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The purpose of this paper is to present a number of proposals about the interior structure
of a rotating black hole that is accreting slowly, but in an arbitrary time- and space-dependent
fashion. The proposals could potentially be tested with numerical simulations. Outgoing and
ingoing particles free-falling in the parent Kerr geometry become highly focused along the principal
outgoing and ingoing null directions as they approach the inner horizon, triggering the mass inflation
instability. The original arguments of Barrabés, Israel & Poisson (1990) regarding inflation in
rotating black holes are reviewed, and shown to be based on Raychauduri’s equation applied along
the outgoing and ingoing null directions. It is argued that gravitational waves should behave in
the geometric optics limit, and consequently that the spacetime should be almost shear-free. A full
set of shear-free equations is derived. A specific line-element is proposed, which is argued should
provide a satisfactory approximation during early inflation. Finally, it is argued that super-Planckian
collisions between outgoing and ingoing particles will lead to entropy production, bringing inflation
to an end, and precipitating collapse.

PACS numbers: 04.20.-q

I. INTRODUCTION

What happens if you fall inside an astronomical black
hole? Singularity theorems are quite unspecific [1],
stating only that, subject to a trapped surface condition,
an energy condition, and a causality condition, a geodesic
is incomplete. Singularity theorems do not prescribe the
nature of the incompleteness, nor do they assert that any
matter actually moves along the incomplete geodesic, and
they certainly do not imply that an infalling observer
must fall to a singularity.

A major advance was made when Poisson & Israel
[2, 3] discovered the mass inflation instability at the inner
horizon of a charged, spherical (Reissner-Nordström)
black hole. The inflationary instability is the nonlinear
realization of the infinite blueshift at the inner horizon
first pointed out by Penrose [4]. Many subsequent
analytic and numerical investigations confirmed the
instability (see [5] for a review and references). Chan,
Chan & Mann [6] extended the Poisson-Israel argument
to an azimuthally symmetrically accreting rotating black
hole in 1+2 dimensions.

Barrabès, Israel & Poisson [7], hereafter BIP, soon
generalized Poisson & Israel’s argument to the case of a
rotating black hole. The BIP argument is reviewed and
critiqued below, §II. Further efforts to explore inflation
in rotating black holes were made by Ori [8, 9].

In a recent series of papers [10–12], the author pre-
sented some explicit solutions for the interior structure
of a rotating black hole that slowly accretes a collisionless
fluid. The solutions followed the self-consistent nonlinear
evolution of the spacetime through inflation to collapse
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down to an exponentially tiny scale, where rotation
reasserted itself. However, the solutions were limited
to the conformally separable special case, where the
accretion flow incident on the inner horizon was uniform.

The purpose of the present paper is to set forward
arguments about how inflation should develop in a
rotating black hole that is accreting slowly, but in
an arbitrary time- and space-dependent fashion. The
arguments are in places qualitative rather than rigorous,
so should be construed as tentative. Specifically, the
argument that the spacetime is likely to be almost shear-
free, §III, the possibility that the line-element (20) may
provide an adequate approximation, and the argument
that inflation will be terminated by super-Planckian
collisions between outgoing and ingoing particles, §VII,
are proposals to be tested. The proposals could be tested
by numerical simulations. Whether true or false, I hope
that simulators will find the ideas herein a useful guide
as to what might be expected.

At first sight, it might seem that the problem of the
interior structure of a rotating black hole accreting in an
arbitrary time- and space-dependent fashion would be
too complex to be analytically tractable. However, the
problem simplifies if the black hole is accreting slowly,
and therefore has a geometry well described by Kerr away
from its inner horizon. Aside from rare (but interesting!)
events of high accretion, such as when a black hole first
forms, or when two black holes merge, real astronomical
black holes accrete slowly for most of their lives.

A slowly accreting black hole has a number of
simplifying features. First, as shown by [11], freely-
falling particles focus along the principal outgoing and
ingoing null directions of the Kerr geometry as they
approach the inner horizon, regardless of the initial
orbital parameters of the particles. Moreover, for
small accretion rates, outgoing and ingoing particles are
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already hyper-relativistic relative to each other when
inflation ignites, so massive as well as massless, and
charged as well as uncharged particles, all focus along
the principal null directions as they approach the inner
horizon. Thus the situation originally envisaged by BIP
of outgoing and ingoing null streams crossing near the
inner horizon is in fact realized in the real case.
The second simplifying feature is that during inflation,

although the streaming energy-momentum and the
Weyl curvature grow exponentially huge, the underlying
geometry remains scarcely changed. In a sense, nothing is
happening, despite the exponentially growing curvature.
The reason for this is that the proper time experienced
by an infaller during inflation is tiny, so that volume
elements have little time to become distorted despite the
enormous tidal forces, a fact first pointed out by [13].
Eventually however the spacetime does respond to the

huge acceleration, by collapsing.
The metric signature in this paper is −+++.

II. THE BIP ARGUMENT

It is helpful to start by summarizing BIP’s argument.
For generality, I will recast BIP’s [7] argument into
continuum form. As will be seen, BIP’s argument
is essentially founded on the Raychaudhuri equation
applied along two null directions (whereas Penrose’s orig-
inal singularity theorem [14] invoked the Raychaudhuri
equation along a single null direction). In §II B, I point
out issues left open by BIP’s argument.

A. Argument

BIP start by positing two null shells that cross each
other near the inner horizon of a rotating black hole. As
noted in the Introduction, freely-falling particles do in
fact focus along the principal outgoing and ingoing null
directions of the Kerr geometry as they approach the
inner horizon, regardless of the initial orbital parameters
or mass of the particles [11]. Thus the situation of two
special null directions envisaged by BIP does in fact occur
in the real case, at least for a slowly accreting black hole.
The principal null directions of the Kerr geometry

are geodesic. More generally, as the geometry departs
from Kerr thanks to the inflationary back-reaction,
the two special null directions posited by BIP can be
taken to be the geodesic continuation of the principal
null directions. Choose a Newman-Penrose double-null
tetrad frame {γv,γu,γ+,γ−} such that the outgoing and
ingoing tetrad axes γv and γu point along the two special
outgoing and ingoing null geodesic directions, while the
spinor axes γ+ and γ− (which are complex conjugates
of each other) span the two-dimensional spatial plane
orthogonal to the null directions.
In what follows, it is convenient to follow a convention

in which early latin indices a, b, ... run over spinor indices

+, −, late latin indices z, y, ... run over null indices v,
u, and mid latin indices k, l, ... run over all four indices.
The condition that the special null directions be

geodesic means that the tetrad-frame momenta pa

orthogonal to the geodesics satisfy Dpa/Dλ = 0, where
D denotes the covariant derivative, and λ is an affine
parameter. This in turn implies the vanishing of 4 of
the 24 distinct tetrad-frame connections Γklm (recall that
the tetrad-frame connections Γklm, being generators of
Lorentz transformations, are antisymmetric in their first
two indices, Γklm = −Γlkm), namely

Γ+vv = Γ−vv = Γ+uu = Γ−uu = 0 . (1)

These conditions use up four of the six gauge degrees of
freedom of Lorentz transformations of the tetrad. The
two remaining tetrad degrees of freedom correspond to a
Lorentz boost in the vu plane, and a spatial rotation in
the +− plane.
The extrinsic curvatures along the two null directions

v and u are defined in the usual way to be the
two 2 × 2 matrices Γavb and Γaub. The extrinsic
curvatures are tetrad-frame tensors with respect to the
two unfixed gauge degrees of freedom of the tetrad, a fact
proven in Appendix A. Being tetrad-frame quantities,
all tetrad-frame connections Γklm are automatically
coordinate gauge-invariant. The standard definition of
the tetrad-frame Riemann tensor Rklmn, coupled with
the conditions (1), implies the generalized Raychaudhuri
equations for the extrinsic curvatures along each of the
null directions z = v, u (no implicit summation over the
two lowered indices z),

DzΓazb + ΓazcΓ
c
zb +Rzazb = 0 . (2)

The four components of the extrinsic curvature Γazb

along each null direction are commonly decomposed into
a trace part, the expansion ϑz , an antisymmetric part,
the twist̟z, and a traceless symmetric part, the complex
shear σz :

Γ+v− = Γ∗
−v+ ≡ ϑv + i̟v , Γ+v+ = Γ∗

−v− ≡ σv ,
(3a)

Γ−u+ = Γ∗
+u− ≡ ϑu + i̟u , Γ−u− = Γ∗

+u+ ≡ σu .
(3b)

In terms of the expansion, twist, and shear, the general-
ized Raychaudhuri equations (2) along the outgoing null
direction v are

(Dv + ϑv)ϑv −̟2
v + σvσ

∗
v + 4πTvv = 0 , (4a)

(Dv + 2ϑv)̟v = 0 , (4b)

(Dv + 2ϑv)σv + Cv+v+ = 0 , (4c)

where Cklmn is the Weyl tensor, the traceless part of
the Riemann tensor Rklmn. A similar set of equations
holds for the ingoing direction u, with Cv+v+ replaced
by Cu−u− in equation (4c) for the shear. The covariant
derivative Dv in equations (4) can be interpreted as
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acting either on rank-1 vectors ϑv, ̟v, and σv, or on
their rank-3 tensor antecedents, equations (3a); the result
is identical, given conditions (1). In the Raychaudhuri
equation (4a) for the expansion, Einstein’s equations
have been invoked to replace the Ricci tensor Rvv by the
energy-momentum 8πTvv. The energy-momentum Tvv

that goes into the equation for the outgoing expansion
is the ingoing energy flux: if the energy-momentum is
characterized as a sum over streams of particles with
tetrad-frame number currents nk and momenta pk, then
the ingoing energy flux Tvv is

Tvv = T uu =
∑

streams

nupu . (5)

In the BIP scenario of two null shells crossing,
the Raychaudhuri equations (4a) can be integrated
immediately over the crossing shells, leading to the
result that the expansions ϑv and ϑu in the outgoing
and ingoing directions are changed respectively by the
integrals 4π

∫

Tvv dv and 4π
∫

Tuu du over the delta-
function of flux in the opposing direction.
BIP pointed out that the product ϑvϑu of the null

expansions is a tetrad-frame scalar (with respect to the
two unfixed tetrad degrees of freedom), as well as a
coordinate scalar, and they proposed that this product
would define an effective scalar mass function, as it
does in spherically symmetric black holes. In fact for
a (non-inflating) Kerr black hole of mass M• and specific
angular momentum a, the product of the expansions is
(in standard Boyer-Lindquist spheroidal coordinates)

ϑvϑu =
r2(r2+a2)

2(r2 + a2 cos2θ)3

(

2M•r

r2+a2
− 1

)

. (6)

BIP argued that the closer to the inner horizon that
the shells passed through each other, the more blue-
shifted the energy-momentum in the opposite shell would
appear, and therefore the greater the increase of mass.

B. Critique

As BIP acknowledge, their analysis falls short of a
complete description of inflation in rotating black holes.
At least initially, and for small accretion rates, the

assumption that energy-momentum is focused along two
special null directions appears robust, since outgoing and
ingoing particles necessarily focus along the principal null
directions of the Kerr geometry as they approach the in-
ner horizon [11]. It seems highly likely that geodesics will
remain focused, because the Raychaudhuri equation (4a)
indicates that the effect of energy-momentum focused
along the outgoing and ingoing directions is to cause
further focusing (make the expansion more negative).
BIP’s assumption of two thin shells allows the Ray-

chaudhuri equations (4a) to be integrated immediately,
but neglects the effects of twist and shear. Are twist and
shear in fact unimportant? In the conformally separable

solutions of [10–12], inflation was followed by collapse
to an exponentially tiny scale, where rotation reasserted
itself. The finite angular momentum of a null geodesic
bundle is encoded in its twist. The Raychaudhuri
equation (4b) shows that twist is amplified by collapse,
and the Raychaudhuri equation (4a) shows that the
effect of twist is to slow collapse. The Raychaudhuri
equation (4c) shows similarly that shear is amplified
by collapse. Notwithstanding the argument in §III
that shear is probably small, shear will probably also
become important following collapse. Whereas twist
slows collapse, shear speeds it.
This suggests that twist and shear are probably

unimportant prior to collapse, but are likely to become
important following collapse. The subsequent evolution
of the spacetime could be complicated, possibly with
BKL-like behavior [15–19].
A potentially more serious defect is that the BIP

analysis does not take into account the possible back-
reaction of the inflating energy-momenta on the horizon.
In the solutions of [10–12], inflation is followed by
collapse, a fate inaccessible to BIP’s analysis.
Ideally, it would be nice to have an explicit, general

solution that self-consistently follows the evolution of
the spacetime and energy-momentum through inflation
to whatever happens then. The intent of this paper is
to make some proposals about what that solution might
look like.

III. THE ROLE OF GRAVITATIONAL WAVES

In this section it is argued that shear is likely to be
small.
BIP, following [3], suggested that the outgoing energy-

momentum needed for inflation to occur would be
provided by a Price [20] tail of gravitational radiation
generated by the collapse of the black hole. On the
other hand [11] argued that in real astronomical black
holes, direct accretion of baryons and dark matter from
outside the outer horizon provides a continual source
of both outgoing and ingoing streams incident on the
inner horizon, that probably soon overwhelm the Price
tails generated by collapse. Direct accretion of matter
can provide not only ingoing but also outgoing streams.
Although a stream falling through the outer horizon is
necessarily ingoing, it will become outgoing at the inner
horizon if its angular momentum is large enough in the
same direction as the angular momentum of the black
hole.
This raises the question of how important gravitational

waves are in shaping the structure of spacetime during
inflation and thereafter?
One place where gravitational waves play an essential

role is in radiating away the “hair” that a black hole
acquires when it accretes anisotropically. The loss of hair
by gravitational radiation is what makes it reasonable to
treat a slowly accreting black hole as being approximated
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accurately by the Kerr geometry down to near its inner
horizon.

However, from the perspective of what is happening in
the inflationary zone near the inner horizon, gravitational
waves should behave in the high-frequency, geometric-
optics limit, as if they were any other kind of (massless)
particle, as both BIP and [11] argued. Averaged over
regions much larger than a wavelength, the gravitational
wave contribution to the Einstein tensor can be taken
over to the right hand side of the Einstein equations and
reinterpreted as “real” energy-momentum.

Mathematically, the proposition that gravitational
waves behave in the geometric optics limit is equivalent
to the assertion that the high-frequency spin ±2
components of the Weyl tensor vanish when averaged
over the rapidly oscillating field,

〈Cz+z+〉 = 〈Cz−z−〉 = 0 . (7)

It then follows from integrating the Raychaudhuri
equation (4c) that the average high-frequency shear also
vanishes, given that the shear is initially zero, as it is in
the Kerr geometry,

〈σz〉 = 0 . (8)

On the other hand, the absolute value squared of the
high-frequency shear does not vanish on averaging, and
indeed could possibly be substantial,

〈σzσ
∗
z 〉 6= 0 . (9)

This averaged mean square shear (9) makes a contribu-
tion to the Raychaudhuri equation (4a) for the expansion,
behaving effectively as if it were equivalent to energy-
momentum 4πTzz.

The analogous situation in electromagnetism is that
electromagnetic waves behave as photons, in which the
high-frequency components of the electric and magnetic
fields vanish on average, but their squares do not vanish,
and carry energy-momentum.

What about shear at long wavelengths, comparable
to the size of the black hole? For slow accretion, the
geometry away from the inner horizon will be close to
Kerr, which is shear-free. Thus even long-wavelength
shear is likely to be small.

Of course, just as photons can scatter, so also gravitons
can scatter. However, I argue in §VII that scattering
processes are likely to become important only when
center-of-mass collision energies exceed the Planck scale.

IV. SHEAR-FREE EQUATIONS

If shear is negligible, as argued in the previous section
§III, then a more complete set of equations can be
derived, still without any explicit line-element.

A. Equations

As remarked in §II, the 8 tetrad-frame connections
embodied by the extrinsic curvatures along the two null
directions form tetrad-frame tensors with respect to the
two unfixed tetrad gauge degrees of freedom. A further
8 tetrad-frame connections are tetrad-frame tensors,
namely the extrinsic curvatures Γyaz along the angular
tetrad directions a = +,−. The extrinsic curvature along
each angular direction can be decomposed into a trace
part, the expansion ϑa, and an antisymmetric part, the
twist ̟a, analogously to equations (3),

1
2
(Γ+vu + Γ+uv) ≡ ϑ+ , 1

2
(Γ+vu − Γ+uv) ≡ i̟+

(10a)
1
2
(Γ−uv + Γ−vu) ≡ ϑ− , 1

2
(Γ−uv − Γ−vu) ≡ i̟− .

(10b)

Note that ϑ− = ϑ∗
+ and ̟− = ̟∗

+. The angular shears
σa vanish identically, equations (1).
The 16 tetrad-frame connections comprising the

extrinsic curvatures along each of the 4 tetrad axes satisfy
the 16 generalized Raychaudhuri equations

DzΓazk + ΓazbΓ
b
zk +Rzazk = 0 , (11)

where, as before, early latin indices a, b run over spinor
indices +, −, the late latin index z runs over null indices
v, u, and the mid latin index k runs over all four indices.
Only the paired index b with one raised and one lowered
is summed over; the pair of lowered z indices is not
summed over. The 16 equations (11) include 4 whose
terms all vanish identically, namely the equations for the
angular shear Γazz. Equations (11) are valid without any
assumption about the spacetime: they hold given any
arbitrary pair of null geodesic directions, and a tetrad
aligned with them.
Further progress can be made if, as argued in §III,

the shear along the two null directions can be neglected,
equation (8), or equivalently

Γ+v+ = Γ−v− = Γ+u+ = Γ−u− = 0 . (12)

Under the condition (12) of vanishing shear, the extrinsic
curvatures along each of the 4 tetrad directions satisfy a
further 16 generalized Raychaudhuri equations,

DaΓzak + ΓzayΓ
y
ak +Razak = 0 . (13)

The two sets of Raychaudhuri equations (11) and
(13) comprise two distinct sets of 8 non-vanishing
equations for the expansions and twists along each of the
tetrad directions, a total of 16 non-vanishing equations
altogether.
Combining the Raychaudhuri equations (11) and (13),

and invoking Einstein’s equations to replace the Ricci
tensor by energy-momenta, yields 8 Einstein equations,

DzΓ
a
za + Γa

zcΓ
c
za + 8πTzz = 0 , (14a)

DzΓazy +DaΓazb + 2ΓazbΓazy + 8πTza = 0 , (14b)

DaΓ
z
az + Γz

ayΓ
y
az + 8πTaa = 0 . (14c)
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In equation (14b), y is the null index opposite to z, and
b is the spinor index opposite to a.
The Raychaudhuri equations (11) and (13) combine in

a different way to yield an expression for the 4 spin ±1
components Czazy = Cazab of the Weyl tensor,

DzΓazy −DaΓazb + 2Czazy = 0 , (15)

where again y is the null index opposite to z, and b is
the spinor index opposite to a. Altogether the 16 non-
vanishing generalized Raychaudhuri equations comprise
8 Einstein equations, 4 Weyl equations, and 4 twist
equations.
The above equations account for all but 8 of the

equations relating the Riemann tensor to derivatives
of the tetrad connections. The remaining 8 equations
involve the scalar (with respect to the two unfixed degrees
of freedom) components of the tetrad-frame Riemann
tensor. Four of the equations involve only the expansion
and twist connections. Of these, one consitutes an
equation for a combination of the spin 0 polar (real) Weyl
component Cvuvu and the Ricci scalar R, and another
constitutes an equation for the spin 0 axial (imaginary)
Weyl component Cvu+−:

Rv+u− + Rv−u+ = −Cvuvu − 1
6
R (16a)

= Dzϑz +Daϑa + ϑzϑz + ϑaϑa +̟z̟z +̟a̟a ,

Cvu+− = Rvu+− = i (Dz̟z +Da̟a) . (16b)

In equations (16), radial and angular vectors (super/sub-
scripted z and a respectively) are to be interpreted as
lying in their respective 2-dimensional tangent spaces
(thus for example ϑz = {ϑv, ϑu, 0, 0}), and the covariant
derivatives act on the corresponding 2-dimensional space.
The two other equations involving only expansions and
twists are:

Dvϑu −Duϑv = i [(D+ + 2ϑ+)̟− − (D− + 2ϑ−)̟+] ,
(17a)

D+ϑ− −D−ϑ+ = i [(Dv + 2ϑv)̟u − (Du + 2ϑu)̟v] .
(17b)

The remaining 4 Riemann equations include 2 that
determine the remaining scalar components Rvuvu and
R+−+− of the tetrad-frame Riemann tensor. These
two components cannot be expressed solely in terms of
expansions and twists and their covariant derivatives.
Rather, they depend on two further gauge-invariant
quantities that correspond physically to the Lorentz
boost between the affinely-parameterized outgoing and
ingoing null directions, and the spatial rotation angle
between the affinely-parameterized angular directions.
An explicit example will be seen in §V.
If the energy-momenta Tkl are arranged to satisfy

covariant conservation of energy-momentum, as they
should, and if the 8 Einstein equations (14) are satisfied,
then the Einstein tensor will automatically satisfy
covariant conservation, as it should,

DkGkl = 0 . (18)

The conservation equations (18) provide 2 evolution
equations for Gvu (along each of the null directions), and
2 constraint equations for G+− (along each of the spinor
directions), that will be satisfied automatically.

B. Schematic solution of the equations

The equations of the previous subsection, §IVA, were
derived without the benefit of any explicit line-element
or choice of coordinates, the only assumption being that
shear vanishes, as argued in §III. It is helpful to outline
how these equations could in principle be solved.
Suppose that the energy-momenta Tkl are given. As

argued in §VII, outgoing and ingoing streams should
stream through each other collisionlessly at least until
collision energies exceed the Planck scale. As long as
the freely-falling particles remain focused along the null
directions, the energy-momenta will satisfy the hierarchy
of conditions

Tzz ≫ Tza ≫ Taa . (19)

The dominant energy-momenta are those Tzz along
the null directions. Given these, the Raychaudhuri
equations (4a) and (4b), integrated along the outgoing
and ingoing null directions, yield the expansions and
twists ϑz and ̟z along the null directions.
The next largest energy-momenta are the 4 radial-

angular components Tza. Given these, the Einstein
equations (14b), integrated along the outgoing and
ingoing null directions, yield the expansions and twists
ϑa and ̟a along the angular directions. These 4 Einstein
equations essentially express conservation of angular
momentum.
The purely angular energy-momenta Taa are sub-

sub-dominant. The Einstein equations (14c) for Taa

depend on the angular expansions and twists ϑa and
̟a, but since these have already been determined by
equations (14b) for Tza, it should be that, if all is
consistent, the equations (14c) for Taa should be satisfied
identically. If equations (14c) are not satisfied to
adequate accuracy, then it is a signal that the assumption
of vanishing shear is breaking down.
The final two energy-momenta are Tvu and T+−. As

noted in §IVA, if the energy-momenta Tkl are arranged
to satisfy covariant energy-momentum conservation,
as they should, and if all is consistent, then the
Einstein equations for Tvu and T+− should be satisfied
automatically.

V. MODEL LINE-ELEMENT

In this section I propose a particular line-element (20)
that I argue should, during the early phases of inflation,
provide an adequate description of the spacetime of a
rotating black hole that accretes slowly, and undergoes
inflation at (just above) its inner horizon.
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A physical motivation for the line-element (20) is
that the initial effect of inflationary energy-momentum,
which is focused along the principal null directions, is to
generate curvature (tidal accelerations) aligned with the
principal frame. The amount of curvature at any point
varies depending on the amplitude of the inflationary
energy-momentum there, which in turn depends on the
accretion flow into the two principal directions that pass
through the point. The incipient tidal deformation is
encoded in the radial and angular conformal factors ρx
and ρy in the line-element (20).
The line-element (20) is overly simple, §VE, but

permits explicit expressions for the components Gvu

and G+− of the Einstein tensor, equations (35), that
clarify how inflation affects the evolution of the conformal
factors, §VD, and provide the basis for some of the
arguments in the next section, §VI.
I refer to the tetrad frame defined by the line-

element (20) as “principal” even though it is technically
not so (the complex self-dual Weyl tensor is not diagonal
in this frame). The frame is almost principal in the sense
that its null directions are the geodesic continuation of
the Kerr principal null directions, and the spin ±2 (but
not spin ±1) components of the Weyl tensor vanish (so
the Petrov type is general, not Type D).

A. Line-element

The proposed line-element is essentially the Kerr line-
element modulated by two conformal factors, a radial
conformal factor ρx and an angular conformal factor ρy,
each of which could in principle be an arbitrary function
of all 4 coordinates x, t, y, φ:

ds2 = ρ2x

[

dx2

∆x
− ∆x

(1 − ωxωy)2
(dt− ωydφ)

2

]

+ ρ2y

[

dy2

∆y
+

∆y

(1 − ωxωy)2
(dφ− ωxdt)

2

]

. (20)

The expressions in square brackets are those of the Kerr
line-element. The coordinates t and φ are time and
azimuthal coordinates, while the coordinates x and y are
radial and angular coordinates related to the usual Boyer-
Linquist spheroidal coordinates r and θ by

r ≡ a cot(ax) , cos θ ≡ −y . (21)

The quantities ωx and ωy are functions respectively only
of the radial and angular coordinates,

ωx =
a

r2 + a2
, ωy = a sin2θ , (22)

and likewise the radial and angular horizon functions ∆x

and ∆y are functions respectively only of the radial and
angular coordinates,

∆x =
1

r2 + a2

(

1− 2M•r

r2 + a2

)

, ∆y = sin2θ , (23)

where M• is the black hole’s mass.
The situation of interest is near the inner horizon,

where the radial horizon function is negative and tending
to zero, ∆x → −0. The radial coordinate x is
then timelike (and increasing inward, the direction of
increasing proper time), while the time coordinate t is
spacelike.
Since the black hole is slowly accreting, at any given

time, call it t = 0, the line-element from just above
the inner horizon upward should closely approximate the
Kerr line-element, in which case the conformal factors ρx
and ρy are given by their Kerr value

ρx = ρy = ρKerr =
√

r2 + a2 cos2θ . (24)

Because the conformal factors ρx and ρy are allowed to
be functions of time t, the black hole can grow. From
just above the inner horizon inward, inflation accelerates
the conformal factors away from the Kerr value (24).
The line-element (20) generalizes the conformally sep-

arable line-element considered by [10–12]. Specifically,
the transformations (there → here)

ρ → ρy , dx → ρ2x
ρ2y

dx , ∆x → ρ2x
ρ2y

∆x , (25)

bring the conformally separable line-element of [10–12]
to the form (20). The advantage of this transformation
is that, if the conformal factors ρx and ρy are
allowed to be arbitrary, then approximate solutions with
arbitrarily time- and space-dependent accretion flow can
be admitted. The solutions are no longer conformally
separable, so null geodesics are no longer exactly solvable,
but they prove do be solvable to adequate accuracy, §VB.
The line-element (20) defines not only a metric gκλ,

which is an inner product of coordinate tangent vectors
gκ, but also, through

gκ · gλ = gκλ = ηkle
k
κe

l
λ = ekκγk · elλγl , (26)

an inverse vierbein ekκ, and a corresponding orthonormal
tetrad {γx,γt,γy,γφ}, whose inner products form the
Minkowski metric, γk · γl = ηkl. The Newman-Penrose
tetrad {γv,γu,γ+,γ−} corresponding to the orthonormal
tetrad is

γv
u
≡ 1√

2
(γx ± γt) , γ± ≡ 1√

2
(γy ± iγφ) . (27)

B. Geodesics

The low-density, hyper-relativistically counter-
streaming streams in the inflationary zone of a typically
slowly accreting astronomical black hole should behave
collisionlessly, at least until collision energies reach the
Planck scale, §VII. Determining the collisionless energy-
momentum requires solution of the number density
N and tetrad-frame momentum pk along freely-falling
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trajectories. The energy-momentum tensor Tkl will then
be a sum over collisionless streams,

Tkl =
∑

streams

nkpl , (28)

where nk is the number current

nk = Npk . (29)

Conformally separability is the proposition that the
equations of motion of massless particles are Hamilton-
Jacobi separable. The condition is weaker than strict
separability (that is, Hamilton-Jacobi separability for
massive as well as massless geodesics). Whereas strict
separability leads to electrovac and cognate spacetimes
[21], conformal separability, by allowing an arbitrary
overall conformal factor, also admits inflationary solu-
tions [10–12].
The line-element (20) is not conformally separable,

because it has two arbitrary conformal factors instead
of just one. However, under the conditions peculiar
to inflation, namely that motions are hyper-relativistic,
and the radial horizon function ∆x is almost zero,
the spacetime is close enough to being conformally
separable that geodesics, massless or massive, are
given adequately by a Hamilton-Jacobi approximation.
Conformal separability and the accuracy of Hamilton-
Jacobi separation are discussed at length in [11]. Here I
sketch only the main points relevant to the present line-
element (20).
Write the covariant components pk of the tetrad-frame

momentum of a freely-falling particle of mass m in terms
of a set of Hamilton-Jacobi parameters Pk,

{px, pt, py, pφ} =
{

Px

ρx
√
−∆x

,
Pt

ρx
√
−∆x

,
Py

ρy
√

∆y

,
Pφ

ρy
√

∆y

}

, (30)

given by

Pt = πt + πφωx , (31a)

Pφ = πφ + πtωy , (31b)

Px =
√

P 2
t − (ρ2x/ρ

2
y)
[

K +m2(ρ2y − a2 cos2θ)
]

∆x ,

(31c)

Py =
√

−P 2
φ + (K −m2a2 cos2θ)∆y . (31d)

The constants πt, πφ, and K here are the conserved
energy, azimuthal angular momentum, and Carter con-
stant of the particle in the parent Kerr spacetime above
the inner horizon. The Hamilton-Jacobi parameters Pk

differ from the Kerr parameters only in that Px involves
the conformal factors ρx and ρy. The Hamilton-Jacobi
parameter Px itself is chosen so that mass conservation
is respected, pkpk = −m2. That equations (30) and (31)
provide an adequate approximation is plausible from the
fact that the horizon function ∆x is tiny during inflation,

so the factor proportional to ∆x under the square root
in the expression (31c) for Px is small, so the behavior of
the conformal factors ρx and ρy is irrelevant. Conversely,
the Hamilton-Jacobi approximation (30), (31) can be
expected to break down when (ρ2x/ρ

2
y)∆x ceases to be

small. This occurs when the angular conformal factor
ρy has collapsed to the point that rotation becomes
significant, that is, angular motions py, pφ become
comparable to radial motions pt.
In the Hamilton-Jacobi approximation, the number

density N along any collisionless stream satisfies [11]

N ∝ 1− ωxωy

ρ2yPxPy
. (32)

Appendix B confirms that the Hamilton-Jacobi
approximations (30), (31), and (32) are adequately
accurate, as long as (ρ2x/ρ

2
y)∆x remains small.

C. Expansions, twists, Einstein tensor

The line-element (20) satisfies the conditions (1),
(12) of vanishing shear along all 4 tetrad directions.
Consequently all the equations derived in §IV hold for
this line-element. The expansions and twists in the 4
tetrad directions are

ϑz = ∂z ln ρy , (33a)

ϑa = ∂a ln ρx , (33b)

̟v = ̟u = − ρx
√
−∆x

2
√
2ρ2y(1− ωxωy)

dωy

dy
, (33c)

̟+ = ̟− =
ρy
√

∆y

2
√
2ρ2x(1− ωxωy)

dωx

dx
, (33d)

where ∂k denote tetrad-frame directed derivatives (not
coordinate-frame derivatives).
Explicit expressions for the components of the Einstein

tensor not already given in §IVA, namely Gvu and G+−,
can be expressed in terms of ν and µ defined by

ν ≡ ln

(

1− ωxωy

ρx
√
−∆x

)

, µ ≡ ln

(

1− ωxωy

ρy
√

∆y

)

. (34)

The quantity ν is physically the boost angle (logarithm
of the blueshift, or Lorentz γ-factor) of affinely-
parameterized principal null geodesics relative to the
tetrad frame. Affinely-parameterized outgoing and
ingoing principal null geodesics are blueshifted by a factor
e2ν relative to each other. Similarly µ is the spatial
rotation angle of frames parallel-transported along the
angular directions, relative to the tetrad frame. The
components Gvu and G+− of the Einstein tensor are

Gvu = Da∂aµ−Dzϑz −Daϑa

− 2ϑzϑz + 2̟z̟z − ϑaϑa −̟a̟a , (35a)

G+− = −Dz∂zν +Dzϑz +Daϑa

+ ϑzϑz +̟z̟z + 2ϑaϑa − 2̟a̟a . (35b)
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In equations (35), as previously in equations (16),
radial and angular vectors are to be interpreted as
lying in their respective 2-dimensional tangent spaces.
Expressions (35) for the Einstein components Gvu and
G+− generalize equations (10) of [10].

D. Evolution equations for the conformal factors

During inflation, infalling streams become highly
focused along the outgoing and ingoing principal null
directions, and they generate a large streaming energy-
momentum along those directions. The Raychaudhuri
equations (4) then imply that the expansions (but not
twists) along the null directions grow large. For the line-
element (20), the radial expansions are radial gradients
of the angular conformal factor, equation (33a). Thus
during inflation radial gradients grow large, and these
dominate the expressions (35) for Gvu and G+−. The
Einstein equations for the energy-momenta Tvu and T+−
then reduce to

−Dzϑz − 2ϑzϑz ≈ 8πTvu , (36a)

−Dz∂zν +Dzϑz + ϑzϑz ≈ 8πT+− . (36b)

The trace ϑzϑz of the radial expansion is minus twice
BIP’s mass parameter.
As long as the outgoing and ingoing flows counter-

stream collisionlessly, the energy-momenta Tvu and
T+− should be small, so that the right hand sides of
equations (36) can be set to zero. Equations (36)
with vanishing right hand sides effectively generalize
equations (13a) and (13b) of [10], which formed the
principal evolutionary equations of the latter paper.
Note that the latter paper, elaborated by [11], was far
more careful than the present paper. By restricting to
conformally separable solutions, [10] was able to solve
the Einstein equations by separation of variables in
a fashion that encompassed evolution from electrovac
through inflation to collapse down to a tiny scale.
In the inflationary (radial-gradient-dominated) regime,

the Raychaudhuri equation (3a) for Tvv and Einstein
equation (36a) for Tvu can be written

Dv∂vρy ≈ − 4πρyTvv , (37a)

Dv∂uρy ≈ − M
2ρy

+ 4πrTvu , (37b)

where M is the mass function

M ≡ −ρ2yϑ
zϑz . (38)

In the case of spherical symmetry, the corresponding
exact Einstein equations are

Dv∂vr = − 4πrTvv , (39a)

Dv∂ur = − M

r2
+ 4πrTvu , (39b)

where r ≡ ρy is the circumferential radius, and M is the
interior mass,

M ≡ r3

2
(Da∂aµ− ϑzϑz) . (40)

The spherically symmetric Einstein equation (39b)
differs from the radial-gradient-dominated Einstein equa-
tion (37b) by the inclusion of the sub-dominant term
Da∂aµ = 1/r2 in the interior mass M , equation (40).
Equations (39) are equivalent to the spherically symmet-
ric equations (8) of [5], which constituted the principal
evolutionary equations of the latter reference.
Thus in the inflationary (radial-gradient-dominated)

regime, the equations governing the evolution of the
radial expansions, either (36) or (37), coincide (modulo
sub-dominant terms) with the spherically symmetric
equations.
With the expression (33a) for the expansion ϑz and

(34) for the boost ν, the Einstein equations (36) combine
to yield

Dz∂z ln

(

ρxρ
1/2
y

ρ
3/2
Kerr

)

≈ 4π (Tvu + 2T+−) . (41)

In deriving (41), use has been made of the fact that Gvu

and G+−, equations (35), vanish identically for Kerr, and
that the radial horizon function ∆x in ν, equation (34),
is the Kerr horizon function (23) (as long as ∆x is a
function only of x, it can be set equal to the Kerr value
by a gauge transformation of the coordinate x and the
conformal factor ρx). If the flow is collisionless, so that
Tvu and T+− remain small, then, given the boundary
conditions that the conformal factors are initially equal
to the Kerr value, equation (24), equation (41) integrates
to

ρxρ
1/2
y

ρ
3/2
Kerr

≈ constant . (42)

E. Limitations

An obvious defect of the line-element (20) is that the
Kerr parameters are fixed (in comoving coordinates).
The arbitrary conformal factors allow the black hole
to grow conformally, so the black hole mass M• can
grow and the specific angular momentum along with it,
a ∝ M•. In reality however the angular momentum of
a black hole will evolve arbitrarily (but slowly) in both
magnitude and direction as the black hole accretes, which
conformal growth does not admit.
The slow variation of the Kerr parameters of a slowly

accreting black hole is potentially relevant to inflation
because, even though an outgoing or ingoing infaller
experiences an extremely short proper time during
inflation, they can see a considerable time go by on
the highly blueshifted opposing stream [5]. An outgoing
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infaller sees ingoing particles accreted in the future, while
an ingoing infaller sees outgoing particles accreted in the
past, at times when the Kerr parameters of the black hole
could differ appreciably.
A second limitation of the line-element (20) is that it

imposes that the radial expansion ϑz be pure gradient,
equation (33a). The condition means that the expansion
must be integrable: the angular conformal factor ρy can
be obtained by integrating the expansions along either of
the outgoing and ingoing null directions, and the same
value of ρy must be recovered regardless of the integration
path. Consider the angular hypersurface inside the black
hole defined by the intersection of outgoing and ingoing
null streams accreted when the Kerr conformal factor
of the black hole was respectively ρout and ρin. As
long as gravitational waves keep the slowly accreting
black hole close to hairless above its inner horizon, the
ratio ρin/ρout is independent of angular position. This
condition is not a problem during early inflation when the
conformal factors are still near their initial Kerr value,
equation (24), but it becomes a serious constraint as
inflation develops. The integrability condition on the
conformal factor ρy translates into a condition that the
ingoing and outgoing fluxes Tvv and Tuu must balance in
a fashion that is consistent over all angular positions.
The above defects both point to the fact that, even

if shear is in fact small, gravitational waves cannot be
neglected in a proper treatment of inflation inside an
arbitrarily accreting black hole. It is gravitational waves
that mediate the slow adjustment of the parent Kerr
black hole from one angular momentum configuration to
another. And it is gravitational waves that keep the black
hole close to hairless above its inner horizon.
In practice these defects may after all be unimportant.

If Planck scale collisions intervene, as argued in §VII,
then a stream sees only a few hundred black hole crossing
times elapse on the opposing stream before hitting the
Planck wall. This is short enough that the slow evolution
of the parent Kerr geometry should be unimportant.

VI. PHYSICAL PICTURE

The physical picture that emerges from the arguments
and equations in §III–§V is consistent with that of BIP.

A. Picture

The geodesics of the line-element (20), §VB, support
the idea that collisionless outgoing and ingoing streams
remain focused along the geodesic continuation of the
principal null directions, at least until the spacetime
has collapsed to the point that the intrinsic angular
momentum of a stream causes rotation to become
important.
Inflationary energy-momentum focused along the

principal null directions produces a tidal gravitational

acceleration that tends to contract the angular conformal
factor ρy and elongate the radial conformal factor ρx in
a 2 to 1 ratio, equation (42),

ρx ∝ ρ−1/2
y . (43)

For a typically slowly accreting black hole, the
blueshift between outgoing and ingoing streams ap-
proaching the inner horizon grows so rapidly that
the spacetime does not have time to react to the
enormously growing tidal acceleration. During inflation,
the conformal factors ρx and ρy are hugely accelerated
(large second radial derivatives), and start to change
rapidly (large first radial derivatives), but still the
conformal factors themselves have hardly changed from
their initial Kerr values. In effect, inflation produces an
explosion of acceleration so rapid that it initially leaves
the Kerr spacetime unchanged. The fact that volume
elements are initially little distorted despite the enormous
tidal acceleration was first pointed out by [13]. The
enormous (in due course super-Planckian) tidal force yet
little distortion is commonly characterized as a “weak
null singularity.”
If a black hole continues to accrete, as is always true

in reality, and if the issue of super-Planckian curvature is
set aside, then the end result of inflationary acceleration
is collapse, not a null singularity [5]. Whether the
acceleration causes inflation or collapse can be read
off from the Einstein equations (37). These equations
are essentially the same as those governing inflation in
spherical black holes, equations (8) of [5]. As argued in
that paper, collisionless counter-streaming tends to drive
exponentially growing acceleration, while mass (the M
term in equation (37b)) tends to cause collapse. The
reader is referred to [5] for a more detailed exposition.

B. Is inflation similar to that in spherical

symmetry?

BIP advanced “tentative” arguments that inflation
in rotating black holes would be similar to that in
spherically symmetric black holes. Is it true?
From the perspective of an infaller, inflation takes

place over an extremely short proper time. Consequently
infallers belonging to the same (outgoing or ingoing)
stream are causally connected over only an extremely
short proper distance. During inflation, the blueshift
of the opposing stream increases exponentially, and the
proper time decreases inversely with the blueshift. An
infaller sees approximately one black hole crossing time
elapse on the opposing stream for each e-fold of blueshift
[5]. Thus the evolution of the spacetime in any angular
patch is determined only by the causal domain of that
patch, which becomes increasingly narrow as inflation
develops.
The results of §V support the idea that inflation in

any angular patch behaves as in spherical symmetry.
During early inflation, inflationary energy-momentum at
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any point produces an enormous tidal acceleration that
depends only on the energy-momentum passing through
that point. The tidal acceleration increases exponentially
while the underlying volume element remains scarcely
distorted. Once inflation gives way to collapse, it is
plausible that volume elements will simply react as they
have been accelerated: they will collapse in the angular
direction and stretch in the radial direction. In this
picture, the behavior in any angular patch is entirely local
to that patch.

The effect of departures from uniform angular behavior
can be assessed from the Raychaudhuri-Einstein equa-
tions (14b), which determine how the angular momentum
of accreting matter affects the angular momentum of the
black hole. Note that, as mentioned in §VE, the line-
element (20) is inadequate to follow the evolution of the
angular momentum of the black hole. Applied to the line-
element (20), the Raychaudhuri-Einstein equations (14b)
merely force the accreting matter to have an angular
momentum consistent with that of the black hole.

Departures from uniform angular behavior arise from
two causes: first, accretion with angular momentum
per unit mass mismatched, in amplitude or direction,
from that of the black hole; and second, accretion at
different rates at different angular positions. The two
causes provide two of the source terms, namely Tza and
DaΓazb, in the Raychaudhuri-Einstein equations (14b)
governing the evolutionDzΓazy of the angular expansions
and twists.

Since angular energy-momenta Tza are sub-dominant
to radial energy-momenta Tzz, order unity differences
in the angular energy-momenta should have little effect
on the dominant radial evolution of the spacetime (the
radial tidal distortion). That the effect should be small is
supported by the solutions of [10, 11], in which inflation
was followed by collapse, and rotation became important
only after the geometry had collapsed to an exponentially
tiny scale. Since the specific angular momentum of
accreted matter cannot be much larger than that of the
black hole, otherwise the matter would not be accreted, it
follows that the angular momentum Tza cannot be large
enough to affect radial evolution substantially.

Accretion at different rates at different angular
positions could potentially have a larger effect. Larger
accretion rates cause more rapid collapse. Order unity
angular gradients in the incident accretion flow translate
into order unity differences across a causal angular patch.
As with the accreted angular momentum Tza, order unity
differences should not have much effect. But it is easy to
think of situations, such as where accretion is confined
to delta-functions of angular location, where angular
gradients are large.

Gravitational waves are likely to be generated most
strongly where accretion is most anisotropic. Gravita-
tional waves should effectively spread out the accretion
flow, by transforming some of the accretion energy
into a collisionless fluid of gravitons more uniformly
distributed over the inner horizon of the black hole.

Thus gravitational waves should set an upper limit on
anisotropy. It is not clear that the large angular gradients
needed to produce significant departures from quasi-
spherical collapse can be sustained in the presence of
smoothing by gravitational waves.
While these arguments are not conclusive, they tend

to support BIP’s proosal that angular anisotropy plays a
sub-dominant role in inflation in rotating black holes.

C. Ori

In one of the few studies of inflation in rotating black
holes, Ori [8, 9] considered the situation of a rotating
black hole that collapses and then remains isolated, in
which case a Price tail of gravitational radiation provides
the outgoing and ingoing streams that drive inflation. To
the extent that gravitational waves can be treated as a
collisionless fluid of gravitons, the situation considered by
Ori can be compared to the results of the present paper.
Ori argued that perturbations of the geometry in

the inflationary zone at the inner horizon would have
some simplifying features. This is at least qualitatively
consistent with two simplifying features of inflation noted
in the present paper, namely that geodesics focus along
the principal null directions of the parent Kerr geometry
regardless of their orbital parameters, and that the
effect of inflation is to generate large accelerations that
leave the underlying Kerr spacetime at least initially
unchanged.
Ori’s principal conclusion was that the resulting null

singularity in a rotating black hole would differ from
that in a spherical black hole by being oscillatory. The
oscillations would be dominated by quadrupole radiation,
the lowest order of gravitational waves. The natural
interpretation of this conclusion in the context of the
present paper is that the quadrupole oscillations are
the tail end of the Price tail of gravitational radiation
witnessed by an infaller. Although the gravitational
waves have a quadrupole angular pattern over the black
hole, an infaller will see these waves hugely blueshifted,
and concentrated into an intense, narrow beam focused
along the opposing principal null direction.

VII. PLANCK WALL

At what point does the classical general relativistic
description of inflation fail because of quantum grav-
itational effects? [5] pointed out that in a typical
astronomical black hole, Planck-scale physics is first
encountered in collisions between outgoing and ingoing
particles, which reach Planck center-of-mass energies well
before the curvature hits the Planck scale. The purpose
of this section is to explore this idea to see where it leads.
The units in this section are Planck units, c = G = ~ = 1.
It is widely expected that collision cross-sections

will become gravitational at super-Planckian energies
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and therefore increase rapidly with energy, increasing
approximately as the horizon radius squared of a
black hole whose mass equals the center-of-mass energy
[22–25]. By contrast, total cross-sections for non-
gravitational processes are dominated by small-angle
scattering, and increase more slowly. Total cross-sections
for electromagnetic inelastic scattering (bremsstrahlung)
increase no faster than logarithmically with energy [26,
27]. Total cross-sections for short-range interactions,
such as the nuclear force, are limited by unitarity to
increasing no faster than the logarithm squared of the
center-of-mass energy, the Froissart bound [28–32]. In
the absence of collisions, inflation would easily accelerate
outgoing and ingoing particles far above Planck center-
of-mass energies. Thus if collision cross-sections do
increase rapidly above the Planck scale, then inevitably
inflation will reach a “Planck wall” where collisions
become important, and presumably lead to a burst of
entropy production.
According to the arguments of [5], if collisions convert

sufficient streaming energy into center-of-mass energy,
then exponential inflationary growth will cease, and the
spacetime will collapse.
The blueshift of either of the outgoing or ingoing

streams relative to the center-of-mass frame is eν . For
brevity denote this blueshift by u,

u ≡ eν . (44)

During inflation, the blueshift u increases exponentially.
By the estimate of [11], in the absence of collisions, and

for an accretion rate of Ṁ•, inflation gives way to collapse
when the blueshift reaches the maximum value

umax ≈ e−1/Ṁ• . (45)

For a typically slowly accreting black hole, the accretion
rate is small, Ṁ• ≪ 1, and the maximum blueshift umax

is exponentially huge. For collision energies to reach the
Planck scale before collapse, the accretion rate must be
smaller than about 0.01,

Ṁ• . 0.01 . (46)

If the accretion rate is larger, such as may happen
when the black hole first collapses, or during a black
hole merger, then the spacetime will collapse before the
blueshift inflates to the Planck scale, and the situation
envisaged in this section will not occur.
The proper time τ experienced in the center-of-mass

frame as the blueshift increases by one e-fold is the black
hole crossing time M• divided by the blueshift u,

τ ≈ M•/u . (47)

The proper time τcoll in the center-of-mass frame for an
outgoing or ingoing particle to collide with a particle in
the opposing stream is

τcoll ≈
1

nuσ
≈ mM2

•
Ṁ•uσ

, (48)

where n is the proper number density of particles in the
opposing stream (in the latter’s own frame), and σ is
the collision cross-section. The proper number density n
equals the accretion rate Ṁ•, multiplied by the density of
the black hole, which is M−2

• , divided by the rest mass m

of the particle, n ≈ Ṁ•/(M
2
•m). The collision time (48)

is less than an inflation time (47) if the cross-section σ
exceeds the critical cross-section σc given by

σc ≈
mM•

Ṁ•
≈ 10 fb

Ṁ•

( m

1TeV

)

(

M•
106M⊙

)

, (49)

where a femtobarn 1 fb = 10−43m2 is about a weak
interaction cross-section.
Nature will provide a broad range of accretion rates

Ṁ•. In a “typical” situation where the accretion rate
is small but not too small, the collision time will be
shorter than an inflation time for electromagnetic and
strong interactions, but longer than an inflation time for
weak interactions. In this situation, collisions will keep
baryons, electrons, and photons tightly coupled, forcing
them into a common outgoing or ingoing stream before
inflation ignites. Magnetohydrodynamic processes will
contribute to keeping the baryonic plasma tightly coupled
[33, 34]. On the other hand particles that interact only
by weak interactions or gravity, such as dark matter
particles or gravitons, can occupy the opposing stream,
and stream relativistically through the baryonic stream
without collisions, driving inflation.
If the accretion rate Ṁ• is large enough, and if

dark matter particles are weakly interacting, then
electroweak-scale collisions could lead to significant
entropy production. Currently only upper limits to cross-
sections between dark matter particles and baryons are
known [41–43].
Since wavelengths decrease inversely with momentum,

unknown processes with thresholds at higher (sub-
Planckian) energies will probably have correspondingly
smaller cross-sections, and will probably not contribute
significantly to collisions. Given the slow increase of
non-gravitational cross-sections with energy, inflation
will typically blueshift up to the Planck energy without
meeting a major collisional barrier.
Above a Planck energy, cross-sections increase grav-

itationally. The Planck wall will be reached when
the gravitational cross-section exceeds the critical cross-
section (49). Notwithstanding the lack of a robust theory
of quantum gravity, the common expectation is that
super-Planckian collisions will lead to the production of
mini black holes [22–25, 44–48]. Hereafter I will refer
to the product of a super-Planckian collision as a proto
mini black hole, or pmbh. If the Planck energy is at the
standard value 1016TeV, then the mass of a pmbh at the
Planck wall is m• ≈ √

σc, or

m• ≈
√

mM•

Ṁ•
≈ 1014
√

Ṁ•

( m

1TeV

)1/2
(

M•
106M⊙

)1/2

.

(50)
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Modulo a factor of Ṁ
−1/2
• , the mass m• of the pmbh

is the geometric mean of the masses m and M• of the
colliding particle and the parent black hole. The collision
energy of m• & 1014 Planck masses is large compared
to any collision process one could imagine happening
elsewhere in the Universe.
At the Planck wall, the blueshift uwall is

uwall ≈
m•
m

≈ 1030
√

Ṁ•

( m

1TeV

)−1/2
(

M•
106 M⊙

)1/2

, (51)

and the proper time τwall for the blueshift to increase one
e-fold is

τwall ≈
M•
uwall

≈ m•Ṁ•

≈ 1014
√

Ṁ•

( m

1TeV

)1/2
(

M•
106M⊙

)1/2

, (52)

which is larger than a Planck time if the accretion rate
is not too tiny, Ṁ• & 10−28. Regardless of whether
inflation continues or gives way to collapse, the time
τwall sets the characteristic proper time remaining before
the background spacetime comes to an end (or at least,
the spacetime reaches Planck density). The proper time
τwall, equation (52), is less than of the order of the
crossing time m• of the pmbh. Thus the pmbh does not
have time to express itself as a black hole, which takes
several crossing times. The pmbh certainly does not have
time to evaporate by Hawking radiation, which takes a
time m3

•. Meanwhile, the mass density of the background
spacetime is

mnu2
wall ≈

Ṁ•
M•m

≈ 1

m2
•
, (53)

which is already the density of the putative pmbh.
Does a collision actually occur, if the pmbh does not

have time to express itself as a black hole? Yes. In the
center-of-mass frame, the colliding outgoing and ingoing
particles are Lorentz-contracted to size 1/(mu), and it
takes that proper time for the particles to pass by each
other,

τpass ≈
1

m•
, (54)

which is short compared to the time τwall available.
The fact that super-Planckian collisions do occur

indicates that entropy production takes place, but the
fact that there is not enough time for the collision
products to express themselves as mini black holes
indicates that the situation is messy. One possibility
is that entropy production might lead to a stringy
Hagedorn phase [49, 50].
String theory predicts the existence of higher dimen-

sions. It has been speculated that if some of the
extra dimensions are large, then the fundamental Planck
energy could be as low as 1TeV [51], and that super-
Planckian collisions could create higher-dimensional mini

black holes with radii between the fundamental Planck
scale and the scale of the large extra dimensions [22–
25]. If this scenario is correct, then the critical cross-
section (49) still sets the radius of pmbhs at the Planck
wall, but their mass m• will be smaller (though still
necessarily super-Planckian). Their dimensionality will
be the number of dimensions larger than the radius of the
critical cross-section. The possibility of extra dimensions
does not change the conclusion that inflation will meet a
Planck wall where collisions become important.
Before hitting the Planck wall, the inflationary zone

of the black hole behaves like a particle accelerator,
accelerating twin beams of particles through each
other, and conducting numerous collision experiments
at energies up to m•. Even highly improbable collision
events might occur.

VIII. CONCLUSIONS

In this paper I have presented a number of proposals
about how inflation should develop inside a rotating black
hole accreting slowly but in an arbitrary time- and space-
dependent fashion.
As shown by [11], particles freely-falling in the parent

Kerr geometry of a rotating black hole become highly
focused along the principal outgoing and ingoing null
directions as they approach the inner horizon, regardless
of their initial orbital parameters. If the Kerr geometry
remained unchanged, then the streaming energy of the
outgoing and ingoing streams would diverge at the inner
horizon. In practice, the energy-momentum focused
along the principal null directions produces a tidal
acceleration that tends to collapse angular directions
and stretch radial directions. For a slowly accreting
black hole, the proper timescale over which the streaming
energy grows is so short that the tidal acceleration grows
exponentially huge before volume elements actually begin
to distort, as first pointed out by [13]. In due course the
enormous acceleration leads to collapse of the angular
directions. Because of the extremely short proper time,
angular patches are causally connected over extremely
short proper distances, so the acceleration and collapse
of an angular patch depends only on the streaming energy
local to that patch.
The arguments of the present paper generally support

BIP’s [7] proposal that inflation in rotating black
holes would evolve similarly to that in spherical black
holes. Yet it is surprisingly difficult to demonstrate this
proposal conclusively. In §III I argue that during inflation
gravitational waves should behave like a collisionless fluid
of gravitons, and consequently that the spacetime should
be almost shear-free, as it is in the parent Kerr geometry.
But even if the spacetime is shear-free, gravitational
waves still play a crucial role both in keeping the parent
Kerr black hole almost hairless as it evolves slowly from
one angular momentum configuration to another, and in
smoothing the angular distribution of accretion energy
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when the accretion flow is highly anisotropic.
It would be desirable to test the proposals of

the present paper with full 4-dimensional numerical
simulations. Such simulations will not be easy. One
challenge is that inflation generates enormous spatial
and temporal gradients. A second challenge is the need
to model outgoing and ingoing streams that counter-
stream relativistically. A third challenge is how to
treat gravitational waves both in the familiar regime
where they radiate away a black hole’s hair, and in the
inflationary regime where they behave effectively like a
collisionless fluid. A final difficulty in comparing theory
to simulation is that theoretical arguments are simplest
when accretion rates are small, but numerical simulations
should be easiest in the opposite regime, when accretion
rates are high. It may help to work in a double-null
2+2 formalism, since the physics in any angular patch is
that of two effectively null streams streaming through
each other. Since angular patches become causally
disconnected from each other as inflation progresses, it
may help to confine the simulations to one causal patch.
As pointed out by [5], center-of-mass collision energies

between outgoing and ingoing particles will hit the
Planck energy well before the curvature reaches the
Planck scale. It is thought that collision cross-sections
will become gravitational, and therefore increase rapidly,
at super-Planckian collision energies [22–25]. If so,
then inflation will reach a “Planck wall” where the
collision time is less than the inflation time. In a
typical supermassive black hole, the collision energy at
the Planck wall is & 1014 Planck masses, equation (50).
It is thought that super-Planckian collisions will lead to

the formation of mini black holes [22–25], but that does
not happen here because the timescale for the spacetime
to collapse is less than the size of a nascent mini black
hole. Collisions do actually occur, since the collapse
timescale is easily long enough to allow two colliding
particles to pass by each other. Presumably collisions
lead to entropy production, but the situation appears
complicated. Qualitatively, entropy production should
bring inflation to an end and precipitate collapse [5]. It is
possible that collisions might lead to a stringy Hagedorn
phase [50].
Prior to hitting the Planck wall, inflation acts like a

particle accelerator of extraordinary power. It appears
inescapable that Nature is conducting vast numbers of
collision experiments over a broad range of peri- and
super-Planckian energies in large numbers of black holes
throughout our Universe. Does Nature do anything
interesting with this extravagance – such as create baby
universes – or is it merely a final hurrah en route to
nothingness?
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Appendix A: Proof that extrinsic curvatures are

tetrad-frame tensors

The tetrad frame is fixed so that the outgoing and
ingoing null axes γv and γu point along the special
outgoing and ingoing null geodesic directions. The
remaining unfixed tetrad gauge transformations are a
Lorentz boost in the vu plane, which transforms

γv → eνγv , γu → e−ν
γu , (A1)

and a spatial rotation in the +− plane, which transforms

γ+ → eiµγ+ , γ− → e−iµ
γ− . (A2)

Tetrad-frame connection coefficients are defined by
Γklm ≡ γk · ∂mγl. In particular, the extrinsic curvature
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component Γ+v− (for example) is defined by

Γ+v− ≡ γ+ · ∂−γv . (A3)

Upon a tetrad transformation (A1) and (A2), the only
potentially non-tensorial contribution to the transforma-
tion of the extrinsic curvature component (A3) is

γ+ · γv ∂−e
ν , (A4)

but this vanishes because the angular and null axes γ+

and γv are orthogonal. A similar argument applies to
each of the 16 components of the extrinsic curvatures
in each of the 4 tetrad directions. Thus the extrinsic
curvatures form tetrad-frame tensors as claimed.

Appendix B: Accuracy of the Hamilton-Jacobi

approximation for geodesics

This Appendix confirms the accuracy of the the
Hamilton-Jacobi approximation (30), (31) for particles
moving in the spacetime defined by the line-element (20).
For simplicity and brevity, the demonstration is re-
stricted to massless particles. It is clear physically that,
under the hyper-relativistic conditions characteristic of
inflation, the motions of massive particles should be
well-approximated by those of massless particles, as is
demonstrated explictly by [11] for the case of conformally
separable spacetimes.
For a massless particle, m = 0, the Hamilton-Jacobi

approximation (30), (31) to the tetrad-frame momentum
pk of a freely-falling particle yields the following
expressions for the covariant derivatives Dpk/Dλ with
respect to affine parameter λ along the trajectory:

pk
Dpk
Dλ

= 0 , (B1a)

Dpk
Dλ

=
K
ρ2y

∂k ln

(

ρx
ρy

)

(k = t, y, φ) . (B1b)

The covariant derivatives would vanish if the path
were exactly geodesic; they do not vanish because
the Hamilton-Jacobi approximation is not exact. The

covariant derivatives do vanish along the principal null
directions, which have vanishing Carter constant, K = 0.
The covariant derivatives would also vanish if the two
conformal factors were equal, ρx = ρy, which is the
conformally separable case.
The Hamilton-Jacobi approximation (30), (31) can

be considered adequate if, integrated along the path
of a particle, the difference ∆pk between the approx-
imate Hamilton-Jacobi momentum pk, which satisfies
equations (B1), and the true momentum, which satisfies
Dpk/Dλ = 0, is small, ∆pk ≪ pk. Appendix D
of [11] gives general criteria by which such integrals
may be judged small. The integrals of equations (B1b)
easily satisfy those smallness criteria (specifically, the
parameters α and β in Appendix D of [11] are α = 0,
β = −1 for py and pφ, and α = 1/2, β = −5/2 for pt).
The Hamilton-Jacobi approximation to the number

density N along a collisionless stream is given by
equation (32). The corresponding number current nk,
equation (29), satisfies

1

N
Dknk = −

[

P 2
x − P 2

t

P 2
x

pt∂t

+
P 2
x + P 2

t

P 2
x

(

py∂y + pφ∂φ
)

]

ln

(

ρx
ρy

)

. (B2)

The true number current should be covariantly con-
served, Dknk = 0; the Hamilton-Jacobi number current
is not conserved, equation (B2), because the Hamilton-
Jacobi approximation is not exact. Since

d lnN

dλ
=

1

N
Dkn

k −Dkp
k , (B3)

and the momentum pk has already been checked to
be given accurately by the Hamilton-Jacobi approxima-
tion (30), (31), the Hamilton-Jacobi approximation (32)
to the number density N can be deemed adequate if the
right hand side of equation (B2), integrated over the path
of a particle, is small. Again, the integral easily satisfies
the smallness criteria given in Appendix D of [11] (the pt

term on the right hand side has α = 1, β = 0, while the
py and pφ terms have α = 1/2, β = −3/2).


