
PHYSICAL REVIEW D VOLUME 41, NUMBER 6 15 MARCH 1990

Internal structure of black holes

Eric Poisson and Werner Israel
Canadian Institute for Advanced Research Cosmology Program, Theoretical Physics Institute,

University ofAlberta, Edmonton, Alberta, Canada Ti5G 2JI
(Received 16 October 1989)

The gravitational effects associated with the radiative tail produced by a gravitational collapse
with rotation are investigated. It is shown that the infinite blueshift of the tail's energy density
occurring at the Cauchy horizon of the resulting black hole causes a classically unbounded inflation
of the effective internal gravitational-mass parameter of the hole. Since this effect is causally discon-
nected from any external observer, the black-hole external mass remains bounded. The mass
inflation phenomenon causes the spacetime curvature to grow to Planckian scales on a spacelike hy-

persurface in the vicinity of the Cauchy horizon, beyond which the classical laws of general relativi-

ty break down. A consequence is that an observer's trip to this hypersurface embraces all but the
last Planck time of the entire black-hole classical history.

I. INTRODUCTION

Black-hole theory is without any doubt one of the ma-
jor triumphs of classical general relativity. By a series of
theorems' it has been established (subject to the plausible
assumption of cosmic censorship ) that the external grav-
itational field of a black hole relaxes to a Kerr-Newman
field described solely by three parameters: the hole's
mass, charge, and angular momentum. This remarkable
result is usually referred to as the no-hair theorem. The
mechanism responsible for such a relaxation of the exter-
nal field has been elucidated by Price who showed that
perturbations developing on the surface of a spherically
collapsing star produce the emission of gravitational radi-
ation which carries away all the initial characteristics of
the star's gravitational field except the mass, charge, and
angular momentum parameters. This radiation then in-
teracts with the spacetime curvature: while some of it es-
capes to infinity, some is backscattered and absorbed by
the resulting black hole. Most of this backscattering
occurs soon after the emission: the amplitude of the in-
falling flux typically decays according to an inverse
power law with advanced time.

Attempts have been made to extend these results to
the black-hole internal gravitational field. For a
Schwarzschild black hole, it has been demonstrated '

that the asymptotic portion of spacetime near the singu-
larity (corresponding to large values of advanced time v)
is virtually free of aspherical perturbations propagated
from the surface of the star since the gravitational radia-
tion becomes infinitely diluted as it reaches the singulari-
ty. But this result breaks down as soon as the charge or
angular momentum of the black hole is nonzero. The
internal structures of the Reissner-Nordstrom and Kerr
solutions differ drastically from that of the Schwarzschild
solution: the singularity is now timelike and both of
these spacetimes possess a Cauchy horizon, a null hyper-
surface beyond which predictability breaks down.
Indeed, initial data specified (say) at the onset of the col-

lapse are not sufficient to predict unambiguously what
happens to the future of the Cauchy horizon.

In the analytically extended Kerr manifold, there is a
relatively spacious region beyond the Cauchy horizon: it
takes roughly the same proper time for a free-falling ob-
server to travel from the event horizon to the Cauchy
horizon as from the Cauchy horizon to the ring singulari-
ty. The presence of a region beyond the Cauchy horizon
is an embarrassment: there is no way of predicting the
course of events in this region and signals coming from
the singularity could alter the physics in an unforeseeable
manner. There is a further problem associated with the
Cauchy horizon: it is a surface of infinite blueshift. If we
recall that infalling gravitational radiation is expected to
propagate inside the black hole with paths approaching
that of the null generators of the Cauchy horizon, we
realize that the energy density of this radiation will suffer
an infinite blueshift as it approaches the Cauchy horizon.
A free-falling observer would see the entire future history
of the Universe flash before his eyes before encountering
a wall of infinite density at the Cauchy horizon.

The first-order analysis of this phenomenon was under-
taken by many people and that perturbations diverge to
linear order has been verified many times over. This re-
sult suggests that in a generic gravitational collapse, a
singularity developing at the Cauchy horizon would seal
off the "Kerr tunnel" that leads to other asymptotically
flat universes, but so far, nobody has attempted to ana-
lyze the situation beyond linear order or to evaluate the
effect on the black-hole geometry of such an infinite
growth of the perturbations at the Cauchy horizon. The
question of interest is to evaluate whether the perturba-
tions, allowed to act as a source in Einstein's equations,
can trigger the formation of a singularity of sufficient
strength (e.g. , stronger than that of a surface layer) to
effectively stop the evolution of spacetime at the Cauchy
horizon. This property would of course take care of the
problems associated with the breakdown of predictability
occurring there.
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This question has been addressed by the present au-
thors in two papers. We have shown that the answer is
yes: the combination of the outflux emitted by the col-
lapsing star and its backscattered, blueshifted radiative
tail propagating near the Cauchy horizon provoke a
tremendous inflation of the black-hole internal mass pa-
rameter, which in fact becomes classically unbounded at
the Cauchy horizon. Mass inflation then produces the
inflation of curvature which too grows to infinity at the
Cauchy horizon. The Cauchy horizon is the ultimate
brick wall at which the evolution of spacetime is forced
to stop.

The mechanism responsible for this catastrophic be-
havior is precisely the combination of the effects of the
two radiation fluxes. At first sight, it might seem that
only the blueshifted influx is the critical ingredient and
that one could artificially turn off the outflux of radiation
without altering the general conclusions. Indeed, one
would expect the gravitational effects of this blueshifted
energy to increase the black-hole gravitational mass pa-
rameter to arbitrarily large values. [It might seem that
inside the black hole, the mass parameter has no direct
operational meaning since one cannot go to infinity in or-
der to measure it. But the mass parameter always
possesses an important local meaning: it determines the
"Coulomb" (Petrov type-D) component of the local cur-
vature. An increase in the mass parameter would be
manifested locally, for example, by an increase in the ti-
dal forces felt by an (extended) observer falling radially
inward near the Cauchy horizon, even though this ob-
server would register the energy density due to the infal-
ling radiative tail as almost unblueshifted and vanishingly
small. ]

The expectation of a mass growth near the Cauchy
horizon due to the blueshifted radiative tail is not real-
ized: the mass parameter remains almost unchanged as
long as the outflux is not turned on. This apparent mira-
cle can be explained as follows: while the Cauchy hor-
izon is a surface of infinite blueshift for our own asymp-
totically flat universe, the inner apparent horizon of the
hole is a surface of infinite redshift for future asymptoti-
cally flat universes. In the situation where only the influx
is considered, the two horizons coincide and the blueshift
and redshift cancel exactly thus preventing any spectacu-
lar increase in the mass parameter. When one turns on
the outflux, however, the situation is radically different.
The outgoing radiation escaping the surface of the col-
lapsing star crosses the Cauchy horizon and focuses its
null generators. But the apparent horizon now contracts
faster (in fact, it debates very rapidly) and the surfaces of
infinite blueshift and redshift become distinct. The can-
cellation can therefore no longer occur and the mass pa-
rameter increases dramatically. One can think of the
infinitely blueshifted influx as being the essential feature
explaining mass inflation, but the phenomenon needs to
be triggered by an arbitrarily small amount of outgoing
radiation which produces the necessary separation be-
tween the Cauchy and apparent horizons.

In order to formulate the problem mathematically, it is
necessary to make a few simplifying assumptions. The
first is that we will use a spherical model where the black

hole is charged and initially described by the Reissner-
Nordstrom solution. This might appear to be a highly
restrictive idealization, but we believe that this model can
capture the essential physics, since the global structures
of the Kerr and Reissner-Nordstrom black holes are very
similar. Both manifolds possess a Cauchy horizon and
according to our physical picture, the mass inflation
phenomenon only depends on the two general features
described above: the presence of a highly blueshifted
influx and a separation between the Cauchy and inner ap-
parent horizons. The spherical model should thus allow
a qualitative understanding of the phenomenon without
introducing too many diSculties in the mathematical
analysis. The second assumption. is that we will model
the gravitational radiation emitted from the surface of
the collapsing star and backscattered by the background
curvature as two intersecting radial streams of infalling
and outgoing lightlike particles following null geodesics.
We furthermore assume that the streams do not interact
with each other so that they are separately conserved.
This too might appear as an important idealization, but
since we are only interested in the highly blueshifted
modes propagating near the Cauchy horizon, it is ap-
parent that any further scattering should not be impor-
tant and that Issacson's effective stress-energy descrip-
tion for these high-frequency modes should be an ade-
quate description. Indeed, since the radius of curvature
of the background spacetime is always larger than the
blueshifted wavelength of the infalling modes, the gravi-
ton geometric optics approximation should be an accu-
rate approximation. As for the outgoing modes, we will
see that their detailed description is not at all important
for our conclusions: their only role is to irradiate the
Cauchy and inner apparent horizons in order to produce
a separation.

The mass inflation phenomenon completely changes
our understanding of the black-hole internal structure.
Instead of having the Cauchy horizon acting as a curtain
beyond which a macroscopically large region of space-
time does not allow predictability from initial data
specified earlier, we have near the Cauchy horizon a mi-
croscopic region of spacetime where the curvature is ex-
tremely high. If we imagine, as was speculated recent-
ly, ' that curvature is naturally bounded at Planckian
magnitude, we find that the effective mass parameter of
the black-hole interior can reach the incredibly high
value of mo/mp, —10 universe masses for a black hole
of ten solar masses (mo is the external mass of the hole
and mp~ the Planck mass). In view of this fantastic in-

crease of the mass, the charge and angular momentum of
the black hole become totally irrelevant to the descrip-
tion of the geometry near the Cauchy horizon, which is
then accurately described by the Schwarzschild metric
with an enormous mass parameter. It is then easy to
show that an observer's trip to the Cauchy horizon cov-
ers all but the last Planck time of the black hole's classi-
cal history. The spacetime region near the Cauchy hor-
izon can then be imagined as a "fat cigar" (topology
S XR+ ) inside which the curvature is Planckian.

The paper is organized as follows: motivated by the
discussion given above, we will consider as our model a
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background Reissner-Nordstrom spacetime irradiated by
simultaneous infalling and outgoing radial fluxes. We
will then derive in Sec. II the basic field equations for
spherical spacetimes, expressed in a form covariant under
arbitrary transformations of the coordinates of the radial
two-spaces (8,$)=const. In Sec. III we will explore
some exact solutions to the field equations: namely, the
static Reissner-Nordstrom solution and the dynamic in-

going and outgoing generalized Vaidya solutions which
describe a charged, spherical black hole irradiated by a
pure in- or outflux. We will also derive the Dray-
't Hooft —Redmount (DTR) relation which describes the
gravitational field before and after the collision of two
spherical thin shells propagating at the speed of light, one
expanding, the other contracting. The DTR relation is
an exact solution to Einstein's equations for infalling and
outgoing fluxes which can be described by 5-function
pulses. We then proceed in Sec. IV with the formulation
of the mass inflation phenomenon by formally integrating
Einstein s equations with continuous infalling and outgo-
ing radial fluxes. We show than it is possible to reach our
conclusions making no additional assumption other than
that given in our model. To evaluate the growth rate of
the gravitational mass, however, we must make a formal
perturbation expansion in terms of the product of the flux
luminosities. Section V is finally devoted to quantum
considerations: we speculate on the internal structure of
the black hole should curvatures be bounded at Plancki-
an magnitude. We summarize our conclusions in Sec. VI.
Various technical details which might obscure the main
line of thought are relegated to the Appendixes.

II. FIELD EQUATIONS
FOR SPHERICAL SPACETIMES

dS —g b x dx +r dA (2.1)

where g,b is the metric on the radial two-spaces, dQ the
line element on the unit two-sphere, and r a function of
x' measuring the area of the two-spheres x'=const. The
various geometric quantities for such a metric are given
in Appendix A, where it is shown that the Einstein tensor
is given by

We have given some justification in the Introduction
for using a spherical model in which the black hole is ini-
tially described by the Reissner-Nordstrom solution. To
describe the effects of the gravitational radiation propa-
gating inside the hole, we will be interested in the field
equations describing a charged, spherical black hole per-
turbed by cross-flowing radial fluxes of infalling and out-
going radiation. This idealized model should illustrate
the basic physics behind the mass inflation phenomenon
and is sufficiently simple to allow a detailed mathematical
analysis. We now proceed to derive the field equations
describing the above situation. In doing so, it is most
convenient to use a coordinate system x =(x', 8,$)
(a =1,2), where the coordinates x' of the "radial" two-
spaces (0,$)=const are left unspecified. The field equa-
tions as thus written will be covariant under arbitrary
transformations of the two-dimensional coordinates. The
spacetime metric will then be written as

G,b
= —[2rr ,b +g,& (1 r—'r, 2—r r) ]/r

6&0=sin 06&&=rOr —
—,'r R .

(2.2)

The semicolon denotes covariant differentiation with
respect to the two-dimensional metric g, b [we use the
stroke ( ~ ) to denote the same with respect to the four-
dimensional metric g &], we write 1(—:g' ll.,b for any
scalar field P and R denotes the two-dimensional Ricci
scalar associated with the radial two-spaces (we use the
superscript 4 to indicate four-dimensional quantities,
when ambiguities might arise}.

We write Einstein's field equations as

G,p=8m(E p+T p), (2.3)

where E & is the Maxwellian contribution to the stress-
energy tensor representing the static electric field of a
point charge of strength e located at the origin r =0:

E &=P,~diag( —1, —1, 1, 1), P,~

——e /8nr (2.4)

where P represents a tangential pressure; we will also
denote the two-dimensional trace T', by the symbol T.
The field equations then read

2rr ,&
+ (1 e /r . r—'r, 2—r Hr)g, b

=—8nrT, b, — .

r r —'r g —e /r =8~r P. (2.6)

At this point, it is useful to introduce the scalar fields
m (x'), f(x'), and x(x') defined as

g' r, r b=f—:1 —2m/r+e /r

a = —
—,'B„f= —(m e /r)/r— (2.7)

Substituting Eqs. (2.7) into (2.6), we obtain

r ,b (a+ Clr)g, b
—=. 4vrrT, b, —

r —e /r —
—,'rR =8m.rP .

(2.8)

Taking the trace of the first of Eqs. (2.8) yields
Or = —2x+4m. rT which can be substituted back to yield

r ,b+zg, b
= 4.mr(T, b

—g, b T)—. . (2.9)

Substituting the same result into the second of Eqs. (2.8)
then gives

R —2B„&=m(8T —2P) . (2.10)

Equations (2.9} and (2.10) constitute our basic field equa-
tions. It is however useful to derive an additional equa-
tion by using Eqs. (2.7}: we obtain f, = —(2/r)m,—2ar „which can be inverted to yield m, in terms off, and r, . We can then use the field equation (2.9) us-

Expression (2.4) is valid in any system of coordinates
(x', 8,$) and follows from the hypothesis that the elec-
tromagnetic field (as seen by static observers) should be
purely electric and radial. The non-Maxwellian contribu-
tion to the stress-energy tensor T

&
will later describe our

cross flow of lightlike radiation. For the moment, we
shall decompose it according to

(2.5)
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ing f, =2g 'r br„.A. little algebra then gives

m, =4nr(. T, 5—, T)r b . (2.1 1)

We note that Eq. (2.11) follows directly from the conven-
tional form of the field equations (obtained when one uses
r and t as coordinates) and the requirement of two-
dimensional covariance.

The conservation equations (E +T )~&=0 can be
obtained by using the Christoffel symbols given in Ap-
pendix A. Since E ~ and T ~ are separately conserved,
we find that

2Tab} ( 2);ap (2.12)

The angular components of T ~~13=0 are satisfied trivial-

ly, while the conservation equations for the electromag-
netic stress-energy tensor confirm that P,~

must be pro-
portional to r as was stated earlier.

In summary, we find that the field equations for spheri-
cal spacetimes for which the stress-energy tensor can be
decomposed into two separately conserved Maxwellian
and non-Maxwellian contributions are given by Eqs. (2.9)
and (2.10) and that energy conservation is expressed by
Eq. (2.12). Then Eq. (2.11) follows directly from the
definition of m and Eq. (2.9). We note that similar equa-
tions were previously written down in Ref. 10.

We now specialize to the problem of interest. We want
to construct a stress-energy tensor T which would de-
scribe cross-flowing streams of infalling and outgoing
lightlike particles following radial null geodesics. It is
easy to see that it must take the form

Olney=(QOQ f'—g, )If (2.18)

Now, we can calculate f by taking the second deriva-
tive of the first of Eqs. (2.7) and get

Of = —2(Om/r —m' r, /r +aOr+s, r'), (2.19)

which can be simplified further if we use Eqs. (2.16},and
(2.14) in a, = ,'Rr, ——m,Ir . A little algebra then

yields

Of = —2 m/r +4m'r, /r +4afR. —. (2.20)

The product f'f, involves the product m'm, which
can be recast in terms of m in the following way:
m'm, = —

—,'rfOm. Substituting this result into the ex-
pression for f'f, yields

f'f, = —2fOm Ir +8ar'm, /r +4m f . (2.21)

Collecting the results finally gives

Olnf =16rrf (f 2sr)T' r—,r b
—R, (2.22)

which is the result wanted. Note that Olnf is linear in
T' and that f 2sr =1 —e /r —The .two-dimensional
Ricci scalar is given explicitly in Eq. (2.14).

Note that Um depends only on the product p;~,„,and
not on the individual linear contributions. The third
wave equation requires a little more work. We want to
find an expression for Olnf which will be used in Sec. III
to derive the DTR relation. First note that, for any func-
tion it,

4
ab ab Pinra Ib +Poui a b (2.13)

where I, is a radial null vector pointing inwards and n, is
a radial null vector pointing outwards. The scalars p;„
and p,„,represent the energy density of the fluxes but do
not have direct operational meaning since the null vec-
tors can be arbitrarily normalized. Since we now have
P = T =0, the field equations simplify to

6+Kg b
= 4&rT b

R =28„a=2(2m—3e Ir)/r3,
(2.14)

m, =4mr T, "r b, (r T'") b=0 . . (2.15)

Gr= —2z. (2.16)

Second, taking the derivative of the first of Eqs.
(2.15} and using the conservation equation yields
Om =4mr T' r ,b. Equation (2.14) .can then be used to
give

Om = (4') r T' T,b . — (2.17}

This equation wiH be very important in what follows.

From this system of equations, it is possible to derive
three one-dimensional wave equations of the form Og=p
which are very useful since, as we will show in Sec. III,
they can be formally integrated. First, taking the trace of
the first of Eqs. (2.14}while noting that the trace of T,b is
zero yields

III. EXACT SOLUTIONS:
REISSNER-NORDSTROM, VAIDYA,

AND THE DTR RELATIONS

We will explore in this section a few exact solutions of
the field equations derived in the previous section. The
solution corresponding to a vanishing non-Maxwellian
stress-energy tensor is the Reissner-Nordstrom solution
and describes the geometry of a static, charged, spherical
black hole. We shall explore this solution in Sec. III A.
If we switch on either a pure influx, or pure outflux, of
radiation (described either by T,b

=p;„I,lb or
T,b =p,„,n, nb), we obtain the charged Vaidya solution"
(a generalization of the original Vaidya solution) which
describes a charged black hole whose mass varies with ei-
ther advanced time (in the case of pure inflow) or retard-
ed time (in the case of pure outflow). We shall consider
this solution in Sec. III B. An exact solution to the full
field equations (inflow and outflow} exists in the special-
ized case where the fluxes can be modeled as thin shells
moving at the speed of light. The energy densities p;„and
p,„,can then be expressed as 5 functions and the field
equations can be integrated in the generalized form of the
Dray —'t Hooft —Redmount (DTR) relation. ' This rela-
tion connects the masses in the different regions of space-
time separated by the shells. We shall explore this solu-
tion in Sec. III C.
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A. The Reissner-Nordstrom solution

The Reissner-Nordstrom solution

ds = fo—dt +fo 'dr +r dQ

fo=1 2—mo/r +e /r
(3.1)

u = —t+r*, v =t+r*, (3.2)

where r'= Jdr/fo(r) Note .that far from the black
hole, u ~—t+r, v ~t+r and that u is in fact an ad-
vanced time for observers in universe IL. The metric
(3.1) then takes the form

ds =fodu dv +r dQ (3.3)

Coordinates u, v are singular on the black-hole horizons,
but if one focuses attention on one horizon at a time, it is
possible to rescale the coordinates such that the metric
becomes manifestly regular on that horizon. Let us then
focus attention on the inner horizon r =ro ——mo —(mo—e )'~ and define the rescaled coordinates U, V (the
Kruskal null coordinates) as

is the solution to Einstein s equations with vanishing T &.
The solution can be easily obtained by choosing x'=(t, r)
and by writing g,&dx'dx"= e~—fdt +f 'dr, where
g=P(r) and f =1 2m—(r)/r+e /r . Field equation
(2.15) yields that m (r) =const—:mo and the tt component
of Eq. (2.14) yields that P'=0. The factor e ~ is therefore
a constant that can be absorbed by a rescaling of coordi-
nate t to give Eq. (3.1).

For later use, we will now define other convenient
coordinate systems to express the Reissner-Nordstrom
metric: namely, the Eddington-Finkelstein null coordi-
nates and the Kruskal null coordinates. So we define ra-
dial null coordinates u and v (the Eddington-Finkelstein
coordinates) which we choose such that they both run
forward inside the black hole's event horizon (see Fig. 1):

relates m;„(v)and p;„as
dm;„(v)/dv =4mr p,„. (3.7)

The ingoing Vaidya solution represents a spherical,
charged black hole which is irradiated by an influx of ra-
dial lightlike radiation corning from Jz (Fig. 1) and fol-
lowing ingoing null geodesics. Similarly, the outgoing
charged Vaidya solution

ds =du(2dr f,„,d—u)+r dA

f,„,=1—2m,„,(u)/r +e /r
(3.8)

represents the black-hole interior being irradiated by an
outfiux of lightlike radiation coming from 2L. Alterna-
tively, we can imagine that the radiation really comes
from the surface of the collapsing star (this is obviously
the correct interpretation since the "parallel" universe to
the left does not appear when a star is present) but since

dm, „,( u ) /du =4m r p,„,, (3.9)

for T,& =p,„,n, nt„n, = —B,u, the mass parameter actu-
ally increases even though the star loses mass. This prop-
erty corresponds to the fact that an observer near ZL
would measure an increase of mass as radiation pours
into the hole from his domain.

One could have chosen other null coordinates to ex-
press the Vaidya solutions (3.6) and (3.8). But the
Eddington-Finkelstein coordinates are a good choice
since they reduce to ordinary advanced and retarded
times far from the black hole. Also, since the mass func-
tions are objects one can measure at infinity (they have a
direct operational meaning), the derivatives dm;„/dv and

KpgU= —e pK UV= —e (3 4)

where ao—= —fo(ro)/2=(mo —e )' /ro is the surface
gravity of the inner apparent horizon. That the metric is
now regular at r =ro follows easily. We find that near
the horizon fo= —2UV and the metric element gUr
hence reads

gUv= ' fo/a'oUV = —I/—ao . (3.5)

We will make use of the results derived here in Sec. IV.

B. The charged Vaidya solutions

The ingoing charged Vaidya solution"

ds =dv(2dr f;„dv)+rdQ—
f;„=1—2m;„(v)/r+e /r

(3.6)

is the solution to Einstein's equations with T,I, =p;„I,II,
where the normalization of I, is such that I, = —B,v.
Coordinate v has here the same meaning as in Eq. (3.2):
it reduces to the ordinary advanced time t +r far from
the black hole. It is easy to see that field equation (2.15)

FIG. 1. A con, formal diagram representing the Reissner-
Nordstrom spacetime: we illustrate here the coordinates
defined in the text. Coordinate v is defined to be an advanced
time for observers in region I& and u is defined to be an ad-
vanced time for observers in region II (note that coordinate t
runs backward in this region).
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dm, „,/du also have direct operational meaning: they are
the rates of variation of the black-hole gravitational mass
as measured far from the black hole. It is through Eqs.
(3.7) and (3.9) that the energy densities p;„and p,„,ac-
quire operational meaning.

yields, when substituted into Eq. (2.14):

o = —B„a=—(2m 3e—Ir)lr (3.12)

The stress-energy tensor takes the usual form (2.13) and
we now choose

C. The DTR relation I.= —a. v, n. = —a. U. (3.13)

g b
x'dx = —2e dUdV, (3.10)

where sr =0(U, V); for the time being we leave the null
coordinates arbitrary: we do not necessarily assume that
they are the Kruskalized coordinates of Eq. (3.4). We
find that, for any scalar function P,

(3.1 1)

The Ricci scalar is calculated to be R = —200. and this

We are now ready to derive an exact solution to the
Einstein equations when we have a crossbow of infalling
and outgoing lightlike radiation which can be modeled as
spherical thin shells moving with the speed of light, one
expanding, the other contracting (see Fig. 2). The shells
divide the radial two-space into four different sectors,
each possessing a different mass and a different function
f. The relationship between the masses is precisely the
(generalized) DTR relation' which we shall now derive
(note that the original DTR relation is only valid for a
vanishing charge). In order to do so, and for later use, it
is necessary to express the field equations (2.14)—(2.17) in
radial double-null coordinates in which the two-
dimensional metric assumes the form

The conservation equations (2.15) express the fact that
the product r p;„(rp,„,) is independent of coordinate
U( V) so that we can write

p;„=L;„(V)/4nr, p,„,=L,„,( U) I4~r (3.14)

The luminosities L;„andL,„,have no direct operational
meaning since they depend on the definition of the coor-
dinates U and V. Substituting these results into Eq. (2.17)
yields

Clm = —2(re ) 'L;„(V)L,„,( U) (3.15)

and we note that lnf is linear in L;„andL,„,without
any contribution from the bilinear L;„L,„,. It is precisely
this property which allows the integration of the field
equations to obtain the DTR relation, as we will see
presently.

Before we can do so, however, we need to derive a very
useful result. We will show, as is well known, that any
equation of the form 01(|=p can be formally integrated.
Suppose we are interested in the solution for g subject to
boundary conditions on a characteristic sector X de-
scribed by the equations U = U, , V = V, . It follows from
a straightforward application of Green's identity that the
solution at event ( U, V) (assumed to be located to the fu-
ture of sector X) is given by

Q(U, V)= —
—,
' f f e p'dU'dV'+f(U„V)

l 1

+f(U, V))—f(U„V,), (3.16)

FIG. 2. Crossing null shells: two concentric, spherical thin
shells propagating with the speed of light collide without in-
teraction at event q, hence separating spacetime into four radial
sectors A, . . . , D. The energy content of the infalling she11 is
given by the difFerence mc —m& and that of the outgoing shell
(first expanding from the surface of the collapsing star but then
forced to collapse to the singularity because of the gravitational
pull) by mD —m&. The solution of the Einstein equations, the
DTR relation, relates the mass m& to the masses m&, . . . , mD.

f„(q)fs(q) =fc(q)fp(q), (3.17)

which expresses the relationship between the four masses
m„,. . . , mD. It is remarkable that an exact solution to

where we denote o'=0(U', V'), etc. The simplicity of
this result comes from the fact that the Green's function
for the operator 0, when expressed in double-null coordi-
nates, is given by the product of two Heaviside step func-
tions. One can see that the solution at event (U, V) is
given by a contribution from the boundary conditions
specified on sector X, and by a surface integral over the
past radial light cone of event (U, V). It is straightfor-
ward to differentiate Eq. (3.16) twice and to use Eq. (3.11)
to verify that it is truly a solution of g=p. This in-
tegral formula will be very useful in the following section.

The DTR relation now follows directly from Eq. (3.16)
applied to g = lnf, by recalling —that p is linear in L;„and
L,„,which are here given by 5 functions. If we take our
integration over an arbitrarily small lightlike rhombus
around the point of collision, event q (Fig. 2), the absence
of any bilinear term L;„L,„,in p ensures that the integral
contribution will be arbitrarily small. We therefore get
the generalized DTR relation
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the complicated cross-flow field equations does exist and
that it is so simple.

energy tensor is given by

T,i,
= [L;„(V) /4m r ]I, lb + [L,„,( U) /4m r ]n, nb, (4.2)

IV. MASS INFLATION

We now have everything in hand to formulate the mass
inflation phenomenon. We consider a situation where an
initially static Reissner-Nordstrom black hole with mass
m, is perturbed by a crossflow of outgoing and infalling
lightlike fluxes (see Fig. 3). More precisely, at advanced
time V, we switch on the infalling flux, while at retarded
time U& we switch on the outgoing flux. Therefore for
U & U&, V& V, spacetime geometry is described by the
static Reissner-Nordstrom solution with mass m, . For
V & V& but U & U„the ingoing Vaidya solution takes
over with a mass function m;„(V) which reduces to m, at
V = Vi and to the asymptotic limit mo on J"+„.Similarly,
for U & U, but V & V, , spacetime is described by the out-
going Vaidya solution with m,„,( Ui ) =m, . In the
crossflow region V & V„U& U„spacetime will be de-
scribed by the solution to the field equations (2.14) and
(2.15) with the appropriate boundary conditions de-
scribed above. We shall now attempt to find this solu-
tion.

Let us first recall the basic field equations. We shall
continue to use our system of arbitrary radial null coordi-
nates since they allow us to use the integral equation
(3.16). The metric is then given by

where 1, = —8 V, n, = —8, U. The relation between the
mass function and the metric element e is

1 2—m (U, V)/r+e /r =f = —2e (BUr)(B„r)

and the field equations for m are

BUm = —L,„,( U)e d~r,

Bvm = L,„(—V)e dUr .

(4.3)

(4.4)

(4.5)

Similarly, we can show from comparing the first of Eqs.
(4.4} to the outgoing Vaidya solution in the pure outflow
region that

Its wave equation is given by Eq. (3.15).
The relation between L;„(V) and the measured quanti-

ty dm;„(v)/dv (v is, as always, the Eddington-Finkelstein
advanced time) can be evaluated in the pure inflow region
where m =m;„,f =f;„andwhere the solution is known
to be the ingoing charged Vaidya solution. By continui-
ty, L;„(V) will assume the same form in the cross-flow re-
gion. By rewriting the second of Eqs. (4.4) in terms of v,
and by using Eq. (3.6), it is easy to show that

dm;„(v)
dU

d$2= —2e ~dUdV+7 (4.1}

while the non-Maxwellian contribution to the stress-

u dm, „,(u)
L,„,(U) =

dQ
(4.6)

To get the actual expression for rn;„(v) we recall the
analysis of Price which showed that the amplitude of the
backscattered gravitational radiation (modeled as a per-
turbing test field) varies as v "at late advanced times. If
I is the multipole order of the perturbing field, n is given
by 21+2. Now the energy density of the ingoing radia-
tion, which is proportional to dm;„/dv, will vary as v

so that the ingoing mass function will reach the asymp-
totic limit mo as mo —m, „(v)-v ' '+ '. The dominant
contribution to the influx will come from the quadrupole
moment 1=2 so that typically mo —m;„-U ". So we
can take

dm, „(v) /dv —v (4.7)

FIG. 3. Background Reissner-Nordstrom spacetime per-
turbed by cross-flowing streams of radial radiation: we turn on
the influx at time V = V, and the outflux at U = U, . If we sup-
pose that the fluxes are later turned off, spacetime is character-
ized by four static regions with masses mo, . . . , m 3 and by
inflow, outflow, and cross-flow regions. This figure represents
the continuous counterpart of Fig. 2.

+m;„(V}+m,„,( U) —m, , (4.8)

with L,„(V) given by Eqs. (4.5) and (4.7), while L,„,( U) is

with p =—4(I +1)~ 12. As for L,„,(U), we will see later
that it is not necessary to write down a precise expression
for it. We will only assume that it is a positive quantity:
the radiation escaping the surface of the collapsing star
should have a positive energy density.

To integrate Einstein s equations in the cross-flow re-
gion, we can make use of the integral formula (3.16} to
find a formal expression for the mass function. Substitut-
ing Eq. (3.15) into Eq. (3.16) yields

m ( U, V) = I J (r'e ') 'L,„(V')L „,( U')dU'd V'
l l
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left arbitrary. So far, we have left the coordinates U and
V unspecified; we shall now remedy this situation. Ingo-
ing radiation is switched on at V = Vi, while the outflux
is switched on at U = U&. To make things conceptually
clear, we can suppose that the fluxes are switched off at
later times U2 and V2, we are of course interested in the
situation where V2 tends to the value of Von the Cauchy
horizon. In this view, spacetime is characterized by four
static regions with masses ma . . m3 and by inflow,
outflow, and cross-flow regions (Fig. 3). Each of the stat-
ic regions can be described by a Reissner-Nordstrom
solution with appropriate mass, and each static region
possesses its own set of Eddington-Finkelstein null coor-
dinates, defined as in Sec. III. We choose our coordinate
u to be the Eddington-Finkelstein advanced time defined
with respect to static region m0. With this choice, the
Cauchy horizon lies on the u = ~ surface and u reduces
to ordinary advanced time near 2z. Similarly, we take u

to be the Eddington-Finkelstein retarded time defined
with respect to static region m, . With this choice, u

reduces to ordinary advanced time for observers near J'I
and the outer horizon of region m& lies on the surface
u = —00. We then choose our coordinate V to be the
Kruskalized advanced time associated with the inner ap-
parent horizon r =rv=m0 —(m0 —e )

2 2 1/2. Ging= (3e —r ) /r (4.13)

role in the contraction of the Cauchy horizon which then
contracts only moderately. Of course, this is not so for
the inner apparent horizon [described by the function
rAH(U, V) defined by f (rAH )=0] which deflates catas-
trophically as the mass inflates to infinity. We therefore
conclude, from our intuitive analysis, that re will rather
tend to go to zero in approaching the Cauchy horizon,
hence feeding further mass inflation. The mass parame-
ter is therefore bound to inflate to classically arbitrarily
large values.

A1though we cannot prove that re actually goes to
zero, we will now proceed with a formal proof that re
cannot go to infinity as we approach the Cauchy horizon.
We construct the object /=re and derive an expression
for Cling which can be formally integrated using Eq.
(3.16). We will show that the solution for ln(re ) thus
obtained, if not bounded, must nevertheless be bounded
above. This shows that re cannot go to infinity and
verifies our conclusion that the mass parameter becomes
unbounded at the Cauchy horizon. Using Eq. (2.18) we
can calculate that Cling=2 o +Or lr fir, w—hich can
be expressed in terms of r and e by using Eqs. (3.12),
(2.16), and (2.7):

KpuV= —e (4.9)
Substituting this in Eq. (3.16) yields

where v0=(ma e)'~ Ira,—such that V=O on the Cau-
chy horizon. Similarly, we choose U to be the Kruskal-
ized retarded time associated with the inner horizon
r=r, =m, —(m, —e )

2 2 1/2.

1
K uU= —e (4.10)

where a. , =(m, e)'~ Ir „s—uch that U = —~ on the
outer horizon of region m &. Note that both coordinates
take negative values inside the black hole.

Now that we have chosen our system of coordinates,
we can substitute Eqs. (4.7) and (4.9) into Eq. (4.5) to get

L,„(V)-[—ln( —V)] IV -v i'e

If we note that, for V~O,
Vf L;„(V)dV-[—ln( —V)] ~/( —V)

1

KpV-u ~ep

(4.1 1)

(4.12)

we conclude from Eq. (4.8) that m ( U, V) will diverge as
V~O unless the product re goes to infinity quickly
enough. Now, if m(U, V) tends to become singular on
the Cauchy horizon, we expect from Eq. (4.3) that e
will tend to go to zero, provided that the product of the
derivatives (Bvr)(Bi,r) remains well behaved. We expect
this to be the case since our coordinates U and V are well
behaved in the vicinity of the Cauchy horizon and be-
cause we do not expect the Cauchy horizon to collapse
too quickly due to the influence of the outflux of radia-
tion. Indeed, the behavior of the Cauchy horizon [de-
scribed by the function rcH(U)=r (U, V=O)] is solely
ruled by the amount of outgoing radiation crossing it and
focusing its generators. The infinite blueshift plays no

in/( U, V) = in[/, „(Ui, V)g,„,( U, V, )/P( U„Vi) ]

——' f f g'r' (3e r' )dU'dV—', (4.14)
1 I

where P;„(g,„,) denotes the function re which can be
obtained from the known ingoing (outgoing) charged
Vaidya solution. Now, the first term is finite since it can
be shown that g;„(Ui, V) is actually finite on the Cauchy
horizon. This nontrivial statement is proved in Appendix
B: essentially, 1(,

„

is the radius of the Cauchy horizon r0
times the metric element gzz of the ingoing Vaidya solu-
tion evaluated near the Cauchy horizon; the Appendix
shows that this metric element is indeed regular near the
Cauchy horizon. This is a consequence of the fact that,
when only influx is present, the surfaces of infinite blue-
shifts and redshifts coincide, thus preventing an un-
bounded increase of the mass parameter, as discussed in
the Introduction. The second term is more serious, it
might well be unbounded and what is crucial here is the
sign of the contribution from the integral. If the integral
is actually unbounded, the dominant contribution will
come from values of the integrand near the Cauchy hor-
izon. But it follows directly from ~e~ &m0 (a necessary
condition to the existence of the black hole) that ra & ~e~

so that in the vicinity of the Cauchy horizon, the contri-
bution from the integral will be negative definite. This
ensures that, if unbounded, in'( is necessarily not bound-
ed below, but bounded above. This means that the prod-
uct re cannot go to infinity on the Cauchy horizon and
hence cannot forbid the infinite increase of the mass pa-
rameter.

Some remarks are now in order: mathematically, the
mass inflation phenomenon is expressed as the divergence
of integral (4.8) as we approach the Cauchy horizon. We
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L;„(V) =e (rp/~p)z [—ln( —V)]
p'2

(4.15)

where e is an arbitrary dimensionless constant. Using
Eq. (4.12) then yields

m(U, V)=mpe 1(U)(apv) ~e ' (4.16)

where I ( U) is the fraction cpm p
' f U L,„,( U')d U' of the

1

star's mass radiated away. The dominant contribution,
as noted above, comes from the quadrupole moment and
so

have shown that this integral must blow up, without ac-
tually having to evaluate it explicitly, which we cannot
do exactly. We therefore know that mass actually
inflates, but we do not know how fast. We have given a
physical interpretation of this result in the Introduction:
mass inflation can be explained by the combined effect of
the infinitely blueshifted influx which piles up on the
Cauchy horizon, and of the arbitrary outflux which pro-
duces the crucial separation of the Cauchy and inner hor-
izons. While the Cauchy horizon contracts moderately,
the inner horizon deflates much more rapidly. The mass
inflation phenomenon can be understood further from an
application of the DTR relation (3.17) (Fig. 2). If the two
concentric null shells cross through each other near the
inner horizon of sector 8, f~ will be very small, but since
the product fcfD is finite and nonvanishing, the small-
ness of f~ must be balanced by the largeness off„.The
closer to the inner horizon the shell propagates, the
larger f„willbe. This can be interpreted as a violent in-

crease of the mass parameter at the intersecting point.
The DTR relation has been previously used by Blau' to
elaborate Eardley's analysis' on the death of white holes
by accretion and blueshift on the past horizon. However,
the DTR relation does not offer any description of what
happens at the interaction point, in contrast with our
continuum analysis. In particular, the characteristic time
scale over which mass inflation occurs is not given by the
schematic DTR analysis.

A crude estimate of the mass parameter growth rate
can be obtained if we formally expand the integral of Eq.
(4.8) in powers of bilinear L;„L,„,If we kee. p only the
first-order term, we can then take for re their back-
ground values obtained from the static Reissner-
Nordstrom solution with mass m p (to this order
mp —m, ). So, from Eq. (3.5), take re =rp/Kp and
write, using Eq. (4.11),

In conclusion, some comments on how the aspherici-
ties inevitably present in a realistic collapse might be ex-
pected to affect this idealized spherical picture. The
broad aspects of mass inflation should be generic, since
they depend only on the qualitative features of infinite
blueshift at the Cauchy horizon and the separation of
Cauchy and apparent horizons under transverse irradia-
tion. Because angular momentum J is nearly conserved
in the collapse (it would be conserved exactly for axial
symmetry), the Kerr parameter a =J/m should become
negligibly small in comparison with m in the mass-
inflated geometry near the Cauchy horizon. Thus the
asymptotic field is expected to be very nearly
Schwarzschild.

What about the effects of nonrotational (quadrupole)
asymmetries? For a slightly aspherical, uncharged and
nonrotating collapse it has been shown that the "tail"
(corresponding to large advanced time u) of the spacelike
singularity formed at r =0 relaxes asymptotically to a
stationary, exactly Schwarzschild-like form. This argu-
ment is easily adapted to the situation where a Cauchy
horizon is present: a spacelike curve just outside the
Cauchy horizon, where cur vatures reach Planckian
values, now assumes the role of the curve r =0. Asym-
metries of the collapsing star can infiuence the (infinitely
long) tail of this curve only through a very narrow win-
dow of the star's history, and they are exponentially red-
shifted. The geometry of the Cauchy horizon's tail is
thus determined solely by the asymptotics of the external
field as U~ ~. But this is known to tend to a Kerr-
Newman form, characterized by an inner-horizon surface
gravity Kp which is a constant (independent of geographi-
cal location on the surface). Thus the exponential mass-

K U

inflation factor e ' is uniform, and nonuniformities
b, m/m-b, 8 of the mass aspect m (H, qr, v) on angular
scale 60 will not grow exponentially, but should remain
roughly constant during inflation. Near the Cauchy hor-
izon these nonuniformities are negligible on length scales
comparable with the local (near-Planckian) radius of cur-
vature. On such length scales, the geometry should ap-
pear locally indistinguishable from a Schwarzschild solu-
tion of very large mass.

Thus, there appears to be no reason to expect our
analysis and results to be significantly affected by the
effects of rotation and asymmetries. ' ' Of course, a de-
tailed analysis will be needed to confirm these tentative
conclusions.

m ( U, V) =mpe I ( U)(a.pu)
' e ' (4.17) V. QUANTUM CONSIDERATIONS

with e representing a dimensionless quadrupole moment.
Our crude estimate indicates that the mass parameter
inflates exponentially with Eddington-Finkelstein ad-
vanced time with a characteristic time scale of 1/Kp.
This is most certainly an underestimate since, as we men-
tioned earlier, the product re does not actually remain
constant but probably decreases to zero near the Cauchy
horizon, hence precipitating further mass inflation. A
numerical integration of the field equations would be
necessary in order to say more. '

How can quantum mechanics modify the classical pic-
ture described above? We shall attempt to find some
clues to an answer in this section. It is now widely be-
lieved that singular behavior in general relativity signals a
breakdown of the theory, and that it should not appear
once a good theory of quantum gravity is formulated.
Although there is hope from superstring theory, a quan-
tum theory has not yet been discovered and much of the
quantum effects associated with gravity are as yet uncer-
tain. Nevertheless, it was speculated lately ' that be-
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m -mo/mp~, (5.2)

where mp& is the Plank mass. For a black hole of ten so-
lar masses, the internal mass parameter reaches the order
of 10 times the mass of the observable Universe.

If we suppose that we can accept the classical descrip-
tion up to the transition hypersurface X& on which cur-
vature becomes Planckian as the mass parameter reaches
its limiting value (5.2), we find that the transition region
is spacelike since, classically, mass increases further to
infinity on a null hypersurface occurring later. The sepa-
ration between X& and the Cauchy horizon is of the or-
der of the Planck time, as we will verify below. So, for all
practical purposes, the Planckian phase, or end of the
classical phase, appears to arise at a spacelike surface, as
would be the case for the Schwarzschild singularity. It is
interesting to note that the quantum evolution of the
black-hole internal structure starts from a known and
well-defined initial state on X&. This is to be contrasted
with the situation in quantum cosmology where initial
conditions have to be postulated.

Using metric (5.1) but assuming that 2m/r ))1, it is
easy to see that for an observer at fixed t, 8, and P, the
trip from the quantum radius ro=—m' -rcH to the ori-
gin takes about one Planck time:

cause of these unknown quantum effects, spacetime cur-
vature should always be subject to an upper bound of
Planckian magnitude. This corresponds to the most
naive perception that one can have of a "nonsingular
singularity": a region of spacetirne where curvature is as
extreme as we can imagine. As discussed in Ref. 5, one
possible mechanism for slowing down the infinite rise of
curvature is vacuum polarization associated with
creation of virtual particles near the black-hole singulari-
ty. If the stress thus induced is a tension along the axes
of the three-cylinders of constant time, spacetirne tends
to remain regular near the origin.

Let us imagine what could be the consequences of such
an upper bound in curvature for the black-hole inner
structure. We will come back later to the hard problem
of justifying this assumption. Classically, the interaction
of infalling and outgoing radiation inside the black hole
produces an infinite rise in the hole's mass parameter.
Quantum mechanically, we might expect an enormous in-
crease, but not quite an infinite one. We recall that be-
cause of mass inflation and because the fluxes of radiation
conserve (at least approximately) charge and angular
momentum, the only relevant parameter describing the
black-hole geometry near the Cauchy horizon is precisely
the mass. We therefore infer that in this region, space-
time can be adequately described by the Schwarzschild
metric

ds = —(1 2m/r—) 'dr +(1—2m/r)dt +r dQ. , (5.1)

where m is the inflated final mass parameter. How large
can it become? Spacetime curvature m lr has become,
according to our hypothesis, of order unity in Planck
units. Since r is then of the order of the Cauchy horizon
radius, itself of the order of the black-hole external mass
mo (if we assume that

~
e I -m o ), we can conclude that

(5.3)

(the calculation is done in Planck units). This shows that
an observer's trip to the vicinity of the Cauchy horizon
covers all but the last Planck time of the black hole's en-
tire classical history. This estimate is however modified if
vacuum polarization allows curvature to remain bounded
beyond the transition hypersurface X&. Let us assume
specifically that metric (5.1) is valid at and near X& but
that according to the analysis of Ref. 5, it would take the
form

ds = adr—2+e '(df), +e «'~dt ) (5.4)

ds2= X(r)dr +—a (r)dt +b (r)dQ (5.5)

where a and b represent the gravitational degrees of free-
dom (X is not a dynamical variable). A quantum model
of this kind, for pure gravity, has been considered by
Narnbu and Sasaki, ' using the Einstein-Hilbert action.
Classically, the trajectories representing the evolution of
Schwarzschild spacetime must go toward the singularity.
Should the wave function be peaked around some classi-
cally forbidden trajectory which escapes the singularity,
one could interpret this as a quantum gravitational
avoidance of singular behavior. Unfortunately, Narnbu
and Sasaki find that the wave function is exponentially
damped for classically forbidden trajectories. This model
therefore offers little hope for quantum gravitational
justification of singularity avoidance. Further studies in-
cluding matter fields' do not modify this pessimistic con-
clusion.

This negative result is an illustration of Wheeler s prin-

beyond X& (a is of order unity and is a measure of the
curvature beyond X&, ~ is the proper time for an observer
at fixed t, 8, and P, and g is an undetermined function de-
pending on the equation of state of the quantum materi-
al). According to this new expression for the metric, the
trip from X& to the origin would take an amount of time
of the order of ro. The possibility that vacuum polariza-
tion would increase this estimate even further is not ex-
cluded.

The picture emerging from these quantum considera-
tions is that the region within X& is represented by a "fat
cigar" (topology S XR + ) of uncertain thickness en-

veloping the Cauchy horizon and inside which the evolu-
tion of spacetime is determined by unknown quantum
effects which would, presumably, forbid curvature to
grow beyond Planckian scales.

Let us now review some of the possibilities concerning
the quantum evolution of spacetime geometry. Here, of
course, we enter the realm of very uncertain speculation.
One possibility would be to apply quantum cosmology in
its current minisuperspace formulation where a wave
function depending on the gravitational and external
fields degrees of freedom is constructed. As mentioned
earlier, our problem does not share quantum cosmology's
difficulty concerning the formulation of boundary condi-
tions. In view of metric (5.1), the simplest minisuper-
space model for the black-hole interior would be the
two-dimensional model
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ciple of unanimity. ' Roughly, it states that if the solu-
tions to the classical equations of motion all exhibit
singular behavior (except perhaps for a set of measure
zero) then the quantum solutions should also be singular.
According to this view, any model based on the Einstein-
Hilbert action would not be freed of singularities by a
quantum analysis. To avoid singular behavior, one would
hence need to seek for alternative Lagrangians leading to
nonsingular classical solutions. This is a rather natural
step since it was realized long ago that the Einstein-
Hilbert action should not be valid at extreme regimes. '

Quantization of matter fields on a classical spacetime
geometry typically induces quadratic terms in curvature
in the effective gravitational Lagrangian and it is likely
that higher-order terms would need to be included as
well. A particular Lagrangian in ten dimensions is sin-
gled out by superstring theory. The Einstein-
Hilbert+ Gauss-Bonnet action

Jd' x&—g [R+a(R &r&R
~~ 4R &R

—~+R )]

(5.6}

is the unique action principle leading to second-order
differential equations for the ten-dimensional metric g &
(a-lp&, the square of the Planck length). It would be in-
teresting to attempt to find regular classical solutions to
the field equations associated with this choice of Lagrang-
ian for a generalized Kantowski-Sachs metric of the form

tie reason to doubt that our conclusions should be valid
for a generic, rotating black hole. ' '

According to this classical picture (if we follow it to its
most extreme consequences) the singularity arising in a
generic black hole would be null rather than being space-
like as favored by strong cosmic censorship. However,
in a more pragmatic viewpoint where we consider curva-
tures of Planckian magnitude to be (classically) "singu-
lar, " it makes little difference since the transition hyper-
surface on which curvature reaches unity in Planck units
is a spacelike hypersurface. It is nevertheless an interest-
ing question of principle to evaluate whether more realis-
tic perturbing fields could succeed in producing an actual
spacelike singularity. We will leave this question open
for the time being.

The complicated field equations derived here do not al-
low us to find an explicit expression for the mass function
m(U, V). Equation (4.17) represents probably a very
crude underestimate of its growth rate and to be able to
say more, a numerical integration of the field equations
should be performed. In the process, we would be able to
gather more information about the relevant quantities of
the problem, specifically, the behavior of the metric ele-
ment e and radius function r. Numerical integration of
the equations is now in progress' and the results will be
published elsewhere; for completeness, we derive in Ap-
pendix C the basic first-order system of differential equa-
tions necessary to write the numerical code.

ds = —A(r)dr +B(r)dt +r dQ +ap (r)g„zdx "dx

(5.7}

where the nature of the six-dimensional line element

g~~dx "dx is rather uncertain. The behavior of the
scale factor p(r) should reflect the compactification of ex-
tra dimensions at the classical regime. Such an investiga-
tion is now underway. '

VI. CONCLUSION

It is likely that our views about the quantum evolution-
ary phase of spacetime inside black holes will change and
that the many uncertainties surrounding it will not be
resolved soon. But a definite classical picture appears to
be emerging up to the formation of the "fat cigar singu-
larity" near the Cauchy horizon and before the ambient
curvature m/r actually reaches Planck values, there
does not seem to exist any mechanism capable of stop-
ping the inAation phenomenon. For instance, scattering
of the infiow by the now inflated curvature never becomes
effective. Indeed, the radius of curvature, behaving like
m ' —

~

V~' always remains larger than the blueshifted
wavelength of the ingoing modes, behaving like

~
V~. Our

detailed mathematical analysis is based on a very ideal-
ized spherical model, but the basic physical mechanism
(the combination of a highly focused and blueshifted
shower of radiation propagating along the Cauchy hor-
izon and the arbitrary irradiation of the latter by outgo-
ing radiation emitted from the surface of the collapsing
star) is independent of the model. We have therefore lit-
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APPENDIX A: GEOMETRIC QUANTITIES
FOR SPHERICAL SPACETIMES

We list in this appendix the relevant geometric quanti-
ties of a spherical spacetirne geometry whose metric is ex-
pressed in the form

dS2 g d& ad& b+ &2d Q2 (A1)

where x'=(x', x ) are arbitrary coordinates spanning
the "radial" two-spaces (8,$)=const. Function r(x') is
defined in the usual way from the proper area of a two-
sphere x'=const: A =4m-r . The symbol d0 denotes
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the two-dimensional line element of the unit two-sphere:
d 0 =d 8 + sin 8 d P . It is most convenient to express
the diverse four-dimensional quantities derived from the
four-dimensional metric g &

in terms of the two-

dimensional quantities derived from g,b and derivatives
of r. We will denote by a semicolon the covariant deriva-
tive with respect to the two-metric, whereas a stroke (~)

will denote the same with respect to the full four-
dimensional metric. The d'Alembertian g of any scalar
field P will be the two-dimensional quantity

ds =dv(2dr fd—u)+r dQ

f =1—2m(v)/r+e /r

where the mass function is given by

(81)

we will show that, when expressed in regular coordinates,
the metric is manifestly regular there. Interestingly
enough, even though certain elements of the curvature
tensor diverge, the invariant R &z&R

~~ remains regular
at the Cauchy horizon. This is a consequence of the fact
that the singularity in the energy density is null.

We look at the ingoing charged Vaidya solution

' =sin gI' = —rr'
bc bc 88

I'ee=I &&=r, /r, I'&&= —sin& cos8, 1 ~e&=cot8 .

The Riemann curvature tensor is

4 —2R abed
—Rabcd ~ Ra @pe sin ORapgp r;a$

R e&e&
=r sin 8( 1 r'r, ) . —

(A3)

(A4)

Contracting over the first and third indices yields the
Ricci tensor

R,b
—R,i,

—2r ,b /r, .

Ree =sin OR&&
= 1 (rCIr +r'r—, ),

(A5)

We will express the four-dimensional quantities with the
superscript 4, whereas we will leave the two-dimensional
quantities free of additional indices. For example, the ab
component of the four-dimensional Ricci tensor will be
noted as R,b whereas the two-dimensional Ricci tensor
will be written as R,&. We use throughout the conven-
tions of Misner, Thorne, and Wheeler.

With the notation described above, the Christoffel sym-
bols associated with the four-dimensional metric are

m (v) =mo —p(u), (82)

p,b,
—=T pu u =p(1 u ) (84)

becomes infinite at the Cauchy horizon v = ~. It is only
necessary to compute the v component of the four-
velocity; if we choose a radial observer, the normalization
condition u u = —1 yields (the overdot denotes
differentiation with respect to the observer's proper time)

u =[r—(r +f)' ']If=2r'/f,

where p(v)-u 'r ". The slow increase of the mass pa-
rameter is produced by an influx of lightlike particles de-
scribed by the stress-energy tensor

T p=pl lp, (83)

where 1 = —8 u and 4mr p=dm /dv. We recall that be-

cause of the large blueshifts occurring near the Cauchy
horizon (which we shall verify below) the effective stress-
energy tensor description (83) should be an accurate
description for the backscattered gravitational radiation
falling into the black hole at late advanced times. We
will first show that the energy density measured by a
free-falling observer with four-velocity u,

and the Ricci scalar is

R =R +2(1—2r r —r'r, )/r

We finally arrive at the Einstein tensor

(A6)

(u&1 )i=o 2 1/f2 (86)

where the approximation holds near the Cauchy horizon.
Therefore

G,i,
= —[2rr ,b+g, b(1 r'r. , —2rHr—)]/r

Gzz=sin OG&&=rQr —
—,'r R .

(A7)

APPENDIX B: VAIDYA SOLUTION
IN DOUBLE-NULL COORDINATES

A free-falling observer crossing the Cauchy horizon
measures an infinite amount of energy density for the
shower of infalling radiation propagating along it. We
will verify this statement explicitly in this appendix, and

These equations can be compared with the usual re-
sults obtained when one chooses a particular system of
coordinates for x '. For example, if one sets

g,bdx'dx = —2h du dv, one recovers the results derived
in Waugh and Lake. Similarly, by choosing

g,bdx 'dx = —e dt +e dr one recovers the . results
given in Misner, Thorne, and Wheeler, page 844 of Ref.
23.

which is infinite at the Cauchy horizon. It is possible to
integrate (85) explicitly if we approximate f by its
asymptotic expression fo= 1 2mv/r—+e /r . This is in
fact a good approximation since m (v) is slowly varying
near the Cauchy horizon. We find that on the path of the
free-falling observer

f= —2e (87)

where i~o=(mo e)' /rcH s—uch that combining Eqs.
(82), (84), and (87), we arrive at

2KO U

p -v ~e

which manifestly blows up at the Cauchy horizon. Note
that not only p,b, blows up, but also its integrated value
over the path of the observer.

It is not at first sight obvious that metric (81) is regular
at the Cauchy horizon since the coordinates themselves
become singular there: both r and v are constant on the
Cauchy horizon. Even a rescaling of v of the form
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V= —e ' does not remove this difficulty. But because
m (v) is a slowly varying function, it is possible to ap-
proximately transform metric (Bl} into a double-null
form which is manifestly regular at the Cauchy horizon.
(Such a transformation is not possible in general. ) We
now proceed with this transformation. We suppose that
the influx of radiation is switched on at advanced time v,
and that rn (u, ) =mo, not only do we suppose that mo is
the asymptotic limit of the mass function, we also sup-
pose that it is its initial value. This choice has the impor-
tant advantage of allowing us to define the various quan-
tities of interest (e.g. , coordinate u, function ~, below)
with respect to ma rather than another value of the mass
parameter. The difference mo —m(u)—:p(v) will there-
fore be assumed to be zero for v (v, , and will be assumed
to be non-negative thereafter until it decreases asymptoti-
cally to zero as v goes to infinity. Only this asymptotic
behavior will be of interest to us and we will not be con-
cerned with the initial decrease of the mass function. Al-
though we are interested in the situation where the
asymptotic behavior of p(u) is that of an inverse power
law, the following calculation only assumes that }u(u)/mo
is small enough so that we can ignore second-order
corrections.

We start by expanding f [m(u), r] around the initial
value of the mass mo and around function r, (u, v), the
solution of

(816)

g
&

sg~~rs=4gm (u)/r (817)

however, remains regular. The reason lies in the fact that
the singularity is null: any contraction of the kind l 1

will give a contribution of zero.

APPENDIX C: FIRST-ORDER EQUATIONS
FOR NUMERICAL INTEGRATION

where we recognize in front of the large parentheses the
static expression associated with the initial mass mo. It is
manifest that the correction terms are bounded at v ~~
provided that f „"p(u')dv'& ~. This property is clearly

1

satisfied by our choice for p(u).
It is now easy to transform to coordinates U and V in

which the metric is well behaved. This has the effect of
changing the coefficient ,'f, in—Eq.(816) to the expres-
sion (3.5). This finally shows that metric (Bl), when ex-
pressed in well-behaved coordinates, is perfectly regular
at and near the Cauchy horizon. Note however that
second derivatives in V will produce a divergent curva-
ture of the order of p,b, . The curvature invariant

dr, = ,' f, (du +du—), (89)

f=f, +2@/r, 2~, (r r, ), — —

where

(
2 2)1/2/r2

(810)

(811)

where f, =f [mo, r, ] (the subscript stands for "static").
We thus obtain

For completeness, we include here the system of first-
order differential equations which would enable a numeri-
cal analyst to integrate Einstein's equations numerically.
All we will do is recast the field equations (4.1)—(4.4) in a
more convenient form. We shall choose for our null
coordinates the usual Schwarzschild retarded and ad-
vanced times.

Define first additional variables x and y according to

dr = ' f (e~du +du)—, (812)

where e~ plays the role of an integrating factor. We
therefore find that the metric element which we want to
evaluate is

g„,=h = ,'fest=Br/B—u . (813)

is a function of r, Funct. ion r(u, u) is related to the coor-
dinates by

e "=d„r/,' f, ——e r=r}„r/,'f . -
Substituting this in Eq. (4.3) yields

I p —(x+y)
2J

and then into Eqs. (4.4) gives

B„m=e "dm,„,( u ) /du,

B,m =elm;„(u)/du .

(C 1)

(C2)

(C3)

To find r (u, u), we use Eqs. (89), (810), and (812}to ob-
tain a differential equation for the difference r —r, :

It is then straightforward to derive additional differential
equations for x and y starting from Eqs. (Cl). We find

B(r —r, )/Bu +tc, (r r, ) =p lr, , —

which can be integrated to yield

(814) B„y= —(2e "lrf)dm, „,(u)ldu,

B,x = —(2e /rf}dm;„(v)ldu .
(C4)

r r, =f, f—du'p(u') lr,'f,',
1

(815)

where we suppose that u ) v, . For u &u„p(v)=0, and
r(u, v) reduces to r, (u, u). [We use the notation
r,'= r, (u, v'), etc.] I—t is now straightforward to show that
differentiation of Eq. (815) with respect to u and use of
Eq. (813) yields

Since x is determined up to an arbitrary rescaling of coor-
dinate u, it is not necessary to write down an expression
for B„x.The same is true for B,y.

In the initial static Reissner-Nordstrom region (u & u, ,
u &u&), we have x =y =0, m(u, u)=m&, and r(u, u) is
given implicitly by u + v =2r*. In the pure inffow region
(u & u, , v ) u, ), we have B,x given by Eq. (C4), y =0,
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m (u, v) =m;„(v),and r},r =f l2. An expression for B„ris
not needed since by continuity, r(u „U)is known. Final-

ly, in the pure outflow region (u )u, , u & v, ) we have
x =0, B„y given by Eq. (C4), m (u, u) =m „,(u) and

t)„r=f l2. As before, an equation for t)„ris not needed.
All the above quantities can then be obtained in the
cross-Aow region by numerical integration of Eqs.
(C 1)—(C4) with the boundary conditions given above.
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