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Inside charged black holes. II. Baryons plus dark matter
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This is the second of two companion papers on the interior structure of self-similar accreting charged
black holes. In the first paper, the black hole was allowed to accrete only a single fluid of charged baryons.
In this second paper, the black hole is allowed to accrete in addition a neutral fluid of almost non-
interacting dark matter. Relativistic streaming between outgoing baryons and ingoing dark matter leads to
mass inflation near the inner horizon. When enough dark matter has been accreted that the center-of-mass
frame near the inner horizon is ingoing, then mass inflation ceases and the fluid collapses to a central
singularity. A null singularity does not form on the Cauchy horizon. Although the simultaneous presence
of ingoing and outgoing fluids near the inner horizon is essential to mass inflation, reducing one or the
other of the ingoing dark matter or outgoing baryonic streams to a trace relative to the other stream makes
mass inflation more extreme, not the other way around as one might naively have expected. Consequently,
if the dark matter has a finite cross section for being absorbed into the baryonic fluid, then the reduction of
the amount of ingoing dark matter merely makes inflation more extreme, the interior mass exponentiating
more rapidly and to a larger value before mass inflation ceases. However, if the dark matter absorption
cross section is effectively infinite at high collision energy, so that the ingoing dark matter stream
disappears completely, then the outgoing baryonic fluid can drop through the Cauchy horizon. In all cases,
as the baryons and the dark matter voyage to their diverse fates inside the black hole, they only ever see a
finite amount of time pass by in the outside universe. Thus the solutions do not depend on what happens in
the infinite past or future. We discuss in some detail the physical mechanism that drives mass inflation.
Although the gravitational force is inward, inward means opposite direction for ingoing and outgoing
fluids near the inner horizon. Mass inflation is driven by a feedback loop in which the general relativistic
contribution to the gravitational force sourced by the radial pressure accelerates the ingoing and outgoing
fluids through each other, which increases the radial pressure, which increases the gravitational force.
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I. INTRODUCTION

This is the second of two companion papers on similar-
ity solutions for the interior structure of spherically sym-
metric charged black holes.

In a seminal paper, Poisson and Israel [1] showed that if
ingoing and outgoing fluids are allowed to pass through
each other inside a charged black hole, then the generic
consequence is ‘‘mass inflation’’ as the counterstreaming
fluids approach the inner horizon. During mass inflation,
the interior mass, the Misner-Sharp mass [2], a gauge-
invariant scalar quantity, exponentiates to an enormous
value. The phenomenon of mass inflation has been con-
firmed analytically and numerically in many papers [3–9].

In the first paper of this pair, hereafter Paper 1 [10], the
black hole was allowed to accrete a relativistic fluid of
charged baryons. The baryons did not undergo mass in-
flation, precisely because, by construction, the single com-
ponent baryonic fluid considered there was either ingoing
or outgoing, not both.

In the present paper we allow the black hole to accrete,
in addition to a charged baryonic fluid, a pressureless
neutral ‘‘dark matter’’ fluid, which one can imagine as
being cold dark matter, or hot dark matter (neutrinos), or
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even high frequency gravitational waves. The dark matter
particles may be either massive or massless; it does not
change the character of the solutions. The important thing
is that the dark matter passes freely through the baryons,
for the most part interacting with the baryons only by
gravity, although we do consider what happens if the
dark matter has a finite cross section for absorption by
the baryons. As expected, relativistic counterstreaming
between baryons and dark matter leads to mass inflation
near the inner horizon.

Analytic and numerical work on spherically symmetric
collapse and mass inflation has commonly modeled the
fluid accreted by a black hole as a massless scalar field,
usually uncharged [4–8,11–19], but also charged [20–25].
A key property of a massless scalar field is that it allows
waves to counterstream relativistically through each other,
which allows mass inflation to occur.

In the present paper we choose to adopt a somewhat
different approach. A driving motivation for this paper and
its companion, Paper 1, was to enquire what happens inside
an astronomically realistic black hole, and it has seemed to
us that a mix of baryons and dark matter might offer a more
realistic description than a massless scalar field. Besides
this, we wanted the freedom to explore what happens if the
parameters of the model are changed: the electrical con-
ductivity of the baryons (considered in Paper 1), massive
versus massless dark matter, the ratio of accreted dark
-1  2005 The American Physical Society
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matter to baryonic density, or the interaction cross section
between dark matter and baryons.

As in Paper 1, our goal is not so much to study the
formation of a black hole by gravitational collapse, but
rather to explore the interior structure of black holes after
their formation. We have in mind the situation of a realistic
astronomical black hole, perhaps stellar sized, perhaps
supermassive, which is being fed by accretion of matter.

In a supermassive black hole especially, the mass that
the black hole acquires by gradual accretion over the
course of millions or billions of years can greatly exceed
the mass of the seed black hole, formed perhaps from the
collapse of the core of a massive star. Under such circum-
stances it is reasonable to expect that the bulk of the
interior structure of the black hole is determined by the
accretion history, rather than by the details of the initial
collapse event.

The situation considered in the present paper is in a
sense the opposite to that considered by Poisson and
Israel [1] and others [3,4,7–9,20], who supposed that in-
going radiation or scalar field falling into a preexisting
charged black hole would encounter a Price tail
[8,20,26,27] of outgoing radiation generated during gravi-
tational collapse. Because the black holes considered in the
present paper are assumed to accrete self-similarly into the
indefinite future, the theorems recently proven by
Dafermos [20] concerning the collapse of isolated self-
gravitating systems and the decay of Price tails do not
apply. In the present paper, accreted charged baryons are
repelled by the charge of the black hole self-consistently
produced by previously accreted baryons, and naturally
become outgoing. Any outgoing Price tail of radiation
generated by gravitational collapse would soon be over-
whelmed by the accreted charged baryons. For example, a
black hole destined to become a quasar might radiate a
fraction of a solar mass in a Price tail at the time it forms
from the core collapse of a massive star, but may subse-
quently accrete 108 solar masses or more of baryons.

Since the bulk of the fluid inside the black hole is
naturally outgoing, to produce mass inflation the black
hole must be allowed to accrete a (small amount of) fluid
which remains ingoing, and which streams more or less
freely through the outgoing baryons. Dark matter fits the
description nicely.

Many previous papers have found that the collapse of a
massless scalar field into a charged black hole produces not
only a strong spacelike singularity at zero radius but also a
weak null singularity at finite radius along the Cauchy
horizon [3–5,7,9,17,22,23,28], as already anticipated by
Poisson and Israel [1]. A null singularity does not form in
the similarity solutions. Why this should be is discussed in
Sec. V E.

An important question considered in the present paper is
what happens if dark matter and baryons have a finite cross
section for interaction at high energy. For mass inflation to
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persist, and, in particular, for a null singularity to form on
the Cauchy horizon, it is necessary that counterstreaming
ingoing and outgoing fluids accelerate to arbitrarily close
to the speed of light (or become arbitrarily highly blue-
shifted, for massless streams) relative to each other. This
raises the question of whether it is physically realistic to
allow counterstreaming at arbitrarily large Lorentz factors.
To address this question, we explore the consequences of
allowing the dark matter to have a nonzero cross section for
absorption by baryons at high collision energy.

The structure of this paper is as follows. Section II,
which is a follow-on to Sec. II of Paper 1, presents the
general relativistic equations governing the interior and
exterior structure of a spherically symmetric black hole
that accretes dark matter in addition to charged baryons.
Section III brings in the hypothesis of self-similarity, and
sets out the equations that follow from that hypothesis,
generalizing Sec. III of Paper 1. Section IV gives results for
self-similar black holes accreting baryons and dark matter.
Section V discusses the physical question of why mass
inflation occurs. Section VI addresses the question of what
it would actually look like if you fell into one of the black
holes described herein. Finally, Sec. VII summarizes the
findings of this paper.
II. EQUATIONS

This section presents the general relativistic equations
governing a spherically symmetric black hole accreting
almost noninteracting dark matter in addition to charged,
electrically conducting baryons. The required formalism
has already been developed for the most part in Sec. II of
Paper 1 [10], to which the reader is referred for notation
and further detail.

A. Frames

It proves convenient to work in the rest frame of the
baryons, with the dark matter streaming at 4-velocity umd
relative to the tetrad frame of the baryons. To be consistent
with spherical symmetry, the dark matter must stream
radially, so the nonvanishing components of the dark mat-
ter 4-velocity umd are the time and radial components

u0d � utd; uid � urdx̂i: (1)

Without loss of generality, the rest mass � of the dark
matter particle can be taken to be either 0 or 1, depending
on whether the particle is massless or massive. Thus

�utd�
2 � �urd�

2 � �2; � �

�
0 massless
1 massive:

(2)

Below we will generally present arguments as if the dark
matter particle were massive. The case of a massless
particle follows from letting the massive particle approach
the speed of light and simultaneously letting its rest mass
-2
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go to zero. Appropriate factors of rest mass � are included
in the formulas below.

Adapted to the dark matter frame is an associated tetrad
frame, with inertial axes �d;m, corresponding vierbein co-
efficients �d, 
d, and �d, Eq. (6) of Paper 1, and corre-
sponding time coordinate td. The dark matter time
coordinate td differs from the baryonic time coordinate t
because the gauge of time is being chosen, Eq. (5) of
Paper 1, so that the proper radial derivative of time is
zero; that is, the dark matter time coordinate td is arranged
to satisfy @d;rtd � 0, whereas the baryonic time coordinate
t satisfies @rt � 0.

The locally inertial axes �d;m in the rest frame of the
dark matter are related to the locally inertial axes �m in the
baryonic frame by a Lorentz boost at 4-velocity umd . It
follows that the directed derivatives in the dark matter
frame, @d;t � �d;t � @ and @d;r � �d;r � @, are equal to the
directed derivatives in the baryonic frame Lorentz boosted
by 4-velocity umd :

@d;t � utd@t � urd@r; @d;r � urd@t � utd@r (3)

or more explicitly

�d
@
@td

��������r
� 
d

@
@r

��������td

� utd

�
�
@
@t

��������r
�


@
@r

��������t

�
� urd�

@
@r

��������t

�d
@
@r

��������td

� utd�
@
@r

��������t
�urd

�
�
@
@t

��������r
�


@
@r

��������t

�
: (4)

Applying Eqs. (4) to the radial coordinate r shows that

d and �d are equal to 
 and � Lorentz boosted by 4-
velocity umd


d � 
utd � �urd; �d � �utd � 
urd: (5)

Equations (5) reflect the fact that �
;�� � �@tr; @rr� form
the time and radial components of a covariant 4-vector, the
radial 4-gradient, as already remarked in Eq. (12) of
Paper 1. The magnitude squared of the covariant 4-vector
�
d; �d� is


2
d � �2

d � �2�
2 � �2� (6)

which is null for massless dark matter, �2 � 0, or the same
as the magnitude squared of �
;�� for massive dark matter,
�2 � 1.

Similarly, applying Eqs. (4) to the time coordinate td
yields the result that

@td
@t

��������r
�

�d�d

��
;

@td
@r

��������t
� �

�durd
�

: (7)

For self-similar solutions, Eqs. (7) translate into a sec-
ond explicit relation [the first being Eqs. (5)] between the
dark matter and baryon vierbein coefficients. The second
relation, Eq. (8) below, is most transparently derived not
directly from Eqs. (7), but rather from the transformation
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of the homothetic 4-vector introduced in Sec. III B of
Paper 1 [10]. The components �md of the homothetic vector
in the tetrad frame of the dark matter are equal to those in
the baryonic frame Lorentz boosted by the 4-velocity umd of
the dark matter relative to the baryons

�td�
1

�d
��tutd��rurd; �rd�

Vd

�d
��rutd��turd: (8)

The magnitude squared of the homothetic vector in the
dark matter frame is

��td�
2 � ��rd�

2 � �2H (9)

which is null for massless dark matter, �2 � 0, or equal to
the homothetic scalar H, Eq. (58) of Paper 1, for massive
dark matter, �2 � 1.

B. Einstein equations

In Sec. II A of Paper 1, the tetrad formalism for spheri-
cally symmetric geometry was set up and the Einstein and
Weyl tensors derived, and in Sec. II B of Paper 1, the
resulting Einstein equations were written down for the
case where the tetrad frame was taken to be the center-
of-mass frame, defined to the frame where the momentum
density vanishes. In the present subsection the Einstein
equations are given for a radially moving tetrad frame,
such as the baryonic frame, which is not necessarily the
center-of-mass frame. The Einstein equations (12) in the
moving frame are not as physically transparent as those,
Eqs. (34) of Paper 1, in the center-of-mass frame.

The most general form of the energy-momentum tensor
Tmn consistent with spherical symmetry is

T00 � Ttt; T0i � �Ttrx̂i;

Tij � Trrx̂ix̂j � T??��ij � x̂ix̂j�:
(10)

Substituting the Einstein tensor, Eq. (26) of Paper 1, into
Einstein’s equations Gmn � 8�Tmn implies that the quan-
tities F, R, P, and S defined by Eqs. (25) of Paper 1 are

R � 4�Ttt; F � 4�Ttr;

P � 4�Trr; S � 4��T?? � Trr�:
(11)

The Einstein equations thus become

@rM� 4�r2��Ttt � 
Ttr� � 0; (12a)

@t�� 
g� 4�rTtr � 0; (12b)

@t
� �g�
M

r2
� 4�rTrr � 0; (12c)

@tTtr � @rTrr �
2�
r
�T?? � Trr�

�2
�


r
� h

�
Ttr � g�Ttt � Trr� � 0: (12d)

Equation (12b) implies that the quantity h, defined by
Eq. (22) of Paper 1, satisfies
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h �
@

@r

�
4�rTtr

�
: (13)

The result of taking 
 times Eq. (12c) minus � times
Eq. (12b) is the first law of thermodynamics for the com-
bined baryonic and dark matter fluid

@tM� 4�r2��Ttr � 
Trr� � 0: (14)

Einstein’s equations automatically incorporate conserva-
tion of energy momentum, as expressed by the vanishing of
the covariant derivative of the energy-momentum tensor,
DmTmn � 0. The time (n � 0) component of the energy-
momentum conservation equation gives the energy conser-
vation equation

@tT
tt�@rT

tr�
2

r
�T?? �Trr�� 2

�
�
r
�g

�
Ttr

�

�
2

r
�h

�
�Ttt�Trr� � 0 (15)

while the spatial components (n � 1; 2; 3) of the energy-
momentum conservation equation give a momentum con-
servation equation which reduces precisely to the Euler
equation (12d).

C. Dark matter

We take the dark matter (subscripted d) to be a pressur-
eless fluid (dust, either massive or massless) that free falls
radially into the black hole. The energy-momentum tensor
of the dark matter is thus

Tmn
d � "du

m
d u

n
d (16)

whose nonzero components are

Ttt
d � "d�utd�

2; Ttr
d � "dutdu

r
d; Trr

d � "d�urd�
2:

(17)

We assume that the dark matter is almost noninteracting,
for the most part streaming freely through the baryons, but
we wish to consider the possibility, Sec. II E, that dark
matter particles interact with baryons when they pass
through each other at sufficiently high energy. For sim-
plicity, we assume that dark matter particles that interact
with the baryons are simply absorbed into the baryonic
fluid, adding their energy and momentum into the baryons,
which retain their isotropic pressure and relativistic equa-
tion of state. If the rate, the mass per unit volume per unit
time, at which dark matter is absorbed into the baryonic
fluid is denoted _"d, in the frame of reference of the dark
matter, then the equations of energy-momentum conserva-
tion for the dark matter are

DmTmn
d � � _"du

n
d: (18)

For the energy-momentum tensor of Eq. (16), the energy-
momentum conservation equations (18) are equivalent to
two equations, first, the equation describing unaccelerated
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free fall of the dark matter,

Dund
D#d

� 0 (19)

where D=D#d � umd Dm, and second, the equation for con-
servation of dark matter rest mass

Dm�"du
m
d � � � _"d: (20)

The free-fall equation (19) gives

@d;turd � utd�gu
t
d � hurd� � 0 (21)

while Eq. (20) for conservation of dark matter rest mass is�
@t �

2

r

� h
�
�"dutd� �

�
@r �

2�
r

� g
�
�"durd� � � _"d:

(22)

D. Baryons and electric field

The baryons (subscripted b) and the electric field (sub-
scripted e) are coupled. As remarked in Sec. II A, it is
simplest to work in the rest frame of the baryons, where the
momentum density of baryons is zero Ttr

b � 0. The energy-
momentum tensor of the baryons in the tetrad frame of the
baryons is diagonal, with nonzero components (cf.
Sec. II C of Paper 1)

Ttt
b � "b; Trr

b � T??
b � pb (23)

in which the density "b and pressure pb are assumed to be
related by a relativistic equation of state

pb � w"b; w �
1

3
: (24)

The energy-momentum tensor of the electric field is simi-
larly diagonal, with nonzero components (cf. Sec. II D of
Paper 1)

Ttt
e � �Trr

e � T??
e � "e (25)

where the electric energy density is "e � Q2=�8�r4�, with
Q the charge interior to radius r.

Together, the coupled baryons and electric field satisfy
the energy-momentum conservation equation

Dm�Tmn
b � Tmn

e � � _"du
n
d; (26)

the right-hand side of which represents the energy momen-
tum dumped into the baryonic fluid as the result of dark
matter being absorbed by baryons. The time (n � 0) and
space (n � 1; 2; 3) components of Eq. (26) yield the energy
and momentum conservation equations for the baryons
coupled to the electric field

@t�"b�"e��
4

r
"e��"b�pb�

�
2

r
�h

�
� _"du

t
d (27)

@r�pb � "e� �
4�
r
"e � �"b � pb�g � _"du

r
d: (28)
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E. Interaction between dark matter and baryons

We assume that the rate _"d at which dark matter is
absorbed into baryons is proportional to the density "d of
dark matter particles, multiplied by an absorption rate per
particle )d

_" d � "d)d: (29)

In general the rate )d will be an integral over collision
energy (in the dark matter frame) of the number density of
baryons times the absorption cross section times the colli-
sion velocity. We treat the absorption rate )d as a phe-
nomenological quantity, the aim being to explore what
happens as the properties of the absorption rate are varied.
If the absorption rate )d is assumed to be some function of
the baryonic density "b and of the 4-velocity umd between
the dark matter and the baryons, then self-similarity re-
quires that the absorption rate be proportional to the square
root of the baryonic density, similarly to the electrical
conductivity, Eq. (48) of Paper 1, and otherwise to be
some arbitrary function of the 4-velocity. Thus the absorp-
tion rate )d is taken to be

)d � *d�4�"b�
1=2 (30)

where *d is a phenomenological dimensionless rate coef-
ficient, which in general could be some arbitrary function
of the 4-velocity umd between dark matter and baryons. The
factor of 4� in Eq. (30) is introduced to simplify the
corresponding self-similar equation (34).
III. SIMILARITY SOLUTIONS

A. Similarity hypothesis

As noted in Paper 1, dimensional analysis reveals the
following quantities to be dimensionless [the following
equation repeats Eqs. (49) and (50) of Paper 1]:

� �
�r
t
; 
; �;

M
r
;

Q
r
; y � gr;

z � 4�r2"b; zq � 4�r2q; s � 4�r);

ze � 4�r2"e �
Q2

2r2
;

(31)

where the dimensionless conductivity s is

s � *z1=2: (32)

With dark matter adjoined, dimensional analysis of the
previous equations, combined with Eq. (20) for conserva-
tion of dark matter energy momentum, and Eq. (29) for the
dark matter absorption rate, shows that the following dark
matter quantities are likewise dimensionless:

�d �
�dr
td

; 
d; �d; umd ; (33)
084032
zd � 4�r2"d; sd � r)d;

where the dimensionless dark matter absorption rate sd is,
for the phenomenological dark matter absorption rate )d
given by Eq. (30),

sd � *dz
1=2: (34)

The dimensionless variables of Eqs. (31) and (33) form a
(more than) complete set for the problem at hand, and it
follows [29] that the spherically symmetric Einstein-
Maxwell and subsidiary equations admit similarity solu-
tions in which the dimensionless variables are all functions
of a single dimensionless variable.

As shown in Paper 1, Eq. (53), the proper radial velocity
V of the similarity frame relative to the baryonic tetrad
frame is

V �
�� 

�

: (35)

The radial velocity Vd of the similarity frame relative to the
dark matter tetrad frame is similarly

Vd �
�d � 
d

�d
: (36)
B. Integrals of the similarity equations

The ordinary differential equations determining the self-
similar evolution of the baryonic and dark matter fluids
admit four integrals, of which three are generalizations of
the three integrals given in Sec. III F of Paper 1, and the
fourth is an integral for the dark matter.

The first integral follows from Eq. (87) of Paper 1, which
here implies

M
r

� z���r � w
�t� � ze � zd�d�rd: (37)

Equation (37) differs from the corresponding Eq. (88) of
Paper 1 by the addition of the last, dark matter, term on the
right-hand side. As in Paper 1, we use Eq. (37) not as one of
the evolutionary equations, but rather as a check on the
accuracy of the integration.

The second integral of the similarity equation is un-
changed from Paper 1. The integral follows from
Eq. (89) of Paper 1, which yields an equation for the
dimensionless charge density zq � 4�r2q [the following
repeats Eq. (90) of Paper 1]

zq �
Q�1� s�t�

r�r
: (38)

The third integral of the similarity equations follows
from Eq. (91) of Paper 1, which here yields a revised
equation for the dimensionless proper acceleration y � gr
-5
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y�
f2w�rM=r�2ze�

r
�1�w���1�w�s�t��zd�
r
�2w�d�

r
d�sd�w�

tutd��rurd���w�1�w�z�t
�1�w�z�t�r�zd�
t
d�

r
d�

�1�w�z
��r�2�w��t�2�
:

(39)
Equation (39) differs from the corresponding Eq. (92) of
Paper 1 by the addition of various dark matter terms in the
numerator on the right-hand side.

A fourth integral follows from the geodesic integral of
motion (62) of Paper 1, which applies to the freely falling
dark matter. The homothetic momentum, Eq. (63) of
Paper 1, of the freely falling dark matter is /lnt �
r�mumd � �r�td � �td=�d, and the integral of motion
(62) of Paper 1 then shows that

td
�d

� #d: (40)

Equation (40) implies that

�td �
#d
r
: (41)

C. Similarity differential equations

As in Paper 1, we adopt as a suitable dimensionless
integration variable the dimensionless baryonic time pa-
rameter x defined by Eq. (93) of Paper 1. The baryonic
proper time #, time coordinate t, and radial coordinate r
evolve along the path of the baryonic fluid according to the
same equations as before, Eqs. (94) of Paper 1, which we
repeat here for completeness:

d#
dx

� r; (42a)

d lnt
dx

� �; (42b)

d lnr
dx

� 
: (42c)

Equation (42b) presumes that the gauge of baryonic time t
is chosen in the natural way, such that the units of time are
the same as the units of radius, so that r=t is a dimension-
less variable.

Similarly, the dark matter proper time #d, time coordi-
nate td, and radial coordinate rd evolve along the path of
the dark matter fluid as

d#d
dx

�
�2rd
k

; (43a)

d lntd
dx

�
�2�d

k
; (43b)

d lnrd
dx

�

d

k
(43c)

where

k �
�rd
�r

: (44)
084032
Note that the radial coordinate rd in Eq. (43c) is distin-
guished from the radial coordinate r in Eq. (42c), because
the integration is along the path of the dark matter in
Eq. (43c) as opposed to the path of the baryons in
Eq. (42c). With no charge to repel their infall, dark matter
particles fall in faster than baryons, so that the dark matter
radius rd is less than the baryonic radius r at any given self-
similar point inside the outer boundary. For example, if rd
is half of r at a given point, it means that the black hole was
twice as large when it accreted the dark matter as it was
when it accreted the baryons.

The differential equation (43b) for the dark matter time
coordinate td again presumes that the gauge of td is chosen
such that rd=td is a dimensionless variable. Equations (43a)
and (43b), along with �d � 1=�td � rd=#d from Eq. (41),
imply that td / #d, which together with Eq. (40) implies
that �d is a constant. The constancy of �d can also be
regarded as following from the fact that the acceleration
gd � �@d;r ln�d, cf. Eq. (21) of Paper 1, vanishes for
freely falling dark matter, gd � 0; the vanishing of the
radial derivative of �d, coupled with self-similarity, im-
plies that the total derivative d�d=dx vanishes. It is natural
to adopt the gauge choice �d � 1, so that the dark matter
time coincides with dark matter proper time, td � #d.
However, the dark matter time td (as distinct from dark
matter proper time #d) is not actually used in this paper.

An overcomplete set of equations [only three of the four
equations (45) below are independent, the four variables
�t, �r, �, and 
 being related by 
�t � ��r � 1, Eq. (47a)
below] governing the self-similar evolution of the remain-
ing variables is [the following generalize Eqs. (95) of
Paper 1]

d�t

dx
� �y�r � ��r (45a)

d�r

dx
� �y�t � 
�r � �1� w�z�t�r � zd�

t
d�

r
d (45b)

d�
dx

� 
y� zdutdu
r
d (45c)

d

dx

� �y� �1� w�z��r � zd
�d�
r
d � �urd�

2� (45d)

together with [the following generalize Eqs. (96) of
Paper 1]

d ln
r1�3wz��r�1�w�

dx
�

2zes
z

�
zdsdu

t
d

z
(46a)

d lnQ
dx

� �s (46b)

d ln�rdzd�rd�
dx

� �
sd
k
: (46c)
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To maintain numerical precision, it is important to avoid
expressing small quantities as differences of large quanti-
ties. For example, �t � �r � �1� V�=� can be tiny near
the Cauchy horizon, V 
 �1, where mass inflation occurs,
though �t and �r are individually substantial. A suitable
choice of variables to integrate is �t � �r,
� �, �, #d and
rd, the last two giving �td according to Eq. (41). Starting
from these variables, the following chain of equations
yields the remaining variables in a fashion that ensures
numerical precision [the following equations generalize
Eqs. (97) of Paper 1]:

�t � �r �
2� �
� ����t � �r�


� �
(47a)

H � ��t � �r���t � �r� (47b)

2M
r

� 1� �
� ���
� �� (47c)

�rd � 
��td�
2 ��2H�1=2 (47d)

utd � urd �
�td � �rd
�t � �r

(47e)

utd � urd �
�2

utd � urd
(47f)


d � �d � �
� ���utd � urd�: (47g)

The differential equation for the variable X used in ray
tracing, Sec. III D of Paper 1, remains unchanged from
Paper 1 [the following repeats Eq. (98) of Paper 1]

dX
dx

� ��r: (48)

During mass inflation, the interior mass M and (the
absolute value of) the radial streaming 4-velocity urd in-
crease exponentially, while (the absolute value of) the
homothetic scalar H decreases exponentially. The follow-
ing differential equations, which are consequences of the
equations above, are useful for characterizing mass infla-
tion. The interior mass M, which satisfies 2M=r� 1 �

2 � �2, Eq. (24) of Paper 1, evolves as

d lnj2M=r� 1j

dx
� �8�r2Ttr

� �r (49)

where Ttr
� is the proper momentum density relative to the

� � 0 frame

4�r2Ttr
� �

�1� w�z
�� zd
d�d

2M=r� 1
: (50)

The homothetic scalar H � ��t�2 � ��r�2, Eq. (58) of
Paper 1, evolves as

d lnjHj

dx
�

�
2���t � 
�r�

H
� 8�r2Ttr

�

�
�r (51)

where Ttr
� is the momentum density relative to the no-going
084032
�t � 0 frame, the frame of reference at the border between
ingoing (positive �t) and outgoing (negative �t),

4�r2Ttr
� �

�1� w�z�t�r � zd�
t
d�

r
d

�H
: (52)

The 4-velocity urd of the dark matter through the baryons
evolves as

d lnjurdj
dx

�

�
�

y
urd

�
4�r2HTtr

�

�rd

�
utd: (53)
D. Boundary conditions at the outer sonic point

As in Paper 1, the boundary conditions of the calculation
are set at an outer boundary, taken to be a regular sonic
point, outside the outer horizon of the black hole, where the
infalling baryonic fluid transitions smoothly from subsonic
to supersonic.

Two boundary conditions at the outer sonic point are
carried over from Sec. III H of Paper 1, namely, the accre-
tion rate �s, and the charge-to-mass ratio Q=Mc of the
black hole.

Dark matter adds two more boundary conditions, which
set the velocity and density of dark matter at the outer sonic
point. If there were no mass or charge outside the outer
sonic point, then dark matter that free falls from zero
velocity at infinity would have �d � 1, and we adopt this
value as a natural choice for setting the velocity of the dark
matter at the outer boundary:

�d � 1 at the outer sonic point: (54)

The second dark matter boundary condition is the value of
the ratio "d="b of dark matter to baryonic proper mass
densities at the outer sonic point, which we vary as dis-
cussed in Sec. IVA below.
IV. RESULTS

Section IV of Paper 1 presented results for black holes
which accrete a single fluid of charged baryons. The bary-
ons either plunged to the singularity, or else they dropped
through the Cauchy horizon, but mass inflation did not
occur. This section presents results for black holes which
accrete dark matter in addition to baryons, with the aim of
exploring the phenomenon of mass inflation.

In Sec. IVA, the dark matter will be assumed to have
zero cross section for absorption by baryons. In Sec. IV B,
the dark matter will be given a nonzero cross section for
absorption by baryons.

As in Paper 1, geometric units G � c � Mc � 1 are
used, where Mc, Eq. (100) of Paper 1, is the charge-
augmented interior mass of the black hole evaluated at
the outer boundary, the outer sonic point.
-7
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FIG. 1 (color online). A black hole with the same parameters,
an accretion rate �s � 0:1 and a charge-to-mass Q=Mc � 0:8, as
that shown in Fig. 4 of Paper 1, except that here the black hole
accretes dark matter in addition to baryons, with density ratio
"d="b � 0:1 at the outer sonic point. Quantities are plotted
against radius r in units where the charge-augmented mass at
the outer sonic point is unity, Mc � 1. To reveal more detail, the
radial axis is split into two regimes with different horizontal and
vertical scales. Lines are dashed where quantities are negative.
Disks mark the outer sonic point, where V �

����
w

p

 0:577, at

which the boundary conditions are set. Short horizontal bars
mark the horizon, where V � 1. (Upper panel) Proper velocity V
of the similarity frame relative to the baryonic frame. (Middle
panel) Dimensionless proper baryonic mass and charge densities
z � 4�r2"b and zq � 4�r2q, and dimensionless proper dark
matter mass density zd � 4�r2"d. (Bottom panel) Interior mass
M, proper acceleration g experienced by the baryonic fluid, and
the homothetic scalar H. The exponential increase of mass M
over a modest range of radii above the inner horizon, r�
0:4–0:1, is the signature of mass inflation.
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A. Noninteracting dark matter

Figure 1 shows results for a black hole which accretes
both charged, nonconducting baryons, and neutral, pres-
sureless, noninteracting dark matter. The dark matter par-
ticles here are assumed to be massive, but the results for
massless dark matter particles are quite similar. With these
assumptions, there are three free parameters set at the outer
boundary, the outer sonic point. The accretion rate �s is set
equal to 0.1, the same as adopted in the models of Paper 1,
and the charge-to-mass ratio Q=Mc is set equal to 0.8, the
same as adopted in the charged models of Paper 1. The
third parameter, a new parameter, is the ratio "d="b of dark
matter to baryonic proper mass densities, which we set
equal to 0.1 at the outer sonic point

"d

"b
� 0:1: (55)

In an astronomically realistic black hole, the density of
accreted dark matter is expected to be only a small fraction
of the density of accreted baryons, because whereas bary-
ons can dissipate energy and angular momentum, which
allows them to funnel on to a black hole, non- or weakly
interacting dark matter cannot so dissipate. However, as
with the other two free parameters �s and Q=Mc, we
deliberately choose a large value of "d="b to make it easier
to discern its effects (and to avoid the risk of numerical
problems). At fixed �s � 0:1 and Q=Mc � 0:8, the dark
matter to baryonic density ratio is limited to "d="b &

0:4362 (see Fig. 2), otherwise there is too much neutral
dark matter diluting the baryons, and the desired charge-to-
mass Q=Mc � 0:8 cannot be achieved.

As expected, Fig. 1 shows that mass inflation occurs just
above the inner horizon. During mass inflation, the interior
mass M increases by many orders of magnitude over a
modest range of radii, r 
 0:372–0:1. As the figure shows,
mass inflation in due course ceases, for reasons discussed
in Sec. V D below. Before mass inflation sets in, the
solution with dark matter resembles the solution without
dark matter, Fig. 4 of Paper 1. As discussed in Sec. IV B of
Paper 1, the geometry of the solution without dark matter
in turn resembles, outside the inner horizon, that of a
vacuum charged black hole, the Reissner-Nordström
geometry.

After mass inflation has stalled, the outgoing baryonic
and ingoing dark matter fluids collapse to a spacelike
singularity at zero radius. The Penrose diagram of the
black hole is the same as that shown in Fig. 3 of Paper 1.

Figure 1 shows that the end of mass inflation coincides
roughly with the homothetic scalar H reaching a minimum
in absolute value. The homothetic scalar H � �1� V2�=�
is zero at the inner horizon, where V � �1, and can be
interpreted as offering a gauge-invariant measure of how
close to the inner horizon the mass-inflating fluid has
reached.

During mass inflation, the interior mass M increases
approximately exponentially while the radius r decreases
084032-8
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FIG. 2. Dimensionless exponential inflationary scale length l
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only modestly:

M� exp
��lnr�=l� (56)

where l is a dimensionless exponential scale length. The
inflationary scale length l is approximately constant during
the main part of mass inflation, and can be characterized
quantitatively by the reciprocal of the maximum logarith-
mic derivative of 2M=r� 1, Eqs. (42c) and (49), during
inflation

1

l
� max

�
�
d ln�2M=r� 1�

d lnr

�
: (57)

Figure 2 shows the inflationary scale length l defined by
Eq. (57) as a function of the ratio "d="b of dark matter to
baryonic proper mass density at the outer sonic point, for
black holes with the same accretion rate �s � 0:1 and
charge-to-mass Q=Mc � 0:8 as that illustrated in Fig. 1.
Shorter scale lengths l signify more extreme mass inflation.
The scale length increases approximately linearly at small
ratios, l 
 0:032"d="b, goes through a maximum at
"d="b 
 0:27, and then decreases. As l declines, the curve
passes through a mild maximum in "d="b, at "d="b 

0:4362, and terminates at "d="b 
 0:433, constrained by
�2 � 
2 > 0 at the outer sonic point.

Since the simultaneous presence of outgoing (baryonic)
and ingoing (dark matter) fluids is essential to mass in-
flation, one might have thought that mass inflation would
be most extreme when the densities of baryonic and dark
matter were comparable. Figure 2 shows that the opposite
is true: mass inflation is most extreme (the inflationary
scale length l is smallest) when either the ingoing dark
084032
matter stream is reduced to a trace (small "d="b), or the
outgoing baryonic stream is reduced to a trace ("d="b 

0:433). In the latter case, the baryonic density decreases by
many orders of magnitude inside the black hole, so that at
the onset of mass inflation the proper density of baryons is
indeed only a trace compared to the proper density of dark
matter.

When mass inflation is more extreme in the sense that
the inflationary scale length l is small, it is also more
extreme in the sense that the mass M exponentiates to a
larger value before mass inflation ends.

The conundrum that mass inflation is most extreme
when one of the ingoing or outgoing streams is reduced
to a trace is considered in Sec. V C below.

The exponential increase of the interior mass M is
paralleled by an exponential increase in (the absolute value
of) the streaming 4-velocity urd of the dark matter through
the baryons, and an exponential decrease in (the absolute
value of) the homothetic scalar H

urd � exp
��lnr�=l�; H � exp
�lnr�=l�: (58)

Figure 2 is practically unchanged if the inflationary scale
length l is defined either by the exponential scale length of
the 4-velocity urd [see Eq. (53)]

1

l
� max

�
�
d ln�urd�
d lnr

�
(59)

or by the exponential scale length of the homothetic scalar
H [see Eq. (51)]

1

l
� max

�
d ln�H�

d lnr

�
(60)

in place of Eq. (57).

B. Interacting dark matter

A feature of mass inflation is that ingoing and outgoing
fluids stream through each other at ever closer to the speed
of light (or become ever more blueshifted, for massless
streams). This raises the physical question of what happens
if there is a finite cross section for interaction between the
ingoing and outgoing fluids at sufficiently high collision
energies.

We have carried out a number of numerical experiments
in which we have adjusted both the size and dependence on
collision energy of the dimensionless rate coefficient *d in
the absorption rate )d, Eq. (30), of dark matter by baryons.
In all cases we find that, as long as the rate )d is finite (not
infinite) at all energies, then the results are similar to those
found in Sec. IVA: mass inflation occurs, then comes to an
end, whereupon the fluids plunge to the central singularity.

As the absorption rate coefficient *d is varied, the degree
of mass inflation changes, in a manner consistent with what
-9



1

10

102

103

V
el

oc
it

y
V

Vd

V

O
ut

er
ho

ri
zo

n

In
ne

r
ho

ri
zo

n

10−10

100

1010

1020

1030

1040

D
im

en
si

on
le

ss
de

ns
it

ie
s

zd

zq

z

.1 .2 .3 .5 .7 1 2 3 5

10−10

100

1010

1020

1030

1040

Radius r

M
as

s,
ac

ce
le

ra
ti

on
,

ho
m

ot
he

ti
c

sc
al

ar

H

g

M

FIG. 3 (color online). Similar to Fig. 1, but for a black hole in
which the absorption rate of dark matter by baryons is effectively
infinite above a certain large collision energy. Disks mark sonic
points, where V � �

����
w

p
. Short horizontal bars mark horizons,

where V � �1. Mass inflation begins, but is cut short as soon as
all the dark matter is absorbed. With the dark matter gone, the
baryons almost immediately drop through the Cauchy horizon.
The similarity solution terminates inside the Cauchy horizon at
an irregular sonic point.
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was found in Sec. IVA. For example, if the parameters are
set to those of Fig. 1, namely �s � 0:1, Q=Mc � 0:8, and
"d="b � 0:1, then mass inflation becomes more extreme
as the absorption rate coefficient *d is increased, with the
inflationary scale length l shortening, and the mass M
exponentiating to a higher value before inflation ends.
Increasing the absorption rate reduces the density of dark
matter, which has a similar effect to sliding "d="b in Fig. 2
to values less than 0.1, thereby reducing the inflationary
scale length l.

Is it possible to adjust the interaction between dark
matter and baryons so that the baryons drop through the
Cauchy horizon, as in Paper 1? The only way to achieve
this is to let the absorption rate become infinite at a finite
collision energy. If the absorption rate is infinite, then all
the dark matter is absorbed and only outgoing baryons
remain. As soon as all the dark matter is gone, then the
baryons can drop through the Cauchy horizon. This is
consistent with the fact, proven in Sec. VA below, that as
long as ingoing and outgoing fluids are simultaneously
present, then it is impossible for either fluid to drop through
the inner horizon.

Figure 3 shows results for a black hole accreting baryons
and dark matter with a dimensionless absorption rate co-
efficient *d that becomes numerically infinite when the 4-
velocity umd of the dark matter through the baryons is large

*d � 10�20�utd�
2: (61)

The rate coefficient *d given by Eq. (61) is of course
analytically finite at all collision energies, but numerically
it is large enough at high collision energy (utd � 1010) that
the dimensionless dark matter density zd � 4�r2"d falls
below about 10�300, at which point zd underflows and is set
to zero by the numerics. Aside from the fact that *d
becomes large at large utd, there is nothing magic about
the constant of proportionality 10�20 or the exponent 2 in
Eq. (61). The values are chosen simply to yield an interest-
ing amount of mass inflation, as shown in Fig. 3, before the
outgoing baryons drop through the Cauchy horizon.

As Fig. 3 illustrates, the structure of the black hole
accreting dark matter with an effectively infinite high-
energy absorption rate is similar to that of noninteracting
dark matter, Fig. 1, up to the point where the dark matter is
completely absorbed. At that point, the outgoing baryons
drop through the Cauchy horizon, similar to the situation
illustrated in Fig. 4 of Paper 1, where there was no dark
matter present.

The similarity solution for the infinitely interacting dark
matter model of Fig. 3 does not continue consistently to
zero radius inside the Cauchy horizon, but rather termi-
nates at an irregular sonic point at finite radius. This is the
same phenomenon as happened in Paper 1 whenever the
baryons dropped through the Cauchy horizon. As in
Paper 1, the similarity solution of Fig. 3 terminates whether
or not a shock is introduced inside the Cauchy horizon. The
084032
situation is similar to that illustrated in Fig. 5 of Paper 1,
and the reader is referred to Secs. IV B and IV D of Paper 1
for further discussion of this issue.

The Penrose diagram of the black hole of Fig. 3 is the
same as that shown in Fig. 6 of Paper 1.
-10
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V. WHY MASS INFLATION HAPPENS

This section discusses the physical question of why mass
inflation occurs. Section VA shows that, as long as ingoing
and outgoing streams are simultaneously present, they
cannot drop through an inner horizon. Section V B shows
how the gravitational force drives the counterstreaming of
ingoing and outgoing fluids that produces mass inflation.
Section V C answers the question of why reducing one of
the ingoing dark matter or outgoing baryonic streams to a
trace relative to the other stream makes mass inflation more
extreme, not the other way around as one might naively
have expected. Section V D considers why mass inflation
comes to an end, as found empirically in Sec. IVA.
Section V E discusses the conditions for a null singularity
to form on the Cauchy horizon, something that does not
happen in the similarity solutions.

A. Ingoing and outgoing streams cannot drop through
an inner horizon

The simultaneous presence of ingoing and outgoing
fluids in the vicinity of the inner horizon is, as first pointed
out by Poisson and Israel [1], the essential ingredient for
mass inflation to occur. In this subsection we show that, in
the context of the similarity solutions considered in this
paper, as long as ingoing and outgoing fluids are simulta-
neously present, then it is impossible for the fluids to drop
through the inner horizon, because to do so would require
that the ingoing and outgoing fluids stream through each
other faster than the speed of light, which is impossible.

Below we will refer to the outgoing fluid as baryons, and
the ingoing fluid as dark matter, but the argument applies
generally to any combination of ingoing or outgoing fluids.

As described in Sec. III C of Paper 1, in similarity
solutions a frame of reference is ingoing or outgoing
depending on whether the time component �t of the ho-
mothetic 4-vector is positive or negative in that frame. The
components of the homothetic vector in the dark matter
and baryonic frames are related by a Lorentz transforma-
tion, Eq. (8). If the proper velocity of the dark matter
relative to the baryons is denoted Vd � urd=u

t
d then the

time component �td of the homothetic vector in the dark
matter frame is related to the time component �t in the
baryonic frame by, Eq. (8),

�td � �tutd�1� VVd�: (62)

Since utd is always positive, it follows that the dark matter
will have the opposite in/out sign from baryons (viz. in-
going, �td > 0, if the baryons are outgoing, �t < 0) if and
only if

VVd > 1 (63)

that is, if Vd > 1=V for positive V, or if Vd < 1=V for
negative V. We remind the reader that V is the proper
velocity of the similarity frame relative to the baryonic
084032
frame, and that the absolute value of the velocity is equal to
one, jVj � 1, at horizons.

Since the velocity Vd of the dark matter relative to the
baryonic frame is necessarily less than or equal to the
speed of light, jVdj � 1, it follows from Eq. (63) that
dark matter can have the opposite in/out sign from the
baryonic frame only in superluminal regions of the geome-
try, where jVj> 1. Ingoing and outgoing fluids cannot
coexist in the same contiguous subluminal region, where
jVj< 1, since to do so they would have to move faster than
light relative to each other. If ingoing and outgoing fluids
fall through the inner horizon, then they must necessarily
pass into separate ingoing and outgoing subluminal
regions.

Approaching the inner horizon, where jVj ! 1, ingoing
and outgoing frames must necessarily approach the speed
of light, jVdj ! 1, relative to each other, according to
Eq. (63). At the inner horizon, jVj � 1, ingoing and out-
going objects must necessarily stream through each other
at the speed of light, jVdj � 1, which is problematic if the
objects have finite rest mass. Indeed it is problematic even
if the objects have zero rest mass, because, at the inner
horizon, a light ray which has finite energy in an ingoing
frame must appear infinitely blueshifted in an outgoing
frame.

The above two paragraphs have demonstrated the
claimed assertion, that as long as ingoing and outgoing
fluids are simultaneously present, then it is impossible for
the fluids to drop through the inner horizon, because to do
so they would have to exceed the speed of light. A corol-
lary of the argument is that as soon as one of the streams is
exhausted, then the other stream can drop through the inner
horizon, an ingoing horizon if only ingoing fluid remains,
or an outgoing horizon, the Cauchy horizon, if only out-
going fluid remains.

B. Gravity drives mass inflation

The previous subsection, Sec. VA, showed that for in-
going and outgoing fluids to approach an inner horizon,
they must stream ever faster through each other. But what
drives such counterstreaming?

The thing that drives ingoing and outgoing fluids to
stream ever faster through each other is the inward gravi-
tational force. The trick is that ‘‘inward,’’ meaning in the
direction of smaller radius r, means opposite directions for
the ingoing and outgoing fluids. Ingoing and outgoing
fluids are both accelerated inwards, but nevertheless they
are accelerated in opposite directions.

In Sec. IV C of Paper 1 we attached a gyroscope to an
infalling observer, and, having initialized the gyroscope so
that it points towards the black hole, we defined the direc-
tion in which the gyroscope points as the immutable di-
rection towards the black hole. In the locally inertial
(tetrad) frame of the infalling observer, the direction to-
wards the black hole is not necessarily the direction of
-11
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smaller circumferential radius r. Rather, the direction of
smaller circumferential radius r is determined by the sign
of the vierbein coefficient � � @rr, Eq. (12) of Paper 1. A
positive � means that the gyroscope points in the direction
of smaller proper circumferential radii r. Conversely, a
negative � means that the gyroscope points in the direction
of larger proper circumferential radii. Zero � means that
the circumferential radius is an extremum.

The reader who is not yet convinced that accelerating
inwards, i.e. making the radial coordinate velocity 
 � @tr
more negative, can mean accelerating in two opposite
directions is invited to consider what happens to the radial
4-gradient �
;�� � �@tr; @rr� under accelerations, i.e.
under Lorentz boosts, Eq. (5), in the case at hand, where
the radial 4-gradient is timelike, 
2 � �2 > 0, and 
 is
negative.

The sign of the vierbein coefficient � is not in one-to-
one correspondence with whether the fluid is ingoing or
outgoing (cf. Table II of Paper 1), but the two do corre-
spond just outside the inner horizon: � is positive if the
fluid is ingoing, negative if the fluid is outgoing.

What drives mass inflation is a feedback loop in which
the increasing radial pressure of the counterstreaming flu-
ids amplifies the gravitational force, which accelerates the
counterstreaming, which in turn increases the radial pres-
sure. To see how this works, consider the gravitational
force equation (12c) which governs the acceleration @t

of the coordinate radial velocity 
 � @tr. Equation (12c) is
nominally for the baryonic tetrad frame, but essentially the
same equation remains valid in the dark matter tetrad
frame, if all quantities in the equation are reinterpreted as
relative to the dark matter frame.

The gravitational force equation (12c) expresses the
radial acceleration @t
 as a sum of three terms: the familiar
attractive Newtonian force �M=r2, an additional general
relativistic gravitational force �4�rTrr whose source is
the radial pressure Trr, and a force �g which comes from
the acceleration generated by pressure balance (which
includes the Lorentz force), and whose presence expresses
the principle of equivalence. Numerically (Sec. IVA), the
dominant term during mass inflation, for both baryons and
dark matter, is the inward gravitational force term
�4�rTrr. It is this general relativistic force �4�rTrr,
which increases as the square of the streaming radial 4-
velocity urd, that drives mass inflation. By contrast, the
Newtonian contribution �M=r2, to the gravitational force
increases only linearly with the streaming radial 4-velocity
urd. In the baryons the inward gravitational force is partially
opposed by the �g force from a strong pressure gradient
generated as a backreaction to the gravitational force, but
still the primary gravitational force wins. The dark matter
is pressureless, so in that case the �g force is zero.

It is curious that the gravitational force term �4�rTrr is
the key player in two seemingly opposite roles. On the one
hand, in a vacuum charged black hole this gravitational
084032
force term is repulsive, thanks to the negative radial pres-
sure of the electric field. It is this gravitational repulsion
that causes a vacuum black hole to contain an inner hori-
zon, where ingoing and outgoing frames accelerate to the
speed of light relative to each other. Without the gravita-
tional repulsion, ingoing and outgoing fluids would not be
inclined to accelerate through each other to the speed of
light, and mass inflation would not begin. On the other
hand, it is this same gravitational force term, with an
exponentially growing positive pressure rather than a pas-
sive negative pressure, that provides the feedback loop that
drives mass inflation.

The electric force behaves differently from the gravita-
tional force. Irrespective of the sign of �, electrically
charged particles can consistently interpret the electric
force as being caused either by a positive charge Q located
in the direction of the black hole, or by a negative charge
�Q located in the direction away from the black hole.
Either way, a positively charged particle is always repelled
in the direction away from the positively charged black
hole.

C. Why is less more?

In Sec. IVA it was found that reducing one of the
ingoing dark matter or outgoing baryonic streams to a trace
amount relative to the other stream actually resulted in
more extreme mass inflation, in the sense that the infla-
tionary scale length l, Eq. (57), became shorter, and the
mass M exponentiated to a larger value, before mass
inflation came to an end. An analogous result was found
in Sec. IV B, where, for example, increasing the absorption
rate of dark matter by baryons so that the ingoing dark
matter stream was reduced to a trace again led to more
extreme mass inflation. Since the simultaneous presence of
both ingoing and outgoing streams is a prerequisite for
mass inflation to occur, one might have thought that com-
parable amounts of ingoing and outgoing fluid would
produce more inflation. But the opposite is true: less of
one stream relative to the other produces more inflation,
with comparable amounts of ingoing and outgoing fluid
producing the least inflation. Why?

For definiteness, consider the (more realistic) case where
the dark matter density is only a small fraction of the
baryonic density (an analogous argument applies in the
opposite case where the baryonic density is only a small
fraction of the dark matter density). Mass inflation begins
at around the time that the general relativistic gravitational
force �4�rTrr becomes dominant in the acceleration
equation (12c), which happens when the radial streaming
4-velocity urd has become large enough in absolute value.
The smaller the dark matter density, the larger the 4-
velocity urd must become in order for �4�rTrr to take
over as the dominant gravitational force. A larger 4-
velocity urd requires that the ingoing and outgoing fluids
approach closer to the inner horizon before mass inflation
-12
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begins. As the fluids approach the inner horizon, the char-
acteristic scale length l over which the 4-velocity urd in-
creases becomes shorter and shorter. When in due course
mass inflation sets in, it is this characteristic scale length
that determines the scale length over which M and urd then
exponentiate together. A smaller dark matter density thus
implies a smaller inflationary length scale l, hence more
extreme inflation.

D. Why does mass inflation end?

In Sec. IVA it was found that mass inflation eventually
ceased, whereafter the ingoing and outgoing fluids plunged
to a spacelike singularity at zero radius. Why does mass
inflation end?

What happens is that the streaming 4-velocity urd ceases
its exponential growth, and indeed starts shrinking instead
of growing. The dominant term in the differential equa-
tion (53) governing the evolution of the 4-velocity urd is the
term proportional to Ttr

� , which can be interpreted as the
direct gravitational force term. The other term, propor-
tional to the acceleration y � gr generated as a result of
pressure balance, slightly counteracts the direct Ttr

� term,
but not much. Now Ttr

� is the momentum density in the no-
going �t � 0 frame of reference, at the border between
ingoing frames (positive �t) and outgoing frames (negative
�t). The momentum density Ttr

� , Eq. (52), is a sum of two
opposing terms, one from the outgoing baryons, the other
from the ingoing dark matter. At the outset of inflation, the
contribution to Ttr

� from the baryons exceeds that from the
dark matter. As mass inflation continues, the relative con-
tribution from dark matter gradually becomes more im-
portant. This is because as time goes by, the dark matter
streaming through the baryons is accreted later and later in
the evolution of the black hole, and in the similarity
solutions the mass of accreted dark matter increases line-
arly with time. Eventually, the contribution to Ttr

� from the
ingoing dark matter exceeds that from the outgoing bary-
ons, and Ttr

� switches sign. Equivalently, the center-of-
mass frame, where Ttr � 0, switches from outgoing to
ingoing. At this point, or actually just before this point
thanks to the y � gr term, the streaming 4-velocity urd
starts shrinking instead of growing, and mass inflation
has come to an end.

We must admit that we find it physically somewhat
mysterious that the gravitational force can operate in dif-
ferent directions on the ingoing and outgoing fluids, as
argued in Sec. V B, and yet the proper streaming 4-velocity
urd can nevertheless shrink. We can only assume that this
mystery can be attributed to the difference between coor-
dinate velocities and proper velocities. Whatever the case,
the mathematics governing urd, Eq. (53), is clear enough.

The behavior of the homothetic scalar H during inflation
is closely related to that of the streaming 4-velocity urd. The
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Eq. (51) governing the evolution of H contains, like
Eq. (53) governing urd, two terms: a term proportional to
the momentum density Ttr

� in the no-going frame, and
another term [the one proportional to ���t � 
�r�=H]
which during inflation is subdominant and acts in mild
opposition to the principal Ttr

� term. As with urd, the end
of inflation is signaled by Ttr

� changing sign, and accord-
ingly H, which decreased exponentially in absolute value
during inflation, starts rising back up again. This is pre-
cisely what was found empirically in Sec. IVA, where
inflation stalled at about the time that the homothetic scalar
H passed through a minimum in absolute value.

In summary, inflation comes to an end when the center-
of-mass frame of the counterstreaming fluids switches
from outgoing to ingoing. This condition is true even in
the case where the baryonic density is a trace compared to
the dark matter when mass inflation begins. This case
corresponds to the small inflationary scale lengths l at-
tained at the right edge of Fig. 2, where the accreted dark
matter to baryonic density "d="b is near maximal. As
mentioned in the commentary to Fig. 2, even though the
dark matter and baryonic densities are comparable at the
sonic point boundary in this case, "d="b 
 0:433 for the
parameters of Fig. 2, the baryonic density decreases by
many orders of magnitude inside the black hole, so that
indeed the baryonic density is driven to a trace compared to
the dark matter density by the time mass inflation begins.
But while the baryonic density diminishes, the components
�m of the homothetic vector in the baryonic frame grow,
with the net result that the baryonic contribution �1�
w�z�t�r to the momentum density Ttr

� exceeds the dark
matter contribution zd�

t
d�

r
d at the onset of inflation, even

though z � zd. As mass inflation continues, the dark mat-
ter contribution to the momentum density Ttr

� grows rela-
tively more important, as in the usual case. Eventually, the
contribution to Ttr

� from the ingoing dark matter exceeds
that from the outgoing baryons, Ttr

� switches sign, and
mass inflation comes to an end.

E. Null singularity on the Cauchy horizon?

Many previous papers have found that the collapse of a
massless scalar field into a charged black hole produces not
only a strong spacelike singularity at zero radius but also a
weak null singularity at finite radius along the Cauchy
horizon [3–5,7,9,17,22,23,28]. Indeed, [17] find that two
distinct null singularities may form, one ingoing and one
outgoing. However, Burko [6,13] finds numerically that a
null singularity forms only if the scalar field set up outside
the horizon falls off sufficiently rapidly, the required de-
gree of rapidity depending on the parameters of the prob-
lem, such as the charge-to-mass ratio of the black hole. If
too much scalar field continues to be accreted, then no null
singularity forms, and the field collapses to a central sin-
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gularity. In the earliest numerical simulation, Gnedin and
Gnedin [15] found only a spacelike central singularity, no
null singularity, and it seems likely that the initial condi-
tions for their scalar field exceeded the Burko bound (as
opposed to there being some flaw [4,5] in the [15] method).

A null singularity does not form in the similarity solu-
tions, and it may be presumed that this is because the
assumption of self-similarity precludes it. As described in
Sec. V D, mass inflation ceases once sufficient dark matter
has been accreted that the center-of-mass frame near the
inner horizon becomes ingoing rather than outgoing. At
this point, the outgoing baryons do not persist at finite
radius, but rather collapse to a spacelike singularity at
zero radius. The self-similar hypothesis requires that the
mass of accreted dark matter increases linearly with time
into the indefinite future, so that outgoing baryonic fluid
must inevitably encounter, sooner or later, enough ingoing
dark matter to bear it down to the central singularity.

The methods of the present paper, which is restricted to
self-similar solutions, are insufficiently powerful to answer
definitely the question of what circumstances lead to a null
singularity on the Cauchy horizon in the general, non-self-
similar case. However, the results do suggest that two
criteria may be key. We state these two criteria below in
the form of conjectures, couched in somewhat loose
language.

The first conjectured key criterion for the formation of a
null singularity on the Cauchy horizon is that the amount of
ingoing fluid accreted by the black hole should be finite
and ‘‘sufficiently small.’’ This comes from the empirical
finding that the counterstreaming ingoing and outgoing
fluids collapse to a singularity once sufficient ingoing fluid
has been accreted. Roughly, collapse happens when the
mass of accreted ingoing fluid is comparable to the mass of
accreted outgoing fluid, although we cannot be sure that
this approximate criterion is true in general.

To avoid confusion, we should comment that by ingoing
and outgoing accreted fluid, we mean fluid whose proper-
ties are such that it becomes ingoing or outgoing near the
inner horizon. The term accretion is also intended in a
loose sense. For example, ingoing fluid could possibly
emit outgoing fluid, or vice versa, so the source of ingoing
and outgoing fluids may not necessarily be accretion.

The second conjectured key criterion is that the black
hole should accrete ingoing fluid into the indefinite future.
This comes from the idea that if the accretion of ingoing
fluid is cut short, then the outgoing fluid will run through
all the available ingoing fluid, and will then promptly drop
through the Cauchy horizon.

It should also be commented that the definition of in-
going versus outgoing adopted in this paper and in Paper 1,
that a frame is ingoing or outgoing according to whether
the time component �t of the homothetic 4-vector is posi-
tive or negative, works only for self-similar solutions, since
the homothetic vector exists only in self-similar solutions.
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An alternative definition that would work in a general
spherically symmetric metric would be to define a frame
as ingoing or outgoing according to the sign of the vierbein
coefficient �. This definition agrees with our adopted
definition in the important mass-inflationary region near
the inner horizon. Indeed, it has been seen in Sec. V B that
the sign of � is physically at the heart of mass inflation,
because it is the sign of � that determines which direction
is inward (meaning the direction of smaller circumferential
radius r), and therefore in which direction the gravitational
force operates, towards the black hole for ingoing fluid
(positive �), and away from the black hole for outgoing
fluid (negative �).

VI. APPEARANCE OF THE BLACK HOLE

Section Vof Paper 1 considered the question: What does
it actually look like if you fall inside one of the black holes
described in that paper? This section addresses the same
question for the black holes considered in the present
paper.

Figure 4 shows, for the two models illustrated in Figs. 1
and 3, the angular size 6ph and blueshift of photons from
the edge of the black hole, as observed either in the
baryonic rest frame or in the radially free-falling dark
matter rest frame. The two points of view are related by
a radial Lorentz boost. The observed angular size 6ph of the
black hole (the subscript ph signifying photons from the
photon sphere equivalent) is given by Eq. (73) of Paper 1,
and the observed blueshift of photons at the edge of the
black hole is given by Eq. (74) of Paper 1. For the free-fall
dark matter frame, Eqs. (73) and (74) of Paper 1 apply with
the baryonic homothetic vector �m replaced by its dark
matter counterpart �md , Eq. (8). The horizontal axis on
Fig. 4 is the radius as measured in the corresponding frame,
r for the baryons, rd for the dark matter.

Figure 4 shows that, down to the point where mass
inflation begins, the appearance of black holes accreting
dark matter in addition to charged baryons is similar to the
appearance of black holes accreting only charged baryons,
middle panel of Fig. 12 of Paper 1. As discussed in Sec. V
of Paper 1, this appearance is in turn similar to that of the
corresponding vacuum black hole, the Reissner-Nordström
solution.

From the point of view of an outgoing observer, such as
one in the baryonic rest frame, the black hole (that is, any
of the black holes considered in this paper) increases in
angular size until it covers almost the entire sky. The view
of the outside universe correspondingly shrinks to a small,
intensely bright, blueshifted point above the observer. As
long as mass inflation continues, the point gets smaller,
brighter, and more blueshifted.

From the point of view of an ingoing observer on the
other hand, such as one in the free-fall dark matter rest
frame, the black hole (again meaning any of the black holes
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FIG. 4 (color online). Angular size 6ph of the black hole and the blueshift of photons at the edge of the black hole perceived by
observers in either the baryonic frame or the free-fall dark matter frame, for (left) the model of Fig. 1, where the black hole accretes
noninteracting dark matter, and (right) the model of Fig. 3, where the black hole accretes dark matter whose cross section for
absorption by baryons is effectively infinite at high energy. Light from the outside universe is visible only from outside the Cauchy
horizon, so lines terminate infinitesimally outside the Cauchy horizon even in the model at right, in which the baryons drop inside the
Cauchy horizon.
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considered in this paper) first increases in angular size, but
then shrinks as the observer approaches the inner horizon.
In contrast to the outgoing observer who sees the outside
universe concentrate to a small point, the ingoing observer
sees the outside universe cover almost the whole sky. To
the ingoing observer, the sky near the edge of the black
hole appears blueshifted, but the sky away from the edge is
mostly redshifted. During mass inflation, the black hole
continues to shrink, and to be surrounded by a concentrat-
ing, brightening halo.

In models where the dark matter is noninteracting, such
as the model shown in the left panel of Fig. 4, or where the
dark matter has a finite (not infinite) cross section for
absorption by baryons, mass inflation eventually ceases,
as discussed in Secs. IVA and V D. As mass inflation
comes to an end, an outgoing observer, such as one in
the baryonic frame, sees the view of the outside universe
start to reexpand, and to become less bright and less blue-
shifted. As the outgoing baryons plunge to the singularity
at zero radius, their view of the outside universe expands to
a radius of 90�. The 90� view near the singularity is similar
to that seen by an observer who falls into a Schwarzschild
black hole, and can be attributed to the same enormous
084032
tidal force that stretches the infaller radially and crushes
them horizontally. As in the Schwarzschild solution, the
blueshift at the edge of the black hole tends to infinity as
the outgoing baryonic observer approaches the singularity,
but the amount of time that the observer sees pass by in the
outside universe, the integral of blueshift over proper time,
is finite.

As remarked above, an ingoing observer sees a different
view, a tiny black hole surrounded by a bright, blueshifted
halo. The ingoing observer sees the halo become more
concentrated, brighter, and more blueshifted, not only
during mass inflation, but also thereafter, all the way
down to the singularity at zero radius. Although the blue-
shift around the black hole tends to infinity at the singu-
larity, the ingoing observer sees, like the outgoing
observer, only a finite time pass by in the outside universe.

In models where the dark matter absorption rate is
effectively infinite at high energy, such as the model shown
in the right panel of Fig. 4, the outgoing baryons drop
though the Cauchy horizon as soon as the ingoing dark
matter is completely absorbed. If the outgoing baryons
could see the outside universe (which they cannot, because
by assumption there is no ingoing matter or radiation left to
-15
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see), then as the outgoing baryons dropped through the
Cauchy horizon, their view of the outside universe would
disappear in an infinitely bright, blueshifted, concentrated
flash, in which the entire future of the outside universe
passes by.

The right panel of Fig. 4 shows the view seen by ob-
servers in the freely falling ingoing dark matter frame, cut
short once the dark matter has been completely absorbed.
Cutting the view short seems natural since the model is
specifically constructed so that there is no ingoing fluid—
no dark matter—beyond a certain point. However, if there
were ingoing test particles (with vanishing energy-
momentum tensor), then their view would resemble that
illustrated in the middle panel of Fig. 12 of Paper 1, in
which the ingoing test particles fall to zero radius, encoun-
tering outgoing baryons accreted at ever earlier times,
while the outgoing particles’ view of the outside universe
blueshifts to infinity.

As already mentioned, in most cases observers see only
a finite time go by in the outside universe as they voyage to
their doom inside the black hole. The exception is that if an
outgoing observer drops through the Cauchy horizon, then,
if the outgoing observer could see the outside universe, the
observer would see the entire future of the universe pass by.
Of course, the outgoing observer can drop through the
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ons streaming through each other at radius r inside the black hole
were accreted by the black hole at different times. The graph
shows the ratio td=t of ages of the black hole when the dark
matter versus baryons were accreted. For example, a ratio td=t �
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dark matter as it was when it accreted the baryons. The solid line
is for the model with noninteracting dark matter shown in Fig. 1,
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the model shown in Fig. 1, in which the dark matter has an
effectively infinite cross section for absorption by baryons at
high energy.
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Cauchy horizon only if there is no ingoing fluid left, in
which case the observer cannot see the outside universe. In
effect then, there is no case in which an infalling observer
ever sees an infinite future go by.

For the black holes illustrated in Fig. 4, the amount of
time that an infalling observer sees during their voyage into
the black hole is quite modest. The baryons and dark matter
that stream through each other inside the black hole were
accreted at different ages t and td, and Fig. 5 shows, for the
two models illustrated in Figs. 4, the ratio td=t of these two
ages at each point inside the black hole. The ratio of ages
equals the reciprocal of the ratio of radii, td=t � r=rd,
computed from Eqs. (42c) and (43c). For the noninteract-
ing model, the ratio of ages tends to td=t ! 2:034 as r ! 0.
The ratio is only slightly different if the dark matter is
massless instead of massive, td=t ! 2:007 as r ! 0 (pho-
tons that do not scatter off baryons can be regarded as a
kind of massless dark matter). The ratio td=t 
 2 as r ! 0
means that the baryons see a factor of 2 into the future: the
baryons see dark matter which was accreted when the
black hole was twice as old as when the black hole accreted
the baryons. Similarly, the dark matter sees a factor of 2
into the past: the dark matter sees baryons which were
accreted when the black hole was half as old as when the
black hole accreted the dark matter.

Roughly speaking, mass inflation ceases and the fluids
collapse to a singularity when comparable masses of out-
going baryons and ingoing dark matter have been accreted.
Thus the ratio td=t of ages would be larger if the ratio
"d="b of accreted dark matter to baryonic density were
reduced.

Figure 5 shows that the case of the infinitely interacting
dark matter is similar to that of the noninteracting dark
matter until the dark matter is completely absorbed, be-
yond which there is no dark matter left to see, or to be seen
by, the baryons.

At the end of Sec. V of Paper 1 it was remarked that the
function H�X�, which plays the essential part in ray tracing,
Eq. (70) of Paper 1, was reasonably approximated as a
cubic or quartic polynomial in X. While this approximation
remains satisfactory before mass inflation starts, it fails
completely once mass inflation sets in. During and after
mass inflation, X hardly varies at all, while H, as illustrated
in Fig. 1, varies by many, many orders of magnitude.
VII. SUMMARY

In this the second of two companion papers, we have
investigated self-similar solutions for spherically symmet-
ric charged black holes that accrete a pressureless fluid of
neutral dark matter (massive or massless) in addition to a
relativistic fluid (pb="b � 1=3) of charged baryons. The
primary aim has been to investigate mass inflation.

As first pointed out by [1], the essential ingredient of
mass inflation is the simultaneous presence of ingoing and
-16
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outgoing fluids near the inner horizon. In the present paper,
the accreted charged baryonic fluid, repelled by the charge
of the black hole generated self-consistently by previously
accreted charged baryons, naturally becomes outgoing.
The accreted dark matter, which is neutral, remains in-
going. Relativistic counterstreaming between outgoing
baryons and ingoing dark matter then leads to mass infla-
tion near the inner horizon, as expected.

Section V discussed the physical causes underlying
mass inflation. In Sec. VA we showed that, in the context
of the similarity solutions considered in this paper, as long
as ingoing and outgoing fluids are simultaneously present,
then it is impossible for the fluids to drop through the inner
horizon, because in order to do so the fluids would have to
stream through each other faster than light, which is im-
possible. A corollary of this argument is that, if either of
the ingoing or outgoing streams is exhausted, then the other
stream can promptly drop through the inner horizon, an
ingoing horizon if only ingoing fluid is present, or an
outgoing (Cauchy) horizon if only outgoing fluid is
present.

As argued in Sec. V B, the thing that drives ingoing and
outgoing fluids to stream ever faster through each other
during mass inflation is the inward gravitational force. The
trick is that, in the region near the inner horizon, inward,
meaning in the direction of smaller circumferential radius
r, means opposite directions for the ingoing and outgoing
fluids. For ingoing fluid, the direction of smaller radius
points towards the black hole, whereas for outgoing fluid,
the direction of smaller radius points away from the black
hole.

In Sec. V B, we remarked on the curious dual role played
by the pressure contribution to the gravitational force. On
the one hand, it is the negative radial pressure of the
electric field that produces the gravitational repulsion that
decelerates the inward flow of space into the black hole,
and that therefore causes a vacuum black hole to contain an
inner horizon. Without this negative pressure, there would
be no inner horizon, and no mass inflation. On the other
hand, the same pressure contribution to the gravitational
force, with an exponentially growing positive pressure
rather than a passive negative pressure, provides the feed-
back loop that drives mass inflation.

Since the simultaneous presence of outgoing (baryonic)
and ingoing (dark matter) fluids is essential to mass in-
flation, one might have thought that mass inflation would
be strongest in black holes which accrete comparable
amounts of baryonic and dark matter. In the numerical
experiments presented in Sec. IV we found that, on the
contrary, mass inflation becomes more extreme as one of
the ingoing or outgoing streams is reduced to a trace
relative to the other. Thus, paradoxically, there is a huge
difference between the case of no dark matter (considered
in Paper 1) and the case of a tiny trace of dark matter. With
no dark matter, the baryons can drop quietly through the
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Cauchy horizon. With a trace of ingoing dark matter, the
outgoing baryons cannot drop through the Cauchy horizon,
and instead undergo extravagant mass inflation.

In the similarity solutions considered in the present
paper, mass inflation does not continue to arbitrarily large
value of the interior mass M, but rather comes to an end.
Mass inflation ends at approximately the time that the
center-of-mass frame of the counterstreaming fluids
switches from outgoing to ingoing, whereafter the fluids
collapse to a spacelike singularity at zero radius. It has
widely been considered that a generic consequence of mass
inflation is a weak null singularity on the Cauchy horizon,
and this conclusion is undoubtedly valid in the situation
(different from that considered in the present paper) where
the outgoing fluid is a power-law tail [8,26,27] of radiation
generated when the black hole first collapses. More re-
cently Burko [6,13], reporting numerical experiments on
the collapse of a massless scalar field into a charged black
hole, found that a null singularity forms only if the ampli-
tude of the scalar field falls off sufficiently rapidly. It is not
clear whether Burko’s criterion is essentially the same as
that found here, but the results are at least consistent.

A feature of mass inflation is that the streaming velocity
between ingoing and outgoing fluids can reach huge
Lorentz gamma factors, which raises the question of
whether it is physically plausible to allow relativistic
streaming at immense energies. In Sec. IV B we explored
numerically the consequences of allowing the dark matter
to have a finite cross section for being absorbed by the
baryons. Consistent with the conclusion that mass inflation
becomes more extreme as the amount of dark matter is
reduced to a trace, we find that increasing the absorption
rate merely makes mass inflation more extreme. The only
caveat to this conclusion is that if the absorption rate is
infinite above some collision energy, then the ingoing dark
matter is absorbed completely, whereupon the outgoing
baryons can drop promptly through the Cauchy horizon.

In Sec. VI we discussed what an observer who falls
inside one of the black holes considered in this paper
would see. Among other things, we found that in all cases
an infalling observer witnesses only a finite amount of time
pass by in the outside universe. This is true even for an
observer who drops through the Cauchy horizon, because
although such an observer would, if they could see the
outside universe, see the entire future of the universe pass
by as they dropped through the Cauchy horizon, in fact the
observer cannot see the outside universe, because photons
that come unscattered from the outside universe are nec-
essarily ingoing, and an outgoing observer cannot pass
through the Cauchy horizon as long as there is any trace
of ingoing matter or radiation.

ACKNOWLEDGMENTS

This work was supported in part by NSFAward No. ESI-
0337286.
-17



ANDREW J. S. HAMILTON AND SCOTT E. POLLACK PHYSICAL REVIEW D 71, 084032 (2005)
[1] E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).
[2] C. W. Misner and D. H. Sharp, Phys. Rev. B 136, 571

(1964).
[3] A. Bonanno, S. Droz, W. Israel, and S. M. Morsink, Proc.

R. Soc. London A 450, 553 (1994).
[4] P. R. Brady and J. D. Smith, Phys. Rev. Lett. 75, 1256

(1995).
[5] L. M. Burko, Phys. Rev. Lett. 79, 4958 (1997).
[6] L. M. Burko, Phys. Rev. Lett. 90, 121101 (2003); 90,

249902(E) (2003).
[7] L. M. Burko and A. Ori, Phys. Rev. D 57, R7084

(1998).
[8] M. Dafermos, in Proceedings of the Seventh Hungarian

Relativity Workshop (gr-qc/0401121) (to be published).
[9] A. Ori, Phys. Rev. Lett. 67, 789 (1991).

[10] A. J. S. Hamilton and S. E. Pollack, preceding paper, Phys.
Rev. D 71, 084031 (2005).

[11] P. R. Brady, Phys. Rev. D 51, 4168 (1995).
[12] L. M. Burko, Phys. Rev. D 59, 024011 (1999).
[13] L. M. Burko, Phys. Rev. D 66, 024046 (2002).
[14] D. Christodoulou, Commun. Math. Phys. 105, 337 (1986);

106, 587 (1986); 109, 591 (1987); 109, 613 (1987).
084032
[15] M. L. Gnedin and N. Y. Gnedin, Classical Quantum
Gravity 10, 1083 (1993).

[16] D. S. Goldwirth and T. Piran, Phys. Rev. D 36, 3575
(1987).

[17] J. Hansen, A. Khokhlov, and I. Novikov, Phys. Rev. D 71,
064013 (2005).

[18] V. Husain and M. Olivier, Classical Quantum Gravity 18,
L1 (2001).

[19] J. M. Martı́n-Garcı́a and C. Gundlach, Phys. Rev. D 68,
024011 (2003).

[20] M. Dafermos, gr-qc/0307013; M. Dafermos and I.
Rodnianski, gr-qc/0309115.

[21] S. Hod and T. Piran, Phys. Rev. D 55, 3485 (1997).
[22] S. Hod and T. Piran, Phys. Rev. Lett. 81, 1554 (1998).
[23] S. Hod and T. Piran, Gen. Relativ. Gravit. 30, 1555 (1998).
[24] Y. Oren and T. Piran, Phys. Rev. D 68, 044013 (2003).
[25] E. Sorkin and T. Piran, Phys. Rev. D 63, 084006 (2001).
[26] S. Hod and T. Piran, Phys. Rev. D 58, 024017 (1998).
[27] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[28] A. Ori, Phys. Rev. Lett. 83, 5423 (1999).
[29] B. J. Carr and A. A. Coley, Classical Quantum Gravity 16,

R31 (1999).
-18


