
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 143.167.2.135

This content was downloaded on 05/06/2014 at 02:36

Please note that terms and conditions apply.

Structure of the black hole nucleus

View the table of contents for this issue, or go to the journal homepage for more

1988 Class. Quantum Grav. 5 L201

(http://iopscience.iop.org/0264-9381/5/12/002)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/5/12
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Class. Quantum Grav. 5 (1988) L201-L205. Printed in the UK 

LETTER TO THE EDITOR 

Structure of the black hole nucleus 

E Poisson? and W Israel$ 
Theoretical Physics Institute, Avadh Bhatia Physics Laboratory, University of Alberta, 
Edmonton, Alberta, Canada T6G 251 

Received 5 August 1988 

Abstract. This letter explores different possibilities for the nuclear structure of a black hole 
formed by a collapse with zero angular momentum. If the stress induced by vacuum 
polarisation along the axes of the 3-cylinders r = constant is a tension rather than a pressure, 
the spacetime geometry could be self-regulatory and describable semiclassically down to 
radii of a few Planck units. The nucleus would then appear as an open string of roughly 
constant sub-Planckian density, with a thickness of order ( hG2M/~5)’’3-abo~t  cm 
for a solar-mass black hole. 

No fundamental issue has excited more speculation in recent years than the true nature 
of the singularities that signal the breakdown of the classical description of spacetime 
at the beginning of the universe and at endpoints of gravitational collapse. 

Quantum fluctuations are expected to induce terms non-hea r  in curvature [l] in 
the effective gravitational Lagrangian, expanded in powers of hG = 1$, . In default of 
a renormalisable theory of quantum gravity, the detailed form of the higher-loop 
corrections is uncertain. But this has not discouraged some intriguing speculations 
about their possible role in avoiding singularities [1,2] and affecting, more or less 
drastically, the connectivity [3], metric signature [4] and dimensionality [5] of the 
geometry when curvatures approach the Planck scale. 

A recurring theme, which has also come up in the context of minisuperspace models 
coupled to scalar fields [6,7], is the possibility of a transition at Planck-scale curvatures 
to a de Sitter [2,8] or, ultimately, a Euclidean de Sitter [6] phase. 

A variant of this idea is implicit in a recent paper by Shen and Zhu [9]. They 
propose that the Schwarzschild exterior solution should be joined at the event horizon 
to a singularity-free de Sitter interior filled with fluid having the ‘inflationary’ stress 
tensor T w u  = -pgw””, and they argue that this join is continuous. Unfortunately this is 
not so. De Sitter spacetime can never be joined directly to an exterior vacuum, since 
the O’Brien-Synge junction conditions [ 101 TwuN,  = 0, expressing continuity of press- 
ure at a boundary with normal N v ,  would be violated. It is necessary to interpose a 
layer of non-inflationary material at the interface. An elementary calculation shows 
that the transverse pressure for a static spherically symmetric join at r = a is 

Pl = -pO(a - r ) + i p a S ( r -  a ) .  

t Research supported by Fonds pour la Formation de Chercheurs et L’Aide a la Recherche, Quebec. 
$ Research supported by Canadian Institute for Advanced Research and by Natural Sciences and Engineering 
Research Council of Canada. 
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Since S ( r  - a )  = ( g r r ) ” 2 S ( s )  in terms of proper radial distance s and g,, is singular if 
r = a is light-like, the result shows that the surface pressure becomes singular (even 
when considered as a distribution) if an event horizon is chosen as the boundary. The 
same result can be deduced from a direct application of the theory of light-like surface 
layers [ 111 and confirms a conclusion previously stated by Gran [ 121. (The join made 
by Shen and Zhu introduces a discontinuity in transverse derivatives of r and hence 
of the intrinsic metric of the boundary.) Thus, a stationary horizon is not a suitable 
boundary for a transition to the de Sitter phase. But there is no objection in principle 
to locating such a transition elsewhere. 

We take the opportunity to offer some comments on the general nature of the 
terminal phase and aftermath of a collapse. To an external observer, what happens 
within a black hole is strictly of academic interest, and discussions of singularities 
understandably focus on the big bang, with a more-or-less tacit understanding that the 
terminal singularities of collapse should not differ significantly. Forceful challenges 
to this time-symmetric viewpoint stem from Penrose [ 131 and Zel’dovich [ 141. Penrose 
contrasts the chaos of a generic collapse with the high degree of order which seems 
to have prevailed in the very early universe. Zel’dovich has stressed that exponential 
damping of Higgs particle kinetic energies during an expanding phase makes the 
potential-dominated equation of state P = - p  natural and stable; during a collapsing 
phase, on the contrary, kinetic energies grow exponentially and P = p is the stable 
equation of state. 

For its part, the singularity of a black hole has a property that one would not expect 
to be shared by its cosmological counterpart. There appears to be a meaningful sense 
in which one can speak of its ‘evolution’ (with increasing advanced time) and relaxation 
to a ‘final’ state which, for zero angular momentum, is, on the average, isotropic. The 
strong cosmic censorship hypothesis [ 131 requires the singularity to be generically 
spacelike. It is therefore conventional to view the nucleus as a ‘big crunch’, a fracture 
in the classical geometry that appears at one stroke. However, the interior of the black 
hole inherits a natural time-ordering from exterior advanced time, and in this sense 
one may consider the fracture as developing progressively. At sufficiently late times 
this development is controlled almost exclusively by the evolution of the external field 
of the black hole (figure 1). (A disturbance cannot, of course, be conducted along the 
fracture itself since different points are not in causal contact.) Thus, as the external 
field relaxes to a Schwarzschild form, the decay of external asymmetries should be 
reflected near the singularity as a spatial damping with increasing distance t along the 
axis of the spacelike 3-cylinders r = constant (where r, t are the usual Schwarzschild 
coordinates which have now exchanged their roles as space and time). 

Decay of non-spherical perturbations near the centre of the black hole at late 
advanced times U > u1 >> 2 M  can be understood as a coalition of two effects. Infalling 
radiation could directly influence the tail segment U >  u1 of the central nucleus only 
for U > U ] ,  but by then the external field is already quiescent. Radiation flowing out 
of the collapsing star after it crossed the horizon, and outward scattering by the 
curvature of initially inflowing radiation while the field was settling down at early 
times, will also affect the nucleus. However, as the caption to figure 1 explains, the 
only part of this radiation that reaches the tail segment is the negligibly small amount 
beamed into a shell whose radial thickness at early times was exponentially small, of 
order Ar - 2 M  exp(-u,/4M). 

One thus arrives at a remarkably simple picture of an asymptotically stationary 
state for a zero angular momentum collapse in which spherical symmetry holds, not 
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,- Singular i ty:  r =  0 

Figure 1. Collapse of a star with small aspherical perturbations to form a non-rotating 
black hole. Select a late retarded time u1 and any intermediate time 6 such that 2M << O<< U, . 
Consider the sector ABCD within the horizon, given by 0 < U < U,, 0 < U < U, ( U and V 
are Kruskal coordinates, and U, = V;’ = exp(-ul,’4M)). The value of a field perturbation 
Sg at any interior point of this sector is given by the Green formula as an integral over 
the pair of characteristic initial 3-slices, AB and AMD, of the product of its initial values 
with a causal Green function. The integrand is regular and uniformly bounded when 
expressed as  a function of r and U. 

If the Green formula is first applied to the characteristic sector BAM, one infers that 
Sg is of order 6 on the slice MN, given by U = W The radial thickness of this slice is 
exponentially small: 6 = 2 M v U ,  = 2 M  exp( -ul + 6)/4M. It therefore contributes negli- 
gibly when the Green formula is applied a second time to the characteristic sector NMD. 
This yields the field Sg at a point r = E ,  U = u1 near C. The contribution of the slice M D  
is at most of order u F 2 ,  since an exterior perturbation decays like u - ( ~ ’ + ~ )  for a multipole 
of order 2 [ 151. Thus, by choosing t7 - u:’~ for example, one verifies that Sg( r = E ,  u l )  + 0 
as ut +.CO. 

just externally, but down to the smallest radii at which classical notions of causality 
retain a meaning. In this picture, the geometry is described by the Schwarzschild 
vacuum solution down to the quantum barrier at radius rQ = (about l O I 3  in Planck 
units or 10-’’cm for a solar-mass black hole), where the curvature M / r 3  grows to 
order unity. Below this may exist a layer rqc 6 r < rq of uncertain depth in which the 
geometry remains effectively classical and governed by field equations of the form 

G’”” = 8 ~ T ~ ’ ” ( v a c u u m  polarisation) - RZ . . . (1 )  

representing one-loop vacuum polarisation effects of the gravitational and other quan- 
tised fields. 

Attempts to probe the semiclassical layer are blocked above all by current ignorance 
of the composition of the GUT soup. However, some of the different possibilities that 
may occur can be evaluated. 

Of decisive importance is the sign of Ti. Inside the horizon, ( -T i )  represents a 
tension along the axes of the spacelike 3-cylinders of constant time, r = constant. It 
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determines the gravitational mass M ( r )  interior to the radius r and the negative (time) 
component of the metric, g" = - [ 2 M ( r )  - r ] / r ,  through the field equation 

M'( r )  = 4 m 2 (  - T ; ) .  ( 2 )  

( - T : )  = ( 3 a 2 / 4 r r ) ~ ' ( r ) / r 6  (3) 

We set schematically 

for r >> 1, where u2 is a coefficient of order unity (in Planck units), proportional to the 
effective number of fields, whose value is uncertain even as regards sign. The solution 
of ( 2 )  and (3) is 

~ ( r ) / r ~  = [ ~ ' + ( r / r ~ ) ~ ] - ~ .  ( 4 )  

If u2 is negative, the curvature rises steeply near r = rQ,  quickly overshooting the 
Planck threshold and precipitating a singularity of the classical geometry for r = la12'3rQ. 

More can be said if a 2  is positive. In this case vacuum polarisation has a self- 
regulatory effect in accordance with the hundred year old principle of Le Chitelier 
[16]. According to ( 4 ) ,  curvatures do not rise above the Planck limit [ 2 ] ,  and the 
semiclassical layer extends downwards until, at r =S 1, the inevitable rise of the contribu- 
tion (1 - g r r ) 2 r - 4  from the transverse curvature of the 3-cylinders r = constant begins 
to dominate the right-hand side of (1) and the geometry finally becomes quantised. 

Within the semiclassical layer the metric takes the de Sitter-like form 

dS2, -$a2 d ~ ~ + e - ~ ' ( d R ~ + e ~ ~ L ' ~ )  dt2) 

where T = -In r and $( T )  satisfies 

$ ' ( T )  = 2.rra2( T: - T;) .  

Although valid only for T < 0 this metric suggests the interesting possibility of a 'long 
squeeze' replacing the 'big crunch': for an observer at rest in the spaces r = constant, 
the encounter with the singularity is deferred to the remote future [17]. (But the 
singularity is accessible in finite proper time to inertial observers circulating about the 
3-cylinders, because of time dilation effects.) 

We note in conclusion that ( 4 )  leads to the appearance of an inner (Cauchy) horizon 
r = 2 M ( r ) ,  g" = 0 for r = 2-'I2a. If a -= - 1 this falls outside the domain of our semi- 
classical considerations, but if a should happen to be one or two orders of magnitude 
larger than 1, the instabilities associated with Cauchy horizons could lead to interesting 
new phenomena. However, we shall refrain from piling speculation upon speculation. 
It seems evident that it would be of considerable interest to know the detailed expression 
of (1)-or its asymptotic form for r<< M-for the Hartle-Hawking state (the unique 
regular t-independent vacuum state) on a general spherically symmetric background. 
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