
Maximal Analytic Extension of the Kerr Metric
Robert H. Boyer and Richard W. Lindquist 
 
Citation: Journal of Mathematical Physics 8, 265 (1967); doi: 10.1063/1.1705193 
View online: http://dx.doi.org/10.1063/1.1705193 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/8/2?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  155.247.166.234 On: Sun, 05 Jan 2014 16:52:05

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1722768765/x01/AIP-PT/JMP_CoverPg_1113/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Robert+H.+Boyer&option1=author
http://scitation.aip.org/search?value1=Richard+W.+Lindquist&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.1705193
http://scitation.aip.org/content/aip/journal/jmp/8/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


JOURNAL OF MATHEMATICAL PHYSICS VOLUME 8. NUMBER 2 FEBRUARY 1967 
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(Received 19 July 1966) 

Kruskal's transformation of the Schwarzschild metric is generalized to apply to the stationary, axi­
ally symmetric vacuum solution of Kerr, and is used to construct a maxiInal analytic extension of 
the latter. In the low angular momentum case, at < mt, this extension consists of an infinite sequence 
Einstein-Rosen bridges joined in time by successive pairs of horizons. The number of distinct asymp­
totically flat sheets in the extended space can be reduced to four by making suitable identifications. 
Several properties of the Kerr metric, including the behavior of geodesics lying in the equatorial plane, 
are examined in some detail. Completeness is demonstrated explicitly for a special class of geodesics, 
and inferred for all those that do not strike the ring singularity. 

I. INTRODUCTION 

A FAMILIAR feature of exact solutions to the 
field equations of general relativity is the pres­

ence of singularities. Although long recognized in 
such special metrics as those of Schwarzschild and 
Reissner-Nordstrom, and in the spherically sym­
metric Friedmann models, these singularities have 
been dismissed as nonphysical, due perhaps to the 
high degree of symmetry assumed for the solutions.1 

Recent work by Penrose and Hawking2 suggests 
that this traditional view may need to be revised; 
it is quite possible that gravitational collapse leads 
inevitably to a singular state if trapped surfaces are 
once formed3-provided that one stubbornly per­
sists in applying the classical field equations to 
regions of arbitrarily high curvature.4 Thus there 
is some point in studying the complete geometry 
of exact solutions, even though they are idealizations 
of physically reasonable gravitating systems, in order 
to learn something about the type of behavior to be 

* Work supported in part by the Aerospace Research 
Laboratories, Office of Aerospace Research, and by the 
Office of Scientific Research, U. S. Air Force. 

t Deceased. 
1 See, e.g., E. M. Lifshitz and 1. M. Khalatnikov, Zh. 

Eksperim. i Toor. Fiz. 39, 149, 800 (1960) [English transl.: 
SOVlet Phys.-JETP 12, 108,558 (1961)]. 

t R. Penrose, Phys. Rev. Letters 14, 57 (1965); S. W. 
Hawking, ibid. 15,689 (1965). See also S. W. Hawking and G. 
F. R. Ellis, Phys. Letters 17, 246 (1965). 

a The collapse of a spherically symmetric mass has been 
studied in detail by M. M. May and R. H. White, Phys. Rev. 
141, 1232 (1966). They find that unless the collapse is halted 
before any fraction of the total mass has fallen within its own 
Schwarzschild radius, a singularity invariably ensues. 

• Wheeler has repeatedly emphasized that, from a deeper 
point of view, these singularities must be nonphysical, since 
quantum effects will necessarily alter the complexion of the 
problem completely in regions of high curvature. See B. K. 
Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler, 
Gravitation Theory and Gravitational Collapse (University of 
Chicago Press, Chicago, Ill., 1965). 

expected in more realistic models. We here lay 
the foundations for such a study of stationary 
axially symmetric models of rotating bodies, by 
analyzing in some detail the empty space metric 
of Kerr. 5 

Of course one must be careful to distinguish 
true singularities, to which the Penrose-Hawking 
theorems refer, from "pseudosingularities" that re­
flect merely a poor choice of coordinates. The latter 
can always be removed by the familiar device of 
covering the manifold with a faInily of coordinate 
patches. It has long been recognized that the singu­
larity at r = 2m in the standard form of the 
Schwarzschild metric is of this type; transformations 
to coordinate frames which remove this apparent 
singularity have been given by several authors.s 

Closely related to the problem of singularities 
is that of completeness.7 Solutions of the field equa-

6 R. P. Kerr, Phys. Rev. Letters 11, 237 (1963). 
6 A. S. Eddington, Nature 113, 192 (1924); this trans­

formation was rediscovered by D. Finkelstein, Phys. Rev. 110, 
965 (1958). Other forms of the metric which are nonsingular 
at the Schwarzschild radius were exhibited by G. Lemaitre, 
Ann. Soc. Sci. Bruxelles 53A, 51 (1933), and by J. L. Synge, 
Proc. Roy. Irish Acad. A53, 83 (1950). C. Fronsdal, Phys. Rev. 
116,778 (1959); and J. Plebanski, Bull. Acad. Polon. Sci. 10, 
373 (1962), independently constructed the maximal analytic 
extension of the Schwarzschild manifold by imbedding it in a 
six-dimensional flat space. A transformation to a coordinate 
frame which displays this maximal extension was first given 
by M. D. Kruskal, Phys. Rev. 119, 1742 (1960). 

7 By "completeness" we mean affine completeness: the 
property that all geodesics can be continued to arbitrarily 
large values of their affine path parameters. A standard theo­
rem of Riemannian geometry states that geodesic complete­
ness is equivalent to completeness as usually defined-namely, 
that all Cauchy sequences converge-if the metric is positive 
definite; however, this theorem breaks down on manifolds with 
an indefinite metric. For a careful discussion of different possi­
ble and inequivalent definitions of completeness for manifolds 
with an indefinite metric, see W. Kundt, Z. Physik 172, 488 
(1963); C. W. Misner, J. Math. Phys. 4, 924 (1963); and M. 
Fierz and R. Jost, Helv. Phys. Acta 38, 137 (1965). 
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266 R. H. BOYER AND R. W. LINDQUIST 

tions are usually presented locally, in terms of a 
coordinate system adapted to the symmetries of 
a given problem. Thus the manifold on which the 
metric is to be defined is left unspecified at the start, 
and determined only afterwards by imposing various 
global and topological conditions. Ideally, one would 
like the resulting manifold to be geodesically com­
plete and free of singularities, but the Penrose­
Hawking theorems show that in many cases these 
two aims are incompatible. Of course, one can always 
eliminate singularities from a given metric by rede­
fining the manifold to exclude the singular points; 
this is not a very satisfactory solution, however, if 
physical test particles run off the edge of the space­
time so obtained in a finite proper time. It seems 
preferable, we believe, to require geodesic complete­
ness, insofar as possible, even though this leads 
in general to singularities. Thus if mr and mr' are 
analytic manifolds, with mr' :> mr, we call mr' a 
maximal analytic extension of mr if every geodesic 
of mr' is either complete or terminates at a singular 
point. Such an extension need not exist,S and even 
if it does it will not be unique, because of the freedom 
available to identify points in mr' in a variety of 
ways without disturbing analyticity. 

Analytic Extensions of the Schwarzschild and 
Reissner-NordstriSm Metrics 

Eddington6 long ago pointed out that the trans­
formation 

v 

~ (E) patch ~ (E/) patch 

FIG. 1. A Kruskal diagram for the Schwarzschild metric, 
showing a portion of the (u, v) coordinate plane. In this plane 
null curves appear as straight lines of slope ± 1; the null lines 
u ± v = 0 define the horizons. The curves r = const are 
hyperbolas having these horizons as asymptotes, with the 
r -= 0 hyperbola a singular surface. The shaded regions show 
the portion of the (u, v) plane in which the Eddington c0-
ordinates (E) and (E') are regular; their overlap is the region 
of reltUlarity u > 0, US > Vi (r > 2m, - Q) < I < Q» for 
stancfard Schwarzschild coordinates. The fourth unshaded 
region, u < 0 and US > v2, is also asymptotically flat, and 
represents the second sheet of an Einstein-Rosen bridge. 

S A simple counter-example has been constructed by C. W. 
Misner, University of Maryland Tech. Rept. No. 529 (1965), 
p.14. 

r = f, 8 = 8, <P = ;p, (1.1) 

dt = dl + 2m df/(f - 2m) 

(where, to agree with our later notation, we use 
bars to denote the original coordinates of Schwarz­
schild) leads to a form of the Schwarzschild metric 
free of singularities at f = 2m: 

ds2 = dr2 + r2(d~ + sin2 8 d<P2
) 

- dt2 + (2m/r)(dr + dt)2. (1.2) 

This metric, interpreted on the manifold r > 0, 
o ~ () ~ 7f', 0 ~ <p < 27f', - 00 < t < 00, is in fact an 
analytic extension of the original; it is complete 
for t ~ + 00 -excepting those geodesics which 
strike the true singularity at r = O-but not for 
t ~ - 00 • One notes that this form has the structure 
of a flat space metric plus the square of a null 
vector; this feature serves as the point of departure 
in the Kerr-Schildo theory, to which we refer briefly 
in Sec. II. The alternative transformation 

r' = f, ()' = 8, 
(1.3) 

dt' = dl - 2mdf/(f - 2m) 

leads to an expression for di similar to (1.2), but 
with dt replaced by -dt', which is complete for 
t' ~ - 00. One thus obtains two coordinate patches, 
shown in Fig. 1, whose domain of overlap is the 
region external to the Schwarzschild pseudosingu­
larity. This is still not the maximal analytic exten­
sion, however. The latter has been given in a 
particularly simple form by Kruskal,6 and is sum­
marized by the transformation equations 

u ± v = l(r/2m) - 11' exp [(r ± l)/4m]. (1.4) 

The corresponding manifold, illustrated by the now 
familiar Kruskal diagram (Fig. 1), consists of two 
asymptotically flat universes whose spacelike sec­
tions are joined together on a 2-sphere of minimum 
area-the "throat" of an Einstein-Rosen bridge. 10 

The area of this throat changes with time, reaching 
a maximum value of 47f'(2m)2 at u = 0, v = 0, and 
collapsing to zero both in the future and the past, 
at those points (u = 0, v = ±1, for instance) for 
which r = O. 

A similar analysis for the Reissner-Nordstrom 
solution (the metric outside a single mass m with 
charge q) has been carried through by Graves and 

II R. P. Kerr and A. Schild, Am. Math. Soc. Symposium, 
New York, 1964; also Galileo Quatercentenary, Florence, 
1964. 

10 A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935). 
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MAXIMAL ANALYTIC EXTENSION OF THE KERR METRIC 267 

Brill.l1 This metric has two pseudosingularities at 

r = r ± == m ± (m2 - q2)t (1.5) 

and a true singularity at r = O. Graves and Brill 
displayed transformations of the Kruskal type which 
would eliminate either pseudosingularity, but not 
both. Nevertheless, their results are sufficient to 
portray the full manifold, for by piecing together 
successive coordinate patches one can extend the 
metric first across one singularity and then across 
the other. It turns out that the resulting manifold is 
still not complete, however, and one must continue 
to add similar patches indefinitely. The picture which 
emerges is thus altogether different from the 
Schwarzschild case. One can view the manifold as 
an Einstein-Rosen bridge, whose throat oscillates 
between a minimum and a maximum area, given by 
411"r~ and 411"r!. After each cycle the bridge is found 
to be attached to a new pair of (asymptotically 
flat) sheets, isometric to the original pair but never­
theless topologically distinct from them (but see 
the end of Sec. III). 

Horizons 

The pseudosingularities r = r "" like r = 2m in 
the Schwarzschild metric, have an important geo­
metric and physical significance: They determine 
the location of horizons. In stationary space-times, 
these may provisionally12 be defined as stationary 
null hypersurfaces: Whenever, for some function 
fer, 6, tp), the equation (grad f)2 = 0 is satisfied 
on f = const, then this hypersurface is called a 
horizon. It acts locally as a one-way membrane of 
infinite red shift (see note added in proof). 

Within the horizons of the Schwarzschild and 
Reissner-Nordstrom metrics, when such occur, there 
are trapped surfaces in the sense of Penrose.2 More­
over, both metrics contain real singularities, located 
at r = 0 in the coordinates normally used. Time­
like paths which cross the horizons of the latter, 
however, need not strike the singularity, but can 
be continued onto another sheet and thence out 
to (another) spatial infinity. The surface r = 0 is 

11 J. C. Graves and D. R. Brill, Phys. Rev. 120,1507 (1960). 
The case m2 = q' has been studied by B. Carter, Phys. Letters 
21, 423 (1966). 

12 B. Carter (private communication) has stat~d a thEl?rem 
which suggests a more stringent defini~ion of ~ hor~zon. Bl:'lefly: 
"Let a space-time admit a group of lsometries wlth p-dlmen­
sional integral surfaces, and let the tangen~ p vector b~ (4-p)­
surface orthogonal. Then the loc~ of !lullity of the ~ill~n~ p 
vector is itself a null hypersurface. This sl!rface-the ~Illing 
horizon"-appears in the Schwarzs~hild and Rels~ner­
Nordstrom metrics with ~ = 1 or 3 and m the Kerr metriC (as 
we see later) with p. = 2. For a different ~efinition of an "event 
horizon," see W. Rmdler, Monthly Notlces Roy. Astron. Soc. 
116, 662 (1956). 

simply a barrier that prevents continuation of the 
metric to negative values of r. As we see presently, 
on the Kerr manifold r = 0 defines a similar barrier, 
but one of lower dimension, and the extension to 
negative values of r is meaningful and necessary. 
Trapped surfaces exist here, too; however, the Pen­
rose-Hawking theorems do not apply to the 
Reissner-Nordstrom and Kerr manifolds, for these 
do not admit the required Cauchy initial hyper­
surface. 

When q2 > m2, Eq. (1.5) breaks down; there 
are then no horizons and much of the previous 
discussion ceases to apply. In fact, the original 
coordinate patch covers the maximal extension. 

Kerr Metric 

We have reviewed the above results at length 
since they bear directly on the problem we wish to 
consider-that of obtaining a corresponding maximal 
analytic continuation of the Kerr metric. This solu­
tion, it may be recalled, describes a possible exterior 
field outside a rotating body; it is the only known 
example of a stationary vacuum metric with gravita,­
tional mass and rotation that is asymptotically flat. 
Like the Schwarzschild metric it is algebraically 
special (i.e., of type D in the Petrov-Pirani classifica,­
tion13); thus it contains two geodesic shear-free null 
congruences. a It admits two Killing vectors, as­
sociated with time translations and rotations about 
an axis of symmetry, and it contains two parameters 
m and a which can be identified with the total mass 
and angular momentum per unit mass of the source. 
Although no one has yet succeeded in displaying 
explicitly an interior. metric which fits smoothly 
onto Kerr's exterior solution, there do not appear 
to be any difficulties in principle in integrating 
the combined equations of hydrodynamics and gravi­
tation for the interior case, provided that the shape 
of the body is chosen appropriately.15 For purposes 
of this paper, however, we neglect the presence 
of any such source, and ask rather for the maximal 
extension of the empty space metric. 

Kerr's solution contains two event horizons, which 

13 A. Z. Petrov, Sci. Notices, Kazan State Univ. 114, 55 
(1954); F. A. E. Pirani, Phys, Rev. lOS, 1089 (1957). 

14 R. Debever, Compt. Rend. 249, 1324 (1959); R. Penrose, 
Ann. Phys. (N. Y.) 10, 171 (1960); R. K. Sachs, Proc. Roy. 
Soc. (London) A264, 309 (1961). 

16 R. H. Boyer, Proc. Cambridge. Phil. Soc. 61, 52? (1965). 
A. G. Doroshkevich, Ya. B. Zel'dovlCh and I: D. Novlkov, ~h. 
Eksperim. i Teor. Fiz. 49, 170 (1965) [English transl.: SOVIet 
Phys.-JETP 22, 122 (1966)] claim that the inter!or solu~ion 
must also display some type of vortex or convectIve motlOn, 
because the Kerr metric has other off-digaonal components 
besides g" •• However, their argument is based upon a false pre­
mise; see for example Eq. (2.13). 
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268 R. H. BOYER AND R. W. LINDQUIST 

in an appropriate coordinate system are located at 

r = r", == m ± (m2 
- a2)! (1.6) 

plus a true singularity again formally defined by 
r = O. The correspondence with the Reissner­
Nordstrom result (1.5) is rather striking. Thus one 
might expect the maximal extension of the Kerr 
manifold to be topologically very similar to the 
Graves-Brill construction. A main object of our 
work is to justify this expectation, by displaying a 
transformation analogous to that of Kruskal. We 
give this in detail in Sec. III, after first exhibiting 
several other useful coordinate frames in Sec. II. 
Kruskal's method, as generalized by Graves and 
Brill, cannot be applied directly-except to the 
two-dimensional subspace containing the symmetry 
axis and the time coordinatel6-because the metric 
depends on the polar angle 0 in a complicated way. 
But when we combine a transformation analogous 
to (1.4) with an appropriate change in the azimuthal 
angle 'P, whose effect is to straighten out the null 
congruences in the neighborhood of the event horizon 
being considered, we find, happily, that the resulting 
metric is regular across the horizon at all values of O. 

The proof that our extension is maximal requires 
a demonstration that geodesics which do not strike a 
true singularity can be continued to infinite length. 
We show this in Sec. IV by studying the geodesic 
equations. Some particular features of the geodesics 
themselves, which seemed to us to be interesting 
and curious, are described briefly in Sec. V. 

II. PROPERTIES OF THE KERR METRIC 

Kerr-Schild Theory 

Kerr and Schild9 have studied solutions of the 
vacuum field equations for which the metric has 
the form17 

gafl = 1/afl + 2Hkakfl· (2.1a) 

Here 1/afl is the metric of Minkowski space, k" a 
null vector field, H a scalar field. It does not matter 
whether k" is defined to be null with respect to the 
flat background metric 1/ afl or the full metric g afl' 
since 

gaflkfl = 1/aflkfl == ka 

and therefore g aflk"kfl = 0 implies 1/ aflk"kfl = 0 and 
conversely. In fact, 

(2.1b) 
18 B. Carter, Phys. Rev. 141, 1242 (1966), has independently 

worked out the analytic extension of this subspace. 
17 Notational conventions: Greek letters range and sum from 

1 to 4; gafl has signature (+++-). 

Kerr and Schild showed that the vacuum field 
equations require the null congruence to be geodesic 
(with respect to either gafl or 1/"p). By choosing H 
suitably, ka can be so normalized that 

(2.2a) 

V fI being the covariant derivative based upon g a{J' 
We suppose this to be the case, and define an affine 
parameter p. by k" = dxa /dp.. Then, as Kerr and 
Schild noted, one finds 

Ra{J"'/6kfJk6 = -WH/dp.2)k"k"'/. (2.2b) 

It follows that ka is a multiple Debever-Penrosel4 

vector, and consequently, by the Goldberg-Sachsls 
theorem, that the null congruence defined by k" is 
shear-free as well. 

In their analysis, Kerr and Schild give rules for 
constructing the general empty-space metric of the 
form (2.1). We do not quote these here, but merely 
remark that with the exception of the Kerr metric 
the representation (2.1) is unique, so that the metric 
is of type II in the Petrov-Pirani classification. 

Kerr Metric in Explicit Form 

Let us consider the exceptional case, in which the 
line element can be represented in the form (2.1) 
in two distinct ways: 

(2.3a) 

(2.3b) 

Both k a and l" are then principal null vectors (i.e., 
double Debever-Penrose vectors), which implies that 
the metric is of type D (type I degenerate). This 
case is of particular interest, for it describes the 
stationary vacuum solution with rotation first ob­
tained in a different way by Kerr. 5 He gives the 
explicit presentation 

2 d 2 2 2 d 2 2mr
3 

ds = x + dy + dz - t + (r4 + a2z2) 

X [rex dx + y dy) + a(x dy - y dx) + z dz + dtJ2 
r2 + a2 r' 

(2.4) 

r being defined by 

[(x2 + y2)/(r2 + a2)] + Z2/r2 = 1, (2.5) 

which corresponds to one of the two forms (2.3). We 
denote the coordinate system (x, y, z, t) as the (M) 
frame, and identify it with the form (2.3a) in which 

18 J. N. Goldberg and R. K. Sachs, Acta Phys. Polan. 22,13 
(1962). 
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MAXIMAL ANALYTIC EXTENSION OF THE KERR METRIC 269 

the k congruence is displayed. The (altogether dif­
ferent) coordinate system (x', y', z', t') adapted to 
the 1 congruence we call the (M') frame. The trans­
formation equations relating these two systems can 
be worked out from formulas given later in this 
section. 

The form (2.4) of the Kerr metric is inconvenient 
for many applications, since r is a complicated func­
tion of x, y, z. Kerr has given alternative and more 
suitable form, in which r is one of the coordinates; 
he applies to Eq. (2.4) the transformation 

x = (r2 + a2)! sin 0 cos [cp - tan-1 (air)], 

y = (r2 + a2)! sin 0 sin [cp - tan-1 (air)], (2.6) 

z = r cos 8, 

and obtains 

d,s2 = dr2 + 2a sin2 0 dr dcp + (r2 + a2
) sin2 0 dcp2 

+ l: d02 - dt2 + (2mr/l:)(dr + a sin2 0 dcp + dt)2. 

(2.7) 

Here 

(2.8) 

This is a generalization of the Eddington6 form of 
the Schwarzschild metric [cf. Eq. (1.2)]; accordingly, 
we refer to the coordinate system (r, 0, cp, t) as the 
(E) frame. Note that in the asymptotic region, r ~ 
co, Eq. (2.7) reduces to Eq. (1.2), which justifies the 
interpretation of the parameter m as the total mass 
of the source. (We therefore assume m > 0.) By 
comparing higher-order terms with the weak-field 
metric for a rotating body as given by Landau­
Lifshitz,19 or by calculating the corrections to the 
perihelion precession formula and comparing with 
the Lense-Thirring result,20 one can show that the 
parameter a is just the angular momentum per unit 
mass of the source. We see later that the Kerr 
solution radically changes its character for lal > m. 

(r, 6, <g) Coordinate Surfaces 

To explore the properties of the principal null 
congruences in greater detail, we find it convenient 
to study the relation between the (E) and (M) 
coordinates, by viewing the surfaces r, 0, cp = const 
in a Euclidean 3-space whose Cartesian coordinates 
are (x, y, z). From Eq. (2.5) it is clear that the sur­
faces r = const are confocal ellipsoids, while from 

19 L. D. Landau and E. M. Lifshitz, Classical Theory of 
Fields (Addison-Wesley Publishing Company, Inc., Reading, 
Mass., 1962), 2nd ed., p. 359. 

20 R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 
61, 531 (1965). 

x2 + y2 Z2 
a2 sin2 0 - a2 cos2 0 = 1 (2.9) 

it follows that the 0 = const surfaces are hyper­
boloids of one sheet, confocal to the ellipsoids. 
Actually, since z has the same sign as cos 8, the 
surface 0 = const is only a half-hyperboloid, trun­
cated at its waist, lying in the half-space z ;e: 0 
according as 0 ~ !7r. Note that at r = 0 the ellipsoid 
degenerates to a disk, x2 + y2 = a2 sin2 0, z = o. 
The boundary of this disk [where r = 0, 0 = !7r 
and therefore l:(r, 0) = 0] is of particular importance, 
since it is precisely this set of points at which the 
metric (2.7) becomes singular. 

The surfaces cp = const have the appearance of 
bent planes, which are approximately vertical for 
large r but flatten out and become horizontal at 
the edge of the disk (Fig. 2). Letting cp be fixed but 
arbitrary, set 

~ = x cos cp + y sin cp, 1/ = -xsincp + y coscp. 

Equation (2.6) then yields 

~ = r sin 0, 

or equivalently 

1/ = -a sin 0, z = r cos 8, 

(2.10) 

This defines a ruled quartic surface, whose genera­
tors are given by 1/ = -a sin 0, z = ~ cot 8, with 0 
held constant on a given generator. (Hence each 
line is also a generator of the corresponding hyper­
boloid 0 = const.) Since ~ = x, 1/ = Y for cp = 0, we 
have in fact constructed the surface cp = O. And 
because of the way (~, 1/) are related to (x, y), it is 
obvious that all the other cp = const surfaces are 

FIG. 2. The ruled quartic surface '" = const, shown im­
bedded in a Euclidean 3-space with Cartesian coordinates 
(~, 71, z). 
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270 R. H. BOYER AND R. W. LINDQUIST 

merely replicas of this one, and can be obtained by 
rotating it about the z axis. 

Throughout the foregoing we have tacitly assumed 
that r is positive. However, the disk r = 0, which 
has been viewed as a membrane of discontinuity, 
may just as well be considered a two-sided aperture 
to a second sheet on which r is negative. Such a 
continuation to negative r values is permissible 
because the metric (2.7) remains regular at r = 0 
(provided 0 ¥- t1l"). We hasten to remark that this 
second sheet is not to be confused with the other 
side of an Einstein-Rosen bridge,IO which one en­
counters in the familiar Kruskal procedure. We 
construct an analog of the latter in Sec. III; it has 
propert;ies quite different from the r < 0 extension 
contemplated here. For one thing, the behavior of 
the metric as r _ - ex> , with m > 0 by definition 
and therefore mlr negative, describes the sort of 
geometry one would expect far from a particle of 
negative mass. On the other hand, the two sides of 
an Einstein-Rosen bridge are isometric, so both de­
scribe the field outside a positive-mass body. 

In the Kerr-8child theory the most general metric 
is determined by an analytic function of one com­
plex variable. For the special case of the Kerr solu­
tion, this function has a branch point at the ring 
singularity r = 0, 0 = t1l". Thus one can properly 
view the continuation of (2.7) to negative r values 
as an analytic continuation onto the second Riemann 
surface of this function. By passing twice in the 
same direction through the ring one returns to the 
original Riemann sheet, and thus to a manifold 
isometric to the original one, which may for sim­
plicity be identified with it. 

"Schwarzschild-Like" Coordinates 

Making the transformation 

where 

we find that 

f = r, jj = 0, 

dip = dIP + a drl d(r) , 

dl = dt - 2mr drl d(r) , 

(2.11) 

(2.12) 

ds2 = ~(dr2 I d + d(2) + (r2 + a2) sin2 8 dip2 - dl2 

+ (2mr/~)(a sin2 8 dip + dZY. (2.13) 

This form has only one off-diagonal component, 
g ~1I and is thus invariant under the transformation 
ip - -ip, l - -l. We refer to (r, 0, ip, l) as (8) 

coordinates, since they reduce to the standard 
Schwarzschild coordinates when a = O. 

The metric (2.13) has, in addition to the true 
singularity at ~ = 0, a pair of pseudosingularities 
at the real zeros of d(r). The latter are located at 

(1.6) 

and thus exist only when a2 
::::; m2

• The close simi­
larity of this equation with the one arising in the 
Reissner-Nordstrom problem has already been re­
marked, as has the identification of the surfaces 
r = r", with stationary null surfaces, or horizons. 
Let I = 0 be any null hypersurface containing the 
Killing vectors a I alP and a I at; then 

I = I(r, 8), (grad 1)2 = 0, 

and from the contravariant form of the metric 
[given in Eq. (2.15)] we deduce 

d(r)(aljar)2 + (aljaO)2 = O. (2.14) 

The only solutions of this equation periodic in 0 
are the ellipsoids r = r",. The cases a = m and a = 0 
(Schwarzschild) are seen to be exceptional: In the 
former case the two horizons coalesce, while in the 
latter case r _ = 0, which is not a null surface at all 
but an essential singularity. 

Because of these additional spurious singularities 
the (8) coordinates are an inappropriate tool to 
use in studying the analytic properties of the vacuum 
metric; evidently in any such investigation the (E) 
coordinates are far superior.21 but the (8) coordi­
nates have one important advantage which we ex­
ploit in later sections, namely, they treat both of 
the principal null congruences on an equal footing. 

Principal Null Congruences 

The inverse (contravariant) form of Eq. (2.7) IS 

(grad)2 = ~-{ (r2 + a2)(:J2 - 2a(:r)(:) 

+ S~2 8 (:IPY + (:oYJ 
- (:J - (2;r)(:r - :J, (2.15) 

which is again of the form: fiat-space metric plus 
the square of a null vector [cf. Eq. (2.1b)]. Thus 
the contravariant components of the null congruence 
k can be read off immediately: 

k == (k', kB
, k", k') = (-1,0,0,1). (2.16a) 

21 This feature of the original Eddington coordinates was 
first clearly recognized by D. Finkelstein.s 
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With this normalization Eq. (2.280) is satisfied, and 
consequently t (or r) is an affine parameter along the 
congruence. Having chosen k' > 0, we can say that 
k is future-pointing, and since k' < 0, we conclude 
tha.t the k congruence is 'tngoing. 

Next reca:ll that k must appear as a linear con­
gruence when expressed in (M) coordinates. Since 
k' = k" = 0, such lines must lie in the surfaces 
8, rp = const, and are therefore the common gen­
erators of these surfaces. As t increases, the rays 
proceed inwards toward the disk r = 0, cross it, 
then emerge onto the r < ° sheet keeping the same 
, and rp values. The rays lying in the equatorial 
pla.ne 8 = !1r are exceptions. These are tangent to 
the ring singularity at }; = 0, meeting it after a 
finite lapse of affine parameter r.22 

It is not easy to detect the remaining principal 
null vector 1 which is hidden in (2.7) or (2.15). 
Equation (2.13) offers a clue; it is invariant under 
the transformation df -+ -df which interchanges 
ingoing and outgoing rays. In system (8), therefore, 
k and 1 differ only in the sign of their radial com­
ponents. Applying the transformation (2.11) to k 
gives us the following: 

Jr: = (k', k i , k', kl) 

= [-1,0, -a/A, (r2 + a2)/A] 

a.nd consequently 

1 "" (l' z, l' ll) , , , 
= [+1,0, -a/A, (r2 + a2)/A]. 

(2.16b) 

(2.17b) 

It is ihen a simple matter to determine the com­
ponents of 1 in the (E) frame: 

1 = (l', Zl, Z", l') 

= [+1,0, -2a/A, (r2 + a2 + 2mr)/A]. (2.1780) 

Note that f = r is an affine parameter along both 
ray systems, but that t is an affine parameter only 
for the ingoing congruence. 

Equation (2.1780) fails at the horizons r = r,., 
but if we rewrite it as 

1 = N(A, 0, -2a, r2 + a2 + 2mr) 

with N an unspecified normalization factor, we can 
take the limit r -+ r., without difficulty. The result, 

FIG. 3. The horizon r = r +, viewed from the (M) frame with 
(x, 1/, z) as Cartesian coordinates. The principal null con­
gruence 1 lying in the horizon is shown, as well as portions of 
the k congruence lying in the coordinate surface fI = ,,/4 
and", = const. 

the corresponding horizons (see Fig. 3). The affine 
parameter for this special case is not obvious-it 
evidently cannot be r, and it turns out that t does 
not work either-but we postpone this question 
until Sec. IV [see in particular Eq. (4.11)]. 

This result appears at first sight to violate the 
symmetry between the two principal null con­
gruences. However, from Eq. (2.3b), there must 
exist another coordinate frame-(E') say-adapted 
to the 1 congruence, in which the roles of k and 1 are 
interchanged. This frame is not hard to find. Using 
Eq. (2.11) as a guide, we make the obvious trans­
formation 

f = r', ii = 8', 
dip = drp' - a dr' /A, 
dl = dt' + 2mr' dr' / A 

(2.19) 

and obtain a line element just like (2.7), except that 
the sign of dr (or equivalently, of drp a.nd dt) is 
reversed: 

ds2 = dra - 2a sin2 6 dr drp' 

+ (r2 + a2) sin2 e drp,2 + l: dif - dt,2 

+ (2mr/};)(dr - a sin2 8 drp' - dt')'. (2.20) 

A further transformation, from (E') to the associated 
Minkowski (M') frame (x', y', z', t'), proceeds es­
sentially via Eqs. (2.6), except that rp - tan-l(a/r) 
is replaced by rp' + tan-l(a/r), One finds 

1., = N .,(0,0, -2a, 4mr ,), (2.18) k = (kr ', k~', k'i", k'') 

displays the key role of l± as the null generators of = [-1, 0, -2a/ A, (r2 + a2 + 2mr)/ A], (2.16c) 

12 This shows, incidentally, that the ring singularity is real, 
for it is easily seen that d'lH /dp.2, which is an algebraic in­
variant of the Riemann tensor [see Eq. (2. 2a»), becomes 
infinite there. 

1 = (r', lB', l'P', I'') = (+1,0,0, +1), (2.17e) 

which is just the reverse of (2.16a), (2.1780), as 
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r= ...... 

~ (E')patch 

FIG. 4. The pair of (E) and (E') coordinate patches for the 
Kerr metric, drawn in a fashion roughly analogous to Fig. 1. 
Even-numbered regions, which are asymptotically fiat, are 
separated by an odd-numbered interior region whose bound­
aries are the two horizons r±. Although the drawing is only 
me~nt t;o be sy~bolic, the compression of the asymptotic 
regIOns IS suggestive of a Penrose conformal transformation 
[R. Penr,?se, Relativity, Groups and Topology, B. DeWitt and 
C. DeWItt, Eds. (Gordon and Breach Science Publishers, 
New York, 1964)]. 

is to be expected. Note that in this frame it is the 
k congruence which provides the generators for the 
horizons. 

This result is not paradoxical, for the two co­
ordinate frames are not equivalent. Combining Eqs. 
(2.11) and (2.19), one gets the direct transformation 
equations (E) -t (E'). For a2 > m2 this trans­
formation is one-to-one over the entire range of 
r values, but for a2 

:::; m2
, which is the interesting 

cage, the (E) and (E') coordinate patches only 
partially overlap. It is a straightforward matter 
to show that 

t' = 

(2.21) 

and 

, a In jr - r+j 
<p = <p + (2 2)t --, m - a r - r_ 

from which it is clear that either (t, <p) or (t', <p') 

must diverge at r±. We thus obtain three inequiva-

FIG. 5. The diagram of Fig. 4, 
enlarged by the addition of 
another (E') patch labeled 
10*,1*, 2*}. The shaded portion 
defines the Kruskal or (K) 
patch. 

lent analytic extensions of the original (E) frame, 
according ag we choose r to lie in the different in­
tervals - 00 < r < r _, r _ < r < r +, r + < r < 00. 

Putting these several pieces together to make a 
smooth manifold is the job of the next section. 

m. ANALYTIC EXTENSIONS 

"Kruskal-Like" Coordinates 

Let us mark the three domains r > r +, r _ < 
r < r+, r < r_ within the (E) patch ag regions 
to, 1, 2}, respectively. Transforming from (E) to 
(E') via Eq. (2.21) we obtain three similar domains, 
to', I', 2'1. We assume that the transformation is 
one-to-one (and therefore analytic) between {Ol 
and {O'l; it then follows that {II and {I'} are 
inequivalent-one has a boundary crossed by the 
k congruence, the other by the 1 congruence--and 
likewise for {21 and {2'1. Putting the two patches 
together, we obtain the enlarged domain shown 
schematically in Fig. 4. 

Now take anotper (E') patch, whose sections are 
labeled {O*, 1*, 2*}, and tie it into the middle region 
of the original (E) patch, by requiring that the 
domains {II and {i *} coincide. The manifold has 
now grown to the size of Fig. 5. 

We have drawn the two regions {O*} and {I'} as 
contiguous, but this is unfair, for there is no reagon 
in the foregoing to suppose that they are in any way 
related. We now wish to demonstrate that the picture 
is in fact a reasonable one, by displaying a single 
coordinate system in which the four regions 
to, 1, 0*, I'} are linked together as shown. Such 
a linkage looks very similar to a Kruskal diagram 
(Fig. 1). Our object, therefore, is to find a trans­
formation analogous to (1.4), such that both seg­
ments of the horizon r = r + appear regular when 
viewed from these new coordinates. 

The tagk is not a trivial one. For one thing, the 
principal null congruences of the Schwarzschild 
metric are straightened out in Kruskal coordinates 
to the lines u ± v = const, 8, ip = const. One might 
hope, by combining a transformation of the azi­
muthal angle with a suitable generalization of Eq. 
(1.4), to achieve a similar simplification here. But 
the corresponding vectors k and 1 of the Kerr metric 
are not in general 2-surface-forming, so that such 
a search is pointless. We settle for a frame in which 
the principal null rays merely lie in the surfaces 
u ± v = const. This solution, while less elegant 
than Kruskal's, is adequate for our purposes, and 
is perhaps as close ag one can come to a generaliza­
tion of it. 

Since we want to treat both congruences impar-
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tially, we start from the (8) frame. From the expres­
sions for k and 1 in these coordinates [Eqs. (2.16b), 
(2.17b»), it may be seen that as r ---t r+ both become 
asymptotic to a family of helices winding around 
the horizon, given by 

dr: dO: diP: dl = 0 : 0: -a: 2mr+. 

We seek a transformation of the azimuthal co­
ordillate which will straighten out the helices. Many 
obvious possibilities suggest themselves, but one 
encounters later difficulties unless one picks the 
new coordinate to be a linear combination of Cp and 
l with constant coefficients, plus any function of r 
and 0, and this restricts the choice to 

w = Cp + (a/2mr+)l + "fer, 0). (3.1) 

For simplicity we take "fer, 0) = O. It is quite pos­
sible that other choices might lead to a more trac­
table form for the metric; we have not investigated 
this in any detail. 

Through Eq. (3.1) we have untwisted the null 
curves in the limit r ---t r+ (at the expense, inciden­
tally, of twisting them in the neighborhood of 
spatial infinity, which may be disagreeable but is 
not serious-Kruskal-type coordinates are not at 
all well adapted to the asymptotically flat portions 
of the manifold anyway.) The metric computed 
from (2.13) after this single change of variables is 
still singular at r+, of course, but now we know how 
to deal with it. We make a further transformation 
(r, t) ---t (u, v), such that the integral curves of the 
two principal congruences lie in the hypersurfaces 
u ± v = const, although not in w = const. Ac­
cording to Eqs. (2.16b), (2.17b), these integral curves 
satisfy 

or 

(r ;mr+)(r ~r-r' exp (r ~ l) 
= const = F(u ± v), (3.2) 

with 

(3.3) 
and 

p == r_/r+o 
From the work of Kruskal and Graves-Brill we are 
led to take23 F(x) = x2

, and consequently 

u ± v = (r - r +)!(r - r _)-,/2 exp (r ± l). (3.4) 
2m 2m 20"+ 

sa Had we wanted the transformation to yield a metric 
regular across r _, the appropriate choice would have been 
F(x) = X-b. 

Although this is only defined for r > r+. l finite 
(i.e., for u > \vl), the inverse transformation, 
given implicitly by 

.T,( ) (r - r +)(r - r -)-' r/a+ 2 2 't!r == -- -- e =u-v 
2m 2m 

(3.5) 

and 

l = 0"+ tanh-1 [2uv/(u2 + v2
)] 

is well defined over the cut plane u2 
;6 v2

• In partic­
ular, 'It(r) increases monotonically from - 00 to 0 
to + 00 as r runs from r _ to r + to + 00, and is an 
analytic function of r over this interval, so that 
r( u, v) is an analytic function over the u, v plane, 
while leu, v) diverges at u = ±v and is analytic 
elsewhere. As the coordinates (u, v, w, O)-which 
we henceforth call the (K) frame-vary over their 
respective ranges 

-00 < u < 00, -00 < v < 00, 

o ::; w < 211", 

they cover the four regions to, 1, l' and O*} of 
Fig. 5; the boundaries between adjacent regions 
are the pair of lines u = ±v on which r = r+. Note 
that region {O*}, in which u < \v\ (and there­
fore r > r+), forms the second sheet of an Einstein­
Rosen bridge. 

In the following it is convenient to know the 
direct transformation from (E) to (K) coordinates. 
This is given by 

(3.6) 

( a) a (r - r_) w=cp+ -- t--ln --. 2mr+ r+ 2m 
The transformation from (E') to (K) is obtained 
similarly, with t replaced by -t'. Equation (3.6) 
evidently defines an analytic homeomorphism of 
the domain r > r _, - 00 < t < 00 onto the half­
plane u + v > 0, i.e., onto the region to, I}. 

On the other hand, we could have mapped the 
domain - 00 < r < r +, - 00 < t < 00 homeomor­
phically into a (different) Kruskal patch by regu­
larizing about the other event horizon, r = r _. 28 

The latter transformation, (E) ---t (K') say, takes 
the form 
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We postpone a discussion of the full import of this 
result until later in the section, in order to settle a 
fundamental point. 

Analyticity of the Metric in (K) Coordinates 

There remains the very important but rather 
tedious job of working out the components of the 
Kerr metric in (K) coordinates, and demonstrating 
that they are indeed analytic functions of u and v 
throughout the (u, v) plane. We spare you the de­
tails, and merely assert that after much labor one 
can cast the metric in the following form: 

ds2 = 1: dfi + 41T;f1:(r2 + a2)-2(du2 
- dv2) 

+ 1:-1 sin2 (I[(r2 + a2) dw + a(m2 - a2)-if 

X (r + r +)(r - r _)-I(V du - U dV)]2 

+ (1:.::\)-11[21T+f1:(r2 + a2)-I(v du - u dv)Y 

- [21T+f1:+(r! + a2)-\v du - u dv) 

- a sin2 0.::\ dwY} . (3.8) 

Here we have introduced 

(3.9a) 

and 

fer) = .::\(r)/if(r) 

= 4m2 [(r - r _)/2m]2ml r+e-rlo+. (3.9b) 

Since 1: and f are both analytic and nonzero through­
out the whole (u, v) plane, it is clear that only the 
term in (3.8) with .::\(r) in the denominator can lead 
to difficulty. Closer inspection shows, however, that 
the numerator of this term has a simple zero at 
r = r + also, so the quotient remains analytic. 

Had we chosen to regularize across r _ instead, 
using Eq. (3.7) or its equivalent, we would have 
obtained much the same result, except for the in­
evitable branch point at r(u, v) = 0 and {I = !11". 

The line element (3.8) is much too cumbersome 
to be of any direct use. Fortunately, once we have 
established its analyticity we need make no further 
use of it. This is to some extent regrettable, for it 

v 

7'------u 

FIG. 6. The null cone at a point 
in the horizon r = r +. The cone is 
lopsided and spills out of the angle 
defined by the principal null vectors 
k and 1; in addition, the shaded 
portion of the cone behind the 
(u, v) plane is smaller than the por­
tion jutting out in front of it. 
Although the shape of the cone 
varies from point to point, the pro­
jections of k and 1 onto the plane 
always have slope ±1. 

would have been desirable to have a coordinate 
system in which, like Kruskal's, the null curves took 
an especially simple form (see Fig. 6). Cohen and 
Brill/' in their study of metrics for slowly rotating 
bodies, have applied the Kruskal procedure to a 
line element differing from the Schwarz schild form 
by terms of first order in the angular velocity. We 
recover their results if we drop from Eq. (3.8) all 
terms of order a2

j this leaves 

di ~ r2(d{l2 + sin2 (I dw2) 

+ (32m3/r)e-r/2m(du2 - dv2) 

+ (4a/r) sin2 
{Ie-

r/2m 

X (r2 + 2mr + 4m2) dw (v du - u dv). (3.10) 

To this order, the curves u ± v = const, w, {I = const 
are null, just as in the Kruskal form of the Sch­
warzschild metric. 

Construction of a Maximal Analytic Manifold 

What we have done to extend the doma.in {O, 1) 
we can also do to the domain {I, 2). We use the 
alternative transformation (3.7) to produce a new 
(K') patch, consisting of the three regions {I, 2, 2* I 
already introduced plus a new domain {3), which, 
like {I}, is bounded by two pairs of horizons (see 
Fig. 7). Here also the asymptotically flat portions, 
{2) and {2*), form two sheets of an Einstein-Rosen 
bridge. While isometric to each other, these are not 
isometric to {OJ and {O*}-they have, it may be 
recalled, the sort of geometry one would associate 
with a negative mass source. 

A similar extension can be applied to the domain 
{I', 2'). In view of the picture which is rapidly 
emerging, we find it preferable to change our nota­
tion slightly, and to write {-I, -2} instead of 
{ 1', 2'). Thus the new Kruskal patch encompasses 
the regions {-I, -2, -2*, -3) of Fig. 7. 

This procedure can clearly be continued indefi­
nitely in both directions, and generates an infinite 
chain of overlapping (E) and (E') patches. The 
result can be viewed even more simply as a chain 
of overlapping "Kruskal" patches, {K2ft } , isometric 
to (K) or (K') according as n is even or odd. We 
can, in fact, eliminate any reference whatever to 
the auxiliary (E) and (E') frames, by presenting 
the transformation equations that connect (K) and 
(K'); these take the surprisingly simple form 

(u + vy+( -u' - v'Y- = 1, 
(3.11a) 

(-u + vy+(u' - v'Y- = 1, 

24 D. R. Brill and J. M. Cohen, Phys. Rev. 143, 1011 (196t1). 
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and ~ 

w' - w = (2a/r _) In [(u + v)/( -u + v)] 

= - (2a/r +) In [Cu' - v' )/( -u' - v')]. (3.lIb) 

These transformations are one-to-one and analytic 
in the domains '" { 11, {31, ... of overlap, and 
have the following simple properties: They preserve 
straight lines of slope ±I as well as the straight 
lines v/u = const and the hyperbolas v2 

- u2 = 
const, while mapping the north quadrant of (K) 
onto the south quadrant of (K' ). 

The manifold we have constructed has many 
curious properties. It has infinitely many disjoint 
and asymptotically fiat sheets, for one thing, and 
therefore does not admit a Cauchy surface. In fact, 
one can get from any such even-numbered sheet to 
any other-with the sole exception of the companion 
sheet on the other side of the "bridge"-by following 
a suitable timelike or lightlike curve. The timelike 
curve u = O(u' = 0), w, 0 = const is particularly 
noteworthy, for it defines the location of the "throat" 
of an Einstein-Rosen bridge. The throat itself (i.e., 
the 2-surface u = 0, v = const) has an area which 
pulsates with time, in close analogy with the 
Reissner-Nordstrom case.12 Since the throat is de­
formed, due to the effects of rotation, its area is 
no longer given by the simple formula 471"r2 obtained 
for the Schwarzschild and Reissner-Nordstrom met­
rics, but by the more complicated expression 

area = 271" {(r2 + a2) 

+ (g/a)(-~)-tsin-I [a(-~/g)!]) (3.12) 

with g(r) = (r2 + a2)2 - a2~. At the horizons r = r ±, 
where the extrema occur, this simplifies to 

area± = 871"mr ±. (3.12) 

The manifold sketched in Fig. 7 is not the only 
possible maximal extension, because of the freedom 
still remaining to make topological identifications. 
The simplest manifold of this more general type 
arises if we identify {K2n I with {K2"H I. It is covered 
by only two Kruskal patches, {Ko I and {K21 say, 
with regions {-II and {31 identified, so it consists 
of four asymptotically fiat sheets (two with positive 
mass, two negative) glued together with two interior 
regions.26 This manifold, like the others obtained 
in the same way, is violently acausal-a properly 
aimed signal will emerge, after crossing four hori-

16 This particular choice was made by Graves and Brill.11 

It is clear from their work, however, that the identification is 
unnecessary; one can also describe the Reissner-Nordstrom 
metric by an infinite chain of Kruskal patches. 

FIG. 7. A chain of 
Kruskal patches, with 
those of (K) and (K') 
type alternating and 
partially overlapping. 
The complete figure 
extends indefinitely in 
both directions, to form 
a maximal analytic ex­
tension of the Kerr 
manifold. 

(K) patch 

§ (K1 patches 

zons, in the past light cone of the source which 
emitted it-and this may be felt to be a bit 
unrealistic.26 

The foregoing construction presupposes, of course, 
that the metric admits two distinct horizons. For 
a2 > m2 the horizons disappear and the transforma­
tion to Kruskal coordinates loses all meaning; all 
that remains are two asymptotically fiat spaces 
joined at the disk r = O. The exceptional case lal = 
m deserves special comment. Carter has studied 
this in detaill6

; although his work was confined to 
the symmetry axis (0 = 0, 71"), it is clear that his 
conclusions apply with equal force to the full metric: 
One builds up a ladder of alternating (E) and (E') 
patches (with or without identifications) in the 
simple sequence { ... - 2, 0, 2, ... I. The odd­
numbered sheets disappear; there is nothing to 
correspond to the second Kruskal sheets { ... - 2*, 
0*, 2*, ... I; and in fact there is no need at all to 
introduce (K)-type coordinates to cover the mani­
fold in this case. 

IV. GEODESIC COMPLETENESS 

Geodesic Equations, First Integrals 

For the study of geodesics the original (E) co­
ordinates are particularly convenient. Let p. be an 
affine path parameter, normalized to give proper 
time along timelike geodesics, and use a dot to 

2S B. Carter has pointed out that for small negative values 
of r and values of 8 near the equator g'l''P goes negative. Hence 
as long as one adopts a top'ology in which rp is treated as an 
angular coordinate there will necessarily exist closed timelike 
curves in this region. 
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denote differentiation with respect to p.. The geodesic 
equations can be extracted in the usual way from 
the variational principle 8f L dp. = 0, with a 
Lagrange function given by 

2L = t 2 + 2a sin2 Of.p 

+ (r2 + a2
) sin2 fJ.p2 + '1:.(i _ j' 

+ (2mr/'1:.)(t + a sin2 fJ.p + i)2 (4.1) 

as in Eq. (2.7). 
We are chiefly interested not in the equations of 

motion themselves, but rather in their first integrals. 
Since tp and t are cyclic, we obtain two integrals 
immediately: 

P~ == aL/a.p = I, 

P, == aL/al = -/" 

(4.2a) 

with land 'Y representing the angular momentum/ 
mass and energy/mass of a test particle moving 
along the given geodesic. (On null geodesics p. is 
defined only up to a linear transformation, and con­
sequently only the ratio III' is meaningful. We 
remove the arbitrariness by taking 'Y = 1 in this 
case.) A third integral is given by L itself: 

2L = -e, (4.2b) 

the indicator e being +1, 0, -1 for timelike, null, 
and spacelike geodesics, respectively. 

The remaining two conjugate momenta are readily 
found to be 

Pr = ('1:.t + al + 2mry)/ d, 

pe = '1:.0, 
(4.3) 

which shows, incidentally, that we can expect dif­
ficulties with the equations of motion at the ring 
singularity ('1:. = 0) and at the horizons (d = 0). 
It is clear from the form of L that Po = 0 is consistent 
with the equations of motion if (J = 0 or 'II" (axial 
case) or if (J = !'II" (equatorial case); in these special 
cases the first integrals (4.2) yield a complete solu­
tion by quadratures, which we consider in greater 
detail in Sec. V. 

From Eq. (4.2a) we can express .p and i in terms 
of r and the constants of integration; the resulting 
formulas are 

.p = '1:.- 1 
[( l/sin' fJ) - apr], 

i = '1:.-1 h('1:. + 2mr) + 2mrpr], 

with pr given by (4.3). 

(4.4) 

We note also the following form of Eq. (4.2b), 
which is important in later arguments: 

'1:.2t 2 
- (al + 2mry)2 

= d[ -e'1:. + ('1:. + 2mrh2 p~ - (l2/sin2 fJ)]. 

(4.5) 

Problem of Completeness 

The Kerr metric. evidently cannot be imbedded 
isometrically in a complete analytic manifold, since 
there exist geodesics-the principal null rays lying 
in the equatorial plane, for example-which strike 
the ring singularity at finite values of their affine 
parameters. If one excludes all such geodesics, it 
is reasonable to ask whether the remainder can be 
continued to arbitrarily large values of p.. We argue 
below that this is so, provided that the manifold 
is chosen to be the analytic extension described 
previously. In this sense, therefore, the extension 
can be regarded as maximal. 

Since it is impossible to solve the geodesic equa­
tions exactly, except in a few very special cases, we 
base the argument on the first integrals (4.4) and 
(4.5). Starting with any set of initial values, one 
extends the solution either until a singular point 
is reached, or until one or more coordinates diverge. 
There is clearly no problem if r diverges-since the 
metric is asymptotically flat and therefore complete 
for r ~ ± <Xl-but only if.p, I, or 0 diverge at finite 
values of r. As one sees from the above equations, 
this happens at '1:. = 0, sin (J = 0 or Ll = O. If the 
first possibility occurs nothing can be done about 
it; the second is obviously a consequence of the 
spheroidal-type coordinates here employed, and can 
be eliminated by transforming to those of the (M) 
type. Thus it is only the apparent divergence of 
.p and t at the horizons that needs to be examined 
carefully. [It follows from Eq. (4.5) that t remains 
finite at r ,o; the same is true of 0.] In fact, .p and i 
diverge if and only if Pr diverges, and it is easy 
to see that this happens if and only if r", has the 
same sign as al + 2mr ",/" for Eqs. (4.3) and (4.5) 
imply 

-e'1:. + ('1:. + 2mrh2 - p; - (l2/sin 2 fJ) 
P. = -

'1:.t - (al + 2mry) 
(4.6) 

which yields a finite limit whenever t", and 
(al + 2mr,o/') have opposite sign-that is, whenever 
the geodesic is ingoing. [Some confusion over the 
meaning of the term" ingoing" can arise here, unless 
one is careful. On the positive r sheet the hypersur­
faces t = const are everywhere spacelike: (grad t)2 = 
-1 - 2mr/'1:., which is certainly negative for r > O. 
Hence an ingoing path is properly defined as one 
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for which dr/dt < O. For some values of l and "I Eqs. 
(4.3), (4.4) suggest that dr/dJL is positive on an 
ingoing path, but this simply means that the affine 
parameter has been chosen to increase into the past.] 

We therefore conclude that all ingoing paths can 
be continued across the horizons. Some subsequently 
strike the ring singularity, others continue on to 
r = - (Xl (and are thus complete), a third class 
reaches a turning point and start back. On the 
return trip, however, both t and cP diverge as the 
horizon is approached. This is not surprising; the 
particle has merely run off the (E) coordinate patch. 
To continue to follow its motion transform to an 
(E') system, or equivalently to an appropriate set 
of (K) coordinates. It is clear that a result similar 
to Eq. (4.6) must also apply to the outgoing tra­
jectory in this case; hence the particle re-emerges 
into an asymptotically flat" universe," but of course 
on a sheet different from the first. If the effective 
total energy r == "12 - E is positive, the particle 
escapes to infinity; if negative, it reaches another 
turning point and starts back toward r = r + again, 
in which case we transform to another set of (E) 
coordinates and repeat the cycle. Clearly JL can be 
made as large as we please by piecing together 
sufficiently many such cycles, which proves com­
pleteness for this case. 

Of course there are many geodesics which do 
not fall into any of the above categories, such as 
the ones which oscillate to and fro between a maxi­
mum and minimum radius outside r +, and those 
which spiral in towards (or out from) an unstable 
circular orbit. However, these lead in general to no 
difficulties with completeness, since t remains finite 
as t increases to infinity. 

There remains one further class to be considered, 
namely, the geodesics for which r = 0 at r ±, or 
equivalently, for which 

(4.7) 

This class includes spacelike geodesics tangent to 
the horizons (these present no problems), geodesics 
of all three types which approach the horizon asymp­
totically as t -t ± (Xl, and finally, and most impor­
tantly, the principal null geodesics that are the 
generators of the horizons. We study the latter in 
detail below. 

Completeness within the Horizons 

To obtain the solution for the principal null ray 
1 lying in r± set ~ = 0, E = 0 and also 

(j = 0, "I = l = O. (4.8) 

The first integrals (4.5), (4.6) then yield the com­
mon solution 

(4.9) 

in agreement with Eq. (2.18). To find t(JL) it is 
necessary to solve one of the geodesic equations, 
and the simplest to use is Pr = aL/ar. A straight­
forward computation gives 

't' = =r(21T±)-lt2
, 

with IT ± defined by Eq. (3.3). Hence 

t(JL) = ±21T ± In (JL - JLo) (4.lOa) 

or 
± t/2cr± JL-JLo=e . (4. lOb) 

We emphasize that this result is exact. 
On the event horizon r = r +, JL -t + (Xl as 

t -t + (Xl, while JL -t JLo as t -t - (Xl. This is just 
what one would have expected, since the (E) co­
ordinates are known to be incomplete at r + for 
t -t - (Xl. A full picture of the horizon r = r + is 
provided by viewing it in (K) coordinates; then the 
path equations become 

W(JL) = const 

(4.11) 

and are evidently complete. A similar result applies 
at r = r _, but with the time directions reversed; 
this too is consistent with the complete picture of 
this horizon when viewed from (K') coordinates 
(as in Fig. 7). 

Qualitatively similar results emerge when one 
analyzes the geodesics that approach r ± asymp­
totically (Le., as t -t ± (Xl). All timelike curves of 
this type reach a vertex such as u = v = 0 in a 
finite proper time and can be extended without dif­
ficulty; similar remarks apply to the null curves. 
There are others, necessarily spacelike, which ap­
proach r + from region {I} as t -t + (Xl (or r _ as 
t -t - (Xl), and these are in fact complete. 

V. Equatorial Geodesics 

The first integrals obtained in the previous section 
yield a complete description when 0 = 0 or 11' or 
when 0 = !11'. The former case, which corresponds 
to motion along the symmetry axis, has been in­
vestigated by Carter16

; we confine our attention, 
therefore, to the latter. Boyer and Price20 have 
shown that the orbit equation for equatorial geodes­
ics leads to a precession of the peri center in agree­
ment, through third order, with the approximate 
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calculations of Lensa-Thirring. In the present sec­
tion we concentrate on the qualitative features of 
geodesics in the strong field regions. Our analysis 
is patterned after the study of orbits in the Schwarz­
schild metric first carried out by Darwin27 and later 
extended by Mielnik and Pleba:6.ski.28 Of course, all 
these studies are largely academic exercises, since 
in realistic situations (except possibly the late phases 
of gravitational collapseS) the geometry in these 
regions, and hence the geodesics themselves, differ 
considerably from the empty-space results, due to 
the nonzero stress-energy tensor there. Nevertheless, 
the study of the Kerr metric, even as an ideal case, 
has, we believe, some real value, for it helps to 
clarify the role which angular momentum plays in 
general relativistic models. In particular, because 
the character of the orbits in the interior regions 
changes markedly as soon as the central body is 
given some angular momentum, it seems worth­
while to point out those features of Darwin's analysis 
which are unique to the Schwarzschild problem, and 
those which persist in the a ¢ 0 case as well. 

Null Geodesics 

It is simplest, and most instructive, to begin with 
the null rays. We normalize the affine parameter 
along the rays by taking 'Y = 1. Then the energy 
integral (4.5) reduces to 

(5.1) 

For convenience set (3 = 2m and introduce the 
dimensionless variables 

P = r/{3, A = l/{3, a = a/{3. (5.2) 

From (5.1) it is clear that turning points occur 
at the zeros of the cubic polynomial 

(5.3) 

The location of these zeros is thus fundamental 
to a qualitative understanding of the null tra­
jectories. 

Applying the rule of signs, we see that if;(p) = 0 
has always one real negative root: a ray sent in from 
r = - <X) is thus repelled and ultimately deflected 
back to - <x). (The outgoing principal null ray, with 
A = - a, is an exceptional case; it alone strikes the 
r = 0 singularity from this direction.) On the positive 
sheet there are consequently either zero or two 
turning points, depending on the relative magni-

17 C. Darwin, Proc. Roy. Soc. (London) A249, 180 (1959); 
A263 39 (1961). 

18 B. MIelnik and J. Plebatiski, Acta Phys. Polon. 21, 239 
(1962). 

tudes of a and A. If A2 < a
2 there are clearly no 

real positive roots, so collapse to the singularity 
inevitably occurs. Conversely, if A2 is sufficiently 
large, incoming rays reach a pericenter &nd return 
to infinity, while outgoing rays from r = 0 reach an 
apocenter and fall back in. Thus one expects that 
there should exist two critical impact p8.l"ameters, 
Al > 0 and A2 < 0 say, such that light signals spiral 
in to r = 0 if A2 < A < AI, and "bounce" back out to 
infinity otherwise. At these critical values of A, if;(p) 
has a double zero, which defines the corresponding 
critical radii PI, P2. A light ray at such a radius, and 
with the correct value for A, will travel around in a 
circular orbit indefinitely, but such an orbit is, of 
course, unstable. 

These predictions are borne out in the Schwarz­
schild case by Darwin's analysis. There, it may be 
recalled, the critical radii are both located at p = i 
(or r = 3m), and the critical impact parameters are 
A = ±3(!)t. Most importantly, there do not exist 
any light rays whose pericenters lie inside r = 3m. 
If one imagines the parameter a (or a) being in­
creased gradually from zero, one expects PI (a) and 
p2(a) to depart smoothly from the Darwin value, 
and this is precisely what happens. In fact, one can 
give fairly simple closed expressions for the critical 
radii. These must be double zeros of if;(p) &nd thus 
must satisfy the condition 

pep - !)2 _ 2a = O. 

Solving this by standard methods, one finds%t 

PI = ! + asec (t COS-I 2a), 
(S.4a.) 

pz = ! + a sec (t COS-I 2a + iT), 

provided that a :s: !; there is only one critical r&dius, 
at 

PI = ! + a sech (t cosh-1 2a), (S.4b) 

if a > t. (Note that PI is always larger than P2' 
This is to be expected, since the centrifugal barrier 
is stronger if A is positive.) 

However, when a ¢ 0 a completely novel feature 
emerges: for a small range of impact parameters, 
As :s: A < - a, peri centers exist inside the inner 
horizons, and, in fact, for all values of P between 0 
and p_. This remarkable property permits one to 
transmit information from one positive sheet to 
another by bouncing a light signal off a centrifugal 
barrier inside p_. 

J~ A third zero, PI = t + a sec(! C08-1 2a - f,..), has a 
somewhat different interpretation: it describes the maximum 
possible apocenter within the inner horizon. 
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This reeult is illustrated by Fig. 8, which shows 
the portion of the X-p plane in which light tra­
jectories are possible. The boundary curve separating 
allowed and forbidden regions is obtained from Eq. 
(5.3) with if;(p) = 0; it is given in explicit form as 

X = (1 - p)-I{ -a ± prep - p+)(p - p_)]i}. (5.5) 

Not surprisingly, the shape of this curve is qualita­
tively different in the two cases a < ! (where 
horizons exist) and a > ! (where they do not). 
In the latter case pericenters occur in the region 
p > PI for X positive [with PI given by Eq. (5.4b)], 
and over the entire region p > 0 for X negative. 

Timelike Geodesics 

A very similar analysis can be carried through 
for the timelike geodesics; it is complicated, however, 
by the presence of an additional energy parameter, 
PI = -"'{ or equivalently r = "'{2 - 1, which governs 
the type of motion that results. In the Schwarzschild 
case, it may be recalled, the minimum possible 
pericenter for a particle trajectory changes with the 
effective total energy r in the fashion shown by 
Fig. 9. There are no pericenters for p < !. To reach 
a point between ! < p < 2 and be deflected back 
out again the particle must come from infinity with 

A 
4 

FIG. 8. A diagram of the }..-p plane, showing ~he regions in 
which light trajectories can exist. Shaded regIOns are for­
bidden; their boundaries define the turning points for null 
rays. Two cases, a == 0.48 and a = 0.52, are showniTthe 
former contains horizons, at p_ = 0.36 and p+ = 0.64 . .Note 
the small forbidden region extending from p = 0 to p == p­
when }.. is negative in the former case. When a ~ i the two 
forbidden regions for}.. < 0 coalesce. 
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FIG. 9. Minimum pericenter for timelike geodesics as a 
function of effective total energy r, shown for a == 0, .3, .6. 
The graph for a = 0.3 has three components, corresponding 
to }.. < 0, p < p_,}.. < 0, and p > p+, }.. > 0; that for a==0.6 
has two components, corresponding to}.. < 0 and}.. > O. Note 
that the p < p_ portion (when it exists) covers the entire 
available energy range r ~ -1. Stable bound orbits in the 
exterior region occur for p > Per it, where Per It is the value 
of P at which the graph has zero slope-see also Fig. 11. 

positive energy. At p = 2 the required total energy 
is zero, and it decreases to a minimum value of 
r = -t at p = 3 (or r = 6 m). These features are 
reflected in the stability of circular orbits: they 
are stable if and only if p exceeds 3. We therefore 
recognize in the Schwarzschild problem three char­
acteristic radii-in addition to the famous "singu­
larity" at p = I-given by p = !, 2, and 3. Let us 
try to determine the corresponding characteristic 
radii in the Kerr metric. 

First of all, the minimum pericenters analogous 
to p = ! are given once more by Eqs. (5.4a) or 
(5.4b). But the striking feature of the null case per­
sists here as well: at all energies (i.e., for all r ~ -1) 
pericenters are found within the region 0 < p ~ p_, 

so that these minima are not absolute ones if a 
differs from zero. 

To see how the character of the motion changes 
as r is varied, a diagram of the X-p plane, showing 
allowed and forbidden regions for various values of 
r, may again be helpful (see Fig. 10). The turning 
points, which separate these two regions, are still 
given by the zeros of a cubic polynomial: 

1/i(PJ == r/ + / + (ra2 
- X2)p + (A + "'{a)2. (5.6) 

Solved explicitly for A, this gives 

X = (1 - p)-I{-",{a 

± [pcp - p+)(p - p_)(rp + I)]i), (5.7) 

analogous to Eq. (5.5). By studying the double 
zeros of 1/i(p) one constructs the plot of r vs minimum 
pericenter shown in Fig. 9. The critical energy cor­
responding to Darwin's value r erlt = -t splits into 
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FIG. 10. A portion of the A-p plane (cf. Fig. 8), showing 
regions in which timelike trajectories can exist. Graphs were 
plotted for a = 0.48 and for several values of r < o. In each 
case the allowed region lies to the left of the curve. An addi­
tional forbidden region, not shown on the graph, extends from 
p = 0 to p = p_, much like the one shown in Fig. 8. Allowed 
regions also exist on the negative sheet for r > o. Graphs 
(a) and (b) illustrate the case of no bound orbits; (c) has bound 
orbits for A < 0, (d) for A > 0 as well. 

two values, r:rit say. As Fig. 10 makes clear, stable 
bound orbits in the exterior region are possible if 
r;rit < r < 0 and A is negative; if r:rit < r < 0, 
they are possible for positive A as well. 

It is easy to see that r attains these critical values 
whenever the cubic polynomial 1/i(p) has a triple 
zero. Consequently, 

(5.8a) 

with Pori t in turn a real root of the following quartic: 

p4 _ 6/ + (9 - 60/)/ - 14elp + 9a4 = o. (5.8b) 

There are in general two such roots, with correspond­
ing critical energies r:rit, shown in Fig. 11. 

Exact Solutions; The Deflection of Light 

The above work is based almost exclusively on 
the energy integral, Eq. (4.5). This does not differ 
substantially from the corresponding formula in the 
Schwarzschild problem-at least, not as long as one 
restricts his attention to the equatorial plane-so 
that the solution for r(p.) should be basically the 
same. Indeed, on making the standard transforma­
tion u = llr one gets 

ii = u4B(u) 

with B(u) a cubic polynomial: 

B(u) = r + €fJu 

+ (ra2 
- nu2 + fJ(l + 'Ya)V. 

(5.9a) 

(5.9b) 

Hence u(p.) can be expressed in terms of elliptic 
functions. The other first integrals, for IjJ and t, 

do not yield so easily; however, the orbit equation 
is again relatively simple. One finds20 

dcp a A(u) 
du = D(u) ± D(u) [B(u) )t (5.10) 

with B(u) defined as above, and 

A(u) = l - fJ(l + 'Ya)u, 

D(u) = 1 - fJu + aV == a2(u+ - u)(u_ - u). 

The sign of the second term in Eq. (5.10) is to be 
chosen to agree with that of u. With a = 0 this 
reduces to dcpldu = ±l[B(u)rl, whose solution in 
terms of Jacobi functions is immediate. The general 
case requires elliptic integrals of the third kind, 
which are clumsier to deal with and not very il­
luminating; for this reason we avoided detailed dis­
cussions of exact solutions in the previous sections. 
For purposes of illustration, however, we think it is 
instructive and not too painful to work out one 
example in detail, and we accordingly derive here 
an exact formula for the deflection of a beam of 
light confined to the equatorial plane in the Kerr 
field. 

The total deflection Acp is obtained from Eq. 
(5.10) on integrating the right-hand side over a 
contour extending from u = 0 to the branch point 
u = lid at pericenter and back to u = 0 again. 
The first term, being analytic, does not contribute 

Peril 

6 

4 

2 

0.5 

1.0 

FIG. 11. Values of critical radii and corresponding critical 
energies, calculated from Eq. (5.8) for 0 :$ a :$ 1. Curves 
labeled ( +) have A > 0; those labeled ( - ) have A < O. Porit 
gives the minimum radius-in units of 2m-for which stable 
bound orbits are possible (excluding those orbits which pene­
trate the inner horizon and bounce back onto another sheet of 
the manifold). 
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to the total path integral, so one is left with 

l
1/d A(u) du 

flIP = 2 0 D(u) [B(u)]i' (5.11) 

To bring this to standard form, split the rational 
portion of the integrand into partial fractions, as 

A(u) A+ + A_ , 
D(u) = u+ - u u_ - u 

and write the cubic B(u) as 

(3(l + al(81 - U)(82 - u)(u - 8a) 

with 81 ~ 82 ~ 0 ~ 8a• By definition, 82 = l/dj the 
remaining two zeros can be expressed in terms of 
l, a and d as follows: 

81 = (Q + P - (3)/2{3d, 83 = -(Q - P + (3)/2(3d, 

(5.12) 

where 

P = del - a)/(l + a), Q2 = (P _ 2(3) (P + 3(3) 

have been chosen to agree as closely as possible 
with Darwin's notation. 

Introducing the further parameters 

k2 = 82 - 83 , 

81 - 83 

• 2 .1, -83 sIn 'Yo = ---
82 - 83 

one obtains after some manipulation 

flfJ = 4(l + a)-I(d/Q)l {A+(u+ - 83)-1 

X [Il(a!, k) - Il(1/;o, a!, k)] + A_(u_ - 83)-1 

X [Il(a:, k) - Il(1/;o, a:, k)]}, (5.13) 

where Il(,l, k), II (1/;0, 0/, k) are, respectively, the 
complete and incomplete elliptic integrals of the 
third kind. It can be shown that the above result 
reduces to flIP = 7r when {3 = O. This is of course 
to be expected, since the Kerr metric becomes flat 
for (3 = 0, and serves as a check on the intermediate 
calculations. In the limit a ~ 0 one finds A+ 
0, A_/(u_ - 83) = l, and a_ = 0, so 

flIP ~ 4(P/Q)i[K(k) - F(1/;o, kJ] 
• _0 

= 4(P/Q)iF(1/;I' k), (5.14) 

with cot 1/;1 = (1 - k2)! tan 1/;0, in agreement with 
Darwin's result. 

From Eq. (5.13) one readily deduces the cor­
rections to the familiar deflection formula due to 
rotation of the central body. We assume {3/d and 
a/ d small, and keep terms to order {3a/ d2

• Setting 

flIP = 7r + 0, 

where 0 is the deflection angle as usually defined, 
we find 

(5.15) 

This result has also been obtained by Skrotskii30 

using the weak-field metric of Landau-Lifshitz, and 
from a more general viewpoint by Plebaflski.31 The 
value for the correction term a/dis difficult to esti­
mate in the case of the sun, since its angular momen­
tum is not well known. Assuming essentially uniform 
rotation throughout its interior, at the rate 14.3 0

/ day 
observed for sun spots near the equator, one com­
putes a ~ 1.9 km and consequently aid ~ 3 X 10-6 

for a light ray grazing the sun's disk, which is unde­
tectable by several orders of magnitude. Measure­
ments of the solar oblateness are not inconsistent 
with a value of aid several times as large as this32 j 

however, this would require a mass quadrupole 
moment Q0 of order 10-4 M 0R0', which in tum 
would contribute a correction term to 0 of about the 
same magnitude.33 

Note added in proof: It has been pointed out by 
C. V. Vishveshwara (University of Maryland Tech. 
Rept. No. 589) that if one considers "stationary" 
sources and observers (Le., those whose world lines 
are the Killing trajectories a/at), then the surface 
of infinite red shift occurs at gil = 0, which does 
not coincide with the null horizon in the Kerr case 
(unless a = 0). 
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at R. H. Dicke, Nature 202, 432 (1964), has suggested that 

the interior of the sun might have a rotational period as small 
as 25 h, without leading to an unreasonably large visual oblate­
ness or violating stellar structure theory. This would increase 
aid to 6 X 10-5, still too small to be significant. 
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