schwarzschild solution, as we have seen, describes the gravitational
field of a spherically symmetric body. Obviously, most planets, moons, and
stars rotate so that spherical symmetry is lost and one spatial direction is
distinguished by the 3-dimensional angular momentum vector J of the body.
Hence the next problem to attack was to search for the gravitational field of
a massive rotating body.

When one considers a static and axially symmetric situation—this is the
case if the body does not carry angular momentum—then one can choose the
rotation axis as the z-axis of a cylindrical polar coordinate system: x1 = z,
x2 = ρ and x3 = φ. Then static axial symmetry means that the components
of the metric gµν = gµν(z, ρ) do not depend on the time t and the azimuthal
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angle φ (we have here one timelike and one spacelike Killing vector12).
Already in 1917, Weyl[188] started to investigate static axially symmetric

vacuum solutions of Einstein’s field equation. He took cylindrical coordinates
and proposed the following “canonical” form of the static axisymmetric vac-
uum line element:13

ds2 = fdt2 −
{
h(dz2 + dρ2) +

ρ2dφ2

f

}
; (89)

here f = f(z, ρ) and h = h(z, ρ) and (x0 = t, x1 = z, x2 = ρ, x3 = φ).
Weyl was led, in analogy to Newton’s theory, to a Poisson equation and
found thereby a family of static cylindrically symmetric solutions that could
be understood as the exterior field of a line distribution of mass along the
rotation axis. Similar investigations were undertaken by Levi-Civita[108]
(1917/19).

In the year 1918, Lense and Thirring[107] investigated a rotating body.
They specified the energy-momentum tensor of a slowly rotating ball of mat-
ter of homogeneous density and integrated the Einstein equation in lowest
approximation. They found, for a ball rotating around the z-axis of a spa-
tial Cartesian coordinate system, the linearized Schwarzschild solution in
isotropic coordinates, see Table 2, together with two new “gravitomagnetic”
correction terms in off-diagonal components of the metric (κ is Einstein’s
gravitational constant):

ds2 =

(
1− 2κM

r

)
dt2 −

(
1 +

2κM

r

)
(dx2 + dy2 + dz2)︸ ︷︷ ︸

linearized Schwarzschild

− 4κJz
r3

(xdy − ydx)dt︸ ︷︷ ︸
gravitomagnetic term

;

(90)

12Remark on Killing vectors: Consider a point P of spacetime with coordinates xα.
We specify a direction ξµ at P . If we have a flat Minkowski space, the components gµν
of the metric, given in Cartesian coordinates, would not change under a motion in the
ξ-direction. However, in a curved spacetime, the gµν will change in general. If ξµ fulfills
the Killing equations (see Stephani [179])

∇µξν +∇νξµ = 0 , (88)

with ∇ as covariant derivative operator, then ξµ is called a Killing vector, and this vector
specifies a direction under which the metric does not change. The Schwarzschild metric is
static, that is, it has one timelike Killing vector along the time coordinate. Furthermore,
it is spherically symmetric and thus has three additional spacelike Killing vectors. In
the Weyl case, because of the axial symmetry around the z-axis, two of those spacelike
Killing vectors get lost. Left over in the Weyl case are the two Killing vectors, one timelike
(1)ξt = ∂t and one spacelike (2)ξφ = ∂φ.

13Weyl used ρ → r , φ → ϑ.
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this is valid for κM � r and κJz � r2. This gravitomagnetic effect (“the
Lense-Thirring effect”) is typical for GR: in Newton’s theory a rotating rigid
ball has the same gravitational field as a non-rotating one. Gravitomagnetism
is alien to Newton’s gravitational theory.

In the meantime, the Lense-Thirring effect has been experimentally con-
firmed by the Gravity Probe B experiment, see Everitt et al.[55]. They took
a gyroscope in a satellite falling freely around the (rotating) Earth. The spin
axis of the gyroscope pointed to a fixed guide star. Because of the gravito-
magnetic term in (90), the gyroscope executed a (very small) Lense-Thirring
precession.14 This can be understood as an interaction of the spin of the
gyroscope with the spin of the Earth (spin-spin interaction). Since the gy-
roscope moves along a 4d geodesic of a spacetime curved by the mass of the
Earth, an additional geodetic precession occurs that has to be experimen-
tally separated from the Lense-Thirring term. The geodetic precession had
already been derived earlier by de Sitter[43] in 1916.15

In spherical polar coordinates we have ydx−xdy = r2 sin2θ dφ. Thus, the
gravitomagnetic cross-term in (90) may be rewritten as (4κJz sin2θ/r) dt dφ.
A comparison with (89) shows that the canonical Weyl form of the static
metric is too narrow for describing rotating bodies.

From 1919 on, there appeared further articles on axisymmetric solutions.
Levi-Civita16 (1919) reacted to Weyl’s article, and Bach[8] (1922) pushed the
Lense-Thirring line element to the second order in the approximation.

Then, in 1924, Lanczos[105] extending the Weyl ansatz, started to inves-
tigate stationary17 solutions. He found an exact solution for uniformly ro-
tating dust. However, his work was apparently partially overlooked. Later,
Akeley[2, 3] (1931), Andress[6] (1930) and, in a more definite form, Lewis[109]
(1932) generalized the static Weyl metric to a stationary one by taking into
account the gravitomagnetic term of Lense-Thirring. Lewis (1932) wrote, in
cylindrical polar coordinates (x1  ρ , x2  z),

ds2 = fdt2 − (eµdx1
2 + eνdx2

2 + ldφ2)− 2mdt dφ . (91)

He found some exact solutions, typically for rotating cylinders, but not for

14For related experiments, see Ciufolini et al.[35, 34] and Iorio et al.[89, 92] A recent
comprehensive review was given by Will[189]. A textbook presentation may be found in
Ohanian & Ruffini[143].

15De Sitter had applied it to the Earth-Moon system conceived as a gyroscope precessing
around the Sun (the rotation of which can be neglected). This effect can nowadays be
measured by Lunar Laser Ranging, see Will[189].

16See Ref.[108], note 8 with the subtitle “Soluzioni binarie di Weyl”.
17Stationary spacetimes are those that admit a time-like Killing vector. Static space-

times are stationary spacetimes for which this Killing vector is hypersurface orthogonal;
physically this implies time reversal invariance and thus the absence of rotation.
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rotating balls. It became definitely clear that, in the axially symmetric
case, we may have many different exact vacuum solutions, in contrast to
the case of spherical symmetry with, according to the Birkhoff theorem, the
Schwarzschild solution as being unique.

Not much later, van Stockum[184] (1937) determined the gravitational
field of an infinite rotating cylinder of dust particles, thereby recovering the
Lanczos solution, inter alia. He fitted one of the interior matter solutions of
Lewis to an exterior vacuum solution. Continuing on this line of research,
Papapetrou[148] (1953) started from the Andress-Lewis line element, putting
it in a slightly different form, suitable for all stationary axisymmetric vacuum
solutions:

ds2 = −eµ(dρ2 + dz2)− ldφ2 − 2mdφdt+ fdt2 . (92)

The functions µ, l,m, and f depend only on ρ and z. Papapetrou integrated
the field equations and found exact stationary rotating vacuum solutions.
However, his solution carried either mass and no angular momentum or an-
gular momentum and no mass. Thus[148], “this solution is very special and
physically of little interest.”

A year later, a new result was published, which gave the problem of
finding solutions for a rotating ball a new direction. Petrov[152] (1954),
from Kazan, classified algebraically the Einstein vacuum field, that is, the
Weyl curvature tensor, according to its eigenvalues and eigenvectors. This
information reached the West, in the time of the Cold War, with some delay.
A bit later, Pirani[154] (1957) developed a related formalism. It was the
Petrov classification and the picking of a suitable class for the gravitational
field of an isolated body (Petrov class D, with two double principal null
directions) that finally led to the discovery of the Kerr solution during 1963,
ten years after the unphysical solutions of Papapetrou.

Accordingly, it turned out to be a formidable task to find an exact solution
for a rotating ball and it was only found nearly half a century after the
publication of Einstein’s field equation, namely in 1963 by Roy Kerr [98], a
New Zealander, who worked at the time in Texas within the research group of
Alfred Schild. It is a 2-parameter solution of Einstein’s vacuum field equation
with mass M and rotation (or angular momentum) parameter a := J/M .

The story of the discovery of the Kerr solution was told by Kerr himself
at a conference on the occasion of his 70th birthday [99]. A decisive starting
point of Kerr’s investigations was, as mentioned, the Petrov classification.
Melia, in his popular book[124] “Cracking the Einstein Code”, which does
not contain any mathematical formula—apart from those appearing in two
copies of Kerr’s notes and on a blackboard in another figure—has told this
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fascinating battle for solving Einstein’s equation, see also the Kerr story in
Ferreira[58].

Dautcourt [40] discussed the work of people who were involved in this
search for axially symmetric solutions but who were not so fortunate as
Kerr. In particular, Dautcourt himself got this problem handed over from
Papapetrou in 1959 as a subject for investigation. He used the results of Pa-
papetrou (1953). Dautcourt’s scholarly article is an interesting complement
to Melia’s book. In particular, it becomes clear that the (Lanczos-Akeley-
Andress-Lewis-)Papapetrou line element (92) was the correct ansatz for the
stationary axially symmetric metric and the Kerr metric is a special case
therefrom. The Papapetrou approach with the line element (92) was later,
after Kerr’s discovery, brought to fruition by Ernst[53] and by Kramer and
Neugebauer[100].

3.2 Approaching the Kerr metric

We derive a 2nd order partial differential equation, the Ernst equation, that
governs the stationary axially symmetric metrics in Einstein’s theory. Subse-
quently, we sketch how the Kerr solution emerges as a simple case therefrom.

Papapetrou line element and vacuum field equation

In more modern literature, the Papapetrou line element (92), which describes
some rotation around the axis with ρ = 0, is usually parametrized as fol-
lows18,

ds2 = f(dt− ωdφ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dφ2

]
, (93)

t ∈ (−∞,∞), ρ ∈ [0,∞), z ∈ (−∞,∞), φ ∈ [0, 2π) ;

we assume f > 0. We compute the vacuum field equation of this metric.
Nowadays we can do this straightforwardly with the assistance of a computer
algebra system. During the 1960s, when this work was mainly done, there
were no computer algebra systems around. Hearn[79] released the computer
algebra system REDUCE in 1968. Back then, one had to be in command of
huge computer resources in order to bring the underlying computer language
LISP to work. Today, Reduce can run on every laptop; for other computer
algebra systems, see Grabmeier et al.[68] and Wolfram[191].

Because of its efficiency, we will use Schrüfer’s Reduce-package EXCALC,
which was built for manipulating expressions within the calculus of exterior

18See Ernst [53], Buchdahl[23], de Felice & Clarke[57], Quevedo [160], O’Neill[144],
Stephani et al.[180], Eq.(19.21), Griffiths & Podolský[69], and Sternberg[181].
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forms. For that purpose, we reformulate the metric (93) in terms of an or-
thonormal coframe of four 1-forms ϑα = ei

αdxi, with the unknown functions
f = f(ρ, z), ω = ω(ρ, z), and γ = γ(ρ, z), namely

ϑ0̂ = f
1
2 (dt− ωdφ) = ei

0̂dxi = f
1
2 (dx0 − ωdx3) , (94)

ϑ1̂ = f−
1
2 eγd ρ = ei

1̂dxi = f−
1
2 eγdx1 , (95)

ϑ2̂ = f−
1
2 eγd z = ei

2̂dxi = f−
1
2 eγdx2 , (96)

ϑ3̂ = f−
1
2ρ d φ = ei

3̂dxi = f−
1
2 ρ dx3 . (97)

Because of the orthonormality of the coframe ϑα, we have

ds2 ≡ g = +ϑ0̂ ⊗ ϑ0̂ − ϑ1̂ ⊗ ϑ1̂ − ϑ2̂ ⊗ ϑ2̂ − ϑ3̂ ⊗ ϑ3̂ . (98)

Eqs.(94) to (98) are equivalent to (93). The corresponding computer code,
as input for Reduce-Excalc, reads as follows:

pform f=0, omega=0, gamma=0 $

fdomain f=f(rho,z), omega=omega(rho,z), gamma=gamma(rho,z);

coframe o(0) = sqrt(f) * (d t - omega * d phi),

o(1) = sqrt(f)**(-1) * exp(gamma) * d rho,

o(2) = sqrt(f)**(-1) * exp(gamma) * d z,

o(3) = sqrt(f)**(-1) * rho * d phi

with signature (1,-1,-1,-1);

Isn’t that simple enough? From this data, the Einstein equation is cal-
culated, with the Einstein tensor Gµ

ν . The complete, fairly trivial pro-
gram is documented in the Appendix. Note in particular that we used a
LATEX interface allowing us to output the expressions directly in LATEX. This
computer output—without changing anything of the formulas—after some
post-editing for display purposes, reads as follows:

G0
0 :=

(
4 · ∂ρ,ρf · f · ρ2 − 5 · ∂ρf2 · ρ2 + 4 · ∂ρf · f · ρ+ 4 · ∂z,zf · f · ρ2

−5 · ∂zf2 · ρ2 − 4 · ∂ρ,ργ · f2 · ρ2 − 4 · ∂z,zγ · f2 · ρ2 + 3 · ∂ρω2 · f4

+3 · ∂zω2 · f4
)
/
(
4 · e2·γ · f · ρ2

)
, (99)

G3
0 := f · (2 · ∂ρf · ∂ρω · ρ+ 2 · ∂zf · ∂zω · ρ+ ∂ρ,ρω · f · ρ− ∂ρω · f

+∂z,zω · f · ρ) /(2 · e2·γ · ρ2) , (100)

G1
1 := (∂ρf

2 · ρ2 − ∂zf2 · ρ2 − 4 · ∂ργ · f2 · ρ− ∂ρω2 · f4 + ∂zω
2 · f4)

/(4 · e2·γ · f · ρ2) , (101)

G1
2 := (∂ρf · ∂zf · ρ2 − 2 · ∂zγ · f2 · ρ− ∂ρω · ∂zω · f4)/(2 · e2·γ · f · ρ2) ,(102)

G3
3 := (−∂ρf2 · ρ2 − ∂zf2 · ρ2 − 4 · ∂ρ,ργ · f2 · ρ2 − 4 · ∂z,zγ · f2 · ρ2

−∂ρω2 · f4 − ∂zω2 · f4)/(4 · e2·γ · f · ρ2) . (103)
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This calculation of the Einstein tensor by machine did not require more than
about 15 minutes, including the programming and the typing in; for sample
programs, see Socorro et al.[176] and Stauffer et al.[178].

Inspecting these equations, it becomes immediately clear that the numer-
ator of (100) does not depend on γ. In order to get a better overview, we
abbreviate the partial derivatives of Reduce ∂ρf by subscripts, fρ, and drop
the superfluous multiplication dots of Reduce. We find

G3
0 = 0 → 0 = f(ωρρ + ωzz −

1

ρ
ωρ) + 2(fρωρ + fzωz) . (104)

Moreover, by subtracting (103) from (99) we find another equation free of γ:

G0
0−G3

3 = 0 → 0 = f(fρρ+
1

ρ
fρ+fzz)−f 2

ρ −f 2
z +

f 4

ρ2
(ω2

ρ+ω2
z) . (105)

Left over are the equations (101) and (102), which can be resolved with
respect to the first derivatives of γ:

G1
1 = 0 → γρ =

ρ

4f 2
(f 2
ρ − f 2

z ) +
f 2

4ρ
(ω2

z − ω2
ρ) , (106)

G1
2 = 0 → γz =

ρ

2f 2
fρfz −

f 2

2ρ
ωρωz . (107)

Collected, we have these four equations determining the stationary ax-
isymmetric vacuum metric:

0 = f(fρρ +
1

ρ
fρ + fzz)− f 2

ρ − f 2
z +

f 4

ρ2
(ω2

ρ + ω2
z) , (108)

0 = f(ωρρ + ωzz −
1

ρ
ωρ) + 2(fρωρ + fzωz) , (109)

γρ =
ρ

4f 2
(f 2
ρ − f 2

z ) +
f 2

4ρ
(ω2

z − ω2
ρ) , (110)

γz =
ρ

2f 2
fρfz −

f 2

2ρ
ωρωz . (111)

Let us underline how effortless—under computer assistance—we arrived at
these four partial differential equations (PDEs) for determining stationary
axially symmetric solutions of Einstein’s field equation.

Ernst equation (1968)

It is one step ahead, before we arrive at a still more convincing form of these
PDEs. After some attempts, one recognizes that (109) can be written as(

f 2

ρ
ωρ

)
ρ

+

(
f 2

ρ
ωz

)
z

= 0 . (112)
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With the ansatz (Ω = Ω(ρ, z)),

Ωz =
f 2

ρ
ωρ , Ωρ = −f

2

ρ
ωz , (113)

Eq.(112) is identically fulfilled. We substitute (113) into (108):

f(fρρ +
1

ρ
fρ + fzz)− f 2

ρ − f 2
z + Ω2

ρ + Ω2
z = 0 . (114)

Since (109) is already exploited, we can find Ω by differentiating the Ω’s
in (113) with respect to z and ρ, respectively, and by adding the emergent
expressions (ωρz = ωzρ):

f(Ωρρ +
1

ρ
Ωρ + Ωzz)− 2fρΩρ − 2fzΩz = 0 . (115)

Eqs.(108) and (115) can be put straightforwardly into a vector analytical
form, if we recall that our functions do not depend on the angle φ:19

f∆f − (∇f) ·∇f + (∇Ω) ·∇Ω = 0 , (116)

f∆Ω− 2(∇f) ·∇Ω = 0 . (117)

The last equation can also be written as ∇ · (f−2∇Ω) = 0. Eqs.(116) and
(117) liberate ourselves from the cylindrical coordinates, that is, this expres-
sion is now put in form independent of the specific 3d coordinates. With the
potential (i2 = −1)

E := f + iΩ , (118)

which was found by Ernst[53] and Kramer & Neugebauer[100], we find the
Ernst equation[53]

(Re E) ∆E =∇E · ∇E , (119)

or, in components,

(ReE)

[
∂2E
∂z2

+
1

ρ

∂

∂ρ

(
ρ
∂E
∂ρ

)]
=

(
∂E
∂z

)2

+

(
∂E
∂ρ

)2

. (120)

The “Re” denotes the real part of a complex quantity. Under stationary
axial symmetry—the corresponding metric is displayed in (93)—the Ernst
equation (119), together with Eqs.(118, 113, 110, 111), are equivalent to the
vacuum Einstein field equation.

19In cylindrical coordinates, we have for a vector V and a scalar s the following formulas,

see Jackson[94]:

∇ ·V = 1
ρ ∂ρ(ρV1) + ∂zV2 + 1

ρ∂φV3 , ∇2s ≡ ∆s = 1
ρ∂ρ(ρ ∂ρs) + ∂2zs+ 1

ρ2 ∂
2
φs ,

∇s = e1∂ρs+ e2∂zs+ e3
1
ρ∂φs , ∇s ·∇s = (∂ρs)

2 + (∂zs)
2 + 1

ρ2 (∂φs)
2 .
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From Ernst back to Kerr

This reduces the problem of axial symmetry to the solution of the second
order PDE (119). This method, which came along only five years after Kerr’s
publication, led to many new exact solutions, amongst them the Kerr solution
(1963) as one of the simplest cases. We are only going to sketch how one
arrives at the Kerr solution eventually. We follow here closely Buchdahl[23].

One introduces a new complex potential ξ by

E =:
ξ − 1

ξ + 1
. (121)

Then the Ernst equation becomes

(ξξ − 1)∆ξ = 2ξ∇ξ · ∇ξ , (122)

where the overline denotes complex conjugation. If one has a solution of this
equation, we can determine the functions f , ω and γ by

f = Re
ξ − 1

ξ + 1
, (123)

ωρ = −2ρ
Im[(ξ + 1)2ξz]

(ξξ − 1)2
, ωz = 2ρ

Im[(ξ + 1)2ξρ]

(ξξ − 1)2
, (124)

γρ = ρ
ξρξρ − ξzξz
(ξξ − 1)2

, γz = 2ρ
Re(ξρξz)

(ξξ − 1)2
. (125)

For rotating bodies, spherical prolate coordinates x, y, with a constant k,
are much more adapted:

ρ = k(x2 − 1)
1
2 (1− y2)

1
2 , z = kxy . (126)

It turns out that one simple potential solving the Ernst equation, with the
constants p and q, is

ξ = px− iqy with p2 + q2 = 1 ; (127)

it leads to the Kerr metric. For this purpose, one has to introduce the
redefined constants m := k/p (mass) and a := kq/p (angular momentum
per mass) and to execute subsequently the transformations px = (ρ̃/m)− 1
and qy = (a/m) cos θ to the new coordinates ρ̃ and θ. Then one arrives at
the Kerr metric in Boyer-Lindquist coordinates, which is displayed in the
table on the next page. For more detail, compare, for instance, the books of
Buchdahl[23], Islam[93], Heusler[85], Meinel et al.[123], or Griffiths et al.[69].
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By similar techniques, a Kerr solution with a topological defect was found
by Bergamini et al.[14].

Incidentally, in the context of the Ernst equation, Geroch made the fol-
lowing interesting conjecture: A subset of all stationary axially symmetric
vacuum space-times, including all of its asymptotically flat members, that
is, in particular the Kerr solution, can be obtained from Minkowski space by
transformations generated by an infinite-dimensional Lie group. This con-
jecture was “proved” by Hauser and Ernst[76], see also Ref.[75] However, the
proof contained a mistake that was subsequently corrected in Ref.[77]

Starting from 4d ellipsoidal coordinates, Dadhich[39] gave a heuristic
derivation of the Kerr metric by requiring, amongst other things, that light
propagation should be influenced by gravity.

3.3 Three classical representations of the Kerr metric

We collected these three classical versions of the Kerr metric in Table 4, see
also Visser[186].Three more coordinate systems should at least be mentioned:

• Pretorius & Israel[157] double null coordinates:

very convenient to tackle the initial value problem

• Doran[46] coordinates:

Gullstrand-Painlevé like; useful in analog gravity

• Debever/Plebański/Demiański[155] coordinates:

components of the metric are rational polynomials; convenient for (com-
puter assisted) calculations
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Table 4. Kerr metric: the three classical representations

Kerr-Schild (t, x, y, z) Cartesian background

ds2 = − dt2 + dx2 + dy2 + dz2

+
2mr3

r4 + a2z2

(
dt+

r(x dx+ y dy)

a2 + r2
+
a(y dx− x dy)

a2 + r2
+
z

r
dz

)2

x2 + y2 + z2 = r2 + a2

(
1− z2

r2

)
, r = r(x, y, z)

x = (r cosφ+ a sinφ) sin θ

y = (r sinφ− a cosφ) sin θ
z = r cos θ

Boyer-Lindquist (t, r, θ, φ) Schwarzschild like

ds2 = −
(

1− 2mr

ρ2

)
dt2 − 4mra sin2θ

ρ2
dt dφ

+
ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

2mra2 sin2θ

ρ2

)
sin2θ dφ2

ρ2 := r2 + a2 cos2 θ ∆ := r2 − 2mr + a2 = (r − r+)(r − r−)

dv = dt+
r2 + a2

∆
dr

dϕ = dφ+
a

∆
dr

Kerr original (v, r, θ, ϕ) Eddington-Finkelstein like

ds2 = −
(

1− 2mr

ρ2

)(
dv − a sin2 θ dϕ

)2
+ 2

(
dv − a sin2 θ dϕ

) (
dr − a sin2 θ dϕ

)
+ ρ2

(
dθ2 + sin2 θ dϕ2

)
rE± := m±

√
m2 − a2 cos2 θ r± := m±

√
m2 − a2
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As input for checking the Kerr solution, we use the orthonormal coframe[181]

ϑ0̂ :=

√
ε∆

ρ

(
dt− a sin2θ dφ

)
, (128)

ϑ1̂ :=
ρ√
ε∆

dr , (129)

ϑ2̂ := ρ dθ , (130)

ϑ3̂ :=
sin θ

ρ

[
(r2 + a2) dφ− adt

]
. (131)

We introduced the sign function, which is convenient for discussing the dif-
ferent regions in the Penrose-Carter diagram:

ε =

{
+1 for r > r+ or r < r− , ,

−1 for r− < r < r+ .
(132)

The metric can then be written in terms of the coframe as

ds2 ≡ g = ε(−ϑ0̂ ⊗ ϑ0̂ + ϑ1̂ ⊗ ϑ1̂) + ϑ2̂ ⊗ ϑ2̂ + ϑ3̂ ⊗ ϑ3̂ . (133)

From Table 4 it is not complicated to read off the Schwarzschild and the
Lense-Thirring metric as special cases. In comparison to the Schwarzschild
metric, the Kerr solution includes a new parameter a which will be related to
the angular momentum. However, it should be noted that, by setting a = 0,
the Kerr metric reduces to the Schwarzschild metric, as it should be (ρ2 → r2

and ∆→ r2 − 2mr):

ds2 = −
(

1− 2mr

r2

)
dt2 +

r2

r2 − 2mr
dr2 + r2dθ2 + r2 sin2θ dφ2 .(134)

By canceling r2 in the dr2-term, we immediately recognize the Schwarzschild
metric.

Considering the parameter a we should note the following fact. For small
values of the parameter a, where we may neglect terms of the order of a2, we
arrive at (ρ2 → r2 and ∆→ r2 − 2mr) and

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2
(
dθ2 + sin2θ dφ2

)
− 4ma sin2θ

r
dt dφ . (135)

Since, in spherical coordinates we have y dx−x dy = r2 sin2 θ dφ, the crossterm
may be rewritten as 4ma sin2θ

r
dt dφ = 4ma

r3
(x dz − y dx). Thus, in the limiting

case a2 � 1, the Kerr metric yields the Lense-Thirring metric, provided we
identify ma = Jz.
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3.4 The concept of a Kerr black hole

We come back to our Fig. 7 with “Schwarzschild” versus “Kerr”. The Kerr
spacetime may be visualized by a vortex, where the water of the lake spirals
towards the center. Much of the above said for the Schwarzschild case is still
valid. However, one important difference occurs. The stationary limit and
the event horizon separate, which will be illustrated by corresponding graphical
representations.

In case of a vortex, the flow velocity of the in-spiraling water has two
components. The radial component which drags the boat towards the center
whereas the additional angular component forces the boat to circle around
the center. Again, the stationary limit is defined by the distance at which
the boat ultimately can withstand the radial and circular drag of the water
flow. Beyond the stationary limit the situation is not as hopeless as in the
Schwarzschild case. Using all its power, the boat may brave the inward flow.
But then it has not enough power to overcome the angular drag and is forced
to orbit the center. By means of a clever spiral course the boat may even
escape beyond the stationary limit. The stationary limit is not necessary an
event horizon. At some distance, nearer to the center than the stationary
limit, also the pure radial flow of water will exceed the power of the boat.
There, inside the stationary limit, is the event horizon.

In order to investigate the structure of the Kerr spacetime, we first look at
“strange behavior” of the metric components in Boyer-Lindquist coordinates.
The following cases can be distinguished:

∆ = 0 grr becomes singular,

ρ2 = 2mr gtt vanishes,

ρ2 = 0 grr and gθθ vanish, the other components are singular.

As we have extensively discussed in the previous section, singularities
of components of the metric may signify physical effects but, on the other
hand, may only be due to “defective” coordinates. Thus, we will proceed
along similar lines to investigate the nature of these singularities.

We will not address the geodesics of the Kerr metric in detail. For an
elementary discussion the reader is referred to Frolov and Novikov[64] and
to the more advanced discussion in Hackmann et al.[72].
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Depicting Kerr geometry

We draw a picture of the spatial appearances and relations of the various
horizons and the singularity of the Kerr metric. From outside to inside these
are, explicitly,

outer ergosurface rE+ := m +
√
m2 − a2 cos2 θ

l joined at polar axis

event horizon r+ := m +
√
m2 − a2

l merge for a→ m

Cauchy horizon r− := m −
√
m2 − a2

l joined at polar axis

inner ergosurface rE− := m −
√
m2 − a2 cos2 θ

↑ lies on the rim for θ = π/2

singularity r = 0

For a = 0, inner ergosurface and Cauchy horizon vanish, whereas outer
ergosurface and event horizon merge to the Schwarzschild horizon. To vi-
sualize the various surfaces we use Kerr-Schild quasi-Cartesian coordinates.
The radial coordinate r of the Boyer-Lindquist coordinates is related to the
coordinates x, y, z of the Kerr-Schild coordinates via, see Table 4,

x2 + y2 +
r2 + a2

r2
z2 = r2 + a2 , z = r cos θ . (137)

Substituting r = 0, r = r±, r = rE± , and a little bit of algebra yields:

• Singularity r = 0

Since r = 0 leads to z = 0, we get the equation of a circle of radius a
in the equatorial plane,

x2 + y2 = a2 . (138)

For a = 0, the ring collapses to the Schwarzschild singularity.

A closer inspection shows that the structure of the singularity is more
complex[66, 110].

• Horizons r = r±

In this case we arrive at the equation for an oblate (for a < m) ellipsoid,

x2

a2
1

+
y2

a2
2

+
z2

a2
3

= 1 , (139)

where a2
1 = a2

2 = r2
± + a2 > a2

3 = 1
r2±
.
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inner ergosurface

outer ergosurface

ergoregion

a<m

Cauchy horizon

event horizon

ring singularity

a=m

ergoregion

event horizon

outer ergosurface

inner ergosurface

ring singularity

a>m
(outer) ergosurface

(inner) ergosurface

ring singularity

Fig. 12: Ergosurfaces, horizons, and singularity for slow, extremal (‘critical’),
and fast Kerr black holes.
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• Ergosurfaces r = rE±(θ)

Things are a little bit more involved in this case because r is not con-
stant. We can also derive a “ellipsoid-like” equation (for a ≤ m),

x2

a2
1(θ)

+
y2

a2
2(θ)

+
z2

a2
3(θ)

= 1 , (140)

now with

a2
1(θ) = a2

2(θ) = r2
E±(θ) + a2 , a2

3(θ) =
1

r2
E±

(θ)
. (141)

The θ-dependence will deform the ellipsoid. On the equatorial plane
with θ = π we have r2

E±
= 0. Hence, a1 = a2 = a and a3 diverges. This

results in a non-regular rim on which the ring singularity is located.

For a > m, the rE± is partly not defined, since the term under the
square-root changes sign, and becomes negative if

cos(θ) =
m

a
. (142)

This defines two rings with θ1 = arccos(m/a), θ2 = π − θ1 and r = m.
As a consequence, the outer ergosurface only extends to these rings from
the outside, and the inner ergosurface up to the rings from the inside.
The outcome is a kind of torus. The center-facing side is constituted by
a part of the inner ergosurface (along with the ring singularity), whereas
the outside facing parts are given by a part of the outer ergosurface.

An extensive discussion of the embedding of the ergosurfaces into Eu-
clidean space, together with corresponding Mathematica-programs, can
be found in Ref.[114].

The surfaces are visualized in Fig. 12. We did not use a faithful embedding
but rescaled axes in order to achieve better visibility.

The presence of the term
√
m2 − a2 requires the distinction of three differ-

ent cases dependent on the values of the mass parameter m and the angular
momentum parameter a:

m > a slow rotation m = a critical rotation m < a fast rotation

The slow rotating case shows the richest structure. Both ergosurfaces and
both horizons are present and distinct from each other. As a approaches
m, the event and the Cauchy horizon draw nearer and nearer. At critical
rotation, a = m, both horizons merge into one single event horizon with
r = m. Eventually, for fast rotation a > m, the event horizon disappears
and reveals the naked ring singularity which now is located at the inner edge
of the now toroidal shaped (outer) ergosurface.
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3.5 The ergoregion

We explore the region between the outer ergosurface and the event horizon.
There it is not possible to stand still, anything has to rotate, even the event
horizon. The compulsory rotation in the ergoregion allows one to extract
energy from the black hole. This so-called Penrose process leads to black hole
thermodynamics.

Constrained rotation

The outer ergosurface, r = RE+ , is defined by the equation g00(rE+) = 0.
Thus, it is a surface of infinite redshift and a Killing horizon. For a third
characterization of the ergo surfaces we have to deal not only with radial but
also with rotational motion. Consider the Kerr metric in Boyer-Lindquist
coordinates with dr = dθ = 0,

ds2 = gttdt
2 + 2 gtφ dt dφ+ gφφdφ

2 ,

or, after dividing by dt2,(
ds

dt

)2

= gtt + 2gtφ
dφ

dt
+ gφφ

(
dφ

dt

)2

.

The explicit form of the metric components is not needed here. Note that
Ω = dφ

dt
is the angular velocity with respect to a distant observer,(

ds

dt

)2

= gtt + 2gtφ Ω + gφφ Ω2 . (143)

The worldline of a particle has to be timelike, ds2 < 0. Since the last equation
is quadratic in Ω, this is only possible between the roots ds2 = 0,

Ωmin/max := − gtφ
gφφ
∓

√(
gtφ
gφφ

)2

− gtt
gφφ

.

What does
Ωmin < Ω < Ωmax

mean?! In flat Minkowski spacetime (with Cartesian coordinates), Ωmin/max =
±1 implies that a particle, e.g., may freely circle around a point, restricted
only by the condition |v| = |r · Ω| < c. In the Kerr spacetime, at r = rE± ,
the smallest possible value of Ω becomes 0. The particle may just stay at
rest, but can rotate only in one direction, namely in direction of the angular
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momentum of the black hole. Beyond rE+ , Ω is forced to be larger than zero:
The particle must co-rotate with the black hole.

The preceding statement is only correct for radially infalling particles. In
general, the influence of the rotating black hole on the motion of particles is
more complex[165].

Rotation of the event horizon

The behavior of Ω± on the event horizon is quite remarkable. By using the
identities

2mr± = r2
± + a2 , ρ2 − r2 = a2 cos2 θ = a2 − a2 sin2 θ , (144)

one finds for the event horizon (r = r+),

Ω+ = Ω− = ΩH :=
a

2mr+

. (145)

To interpret this result we use (143) and write

gµν l
µ lν |r=r+ = 0 , with lµ = (1, 0, 0,ΩH) . (146)

The integral lines of lµ = ẋµ,

xµ = (t, r+, θ0,ΩH t) , (147)

define a lightlike hypersurface rotating with a uniform angular velocity: The
event horizon of a Kerr black hole rotates “rigidly” with ΩH , see in this
context Frolov & Frolov[63]. A consequence of this finding is discussed in the
next paragraph.

Penrose process and black hole thermodynamics

The (outer) ergosurface is a Killing horizon, not an event horizon. It is
possible for particles to pass from the inside to the outside. This allows for
a peculiar scenario: Since inside the Killing horizon the particle is forced to
spin around, it picks up an additional rotational energy. This energy can
be partly extracted by means of the Penrose process. An infalling particle
traverses the Killing horizon, picks up rotational energy and subsequently
decays into two parts. If one part plunges into the event horizon, the other
part, carrying away some of the rotational energy, can return to the outside
of the Killing horizon. Thus, the region between Killing and event horizon
is justly labeled as “ergoregion” (from Greek ergon = work).
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The observation that energy can also be extracted from the black hole
gave rise to black hole thermodynamics. The next question is then how
the parameters change if the black hole is infinitesimally disturbed. It was
Bekenstein[13] who established a relation between the variations of the mass,
the angular momentum, and the area of the event horizon. Using the coframe
(185), for λ = 0, we find for the area of the event horizon

A =

∫
r = r+
t = const.

ϑ2̂∧ϑ3̂ =

∫
r = r+
t = const.

sin θ (r2+a2) dθ∧dφ = 4π
(
r2

+ + a2
)
. (148)

We can rewrite (148), using (144) and J = ma,

A = 8πmr+ = 8π (m2 −
√
m4 − J2) . (149)

The differential of this equation is

dA =
∂ A

∂m
dm+

∂ A

∂J
dJ =

8π

κ
dm− 8π

κ
ΩH dJ , (150)

with

κ =
1

2m

√
m4 − J2

m2 +
√
m4 − J2

, ΩH = κ
J√

m4 − J2
. (151)

The parameter ΩH is the angular velocity of the horizon (145). The param-
eter κ is the surface gravity. Eq.(150) can be rewritten as

dm =
κ

8π
dA+ ΩH dJ . (152)

The infinitesimal change of the mass, dm, is proportional to the the infinites-
imal change of the energy, dE. The term ΩH dJ describes the infinitesimal
change of the rotational energy. This suggests the identification of (152)
with the first law of thermodynamics. The analogy is still more compelling
by observing that, for a given black hole of initial (or irreducible) mass m,
the area of the horizon is always increasing. Even by exercising a Penrose
process, which extracts rotational energy from the black hole, a fragment of
the incoming particle will fall into the black hole thereby increasing its mass
and, in turn, the area of the horizon. Accordingly, the area A of the hori-
zon behaves formally as if it is proportional to an entropy S and the surface
gravity κ as if it is proportional to a temperature T . In fact, the Hawking
temperature and the Bekenstein-Hawking entropy turn out to be

T =
~

2πkB

κ , S =
1

4G~
A , (153)
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with kB as the Boltzmann constant. Eq.(152) together with its thermody-
namical interpretation (153) can be considerably generalized thereby estab-
lishing the new discipline of “black hole thermodynamics”, see Heusler[85]
and Carlip.[28]

3.6 Beyond the horizons

In the Schwarzschild spacetime, event horizon and Killing horizon coincide.
In the Kerr spacetime, for m > a, there is an outer Killing horizon, an
event horizon, an inner Killing horizon and an inner horizon. So far, all
the coordinate systems we used for the Kerr metric show singularities at the
outer and inner horizons r = r±. The construction of a regular coordinate
system is possible along the same lines as for the Schwarzschild metric. Of
course, the corresponding calculations are much more involved for the Kerr
case. Therefore, we will give more a kind of heuristic approach to motivate
Kruskal-like coordinates for the Kerr metric.

Using light rays as coordinate lines

Our first task is to construct Eddington-Finkelstein like coordinates for the
Kerr metric by considering radial light rays. We restrict ourselves to the
case θ = 0 = φ. The Kerr metric in Boyer-Lindquist coordinates reduces to
(θ = 0 → ρ2 = r2 + a2 = ∆ + 2mr):

ds2 = −∆

ρ2
dt2 +

ρ2

∆
dr2 .

Hence, for in-/out-going light rays, ds2 = 0, we find

dt = ±ρ
2

∆
dr = ± r2 + a2

(r − r+)(r − r−)
dr

or, explicitly,

±t =

∫
dr

r2 + a2

(r − r−)(r − r+)
= r+

r2
+ + a2

r+ − r−
ln |r − r+|−

r2
− + a2

r+ − r−
ln |r − r−|+const.

(154)

Unlike in the Schwarzschild spacetime, there form two event horizons, at
r = r− and r = r+, respectively. However, as a → 0, r− goes to 0, whereas
r+ approaches 2m and the Schwarzschild situation is reproduced.

We next focus on the (Boyer-Lindquist) coordinates (t, r) and how the
horizons etc. will appear in terms of the new coordinates. The other co-
ordinates and the regularity of the metric is not addressed. However, all
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the details can be found in the literature, see Refs.[20, 30, 78]. Using (154)
analogously to (42), we introduce Eddington-Finkelstein like coordinates for
Kerr,

v := t+ r + σ+ ln |r − r+| − σ− ln |r − r−| , (155)

u := t− r − σ+ ln |r − r+|+ σ− ln |r − r−| , (156)

where (according to the notation in Ref.[20])

σ± :=
r2
± + a2

r+ − r−
=

mr±√
m2 − a2

. (157)

Again, we can get rid of the coordinate singularity by rescaling u and v
analogously to (48). Since we have two horizons, r = r+ and r = r−, we have
to decide with respect to which singularity we rescale. We firstly choose r+

and define, see (48),

ṽ := exp

(
v

2σ+

)
=
|r − r+|

1
2

|r − r−|
ν
2

e
r+t
2σ+ , (158)

ũ := − exp

(
− u

2σ+

)
= −|r − r+|

1
2

|r − r−|
ν
2

e
r−t
2σ+ , (159)

with
ν :=

σ−
σ+

=
r−
r+

> 1 . (160)

Again, we go back to time- and space-like coordinates, exactly like in (50),

t̃ :=
1

2
(ṽ + ũ) , r̃ :=

1

2
(ṽ − ũ) . (161)

Then we work out the four coordinate patches exactly like (55) to (60).
We arrive at a Kruskal like coordinate system. However, there arises an
important difference: The coordinate system still is singular for r = r−. This
can be most easily seen from the analog to (59), the inverse transformation
to r, which now reads

r̃2 − t̃2 = −ṽũ =
r − r+

(r − r−)ν
e
r
σ+ . (162)

The horizon r = r+ is regular in this coordinate system and is described by
r̃ = ±t̃. The transformation(s) are valid in the domain r− < r < +∞

r = r+ : r̃ = ±t̃ as for Schwarzschild

r → +∞ : r̃2 − t̃2 → +∞ particularly r̃ → ±∞ for t̃ = 0

r → r− : r̃2 − t̃2 → −∞ particularly t̃→ ±∞ for r̃ = 0

r = rE+ : r̃2 − t̃2 = const. > 0 hyperbolas in I, II patches
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In contrast to the Schwarzschild case, the full upper and lower halfplanes
of the (r̃, t̃) plane is covered. It is not limited by the hyperbolas of the
Schwarzschild singularity r = 0!

We can regularize with respect to r− by introducing

ṽ := − exp

(
− v

2σ−

)
, ũ := exp

(
u

2σ−

)
. (163)

Now we find

r̃2 − t̃2 =
r − r−

(r − r+)
1
ν

e
− r
σ− . (164)

This coordinate system covers the domain −∞ < r < r+. Like the first
coordinate system, it contains also the region between the horizons, r− <
r < r+. This time, r ≥ r+ is excluded.

r = r− : r̃ = ±t̃ as above

r → −∞ : r̃2 − t̃2 →∞ particularly t̃→ ±∞ for r̃ = 0

r → r+ : r̃2 − t̃2 → −∞ particularly r̃ → ±∞ for t̃ = 0

r = rE− : r̃2 − t̃2 = const. > 0 hyperbola in I*, II* patches

r = 0 : r̃2 − t̃2 = − r−
r+
< 0 hyperbola in I*, II* patches

Again, the whole (r̃, t̃) plane is covered. Note that the spacetime extends
beyond the ring(!) singularity.

3.7 Penrose-Carter diagram and Cauchy horizon

We compactify the Kruskal-like coordinate system for Kerr, yielding confor-
mal Penrose-Carter diagrams. We discuss the analytical extension and the
role of the inner horizon as Cauchy horizon.

In order to draw a Penrose-Carter diagram for the Kerr spacetime, we
compactify the coordinates via the tangent function like in Sec.2.6. The
result looks at first quite similar to Schwarzschild in Fig. 11. However, the
cutoff at r = 0 vanishes. The diagrams Fig. 13 and Fig. 14 both show the
entire compactified (r̃, t̃)-space.

The two coordinate sets overlap in the region between the horizons. Thus,
the corresponding coordinate patches have to be identified. And we can even
draw beyond that . . . Patch II is identified with patch IV*, II* with another
patch IV**. And so on: We find an infinite sequence of coordinate systems.
Formally, this constitutes a maximal analytic extension of the Kerr spacetime.
Alas, there are good reasons for not believing in such vast an extension.

The Kerr metric is a vacuum solution of Einstein’s field equation—it
describes a totally empty spacetime. To render it physically meaningful, we
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Figure 13: The Penrose diagram for the Kerr spacetime for r > r−.
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should regard it as the spacetime structure generated by a sensible physical
source. One may ask then, why a single source should produce an infinite
number of spacetimes. And it is even worse. The regions beyond the Cauchy
horizon are exceptionally badly behaved. Consider the Cauchy surface in
regions I+II of Fig. 15. All light rays and particle trajectories from the past
intersect this surface only once. Then the field equations will tell us their
future development, see Franzen[62], for example. In Fig. 15 this is roughly
indicated by the little light cone. However, even total knowledge of the world
in I+II does not determine what might be going on in regions I*+II*. That is
why r = r− is called a Cauchy horizon, see Fig. 16. Thus, I* and II* are not
only beyond the Cauchy horizon but also beyond predictable, sound physics.
Moreover, the zigzagged region beyond the singularity is physically doubtful.
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Figure 16: Cauchy horizon: The causal past of a point P outside the Cauchy
horizon of S is entirely determined by the information given on the Cauchy
surface S. A point Q inside the Cauchy horizon receives also information from
I−. Evidently, initial data on S are not sufficient to uniquely determine events
at point Q. The surface that separates the two regions “causally determined
by S” and “not causally determined by S” is called Cauchy horizon.

In this region, the asymptotics is reversed, see the permutation of I+ and
I−. As a consequence, the asymptotic mass in I* picks up a minus sign as
compared to I. So the same source possesses a positive mass +m in I and a
negative mass −m in I*, which seems strange. Moreover, it turns out that
these regions are crowded with closed timelike curves. The whole extension
is not globally hyperbolic. Thus one should restrict to the “diamond of sound
physics”, I+II+III+IV. To do this consistently, one has to devise a physical
mechanism preventing traveling beyond the Cauchy horizon, that is, the
Cauchy horizon should become singular in some sense (cosmic censorship,
see Penrose[150]).
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3.8 Gravitoelectromagnetism, multipole moments

The curvature tensor of the Kerr metric is calculated. By squaring it suitably,
we find the two quadratic curvature invariants. Subsequently, we determine
the gravitoelectric and the gravitomagnetic multipole moments of the Kerr
metric, and we mention the Simon-Mars tensor the vanishing of which leads
to the Kerr metric.

The analogy between gravity and electrostatics became apparent when
the Coulomb law was discovered in 1785. The gravitational and the elec-
trostatic forces both obeyed an inverse-square law, with the difference that
the mass can only be positive whereas the electric charge exists with both
signs. Equal electric charges repel, opposite ones attract; in contrast, gravity
is always attractive.

In 1820 electromagnetism was discovered by Oersted, and the emerging
unified theory, called “electrodynamics” by Ampère, eventually found its
expression in the Maxwell equations of 1864. Besides the electric field E
related to charge, we have the magnetic field B related to moving charge.
These fields, together with the electric and magnetic excitations D and H ,
respectively, obey the Maxwell equations.

Newton’s gravitational theory was only superseded in 1915/16 by Ein-
stein’s gravitational theory, general relativity. However, already in the 1870s
physicists began to speculate whether, besides Newton’s “gravitoelectric”
field, related to mass at rest, there may also exist a new “gravitomag-
netic” field, accompanying moving mass; for more details and references see
Mashhoon[116]. As we saw above, these speculations became a solid basis
in general relativity. In (90), the gravitomagnetic Lense-Thirring term sur-
faced, which found solid experimental verification in the meantime. Thus, we
can speak with justification of gravitoelectromagnetism[116] (GEM), a notion
which can guide our intuition, see in this context also Ni and Zimmermann[137].

Gravitoelectromagnetic field strength

Electrodynamics is a linear theory, GR a nonlinear one. Still, if we take
a linearized version of GR, there are those strong analogies between elec-
trodynamics and gravitodynamics, as worked out, for instance, nicely in
Rindler’s[165] book. However, the analogies go even further, as pointed out
particularly by Mashhoon[116]. Even in an arbitrary gravitational field, if re-
ferred to a Fermi propagated reference frame with coordinates (T,X), GEM
is a useful concept. If we apply the geodesic deviation equation (33) to such a
frame, the gravitoelectromagnetic field strength, representing the tidal forces,
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turns out to be[116]20

GEMFαβ = −Rαβ0i(T )X i . (165)

If we develop (33) up to the order linear in the velocity V := dX/dT , we
find

d2X i

dT 2
= −R0i0jX

j + 2Rik0jX
jV k = −GEMFi0 − 2 GEMFki V

k . (166)

Now we recall that in electrodynamics the electric and the magnetic fields
E and B, respectively, are accommodated in the 4d electromagnetic field
strength tensor according to

(Fαβ) =


0 −E1 −E2 −E3

� 0 B3 −B2

� � 0 B1

� � � 0

 = − (Fβα) . (167)

The diamond symbol � denotes matrix elements already known because of
the antisymmetry of the matrix involved. The corresponding 2-form reads
F = 1

2
Fαβ dx

α ∧ dxβ. Keeping (167) in mind, Eq.(166) can be rewritten as a
vector equation

d2X

dT 2
= −grE− 2V×grB . (168)

In accordance with the equivalence principle, this equation of motion is in-
dependent of the mass. The analogy with electromagnetism requires that the
gravitoelectric charge, in terms of the mass m, is −1 and the gravitomagnetic
charge −2. In electrodynamics, both quantities are +1. The difference comes
from the vector nature of the electromagnetic potential Aα as compared to
the tensor nature of the gravitational potential gαβ, that is, helicity 1 as
compared to helicity 2. The relation between the gravitomagnetic to the
gravitoelectic charge, that is, the gyrogravitomagnetic ratio, is two: grγ = 2.
Note that in Gravity Probe-B the authors specify the gyrogravitomagnetic
ratio as 1. However, their gyros carried only orbital angular momentum
rather than spin angular momentum. Hence this is to be expected; for more
detailed discussions on this difference, see Ref.[80, 138].

20Alternatively, we could generalize the Newtonian tidal force matrix of (9) to the grav-
itoelectric and gravitomagnetic tidal force matrices, Eij = Ri0j0 and Bij = εiklRklj0,
respectively, see Scheel & Thorne[169]. Both matrices are symmetric and trace-free. Note
that GEMFαβ is an antisymmetric 4×4 matrix and E and B are both symmetric trace-free
3× 3 matrices.
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It has been pointed out by Ni[139] that the “measurement of the gyrograv-
itational ratio of [a] particle would be a further step [138] towards probing
the microscopic origin of gravity. GP-B serves as a starting point for the
measurement of the gyrogravitational factor of particles.”

Quadratic invariants

In electrodynamics, we have two quadratic invariants [81]:

1

2
FαβF

αβ = ?(?F ∧ F ) = B2 − E2 ,
1

2
FαβF

∗αβ = ?(F ∧ F ) = 2E·B ,

(169)
where we used for the tensor dual the notation F ∗αβ := 1

2
εαβγδFγδ. We also

employed the very concise notation of exterior calculus with the Hodge star
operator.21

The first invariant is proportional to the Maxwell vacuum Lagrangian
and is an ordinary scalar, whereas the second one corresponds to a surface
term and is a pseudoscalar (negative parity).

Turn now directly to the Kerr metric and list for this example the tidal
gravitational forces, which are represented by the curvature tensor. With its
20 independent components, it can be represented by a trace-free symmetric
6× 6 matrix, see (32). The collective indices A,B, .. = 1, ..., 6 are defined as
follows: {t̂r̂, t̂θ̂, t̂φ̂; θ̂φ̂, φ̂r̂, r̂θ̂} −→ {1, 2, 3; 4, 5, 6}. We throw the orthonor-
mal Kerr coframe (128) to (133) into our computer and out pops the 6 × 6
curvature matrix,

(RAB) =


−2E 0 0 2B 0 0
◦ E 0 0 −B 0
◦ ◦ E 0 0 −B
◦ ◦ ◦ 2E 0 0
◦ ◦ ◦ ◦ −E 0
◦ ◦ ◦ ◦ ◦ −E

 = (RBA) , (170)

with

E := mr
r2 − 3a2 cos2 θ

(r2 + a2 cos2 θ)3
, B := ma cos θ

3r2 − a2 cos2 θ

(r2 + a2 cos2 θ)3
. (171)

It is straightforward to identify E as the gravitoelectric and B as the gravit-
omagnetic component of the curvature. This is in accordance with (165).

21The Hodge star ?ω of a p-form ω = (1/p!)ωµ1···µp
dxµ1∧· · ·∧dxµp is an (n−p)-form ?ω,

with the components (?ω)µ1···µn−p
= (1/p!)εν1···νpµ1···µn−p

ων1···νp , where ε is the totally
antisymmetric unit tensor and n the dimension of the space, see Eq.(C.2.90) in Ref.[81]
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It is obvious how we should continue. Our gravitoelectromagnetic invari-
ants will be22

K :=
1

2
RαβγδR

αβγδ = − ?
(
?Rαβ ∧Rαβ

)
, (172)

P :=
1

4
εγδµνRαβγδR

αβ
µν = ?

(
Rαβ ∧Rαβ

)
. (173)

Again, our program determines the Kretschmann23 scalar K and the Chern-
Pontryagin pseudoscalar P to be[19]

K = −24(B2 − E2) , P = −48EB . (174)

The similarity to (169) is impressive. The GEM analogy quite apparently
applies to the full nonlinear theory. The results in (174), partly in more
involved representations, can be found in the literature, see, for instance, the
books of de Felice & Clarke[42] and of Ciufolini & Wheeler[36], but compare
also de Felice & Bradley[41], Henry[84], and Cherubini et al.[32].

Thus, the quadratic invariants K and P confirm that the Kerr metric
is the exterior field of a rotating mass distribution. In order to get more
information about this distribution, we proceed, like in electrodynamics, and
look into the gravitoelectromagnetic multipole moments of this rotating mass.

Gravitomagnetic clock effect of Mashhoon, Cohen, et al.

According to the results of Lense-Thirring, the rotation of the Sun changes
the spacetime around it by inducing gravitomagnetic effects. As we saw
above, in a similar way the temporal structure around a Kerr metric is af-
fected by the angular momentum of the Kerr source. Thus, a gravitomagnetic
clock effect should emerge,24 the measurability of which requires very accu-
rate clocks. The effect can be demonstrated by two clocks that move on
equatorial orbits, one in prograde and the other in retrograde orbit around
the Kerr metric. It turns out[117] that the prograde equatorial clock is slower
than the retrograde one. This is not necessarily what our intuition would

22In exterior calculus, we have the Euler 4-form E := Rαβ ∧ ?Rαβ , with K = ?E.
Analogously, we have the Chern-Pontryagin 4-form P := −Rαβ ∧Rβα, which is an exact
form, with P := ?P , cf. Obukhov et al.[141].

23Usually in the literature[36, 42], the Kretschmann scalar is defined as RαβγδR
αβγδ,

even though the electrodynamics analogy would suggest to include the factor 1/2.
24This was first predicted by Cohen and Mashhoon[37] and worked out in greater detail

by Mashhoon et al.[118, 117], see also Bonnor & Steadman[18] and the review papers in the
workshop of Lämmerzahl et al.[103]. In a similar way, there emerges also a gravitomagnetic
time delay, see Ciufolini et al.[33].
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tell us. It is connected with the fact that the dragging of frames in a Kerr
metric can sometimes turn out to be an “antidragging”, thus making this
notion less intuitive,[165] as we already recognized in Sec.3.5.

Generalizations of this clock effect were studied, for example, by Hack-
mann & Lämmerzahl[71]. The recent discussion of the Clocks around Sgr A?,
by Angélil & Saha[7] is, in effect, just one more manifestation of the gravit-
omagnetic clock effect.

Multipole moments: gravitoelectric and gravitomagnetic ones

In Newton’s theory, one gets a good idea about a mass distribution and
its gravitational field by determining the multipole moments of the mass
distribution M . In GR, because of the existence gravitomagnetism, we have
to expect a new type of multipole moments, namely the moments J of the
angular momentum distribution.

If a stationary axially symmetric line element of the form (93) is asymp-
totically flat, then it is possible[180] to define two sets of multipole mo-
ments, the gravitoelectric moments Ms (“mass multipole moments”) and the
gravitomagnetic moments Js (“angular momentum multipole moments”), for
s = 0, 1, 2, .... These moments were found by Geroch[67] for the static and by
Hansen[73] for the stationary case. They were reviewed by Quevedo[160] and
used for constructing new exact solutions by Quevedo & Mashhoon[159, 161].
Hansen computed the multipole moments for the Kerr solution and found

s = 0 M0 = −m J1 = ma (175)

s = 1 M2 = ma2 J3 = −ma3 (176)

s = 2 M4 = −ma4 J5 = ma5 (177)

s = 3 . . . M6 = ma6 . . . J7 = −ma7 . . . (178)

More compactly, we have

M2s = (−1)s+1ma2s , M2s+1 = 0 ; (179)

J2s = 0 , J2s+1 = (−1)sma2s+1 . (180)

It is possible to introduce normalized multipole moments, see Meinel et
al.[123], such that for Kerr we have M̃s + iJ̃s = m(ia)s. Then the mass

monopole M̃0 = m is positive. Apparently, the Kerr metric has a simple
multipolar structure or, formulated differently, only very specific matter dis-
tributions can represent the interior of the Kerr metric.

Quevedo[160] compiled a number of theorems which illustrate the use of
the multipole moments:
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1) A stationary spacetime is static if and only if all its gravitomagnetic
multipole moments vanish (Xanthopoulos 1979).

2) A static metric is flat if and only if all its gravitoelectric multipole
moments vanish (Xanthopoulos 1979).

3) A stationary metric is axisymmetric if and only if all its multipole
moments are axisymmetric (Gürsel 1983).

4) Two metrics with the same multipole moments have the same geometry
at large distances from the source (Beig & Simon 1981; Kundu 1981;
Van den Bergh & Wils 1985).

5) Any stationary, axisymmetric, asymptotically flat solution of Einstein’s
vacuum equation approaches the Kerr solution asymptotically (Beig &
Simon 1980).

6) Any static, axisymmetric, asymptotically flat vacuum solution approaches
the Schwarzschild solution asymptotically (Beig 1980).

In the formulation of Stephani, Kramer, et al.[180]:

7) A given asymptotically flat stationary vacuum spacetime is uniquely
characterized by its multiple moments.

We recognize that the knowledge of the multipole moments provides a lot of
insight into the physical properties of an exact solution.

From the point of view of the Kerr solution, theorem 5), see Beig &
Simon[12], is perhaps the most interesting one. It underlines the central
importance of the Kerr solution. The considerations in the context of theorem
5) were further developed by Simon[174, 175]. On the 3-dimensional spatial
slices of a stationary axially symmetric metric, he defined the 3d “Simon
tensor”,[15] a kind of complexified generalized Cotton-Bach tensor[65]. The
vanishing of the Simon tensor then leads to the multipole moments of the Kerr
solution. Later, Mars[112], see also Mars[111] and Mars & Senovilla[113],
generalized this approach and was led to the 4d “Simon-Mars tensor”. In
Ionescu & Klainerman[88], one can find a more extended discussion of the
Simon-Mars tensor, see also Wong[192]. More recently, Bäckdahl & Valiente
Kroon[9] have proposed replacing the Simon-Mars tensor by another measure
of “non-Kerrness”, namely a scalar parameter.
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3.9 Adding electric charge and the cosmological con-
stant: Kerr-Newman metric

Enriching the Kerr metric by an electric charge is straightforwardly possible.
We start from the metric (133) with coframe (128) to (132). This coframe
can accommodate the Kerr, the Schwarzschild, and the Reissner-Nordström
solutions. The different forms of the function ∆ suggest how a charged Kerr
solution should look like . . .

Schwarzschild (m) ρ = r2 ∆ = r2 − 2mr

Reissner-Nord. (m, q) ρ = r2 ∆ = r2 − 2mr +q2

Kerr (m, a) ρ = r2 + a2 cos2 θ ∆ = r2 − 2mr +a2

Kerr-Newman (m, a, q) ρ = r2 + a2 cos2 θ ∆ = r2 − 2mr +q2 +a2

Charging the Schwarzschild solution is achieved by adding q2 to the func-
tion ∆. Since the charged Kerr solution should encompass the Reissner-
Nordström solution, we tentatively keep the term q2 for the case a 6= 0.
Now, we can indeed find a potential,

A = −qr
ρ2

(dt− a sin2 θ dφ) , (181)

such that the Einstein-Maxwell equations are fulfilled. The potential de-
scribes a line-like charge distribution at ρ = 0, that is, on the ring singu-
larity of the Kerr spacetime, which is quite satisfying[135]. This charged
Kerr solution was first worked out by Newman, Couch, Chinnapared, Ex-
ton, Prakash, and R. Torrence[134] (1965), using “methods which transcend
logic”, as Ernst[54] puts it. He, in turn, proceeded from (120). Replacing25

ξ by
√

1− qq∗ ξ generates a solution of the Einstein-Maxwell equations with
potential At + iAφ = q/(ξ + 1).

The Kerr and the Kerr-Newman solution behave quite similarly. We can
adopt most of the discussion of the Kerr metric by substituting a2 + q2 for
a2.

We can further generalize the Kerr-Newman metric to include also a cos-
mological constant, see Sec.4.1., and even more parameters, see Fig. 17.

25Here, q is not the charge but a complex parameter in the solution of the Ernst equation.
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magnetic chargelinear acceleration
NUT parameter

cosmological constant Λ

NewmanKerr
Schwarzschild

m qa

Reissner 

Nordstrom

Plebanski Demianski

Figure 17: Schematics of Petrov D solutions: The spherically symmetric
Schwarzschild solution with mass parameter m is located in the center.
Adding an electric charge q brings us to the Reissner-Nordström solution.
It is still spherically symmetric but adds a second horizon. The distance
between the horizons increases with the charge q. Setting the black hole into
rotation, the angular momentum parameter emerges, a 6= 0, and reduces the
spherical symmetry to an axial one. An oblate ergosurface (two, actually)
forms. Event horizon and ergosurface meet at the polar axis, the equatorial
distance increases with a. All these solutions can be deSittered, that is, a
cosmological constant Λ is added. All presented solutions are subcases of the
Plebanski-Demianski solution, which adds three more parameters[69].

3.10 On the uniqueness of the Kerr black hole

The Kerr black hole, up to some technical assumptions, is the unique solution
for the stationary, axially symmetric case. We point to some of the literature
where these results can be found.

Because of the Birkhoff theorem, the Schwarzschild solution (mass param-
eter m) represents the general spherically symmetric solution of the Einstein
vacuum field equation. The analogous is true in the Einstein-Maxwell case
for the 2 parameter Reissner-Nordström solution (mass and charge parame-
ters m and q, respectively). Thus, for spherical symmetry, we have a fairly
simple situation.
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In contrast, in the axially symmetric case, there does not exist a gener-
alized Birkhoff theorem. The 2-parameter Kerr solution (mass and rotation
parameters m and a, respectively), is just a particular solution for the axi-
ally symmetric case. As we saw in Sec.3.8, the Kerr solution has very simple
gravitoelectric and gravitomagnetic multipole moments (179,180). Numer-
ous solutions are known that represent the exterior of matter distributions
with different multipole moments. The analogous is valid for the 3 parame-
ter Kerr-Newman solution (parameters m, a, q), see Stephani et al.[180] and
Griffiths & Podolský[69].

However, one can show under quite general conditions that the Kerr-
Newman metric represents the most general asymptotically flat, stationary
electro-vacuum black hole solution (“no-hair theorem”), see Meinel’s short
review[122]. Important contributions to the subject of black hole uniqueness
were originally made by Israel[90, 91], Carter[30, 31], Hawking & Ellis[78],
Robinson[166, 167], and Mazur[120] (1967-1982), for details see the recent
review of Chruściel et al.[38].

More recently Neugebauer and Meinel[130, 133] found a constructive
method for proving the uniqueness theorem for the Kerr black hole met-
ric. This was extended to the Kerr-Newman case by Meinel.[121] By inverse
scattering techniques, they showed how one can construct the Ernst potential
of the Kerr(-Newman) solution amongst the asymptotically flat, stationary,
and axially symmetric (electro-)vacuum spacetimes surrounding a connected
Killing horizon.

Let us then eventually pose the following questions[27]:
(i) Are axially symmetric, stationary vacuum solutions outside some mat-

ter distribution “Kerr”? The answer is “certainly not”, and it makes
sense to figure out ways to characterize the Kerr metric, see Sec.3.8.

(ii) Is the Kerr solution the unique axially symmetric, stationary vacuum
black hole? The answer is essentially “yes” (modulo some technical
issues)—see, for example Mazur[120].

The general tendency in the recent development of the subject is to use
additional scalar or other matter fields. They weaken the uniqueness theo-
rems, which is probably not too surprising.

Let us conclude with a quotation that may make you curious to learn
still more about the beauty of the Kerr metric: We have many different
axially symmetric solutions. The Kerr solution is characterized by “station-
ary, axially symmetric, asymptotically flat, Petrov type D vacuum solution of
the vanishing of the Simon tensor, admitting a rank-2 Killing-Stäckel (KS)
tensor of Segre type [(11)(11)] constructed from a (non-degenerate) rank-2
Killing-Yano (KY) tensor”, see Hinoui et al.[87].

73



3.11 On interior solutions with material sources

To match the Kerr (vacuum) metric to a material source consistently is one
of the big unsolved problems. Only the rotating disc solution of Neugebauer
& Meinel provides some hope.

This section is added in order to draw your attention to an unsolved prob-
lem, to the solution of which you might want to contribute. Find a realistic
material source for the Kerr metric in the sense of an exact solution. Many
unsuccessful attempts have been made, see the early review of Krasiński[101]
of 1978. More recently, in 2006, Krasiński[156] concludes “that a bright new
idea is needed, as opposed to routine standard tricks tested so far.” This
statement was not made lightheartedly, Krasiński knows what he is talking
about.

Many axially symmetric vacuum solutions were constructed. Quevedo &
Mashhoon[161], for example, deformed the multipole moments of the Kerr(-
Newman) metric and constructed appropriate solutions of the Einstein(-
Maxwell) equation that describe the exterior gravitational field of a (charged)
rotating mass. It is always the hope that somebody may find a suitable mat-
ter distribution with the multipole moments of the Kerr solution—but this
did not happen so far; for another approach see Marsh[115].

We are only aware of one exact solution that fits into this general context:
It is the infinitesimally thin and rigidly rotating dust solution of Neugebauer
& Meinel[131, 132] (1993). It is an exact analytical solution of the Einstein
equation with matter. It depends on 2 independent parameters, the radius
ρ0 of the disk and its angular velocity Ω. Petroff & Meinel[151] developed,
by means of an iterative procedure, a post-Newtonian approximation of the
solution that helps to understand the Newtonian limit.

We recall that in electrostatics in flat space, for example, we prescribe
an electric charge distribution and we are used to solve the corresponding
boundary value problem within Maxwell’s theory. Similarly, Neugebauer &
Meinel specified a very thin rotating disk of dust and solved the boundary
value problem within GR. This is a well-defined procedure. The problem is,
however, that within a non-linear theory, such as GR, it is extremely hard
to implement. Remarkably, for certain parameter values, the gravitational
field of the disk approach the extremal Kerr case. Accordingly, there exists
a certain relation to the Kerr problem. The desideratum would be to find
a rotating matter distribution the external field of which coincides with the
complete Kerr field.

Driven by the fact that the electrically charged Kerr solution, the Kerr-
Newman solution, has a g-factor of 2, exactly like the electron (see also Pfister

74



& King[153]), Burinskii[24, 25] speculated that a soliton like solution of the
Dirac equation may be the source of the Kerr metric, see also Burinskii &
Kerr[26]. Is that the “bright new idea” Krasiński was talking about? We do
not know but a hard check of the Burinskii ansatz seems worthwhile.

4 Kerr beyond Einstein

In generalizations of Einstein’s theory of gravity, the Riemannian geometry
of spacetime is often extended to a more general geometrical framework. We
describe two such examples in which the Kerr metric still plays a vital role.

4.1 Kerr metric accompanied by a propagating linear
connection

We display the Kerr metric with cosmological constant that, together with
an explicitly specified torsion, represents an exact vacuum solution of the
two field equations of the Poincaré gauge theory of gravity with quadratic
Lagrangian.

In gauge theories of gravitation, see Blagojević et al.[17], the linear con-
nection becomes a field that is at least partially independent from the met-
ric. It can be either metric-compatible, then it is a connection with values in
the Lie-algebra of the Lorentz group SO(1, 3) and the geometry is called a
Riemann-Cartan geometry, or it can be totally independent, then it resides
in a so-called metric-affine space and the connection is GL(4, R)-valued. For
simplicity, we concentrate here on the former case, the Poincaré gauge theory
of gravity, but the latter case is also treated in the literature[187, 11].

Let us shortly sketch the theory. Gauging the Poincaré group leads to a
spacetime with torsion Tα and curvature Rαβ (Riemann-Cartan geometry26):

Tα := Dϑα = dϑα + Γβ
α ∧ ϑβ =

1

2
Tij

αdxi ∧ dxj , (182)

Rαβ := dΓαβ − Γαγ ∧ Γγ
β = −Rβα =

1

2
Rij

αβdxi ∧ dxj . (183)

Besides the coframe 1-form ϑα, the Lorentz connection 1-form Γαβ = Γi
αβdxi =

−Γβα is a second field variable of the gauge theory. For a Riemannian space,
torsion Tα = 0 and Γαβ becomes the Levi-Civita connection.

26Experimental limits of a possible torsion of spacetime were recently specified in a
remarkable paper by Obukhov et al.,[142] see also the literature given there.
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We choose a model Lagrangian quadratic in torsion and curvature, in
actual fact (for ~ = 1, c = 1),

V = − 1

2κ
(Tα ∧ ϑβ) ∧ ?(Tβ ∧ ϑα)− 1

2%
Rαβ ∧ ?Rαβ , (184)

with Einstein’s gravitational constant κ (dimension length-squared) and a
dimensionless strong gravity coupling constant %. One can calculate the two
vacuum field equations by varying with respect to ϑα and Γαβ. In 1988, for
these two field equations, a Kerr metric with torsion[10] was found as an
exact solution.

We display here the orthonormal coframe and the torsion: The coframe
ϑα, in terms of Boyer-Lindquist coordinates (t, r, θ, φ), reads (in the conven-
tions used in Ref.[10])

ϑ0̂ :=

√
∆

ρ

(
dt+ a sin2θ dφ

)
, (185)

ϑ1̂ :=
ρ√
∆
dr , (186)

ϑ2̂ :=
ρ√
F
dθ , (187)

ϑ3̂ :=

√
F sin θ

ρ

[
adt+ (r2 + a2) dφ

]
. (188)

As before, we have ρ2 := r2+a2cos2 θ. However, the other structure functions
pick up a cosmological constant λ:

F := 1 +
1

3
λa2cos2 θ , ∆ := r2 + a2 − 2Mr − 1

3
λr2(r2 + a2) . (189)

The corresponding metric is called a Kerr-deSitter metric. The coframe is
orthonormal. Then the metric reads

g = −ϑ0̂ ⊗ ϑ0̂ + ϑ1̂ ⊗ ϑ1̂ + ϑ2̂ ⊗ ϑ2̂ + ϑ3̂ ⊗ ϑ3̂ . (190)

It is a characteristic feature of these exact solutions that even though the
Lagrangian (184) does not carry a cosmological constant, in the coframe and
the metric there emerges such a constant, namely λ := −3%/(4κ). This could
be of potential importance for cosmology.
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The torsion Tα of this stationary axially symmetric solution of the Poincaré
gauge theory reads (ϑαβ := ϑα ∧ ϑβ),

T 0̂ =
ρ√
∆

[
−v1ϑ

0̂1̂ +
ρ√
∆

[
v2(ϑ0̂2̂ − ϑ1̂2̂) + v3(ϑ0̂3̂ − ϑ1̂3̂)

]
− 2v4ϑ

2̂3̂

]
,

T 1̂ = T 0̂ ,

T 2̂ =
ρ√
∆

[
v5(ϑ0̂2̂ − ϑ1̂2̂) + v4(ϑ0̂3̂ − ϑ1̂3̂)

]
,

T 3̂ =
ρ√
∆

[
−v4(ϑ0̂2̂ − ϑ1̂2̂) + v5(ϑ0̂3̂ − ϑ1̂3̂)

]
, (191)

with the following gravitoelectric and gravitomagnetic functions:

v1 =
M

ρ4
(r2 − a2cos2 θ) , v5 =

Mr2

ρ4
; (192)

v2 = −Ma2rsin θcos θ

ρ5

√
F , v3 =

Mar2sin θ

ρ5

√
F , v4 =

Mar cos θ

ρ4
.(193)

Metric and torsion of this exact solution are closely interwoven. Note, in
particular, that the leading gravitoelectric part in the torsion, for small a,
is ∼ M/r2, a definitive Coulombic behavior proportional to the mass. For
a = 0, we find a Schwarzschild-deSitter solution with torsion.

One may legitimately ask, why is it that the Lagrangian (184) yields
an exact solution with a Kerr-deSitter metric? The answer is simple: The
Lagrangian was devised such that the torsion square-piece, in lowest order
in κ, encompasses a Newtonian approximation. This is already sufficient in
order to enable the existence of a Kerr-deSitter metric. One could even add
another torsion-square piece to V for getting an Einsteinian approximation,
but this is not even necessary. Thus, only a Newtonian limit of some kind
seems necessary for the emergence of the Kerr structure.

4.2 Kerr metric in higher dimensions and in string the-
ory

There exist also Schwarzschild and Kerr metrics in higher dimensional space-
times. These investigations are mainly motivated by supergravity and string
theory.

Tangherlini[183] (1963) started to investigate higher dimensional Schwarzschild
solutions, with n − 1 spatial dimensions. He studied the (“planetary”) or-
bits in an n-dimensional Schwarzschild field (“Sun”) and found that only for
n = 4 we have stable orbits, see also Ortin[146]. According to Tangherlini,
this is then the only case that is interesting for physics. Nowadays, however,
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many physicists hypothesize that higher dimensions do exist because string
theory suggests it.

Somewhat later, Myers and Perry[128] (1986) generalized these consid-
erations to higher-dimensional Kerr metrics. In the meantime a plethora
of such higher-dimensional objects have been found, see Allahverdizadeh et
al.[5] and Frolov & Zelnikov[64]. Recently Keeler et al.[97] investigated, in
the context of string theory, the separability of Klein-Gordon or Dirac fields
on top of a higher-dimensional Kerr type solutions. Lately Brihaye et al.[21],
for example, discussed the exact solution of a 5d Myers-Perry black holes as
coupled to a to a massive scalar field. The physical interpretations of these
results remain to be seen.
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Appendix

A Exterior calculus and computer algebra

We want to use as input the Papapetrou metric (93). We take the equivalent
representation in the form of the orthonormal coframe of the Eqs.(94) to
(98). How such a Reduce-Excalc program can be set up, is demonstrated
in Stauffer et al.[178] and in Socorro et al.[176], for the Einstein 3-form, see
Heinicke[82]:

%*****************************************************

% Coframe of Andress-Lewis-Papapetrou-Buchdahl metric

%*****************************************************

% file Buchdahl03.exi, 29 July 2014, fwh & chh

% in "Buchdahl03.exi";

load_package excalc;

off exp$

pform f=0, omega=0, gamma=0 $

fdomain f=f(rho,z), omega=omega(rho,z), gamma=gamma(rho,z) ;

coframe o(0) = sqrt(f) * (d t - omega * d phi),

o(1) = sqrt(f)**(-1) * exp(gamma) * d rho,

o(2) = sqrt(f)**(-1) * exp(gamma) * d z,

o(3) = sqrt(f)**(-1) * rho * d phi

with signature (1,-1,-1,-1);

displayframe;

frame e$

%*****************************************************

% Connection, curvature, and Einstein forms

%*****************************************************

pform conn1(a,b)=1, curv2(a,b)=2$

antisymmetric conn1, curv2$

factor o(0), o(1), o(2), o(3)$

conn1(-a,-b) := (1/2)*( e(-a)_|d o(-b) - e(-b)_|d o(-a)

- (e(-a)_|(e(-b)_|d o(-c))) * o(c))$

curv2(-a,b) := d conn1(-a,b) - conn1(-a,c) ^ conn1(-c,b)$
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% Einstein tensor = Einstein 0-form

pform einstein3(a)=3, einstein0(a,b)=0$

symmetric einstein0$

einstein3(-a) := -(1/2) * curv2(b,-c) ^ # (o(-a) ^ o(-b) ^ o(c))$

einstein0(a,-b):= #( o(a) ^ einstein3(-b))$

on exp, gcd$

factor ^$

on nero;

einstein0(a,-b):= #( o(a) ^ einstein3(-b));

off nero;

% by inspection, we find

einstein0(1,-1) + einstein0(2,-2); % equals 0

einstein0(0,-0) - einstein0(3,-3); % eliminates gamma

out "Buchdahl03.exo";

load_package tri;

on tex;

on TeXBreak;

einstein0(a,-b):=einstein0(a,-b);

off tex;

einstein0(a,-b):=einstein0(a,-b);

omega:=0;

einstein0(a,-b):=einstein0(a,-b);

shut "Buchdahl03.exo";

;end;
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[48] J. Ehlers and A. Krasiński, Comment on the paper by J. T. Jebsen
reprinted in Gen. Rel. Grav 37, 2253–2259 (2005), Gen. Rel. Grav 38,
1329–1330 (2006). 18
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[69] J. B. Griffiths and J. Podolský, Exact Space-Times in Einstein’s General
Relativity, Cambridge Univ. Press, Cambridge, UK (2009). 35, 44, 48,
72, 73

[70] A. Gullstrand, Allgemeine Lösung des statischen Einkörperproblems in
der Einsteinschen Gravitationstheorie (General solution of the static
one-body problem in Einstein’s gravitational theory), Arkiv. Mat. As-
tron. Fys. 16, 1–15 (1922) [presented on 25 May 1921]. 20, 78

[71] E. Hackmann and C. Lämmerzahl, A generalized gravitomagnetic clock
effect, Phys. Rev. D 90, 044059 (2014) [arXiv:1406.6232]. 69

[72] E. Hackmann, C. Lämmerzahl, Y. N. Obukhov, D. Puetzfeld and
I. Schaffer, Motion of spinning test bodies in Kerr spacetime, Phys. Rev.
D 90, 064035 (2014) [arXiv:1408.1773]. 52

[73] R. O. Hansen, Multipole moments of stationary spacetimes, J. Math.
Phys. 15, 46–52 (1974). 69

[74] A. Harvey, On Einstein’s Path: Essays in Honor of Engelbert Schucking,
Springer, New York (1999). 87

[75] I. Hauser and F. J. Ernst, A homogeneous Hilbert problem for the
Kinnersley-Chitre transformations, J. Math. Phys. 21, 1126–1149
(1980). 49

[76] I. Hauser and F. J. Ernst, Proof of a Geroch conjecture, J. Math. Phys.
22, 1051–1063 (1981). 49

86

http://arXiv.org/pdf/gr-qc/0309008
http://arXiv.org/pdf/1205.5848
http://arXiv.org/pdf/1406.6232
http://arXiv.org/pdf/1408.1773


[77] I. Hauser and F. J. Ernst, A new proof of an old conjecture, in Ref.[164]
pp.165–214 (1987). 49

[78] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-
time, Cambridge Univ. Press, Cambridge, UK (1973). 60, 73

[79] A. C. Hearn, Reduce User’s Manual, Version 3.5, RAND Publication
CP78 (Rev. 10/93). The RAND Corporation, Santa Monica, CA 90407-
2138, USA (1993). Nowadays Reduce is freely available for download;
for details see [reduce-algebra.com] and [sourceforge.net]. 44
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[105] K. Lanczos, Über eine stationäre Kosmologie im Sinne der Einstein-
schen Gravitationstheorie, Z. Physik 21, 73–110 (1924). 42

[106] L. D. Landau and E. M. Lifshitz: The Classical Theory of Fields, Vol.2
of Course of Theoretical Physics, p. 281; transl. from the Russian, 4th
rev. English ed., Elsevier, Amsterdam (1975). 13
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