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We present a lesser known way to conceptualize stationary black holes, which we call the river
model. In this model, space flows like a river through a flat background, while objects move through
the river according to the rules of special relativity. In a spherical black hole, the river of space falls
into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside
the horizon, the river flows inward faster than light, carrying everything with it. The river model also
works for rotating �Kerr–Newman� black holes, though with a surprising twist. As in the spherical
case, the river of space can be regarded as moving through a flat background. However, the river
does not spiral inward, but falls inward with no azimuthal swirl. The river has at each point not only
a velocity but also a rotation or twist. That is, the river has a Lorentz structure, characterized by six
numbers �velocity and rotation�. As an object moves through the river, it changes its velocity and
rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit
expression is given for the river field, a six-component bivector field that encodes the velocity and
twist of the river at each point and encapsulates all the properties of a stationary rotating black
hole. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2830526�
I. INTRODUCTION

As was first pointed out Gullstrand1 and Painlevé,2 the
Schwarzschild3,4 metric can be expressed in the form

ds2 = − dtff
2 + �dr + �dtff�2 + r2�d�2 + sin2� d�2� , �1�

where � is the Newtonian escape velocity in units of the
speed of light at radius r from a spherical object of mass M

� = �2GM

r
�1/2

�2�

and tff �ff for free fall� is the proper time experienced by an
object that free falls radially inward from zero velocity at
infinity.

Although Gullstrand’s paper was published in 1922 after
Painlevé’s paper, it appears that Gullstrand’s work has prior-
ity. Gullstrand’s paper was dated 25 May 1921, and Pain-
levé’s paper is a write up of a presentation to the Académie
des Sciences in Paris on 24 October 1921. Gullstrand seems
to have had a better grasp of what he had discovered than
Painlevé, for Gullstrand recognized that observables such as
the redshift of light from the Sun are unaffected by the
choice of coordinates in the Schwarzschild geometry. Pain-
levé noted that the spatial metric was flat at constant free-fall
time, dtff=0, and concluded that as regards the redshift of
light and such, “c’est pure imagination de prétendre tirer du
ds2 des conséquences de cette nature.”

As shown in Sec. II, the Gullstrand–Painlevé metric pro-
vides a delightfully simple conceptual picture of the
Schwarzschild geometry: it looks like ordinary flat space,
with the distinctive feature that space itself is flowing radi-
ally inward at the Newtonian escape velocity. The place
where the inward velocity reaches the speed of light, �=1,
marks the horizon, the Schwarzschild radius. Inside the ho-
rizon, the inward velocity exceeds the speed of light, carry-

ing everything with it �see Fig. 1�.
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Picture space as flowing like a river into the Schwarzs-
child black hole. Imagine light rays, photons, as fishes swim-
ming fiercely in the current. Outside the horizon, photon
fishes swimming upstream can make way against the flow.
But inside the horizon, the space river is flowing inward so
fast that it beats all fishes, carrying them inevitably toward
their ultimate fate, the central singularity.

The river model of black holes offers a mental image of
black holes that can be understood by nonexperts �at least in
the spherical case� without the benefit of mathematics. It
explains why light cannot escape from inside the horizon,
and why no star can come to rest within the horizon. It ex-
plains how an extended object will be stretched radially by
the inward acceleration of the river, and compressed trans-
versely by the spherical convergence of the flow. It explains
why an object that falls through the horizon appears to an
outsider to be redshifted and frozen at the horizon: as the
object approaches the horizon, light emitted by it takes an
ever increasing time to forge against the inrushing torrent of

Fig. 1. �Color online� The fish upstream can make way against the current,
but the fish downstream is swept to the bottom of the waterfall. Figure 1 of

Ref. 5 presents a similar depiction.
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space and to reach an outside observer. The river model
paints a picture that is radically different from the Newtonian
picture envisaged by Michell6 and Laplace.7

The picture of space falling like a river into a black hole
may seem discomfortingly concrete, but the aetherial
overtones12 are no more substantial than the familiar cosmo-
logical picture of expanding space �see for example Ref. 8�.

As reviewed by Visser9,10 and by Martel and Poisson,11 the
Gullstrand–Painlevé metric has been discovered and redis-
covered repeatedly.12–23 Surprisingly, the Gullstrand–
Painlevé metric is widely neglected in texts on general rela-
tivity. An admirable exception is the text by Taylor and
Wheeler,24 which devotes an entire section, Project B, to the
Gullstrand–Painlevé metric, calling it the “rain frame” �the
metric appears on p. B-13�. Taylor and Wheeler attribute �p.
B-26� the idea for the rain frame to the book by Thorne,
Price and MacDonald,25 although the metric does not appear
explicitly in that book.

It has been long recognized that some aspects of general
relativity can be conceptualized in terms of flows. In the
Arnowitt–Deser–Misner �ADM� formalism26 �see, for ex-
ample, Ref. 27 for a pedagogical review�, we consider fidu-
cial observers �FIDOs�25 whose worldlines are orthogonal to
hypersurfaces of constant time. The shift vector in the ADM
formalism is just the velocity of these FIDOs through the
spatial coordinates. Alcubierre28,29 constructed his famous
warp-drive metric by positing a superluminal �faster-than-
light� shift vector.

In a seminal, albeit initially unremarked paper, Unruh30,31

pointed out that the equations governing sound waves propa-
gating in an inviscid, barotropic �pressure is a specified func-
tion of density�, and irrotational fluid are the same as those
for a massless scalar field propagating in a certain general
relativistic metric. Unruh showed that this similarity implied
that sound horizons would emit Hawking radiation in much
the same way as event horizons in black holes, and he pro-
posed that Hawking radiation might be detected from sonic
black holes, or “dumb holes,” in the laboratory.

As excellently reviewed in Ref. 31, Unruh’s paper even-
tually led to a now thriving industry on “analog gravity,” in
which fluid flows with prescribed velocity fields simulate
general relativistic spacetimes. The primary aim of the work
on analog gravity is to try to understand, and maybe in the
not-too-distant future to probe experimentally, quantum
gravity through sonic analogs.

It is generally assumed that the fluid or river analogy ap-
plies to a limited class of general relativistic spacetimes,
those in which the metric can be expressed up to an overall
factor �a conformal factor� in terms of a shift vector �the
velocity of the river� on an otherwise flat background space.
The three-dimensional shift vector and the conformal factor
provide four degrees of freedom, whereas at least six degrees
of freedom are required to specify an arbitrary spacetime �the
metric has ten degrees of freedom, of which four are re-
moved by an arbitrary coordinate transformation�. As a cor-
ollary, it has been thought that any general relativistic geom-
etry admitting a fluid analog must necessarily be �up to a
conformal factor� spatially flat at constant time,32,33 as is the
case in the Gullstrand–Painlevé metric. In particular, it has
been thought that no river model for stationary rotating black
holes exists,33 because the Kerr–Newman geometry does not
admit conformally flat slices.34,35

In the present paper we start from a somewhat different

conceptual picture. We notice that fishes swimming in the
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Gullstrand–Painlevé river move according to the rules of
special relativity, being boosted by tidal differences in the
river velocity from place to place. We wonder, might there be
an analogous behavior for rotating black holes? It comes as a
magical surprise �see Sec. III� that the answer is yes. From
this perspective there is a river model of the Kerr–Newman
geometry. The rotating analog of the Gullstrand–Painlevé
metric proves to be as expected33 the Doran36 form of the
Kerr–Newman metric. The new feature that emerges from
the mathematics is that the river of a rotating black hole is a
fully six-dimensional Lorentz river, with a twist as well as a
velocity. Just as a velocity is a generator of a space-time
rotation �a Lorentz boost�, so is a twist a generator of a
space-space rotation �an ordinary spatial rotation�. As a fish
swims through the Doran river, it is not only boosted but also
rotated by tidal differences in the river velocity and twist
from place to place.

This novel point of view leads to a different notion of
what is meant by the flat background space through which
the river flows and twists. Mathematically, the essential fea-
ture of the river model is given by Eq. �72�, which states that
the connection coefficients, expressed in locally inertial
frames co-moving with the infalling river of space, should
equal the ordinary �noncovariant� gradient of the river field.

The property that the tetrad connection coefficients are
equal to the ordinary gradient in Doran–Cartesian coordi-
nates of the river field defines what we mean by the back-
ground space in the river model being flat. This feature ap-
pears to be a special property of stationary black holes. How
this idea emerges from the mathematics is examined in Sec.
III F and revisited in Sec. III I. We emphasize that the flat
background does not mean that the metric is spatially flat,
although the latter holds for spherical black holes. The notion
that there is a sense in which stationary rotating black holes
admit a flat background coordinate system might have appli-
cation to numerical general relativity, for example in setting
up initial conditions containing rotating black holes, for
which traditional conformal imaging and puncture methods
that assume a conformally flat 3-geometry are too restrictive
to admit Kerr black holes.37

II. SPHERICAL BLACK HOLES

In this section we consider spherically symmetric black
holes, and we justify the assertion that the Gullstrand–
Painlevé metric, Eq. �1�, can be interpreted as representing a
river of space falling radially inward at velocity �. We dem-
onstrate two features that are the essence of the river model
for spherical black holes: first, that the river of space can be
regarded as moving in Galilean fashion through a flat Gal-
ilean background space �Eqs. �14� and �15��; and second, that
as a freely-falling object moves through the flowing river of
space, its 4-velocity, or more generally any 4-vector attached
to the freely-falling object, can be regarded as evolving by a
series of infinitesimal Lorentz boosts induced by the change
in the velocity of the river from one place to the next �Eq.
�18��. Because the river moves in a Galilean fashion, it can,
and inside the horizon does, move faster than light through
the background. Objects moving in the river move according
to the rules of special relativity, and so cannot move faster
than light through the river.

In the following we will adopt the sign conventions and
38
ordering of indices of Misner, Thorne and Wheeler.
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A. Mathematics of the river model

In general, a spherically symmetric metric of the form �c
=G=1�

ds2 = − �1 − 2M�r�/r�dt2 +
dr2

�1 − 2M�r�/r�

+ r2�d�2 + sin2� d�2� �3�

can be expressed in the Gullstrand-Painlevé form Eq. �1�
with infall velocity,

��r� = �2M�r�
r

�1/2

, �4�

with the free-fall time tff given by

tff = t − 	
r

� �

1 − �2dr . �5�

The velocity � is commonly called the shift in the ADM
formalism,26,27 but we will refer to � as the river velocity.
The river velocity � is positive for a black hole �infalling�
and is negative for a white hole �outfalling�. Horizons occur
where the river velocity � equals the speed of light,

� = � 1, �6�

with �=1 for black hole horizons, and �=−1 for white hole
horizons. The Reissner–Nordström metric for a spherically
symmetric black hole of mass M and charge Q takes the
form in Eq. �3� with the mass M�r� interior to r, the
Misner-Sharp39,40 mass, given by

M�r� = M −
Q2

2r
. �7�

The river velocity � can also be considered to be a more
general function of radius r. In Sec. II B we will return
briefly to the Reissner–Nordström solution to see what its
river looks like.

To make the argument simpler, we rewrite the Gullstrand–
Painlevé metric in Eq. �1� in Cartesian coordinates x�

= �x0 ,x1 ,x2 ,x3�= �tff ,x ,y ,z� instead of spherical coordinates:

ds2 = ����dx� − ��dtff��dx� − ��dtff� , �8�

where ��� is the Minkowski metric, and

�� = ��0,−
x

r
,−

y

r
,−

z

r
� �9�

are the components of the radial river velocity.
Let g� denote the basis of tangent vectors in the

Gullstrand–Painlevé–Cartesian coordinate system x�. By
definition, the scalar products of the tangent vectors consti-
tute the metric g��

g� · g� = g��. �10�

Let 	�
dx� /d
 denote the 4-velocity of a particle falling
freely �not necessarily radially� in the geometry, where 
 is
the proper time experienced by the particle. In particular,
observers who free-fall radially from zero velocity at infinity

have 4-velocity
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	ff
� = �1,�1,�2,�3� . �11�

Such observers are co-moving with the inflowing river of
space. Let �m and the associated local coordinates �m

= ��0�1 ,�2 ,�3� denote a system of locally inertial orthonormal
frames, tetrads, attached to observers who free-fall radially
from zero velocity at infinity. We will use Latin indices to
signify tetrad frames, and reserve Greek indices for curved
space-time frames. Orthonormal means that the scalar prod-
ucts of the tetrad basis at each point of spacetime form the
Minkowski metric

�m · �n = �mn. �12�

That the tetrad frames move with the radially free-falling
observers without precessing requires that the vectors �m be
“parallel-transported” along the worldlines of these observ-
ers, that is,

	ff
���m

�x� = 0. �13�

Assume without loss of generality that the tetrad frames �m
are aligned with the Gullstrand–Painlevé–Cartesian frame at
infinity. Then the tetrad frames �m are related to the
Gullstrand–Painlevé basis g� at each point by

�0 = g0 + �igi �14a�

�i = gi�i = 1,2,3� �14b�

which is most easily deduced from Eqs. �10� and �12� and
considerations of symmetry; the result is confirmed by
checking that Eq. �13� holds. Remarkably, the relations given
by Eq. �14� are those of a Galilean transformation, which
shifts the time axis by the velocity � along the direction of
motion, but leaves unchanged both the time component of
the time axis and all of the spatial axes.

The 4-velocity um of a freely-falling particle with respect
to the tetrad frame �m at the position of the particle follows
from um�m=	�g�, which implies that

u0 = 	 0 �15a�

ui = 	 i − �i	0�i = 1,2,3� . �15b�

Physically, the 4-velocity um is the 4-velocity of the particle
relative to the inflowing river of space. For example, the
spatial components ui of the 4-velocity are zero if the particle
is motionless in the river. Again, the relations given by Eq.
�15� resemble those of a Galilean transformation, which
shifts only the spatial components of the vector while leaving
the time component unchanged. The only non-Galilean �rela-
tivistic� feature of Eq. �15� is that the 4-velocities um and 	 �

are derivatives with respect to proper time. But proper time
is a property of the objects moving in the river, not of the
river itself. Objects moving in the river move through it ac-
cording to the rules of special relativity. The river itself flows
in Galilean fashion through a flat Galilean background.

Equations �14� and �15� demonstrate the first of the two
features of the river model for spherical black holes: the river
of space moves in Galilean fashion through a flat Galilean
background.

We proceed to demonstrate the second feature of the river

model, which is that objects moving in the river of space
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move according to the rules of special relativity, being Lor-
entz boosted by tidal differences in the river velocity from
place to place.

The tetrad frames have been constructed so that observers
who free fall from zero velocity at infinity find their own
frame aligned at all times with the tetrad frame. In general,
other observers who free fall along a different geodesic will
find their locally inertial frame becoming misaligned with
the tetrad frame. This misalignment is determined by the
equations of motion of objects, 4-vectors, expressed with
respect to the tetrad frame. Let p= pm�m= p�g� be a 4-vector.
Its components pm in the tetrad frame are related to those p�

in the coordinate frame by pm=
�
mp�−�mp0. For a 4-vector

in free fall, the equations of motion for the components pm in
the tetrad frame are �see Sec. III E�

dpk

d

+ �mn

k unpm = 0, �16�

where �mn
k are the tetrad frame connection coefficients, the

tetrad frame analog of the coordinate frame Christoffel sym-
bols. For spherically symmetric black holes the nonzero tet-
rad frame connection coefficients are given by the spatial
gradient of the river velocity �see Sec. III H�

�ij
0 = �0j

i =
��i

�xj �i, j = 1,2,3� . �17�

From Eqs. �16� and �17� it follows that

dp0

d

= −

��i

�xj ujpi �18a�

dpi

d

= −

��i

�xj ujp0 �i = 1,2,3� . �18b�

The summations over paired indices in Eq. �18� are formally
over all four indices 0 ,1 ,2 ,3, but in practice reduce to sums
over only the three spatial indices 1, 2, and 3 because the
infall velocity has zero time component, �0=0, as we have
defined it, and, the infall velocity has a zero time derivative,
��� /�x0=0.

In the context of the river model, the equations of motion,
Eq. �18�, have the following interpretation. In an interval 


of proper time, a particle moves a distance 
xi=	 i

 in the
background Gullstrand–Painlevé–Cartesian coordinates, and
a proper distance 
�i=ui

=
xi−�i
tff relative to the infall-
ing river of space. The proper distance 
�i equals the dis-
tance 
xi minus the distance �i
tff moved by the river. In
Gullstrand–Painlevé–Cartesian coordinates the velocity �i of
the infalling river at the new position differs from the veloc-
ity at the old position by 
xj��i /�xj. In the river model, a
particle moving in the river sees not the full change in river
velocity relative to the background coordinates, but only the
tidal change


�i =
��i

�xj 
� j �19�

in the river velocity relative to the infalling locally inertial
river frame. For example, if the particle is co-moving with
the inflowing river, so that 
�i=0, then the particle sees no
change at all in the river velocity as time goes by, 
�i=0.
The infinitesimal tidal change 
�i in the river velocity in-

m
duces a Lorentz boost in the 4-vector p
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p0 → p0 − 
�ip
i �20a�

pi → pi − 
�ip0 �i = 1,2,3� . �20b�

Equations �19� and �20� reproduce the equations of motion,
Eq. �18�.

We have thus demonstrated the second of the claimed fea-
tures of the river model for spherical black holes: as a par-
ticle moves through the river of space, its 4-velocity, or more
generally any 4-vector attached to it, is Lorentz boosted by
tidal changes in the river velocity along its path.

B. Reissner–Nordström metric

We conclude this section by commenting on the Reissner–
Nordström metric for a spherical black hole of mass M and
charge Q. In this case the mass M�r�=M −Q2 / �2r� interior to
r, Eq. �7�, can be interpreted as the mass M at infinity, less
the mass �r

��E2 /8��4�r2dr=Q2 / �2r� contained in the elec-
tric field E=Q /r2 outside r. The Reissner–Nordström geom-
etry exhibits both outer and inner horizons r+ and r−

r� = M � �M2 − Q2�1/2. �21�

The inflow velocity � hits the speed of light at the outer
horizon r+, reaches a maximum velocity between the outer
and inner horizons, slows back down to the speed of light at
the inner horizon r−, and slows all the way to zero velocity at
the turnaround radius

r0 =
Q2

2M
. �22�

At this point the flow of space turns around, accelerates back
outward through another inner horizon, the Cauchy horizon,
into a white hole, and bursts through the outer horizon of the
white hole into a new universe.

Sadly, the Reissner–Nordström solution is not realistic,
and its promise of passages to other universes is moot.
Penrose41 first pointed out that an infaller passing through
the inner horizon of a Reissner–Nordström black hole would
see the outside universe infinitely blueshifted, and suggested
that this shift would destabilize the Reissner–Nordström so-
lution. The full nonlinear nature of the instability was even-
tually clarified in a seminal paper by Poisson and Israel,42

who showed that relativistic counter streaming between in-
going fluids �going with the flow of the river, in the parlance
of this paper� and outgoing fluids �going against the flow�
just above the inner horizon of a Reissner–Nordström black
hole produces an exponentially growing instability which
they dubbed “mass inflation.” See Ref. 43 for an entry to the
literature on the intriguing subject of what happens inside
charged black holes.

The infall velocity � is imaginary inside the turnaround
radius r0 of the Reissner–Nordström geometry, the interior
mass M�r� being negative inside this radius. The imaginary
velocity might be considered a defect of the river model, but
it might also be considered an asset, signaling the presence
of unphysical negative mass. Whatever the case, the formal-
ism remains valid even where the river velocity � is imagi-
nary.

III. ROTATING BLACK HOLES

Does the river model work also for stationary rotating

black holes? We will show that the answer is yes. There is a
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river of space, and it moves through a flat background.
Fishes move through the river special relativistically, as
though they were being carried with it. But the river has a
surprising twist. It might be anticipated that the river would
spiral into the black hole like a whirlpool, but that is not the
case. Rather, the river velocity has no azimuthal component.
Instead of a spiral, the river possesses, besides a velocity at
each point, a rotation or twist at each point. The river is
characterized not by three numbers, a velocity vector, but by
six numbers, a velocity vector and a twist vector. As a fish
swims through the river, it is Lorentz boosted by gradients in
the velocity of the river and rotated spatially by gradients in
the twist of the river. A key result is the expression in Eq.
�73� for the river field �km. This is a 6-component
bivector38,44 field antisymmetric in its indices km, whose
electric part specifies the river velocity, and whose magnetic
part specifies the river twist. The river field �km encapsulates
all the properties of a stationary rotating black hole.

How can a river move and twist without spiralling? The
answer to this conundrum is that, unlike the Gullstrand–
Painlevé case, the spatial metric is not flat, but sheared �see
Fig. 2�. We can regard the twist in the river as inducing the
shear in the spatial metric; or equally well we can regard the
shear in the spatial metric as requiring a twist in the river.
Whatever the case, the twist and the shear act together to
ensure that locally inertial frames moving through the infall-
ing river co-move with the geodesic motion of points at rest
in a small neighborhood of the frame.

Recall from special relativity that Lorentz transformations
are generated by a combination of changes in velocity, or
Lorentz boosts, and spatial rotations. Lorentz boosts are ro-
tations in a plane defined by a space axis and a time axis, and
spatial rotations are rotations in a plane defined by two spa-
tial axes. Gradients in the velocity of the river make the
metric nonflat with respect to the time components, while
leaving the spatial metric at constant time flat. Gradients in
the rotation, or twist, of the river make the metric nonflat
with respect to the spatial components, while leaving the

Fig. 2. �Color online� Sets of horizontal radial and azimuthal tetrad axes �→
and �↑, Eq. �35�, in the equatorial x-y plane ��=� /2� of an uncharged �Kerr�
black hole with angular momentum per unit mass a=0.96 plotted in Doran–
Cartesian coordinates. The azimuthal axis at each point is tilted radially,
reflecting the fact that the spatial metric is sheared.
time part of the metric flat; that is, the metric becomes
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−dt2+gijdxidxj where gij is a purely spatial metric. We see
that the reason that the Gullstrand–Painlevé metric for
spherical black holes is flat along hypersurfaces of constant
free-fall time is that the river has no twist component. How-
ever, the Gullstrand–Painlevé river does have a velocity
component, so the Gullstrand–Painlevé metric is not flat in
the time direction. For rotating black holes the river has both
velocity and twist components, and the metric is flat neither
in time nor in space.

A. Doran metric

Doran36 has pointed out that the Kerr–Newman metric for
a rotating black hole of angular momentum a per unit mass
�for positive a the black hole rotates right handedly about its
axis�, can be cast in oblate spheroidal coordinates
�tff ,r ,� ,�ff� in the form

ds2 = − dtff
2 + ��dr

R
+

�R

�
�dtff − a sin2� d�ff��2

+ �2d�2 + R2 sin2� d�ff
2 , �23�

where ��r� is the river velocity,

R 
 �r2 + a2�1/2, � 
 �r2 + a2 cos2 ��1/2, �24�

and the free-fall time tff and free-fall azimuthal angle �ff are
related to the usual Boyer-Lindquist38,45 time t and azimuthal
angle � by

tff = t − 	
r

� �dr

1 − �2 �25�

�ff = � − a	
r

� �dr

R2�1 − �2�
. �26�

As before, we adopt the convention that the river velocity �
is positive for a black hole �infalling� and is negative for a
white hole �outfalling�. Horizons occur �see Sec. III D�
where the river velocity � equals the speed of light

� = � 1. �27�

The boundaries of ergospheres38 �where little children come
from, because nothing can remain at rest there� occur where
ds2=0 at dr=d�=d�ff=0, which happens at

� = �
�

R
, �28�

again with �=� /R for black hole ergospheres, and �
=−� /R for white hole ergospheres. For a Kerr–Newman
black hole with mass M and charge Q, the river velocity � is
given by

��r� =
�2Mr − Q2�1/2

R
. �29�

For the present purpose the river velocity can be considered
to be a more general function of the radial coordinate r. Note
that the river velocity � as defined here differs from Doran’s
velocity36 by a factor of � /R. Doran defines the velocity to
equal the magnitude ������1/2=�R /� of the velocity vector
�� given by Eq. �31�, a seemingly natural choice. The point
of the convention adopted here is that ��r� is any and only a

function of r, rather than depending also on � through �
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�r2+a2 cos2 ��1/2. Moreover, with our convention the river
velocity is �1 at the horizons, Eq. �27�, as we will demon-
strate in Sec. III D.

If the river velocity � is zero, then the metric, Eq. �23�,
reduces to the flat space metric in oblate spheroidal coordi-
nates. However, unlike the spherical case, the metric is not
flat along hypersurfaces of constant free-fall time, dtff=0.

B. Doran–Cartesian metric

The Doran coordinate system turns out �Secs. III F and
III I� to provide the coordinates of the flat background
through which the river of space flows into the black
hole. We therefore express the Doran metric in
Cartesian coordinates x�= �x0 ,x1 ,x2 ,x3�= �tff ,x ,y ,z�
= �tff ,R sin � cos �ff ,R sin � sin �ff ,r cos �� with the rotation
axis along the z direction:

ds2 = ����dx� − ����dx���dx� − ����dx�� . �30�

The components of the river velocity �� are

�� =
�R

�
�0,−

xr

R�
,−

yr

R�
,−

zR

r�
� , �31�

and ��dx�=dtff−a sin2 � d�ff has components

�� = �1,
ay

R2 ,−
ax

R2 ,0� . �32�

The vector �� is related to the 4-velocity of the horizon, Eq.
�46�, and we refer to it as the azimuthal vector, because its
spatial components point in the �negative� azimuthal direc-
tion, in the direction opposite to the rotation of the black
hole. The spheroidal radial coordinate r is given implicitly in
terms of x ,y ,z by

r4 − r2�x2 + y2 + z2 − a2� − a2z2 = 0. �33�

C. River tetrad

In modeling black holes as an inflowing river of space, it
is natural to work in the orthonormal tetrad formalism. Let
g� denote the basis of tangent vectors in the Doran–Cartesian
coordinate system x�, and let �m and the associated local
coordinates �m= ��0 ,�1 ,�2 ,�3� denote a system of locally in-
ertial frames, tetrads, attached to observers who free fall
from zero velocity �with zero angular momentum� at infinity.
Such freely falling observers are co-moving with the infall-
ing river of space. They fall along trajectories of constant �
and �ff, and have 4-velocities 	ff

�= �1,�1 ,�2 ,�3� in the
Doran–Cartesian coordinate system. The scalar products of
the tangent vectors g� at each point constitute the metric g��,
Eq. �10�, and the scalar products of the tetrad vectors �m at
each point form the Minkowski metric, Eq. �12�. If the tetrad
frames �m are assumed without loss of generality to be
aligned with the tangent vectors g� at infinity, the relation
between �m and g� is36

�tff
= gtff

+ �igi �34a�

�x = gx + �x�
igi �34b�

i
�y = gy + �y� gi �34c�
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�z = gz, �34d�

which may be confirmed by checking that the scalar products
of �m form the Minkowski metric and that their derivatives
vanish along the worldlines of observers who free fall from
zero velocity at infinity, 	ff

���m /�x�=0. If the horizontal ra-
dial and azimuthal axes are defined by ��→ ,�↑�

�cos �ff�x+sin �ff�y ,−sin �ff�x+cos �ff�y� and likewise
�g→ ,g↑�
�cos �ffgx+sin �ffgy ,−sin �ffgx+cos �ffgy�, then

�→ = g→ �35a�

�↑ = g↑ −
a sin �

R
�igi. �35b�

Equation �34a� shows that the time axis �tff
is shifted by

velocity �igi, similar to the spherical case, Eq. �14a�. Equa-
tion �35� shows that in addition the azimuthal axis �↑ is
shifted by −�a sin � /R��igi. Figure 2 illustrates the horizon-
tal radial and azimuthal axes �→ and �↑ at several points in
the equatorial plane of a Kerr black hole. The azimuthal axes
�↑ are tilted radially in accordance with Eq. �35�, reflecting
the fact that the spatial metric is sheared.

Equation �34� may be abbreviated �m=em
�g� where em

� is
the vierbein �German for four-leg� matrix

em
� = 
m

� + �m��, �36�

with 
m
� the Kronecker delta. The inverse vierbein em

� is

em
� = 
�

m − ���m. �37�

The product of the vierbein and its inverse given by Eqs.
�36� and �37� is the unit matrix, em

�en
�=
m

n and em
�em

�

=
�
� , as follows from the orthogonality of the azimuthal and

velocity vectors �� and ��, namely ����=0. The vectors �m
with a Latin index in the vierbein, Eq. �36�, and �m with a
Latin index in the inverse vierbein, Eq. �37�, are defined by

�m 
 
m
���, �m 
 
�

m��, �38�

and transform with the tetrad frame �m rather than the coor-
dinate frame g�. The coordinates of �m and �m are the same
as those of �� and �� in the particular tetrad frame and
coordinate system we are using, but would be different in a
different tetrad frame or a different coordinate system.

In general, the vierbein matrix em
� and its inverse em

�
provide a means of transforming the components p� or p� of
any arbitrary 4-vector between the coordinate frame and the
tretrad frame

pm = em
�p�, pm = em

�p�. �39�

The indices on the vectors pm and pm in the tetrad frame are
raised and lowered with the Minkowski metric �mn, and the
indices on vectors p� and p� in the coordinate frame are
raised and lowered with the coordinate metric g��.

A special case of Eq. �39� is

�m = em
���, �m = em

��� �40�

which reduces to the definitions in Eq. �38� thanks to the
orthogonality of �� and ��. If the coordinate system or tet-
rad frame is changed, then the vierbein change accordingly,
and �m and �m change in accordance with Eq. �40�.

The components um of the 4-velocity of a particle relative
to the tetrad frame are related to the components 	 � in the

m m �
coordinate frame by u =e �	 , or explicitly
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u0 = 	 0 �41a�

ui = 	 i − �i��	 � �i = 1,2,3� . �41b�

Equation �41� implies that if in an interval of proper time 


the particle moves a coordinate distance 
x�=	 �

, then
relative to the tetrad frame, that is, relative to the locally
inertial frame of an observer who is comoving with the in-
falling river, the particle moves a proper distance


�m = em
�
x� = 
xm − �m��
x�. �42�

We recognize the right-hand side of Eq. �42� as having the
same form as a factor of the Doran–Cartesian metric, Eq.
�30�. The temporal displacement 
�0 of the particle in the
tetrad frame is the Galilean time change 
tff, as in the spheri-
cal case. The proper spatial displacement 
�i of the particle
in the tetrad frame differs from the displacement 
xi in the
coordinate frame not by the Galilean distance �i
tff that the
river moves in the time 
tff, as in the spherical case, but by
�i��
x�=�i�
tff−a sin2 �
�ff�. The extra term
−�ia sin2 � 
�ff arises from the spatial shear in the metric, as
illustrated in Fig. 2.

D. Horizons

It is now possible to understand how the position of the
horizons is set by �= �1, as was asserted in Eq. �27�. It
follows from the previous paragraph that the effective veloc-
ity of the river, from the point of view of an object in the
river, depends on the state of motion of the object. The ef-
fective river velocity is �i��dx� /dtff, which differs from �i

by the factor ��	 � /	 0=��dx� /dtff=1−a sin2 � d�ff /dtff. Ir-
respective of this factor, the effective river velocity always
points radially inward �along lines of constant � and �ff�
along the direction of �i. If we restrict our consideration
temporarily to objects with a fixed value of ��	 � /	 0, then
such objects can escape outward only if their radial velocity,

	 r =
�r

�x�	 �, �43�

exceeds zero. To determine the position of the horizon, we
first solve the slightly more general problem of maximizing
the radial velocity 	 r subject to constraints on 	 0 �which can
be set to 1 without loss of generality�, ��	 �, and 	�	 �. The
last constraint comes from the fact that the 4-velocity must
be time-like or light-like, requiring 	�	 ��0. Equivalently,
we can minimize 	�	 � subject to constraints on 	 0, ��	 �,
and 	 r, which gives

	� = �
�
0 + ��� + �

�r

�x� , �44�

where �, �, and � are Lagrange multipliers whose values are
determined by fixing any three of the four quantities 	 0, 	 r,
��	 �, and 	�	 �. Not surprisingly, the largest value of 	 r at
fixed 	 0 and ��	 � occurs when the 4-velocity is light-like,
	�	 �=0. We eliminate the Lagrange multipliers �, �, and �
in favor of 	 0=1, 	 r=0, and 	�	 �=0, and obtain

��	 �

	0 =
�2�R � a sin ��1 − �2�1/2�

R��2 + �2a2 sin2 ��
, �45�

which has a real solution if �2�1, with ��	 � /	 0=�2 /R2 at
�2=1. The position of the horizon is thus set by �2=1 as

2
claimed. If � �1, there are geodesics on which a particle
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can escape, 	 r�0; if �2�1, then all geodesics are trapped,
and an object is compelled to fall inward �or outward for the
case of a white hole�.

The 4-velocity of a photon that just holds steady on the
horizon, a member of the outgoing principal null congru-
ence, satisfies 	�= ��2 /R2��r /�x�, and is

	 � = �1,−
ay

R2 ,
ax

R2 ,0� . �46�

Interestingly, the contravariant components 	� of this
4-velocity coincide, up to a minus sign, with the covariant
components �� of the azimuthal vector, Eq. �32�. Relative to
the river frame, the horizon rotates right handedly with an-
gular velocity

d�ff

dtff
=

a

R2 , �47�

which is also the angular velocity of the horizon perceived
by an observer at rest at infinity.38

E. Equations of motion in the tetrad formalism

Our aim in this section is to derive the equations of motion
Eq. �62� for objects moving relative to the inflowing river of
space. For clarity we start from basic principles to derive the
equations of motion of 4-vectors in the tetrad frame. We will
then describe what these equations mean physically. In Sec.
III F we will apply these equations to the special case of
black holes, where the vierbein are given by Eq. �36�.

Let p be an arbitrary 4-vector. The 4-vector p= pm�m
= p�g� is an invariant object, independent of the choice of
tetrad or coordinate system. According to the principle of
equivalence, an unaccelerated 4-vector p remains at rest in
its own free-fall frame, meaning that its derivative with re-
spect to its own proper time 
 is zero in its own frame

dp

d

= 0. �48�

If the 4-vector p experiences an acceleration in its own frame
�perhaps because of an electromagnetic field or rockets being
fired�, the zero on the right-hand side of Eq. �48� should be
replaced by an appropriate invariant acceleration 4-vector.
Here we set any such acceleration to zero, recognizing that
an acceleration could be introduced if desired at the end of
the calculation. Because p is invariant, Eq. �48� must be true
in all frames. In the tetrad frame we have

�m
dpm

d

+

d�m

d

pm = 0. �49�

The proper time derivative d /d
 can be written as

d

d

= 	� �

�x� = unen
� �

�x� = un�n, �50�

where the directed derivative �n is defined to be the space-
time derivative along the axis �n

�n 
 en
� �

�x� = �n · � , �51�

where �=g�� /�x�=g��g�� /�x� is the invariant space-time
vector derivative. In other words, �n constitute the tetrad

frame components of the invariant 4-vector derivative �
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=�n�n=g�� /�x�. The derivative �n defined by Eq. �51� is
independent of the choice of coordinates x�, as suggested by
the absence of any Greek index. Unlike the partial deriva-
tives � /�x�, the directed derivatives �n do not commute. In
terms of the vierbein derivatives dkmn defined by

dkmn 
 �kle
l
�en

��em
�

�x� , �52�

the commutator ��k ,�m� of two directed derivatives is

��k,�m� = fkm
n�n, fkmn 
 dnmk − dnkm. �53�

The fkmn are the structure coefficients of the commutators of
directed derivatives.

We now introduce the tetrad frame connection coefficients
�mn

k , also known as the Ricci rotation coefficients, defined by

�n�m 
 �mn
k �k. �54�

In terms of the vierbein em
� and basis vectors g�, the tetrad

frame connection coefficients with all indices lowered,
�kmn
�kl�mn

l , are from Eq. �54�,

�kmn = �k · �n�m = ek
�g� · en

���em
�g��

�x� . �55�

The usual coordinate frame connection coefficients, the
Christoffel symbols ����
g�����

� , are defined by

�g�

�x� 
 ���
� g�. �56�

Equations �55� and �56� imply that the tetrad frame connec-
tion coefficients �kmn are related to the Christoffel symbols
���� by

�kmn = dkmn + ek
�em

�en
�����. �57�

Equation �54� and the fact that �n��k ·�m�=�n�km=0 implies
that the tetrad frame connection coefficients �kmn are anti-
symmetric in their first two indices,

�kmn = − �mkn. �58�

The tangent vectors g� can be regarded as coordinate deriva-
tives of the invariant 4-vector interval dx
g�dx�; that is,
g�=�x /�x�. The commutativity of the partial derivatives,
�g� /�x�=�2x /�x��x�=�2x /�x��x�=�g� /�x�, implies that
the Christoffel symbols ���

� are symmetric in their last two
indices,

���
� = ���

� , �59�

which is the usual no-torsion condition of general relativity.
If we combine Eq. �57� with the antisymmetry relation Eq.
�58� and the no-torsion condition Eq. �59�, the result is an
expression for the tetrad frame connection coefficients en-
tirely in terms of the vierbein derivatives dkmn

�kmn =
1

2
�dkmn − dmkn + dnmk − dnkm + dmnk − dknm� , �60�

or equivalently, in terms of the structure coefficients fkmn,
Eq. �53�,

�kmn =
1

�fkmn − fnkm + fnmk� . �61�

2
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From Eqs. �49�, �50�, and �54� it follows that the equations
of motion for the tetrad components pk of an unaccelerated
4-vector p= pk�k are

dpk

d

+ �mn

k unpm = 0. �62�

The physical significance of Eq. �62� is as follows. The tetrad
�m defines a set of locally inertial frames at each point of
spacetime. In the present case these locally inertial frames
have been constructed so that observers who free fall from
zero velocity at infinity find their own frame aligned at all
times with the tetrad frame. But in general other observers
who free fall along a different geodesic will find their locally
inertial frame becoming misaligned with the tetrad frame.
Equation �62� expresses this misalignment of locally inertial
frames. Because the misalignment is between locally inertial
frames, it is a Lorentz transformation. This Lorentz transfor-
mation is encoded in the connections �mn

k . In particular, if a
4-vector pk is transported in free fall by an infinitesimal dis-
tance 
�n=un

 relative to the tetrad frame �n, then the
4-vector experiences an infinitesimal Lorentz transformation
pk→pk−
�n�mn

k pm. In other words, the connection coeffi-
cients �mn

k for each final index n constitute the generator of a
Lorentz transformation.

The antisymmetry of the tetrad frame connection coeffi-
cient with respect to its first two indices, Eq. �58�, expresses
the fact that �mn

k for each n is the generator of a Lorentz
transformation. The components of �mn

k in which one of the
first two indices k or m is 0 �time� generate Lorentz boosts.
Components of �mn

k in which both of the first two indices k
and m are 1, 2, or 3 �space� generate spatial rotations.

F. The flat background

Section III E considered the equations of motion in the
tetrad formalism in the general case. We now specialize to
rotating black holes, where the vierbein are given by Eq.
�36�. We will see how the Doran-Cartesian coordinate system
emerges as the coordinate system of a flat background. In
Sec. III G, we will see how the connection coefficients are
expressible as the flat space gradient of a river field. In Sec.
III I we will revisit the notion of the flat background and
what it means.

An explicit calculation of the structure coefficients fkmn,
Eq. �53�, and hence of the connection coefficients �kmn, Eq.
�61�, from the vierbein of Eq. �36� reveals that the sea of
terms nonlinear in the vierbeins undergo a remarkable can-
cellation leaving only terms linear in the vierbeins em

�. In
other words, the structure coefficients and hence the connec-
tion coefficients reduce to the same expressions as Eqs. �53�
and �61�, but with the el

�en
� factors in Eq. �52� for dkmn

replaced by Kronecker deltas 
�
l 
n

�

dkmn → �kl
�
l 
n

��em
�

�x� = 
n
���m�k

�x� . �63�

The fact that the derivative en
�� /�x� in Eq. �52� is replaced

by 
n
�� /�x� in Eq. �63� motivates introducing a new set of

flat space coordinates xn �with Latin indices� with the defin-
ing property that in the particular coordinate and tetrad frame

which we are using
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�

�xn 
 
n
� �

�x� . �64�

The invariant relation dxn� /�xn=dx�� /�x� implies that the
flat space differentials dxn are related to the coordinate dif-
ferentials dx� by

dxn = 
�
ndx�. �65�

The relations in Eqs. �64� and �65� should be interpreted as
being valid only in the particular tetrad and coordinate frame
that we are using. If the tetrad frame is subjected to a local
gauge transformation46 which rotates the locally inertial co-
ordinates at each point by �n→��n, and if the coordinate
system is subjected to a general coordinate transformation
x�→x��, then the Kronecker deltas in Eqs. �64� and �65�
should be replaced by


n
� → 
m

� ��m

���n

�x��

�x� , 
�
n → 
�

m ���n

��m

�x�

�x�� . �66�

In the particular tetrad and coordinate frame that we are us-
ing, integrating the relation Eq. �65� arbitrarily through space
yields �the constant of integration can be set to zero without
loss of generality�

xn = 
�
nx�. �67�

Notwithstanding the index notation, neither xn nor x� is a
4-vector either under local gauge transformations of the tet-
rad or under general transformations of the coordinates �only
the differentials dxn and dx� are 4-vectors�. Hence Eq. �67�
cannot be interpreted as a covariant equation relating the
coordinates xn and x�, even if the Kronecker delta is replaced
according to Eq. �66�. Rather, Eq. �67� should be interpreted
as valid in the particular coordinate and tetrad frame that we
are using. Equation �67� can be regarded as defining the flat
space coordinates xn: they are numerically the same as the
curved space coordinates x� of the Doran–Cartesian metric,
Eq. �30�, but reincarnated as coordinates xn of a flat space
with a Minkowski metric. The Doran coordinate system36

thus emerges as a special one, providing the coordinates of
the flat background through which the river of space flows in
rotating black holes.

The flat spacetime coordinates xn are not the same as the
locally inertial coordinates �n attached to the tetrad �n at each
point of spacetime. The locally inertial differentials d�n are
related to the coordinate differentials dx� by

d�n = en
� dx�, �68�

which differs from the corresponding relation, Eq. �65�, be-
tween dxn and dx�.

G. The river field

The vectors �m and �m can be regarded as functions of the
flat space coordinates xn. The replacement of the vierbein
derivatives dkmn, Eq. �63�, in the connection coefficients can
be written as

dkmn →
��m�k

�xn . �69�

The connection coefficients, Eq. �60�, are then given by flat

space derivatives of �m and �m
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�kmn =
1

2
� ��m�k

�xn −
��k�m

�xn +
��m�n

�xk −
��n�k

�xm +
��n�m

�xk

−
��k�n

�xm � . �70�

The connection coefficients with zero final index n=0 are
all identically zero, �km0=0. Taking the spatial curl of �kmn
on the n index yields another sea of terms which again un-
dergo a remarkable cancellation

�ijn��kmn

�xj = 0 �71�

for all i ,k ,m. Equation �71� demonstrates that the connection
coefficients �kmn must be expressible as �minus� the flat
space gradient � /�xn of an object �km. We call the latter the
river field because it encapsulates all the properties of the
river in the river model:

�kmn = −
��km

�xn . �72�

The river field �km is a bivector,38,44 inheriting from �kmn the
property of being antisymmetric in km. That the connection
coefficient �kmn is the flat space gradient of the river field lies
at the heart of the river model as a description of black holes.
After some manipulation we find the desired bivector river
field to be

�km = �k�m − �m�k + �0kmi�
i, �73�

where the vector �i is

�i = �0,0,0,��, � = a	
r

� �dr

R2 , �74�

which points vertically upward along the rotation axis of the
black hole.

The river field �km given by Eq. �73� inherits from the
connection coefficient �kmn its Lorentz structure. The river
field defines a velocity and a rotation or twist at each point of
the black hole geometry. The components of �km in which
one of the indices k or m is 0 �time� define a velocity; com-
ponents in which both indices k and m are 1 ,2 ,3 �space�
define a spatial rotation or twist. The velocity is just the river
velocity �m,

�0m = �m, �75�

and the angle and axis of the river twist are given by the
rotation vector

�i =
1

2
�ikm�km = �ikm�k�m + �i �i,k,m = 1,2,3� . �76�

Like the velocity vector �i, the twist vector �i at each point
lies in the plane of constant free-fall azimuthal angle �ff,
because it is a sum of two vectors �ikm�k�m and �i, both of
which are orthogonal to the azimuthal vector �k.

Figure 3 illustrates the velocity and twist fields �i and �i
for an uncharged black hole with angular momentum a
=0.96.

Another familiar bivector is the electromagnetic field ten-
sor Fkm, and it can be useful to think of the river field bivec-
tor �km in these terms. The velocity vector �i is the analog of

the electric field vector Ei, and the twist vector �i is the
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analog of the magnetic field vector Bi. The analogy extends
to the fact that, like a static electric field, the velocity vector
�i is the gradient of a potential �,

�i = −
��

�xi , � 
 − 	
r

�

�dr . �77�

Unlike a magnetic field, the twist vector �i is not a pure curl,
although curiously �i+�i is a pure curl, having zero diver-
gence, ���i+�i� /�xi=0.

H. Motion of objects in the river

We are now ready to demonstrate a fundamental feature of
the river model for stationary rotating black holes: as an
object moves through the river of space, it is Lorentz boosted
and rotated by the tidal gradients in the velocity and twist
fields of the river.

It follows from inserting the connection coefficients �kmn
from Eq. �72� into Eq. �62� that the equation of motion of an
unaccelerated 4-vector pk in the river frame is

dpk

d

=

��k
m

�xn unpm. �78�

Equation �78� can be interpreted as follows. In an infinitesi-
mal interval 

 of proper time a particle moves a distance

�n=un

 relative to the infalling river of space. As a result
of its motion through the river, the particle experiences a
tidal change


�k
m =

��k
m

�xn 
�n �79�

in the river field, which generalizes Eq. �19� for spherical
black holes. The tidal change 
�k

m in the river field is an
infinitesimal Lorentz transformation, and it induces a Lor-

k

Fig. 3. �Color online� The velocity and twist fields for an uncharged �Kerr�
black hole with a=0.96. The arrowed lines show the magnitude and direc-
tion of the river velocity, and the unarrowed lines emerging from the ar-
rowed lines show the magnitude and axis of the river twist. The confocal
ellipses show the outer and inner horizons, and the large dots at the foci of
the ellipses indicate the ring singularity. In the vacuum Kerr solution the
river velocity goes to zero at the horizontal disc bounded by the ring singu-
larity, then turns around and rebounds through a white hole into a new
universe.
entz boost and rotation in the 4-vector p
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pk → pk + 
�k
mpm. �80�

Equations �79� and �80� reproduce Eq. �78�.
Figure 4 shows two ensembles of geodesics calculated us-

ing Eq. �78�. Each ensemble consists of a central point and
associated tetrad axes surrounded by a set of points that are
initially uniformly spaced about and initially at rest relative
to the central point in the locally inertial frame of the latter.
In the upper ensemble the central point is co-moving with
the infalling river of space; in the lower ensemble the central
point is initially moving radially outward, but soon turns
around and falls inward. The tetrad axes are skewed because
the spatial metric is sheared �compare to Fig. 2�. In the lower
ensemble the tetrad axes are Lorentz contracted in the radial
direction because of the initial outward motion of the en-
semble relative to the infalling river. Each ensemble of
points becomes tidally distorted as it falls into the black hole.
If the locally inertial coordinates of a tetrad axis are denoted
as 
�k, then the tetrad axis evolves according to Eq. �78� with
pk→
�k,

d
�k

d

=

��k
m

�xn un
�m. �81�

Similarly, the tetrad 4-velocity uk of each point in an en-
semble evolves according to Eq. �78� with pk→uk,

duk

d

=

��k
m

�xn unum. �82�

Each point surrounding the central point is initially at rest

Fig. 4. �Color online� Two sample sets of geodesics in the equatorial x-y
plane ��=� /2� of an uncharged �Kerr� black hole with a=0.96, plotted in
Doran–Cartesian coordinates �see Sec. III B�. Each set of geodesics shows a
central point �large dot� and associated locally inertial axes �crossed thick
lines�, surrounded by a set of points that are initially uniformly spaced
around and initially at rest relative to the central point in the locally inertial
frame of the central point. The central point and its attendants follow geo-
desics �thin lines� into the black hole, and the ensemble becomes tidally
distorted as it falls in. In the upper set of geodesics, the central point is
co-moving with the infalling river of space; in the lower set of geodesics the
central point is initially moving radially outward, but soon turns around and
falls in. The lower ensemble illustrates how the locally inertial axes attached
to the central point twist as the ensemble falls in; the twist acts to keep the
frame co-moving with the geodesic motion of points in a small neighbor-
hood of the central point.
relative to the latter in the central point’s locally inertial
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frame. This condition requires that the covariant difference
of tetrad 4-velocities between each point and the central
point initially vanishes, which requires that the difference

uk in the tetrad 4-velocity of a point separated from the
central point by locally inertial separation 
�k initially satis-
fies, to first order in the separation 
�k,


uk =
��k

m

�xn 
�num. �83�

The difference 
uk in Eq. �83� is to be understood as the
tetrad 4-velocity of a point evaluated in the tetrad frame at
that point, minus the tetrad 4-velocity of the central point
evaluated in the tetrad frame at the central point. Note that
the indices on 
�n and um on the right-hand side of Eq. �83�
are swapped compared to those on the right-hand side of Eq.
�81�. In Eq. �81� the axis 
�k is transported along the
4-velocity un. In contrast, in Eq. �83� the 4-velocity uk is
transported along the axis 
�n.

The lower ensemble of points in Fig. 4 illustrates the twist
in the locally inertial frame that develops as the ensemble
moves through the river of space. The twist acts to keep the
locally inertial frame co-moving with the geodesic motion of
points in a small neighborhood of the frame.

Equation �83� holds initially when the ensemble of points
is at rest relative to each other, satisfying D
�k /D
=0. The
more general form of Eq. �83�, which is valid when the
points are in relative motion, is to first order in the separation

�k �here we rewrite Eq. �72� in terms of the more familiar
notation for the connections �mn

k �,


uk + �mn
k 
�num =

D
�k

D

, �84�

or equivalently


uk =
d
�k

d

+ ��nm

k − �mn
k �
�num. �85�

Variation of the equation of motion �82� for uk gives

d
uk

d

+ �l�mn

k 
�lunum + �mn
k �un
um + um
un� = 0. �86�

If we substitute 
uk from Eq. �85� into Eq. �86�, we obtain
the familiar equation of geodesic deviation

D2
�k

D
2 = Rlmn
kumun
�l, �87�

where Rklmn is the Riemann curvature tensor

Rklmn = �l�nmk − �k�nml + �ml
j � jnk − �mk

j � jnl

+ ��lk
j − �kl

j ��nmj . �88�

I. The flat background revisited

Now that we have completed the formalism of the river
model, it is useful to revisit the question of the flat back-
ground, see Sec. III F, through which the river of space flows
and twists into a rotating black hole. What exactly does flat-
ness mean in this context?

The crucial relation is Eq. �72�, which states that the con-
nection coefficient is given by the flat space gradient of the
river field. The fact that the gradient is an ordinary partial

derivative with respect to Doran–Cartesian coordinates is
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what makes the background flat, and in a sense that is all
there is to it. Equation �72� acquires physical significance
because it propagates through to the equation of motion, Eq.
�78�, of objects swimming in the river. The equation of mo-
tion paints the physical picture of objects moving in the river
being Lorentz boosted and rotated by the flat space tidal
gradients in the velocity and twist components of the river
field.

The statement that the background spacetime in the river
model is flat is not a statement about the metric g�� being
flat. Rulers and clocks swimming in the river of space mea-
sure not distances and times in the background space, but
rather distances and times relative to the tidally twisting and
stretching river. The presence of tides is the signature of
curvature, so it makes sense that the metric measured by
rulers and clocks is not flat.

We emphasize that the flat background has no physically
observable meaning. It is a fictitious construct that emerges
from the mathematics.

IV. SUMMARY

We have presented a way to conceptualize stationary black
holes, which we call the river model. The river model offers
a mental picture of black holes which is intuitively appeal-
ing, and whose basic elements can be grasped by nonexperts.
In the river model, space itself flows like a river through a
flat background, while objects move through the river ac-
cording to the rules of special relativity. For a Schwarzschild
�nonrotating, uncharged� black hole, the river falls radially
inward at the Newtonian escape velocity, hitting the speed of
light at the horizon. Inside the horizon, the river of space
moves faster than light, carrying everything with it.

We have presented the details that place the river model on
a sound mathematical basis. We have shown that the river
model works for any stationary black hole, rotating as well
as nonrotating, charged as well as uncharged. The Doran
coordinate system36 provides the coordinates of the flat back-
ground through which the river of space flows into the black
hole.

The extension of the river model to rotating black holes
proves to be surprising and pretty. Contrary to expectation,
the river does not spiral into a rotating black hole: the azi-
muthal component of the river velocity is zero. Instead, the
river has at each point not only a velocity, but also a rotation
or twist. The river is thus a Lorentz river, characterized by all
six generators of the Lorentz group. As an object moves
through the river of space, it is Lorentz boosted by changes
in the velocity of the river along its path and rotated by
changes in the twist of the river. Equation �73� is an explicit
expression for the river field, a six-component bivector field
that specifies the velocity and twist of the river at each point
of the black hole geometry.

The tidal boosts and twists experienced by an object in the
river induce a curvature in the spacetime measured by the
object, causing the metric to be nonflat. Changes in the river
velocity rotate between space and time axes, and changes in
the river twist rotate between two spatial axes. The river has
zero twist for a spherical black hole, so objects experience no
spatial rotation, with the consequence that the metric, the
Gullstrand–Painlevé metric, is flat along spatial hypersur-
faces at constant time, dtff=0. For a rotating black hole, the
river has a finite twist, and the metric is not flat along spatial

hypersurfaces.
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APPENDIX A: PROJECT: THE RIVER MODEL OF
BLACK HOLES

The following project has been tested and refined over a
period of several years in undergraduate classes on relativity
and black holes at both lower-division nonscience-major and
upper-division science-major levels. It was designed as a
45 min in-class group project in which students split into
groups of 3 or 4, and by discussing with each other arrive at
consensus answers to a series of concept questions. At the
end of the project each group submits its answers for grade.

According to the river model of black holes, the behavior
of objects near black holes is as if space were falling like a
river into the black hole. For spherical black holes this model
was discovered in 1921 by the Nobel prize winner Allvar
Gullstrand1 and independently by the mathematician Paul
Painlevé.2 In the model space falls inward at the Newtonian
escape velocity v=�2GM /r. The infall velocity is less than
the speed of light c outside the horizon, equals the speed of
light c at the horizon, and exceeds the speed of light c inside
the horizon.

What does the river model predict for the following ques-
tions? �For nonscience majors, use only the unstarred ques-
tions. For more advanced, science-major students, use all
questions and drop or abbreviate the hints.�

Questions

*1. What radius does the river model predict for the horizon
of a black hole?

2. Suppose that you are a light beam �therefore moving at
the speed of light� exactly at the horizon. What would
happen to you if were pointed directly outward? �Do you
fall in? Do you move out? Do you move sideways?� What
would happen to you if you were pointed mostly but not
exactly outward?

3. In what way, if any, does this behavior differ from the
predictions of the Newtonian corpuscular theory of light,
which in the hands of John Michell in 17846 gave the
“correct” result for the radius of the horizon? �In the cor-
puscular theory of light, a corpuscle of light is emitted at
the speed of light, and behaves thereafter much like a
massive particle: it moves outward and either goes to in-
finity or turns around and comes back depending on
whether its initial velocity, the speed of light, is more or
less than the escape velocity.�

4. Suppose that you are a light beam orbiting the black hole
in a circular orbit. On this orbit, the “photon sphere,” are
you at the horizon, inside the horizon, or outside the ho-
rizon? Justify your answer.

5. Make a connection between the appearance of the sky if
you hover just above the horizon of a black hole and
special relativistic beaming. �How does a scene appear if

you move through it at very close to the speed of light?�
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6. Qualitatively, what would the river model predict for the
tidal forces experienced by an infalling observer? �First,
consider the tidal force in the vertical direction. Think
about the fact that the river is accelerating inward. Next,
consider the tidal force in the horizontal direction. Think
about the fact that the river is converging �getting nar-
rower� as it flows inward.�

*7. How does the river model account for redshifting and
freezing at the horizon?

*8. Given that one of the fundamental propositions of spe-
cial and general relativity is that spacetime has no abso-
lute existence, what does it mean to say that space is
falling into a black hole?

*9. In the river model the flow of space accelerates inward
to the black hole. If the river were moving uniformly
instead of accelerating, would there be any gravity?

Answers

1. The river velocity equals the speed of light when
�2GM /rs�1/2=c, which rearranges to an expression for the
radius of the event horizon, the Schwarzschild radius rs,

rs =
2GM

c2 . �A1�

2. If you were a light beam pointed directly outward at the
horizon, then you would hang forever at the horizon. Your
outward motion at the speed of light would be exactly
canceled by the inward motion of the river of space at the
speed of light. If you were a light beam not exactly
pointed outward, then the outward component of your
velocity would be a bit less than the speed of light, be-
cause part of your velocity would be sideways. The in-
flow of space would then carry you into the black hole.

3. Whereas in general relativity an outwardly pointed light
beam at the horizon hangs there motionless forever, in the
classical corpuscular theory the light never remains at
rest. The light either keeps going outward forever �if its
velocity exceeds the escape velocity�, or it turns around
and comes back. It is true that the light is motionless at
the instant of turnaround, but otherwise the light is always
moving. Another difference is that in general relativity the
question of whether a light beam can escape from a point
just above the horizon depends on the direction in which
the light beam is pointed. If the light beam is pointed
directly outward, then it will escape, but if it is pointed
somewhat sideways, then it will fall into the black hole.
In contrast, in the classical corpuscular theory, whether a
corpuscle escapes from a given point depends only on
whether its velocity exceeds the escape velocity, not on
the direction in which it is pointed.

4. You cannot be at the horizon, because if you had any
sideways motion, which you must because you are in cir-
cular orbit, then the inflow of space would drag you into
the black hole. And you cannot be inside the horizon,
because the inflow of space would again drag you inward.
Therefore you must be in circular orbit somewhere out-
side the horizon. For a Schwarzschild black hole, the ra-
dius of the photon sphere turns out to be 1.5 Schwarzs-
child radii.

5. If you move through a scene at very close to the speed of
light, then the scene ahead of you, in the direction you are

moving, appears concentrated, brightened, blueshifted,
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and speeded up. If you hover just above the horizon of a
black hole, then according to the river model you must be
moving very rapidly through the inflowing river of space.
Consequently the view above you must appear concen-
trated, brightened, blueshifted, and speeded up. Hovering
just above the horizon of a black hole is an unnatural and
wasteful thing to do. In reality, you would surely “go with
the flow” of space. If you free fall into a black hole, then
you do not see the sky highly concentrated above you.

6. Because the river is accelerating inward, the velocity of
the river is faster at your feet than at your head �presum-
ing that you are upright, so that your feet are closer to the
black hole than your head�. The difference in river veloc-
ity means that you feel a tidal force in the vertical direc-
tion pulling your feet away from your head. In the hori-
zontal direction the river is converging spherically toward
the black hole, so you would feel tidally squashed in the
horizontal direction.

7. Just above the horizon, a photon battling against the in-
rushing torrent of space takes a long time to reach an
outside observer. As the emitter gets closer to the horizon,
it takes longer and longer for the photon to get out, until
at the horizon it takes an infinite time for a photon to lift
off the horizon. Thus as an object approaches the horizon,
it appears to an outside observer slower and slower, and
thus more and more redshifted. Asymptotically, the object
appears to freeze on the horizon, and the redshift goes to
infinity.

8. The river model consists of a set of coordinates �the back-
ground� and a set of locally inertial frames that flow
through those coordinates �the river that flows through the
background�. Attaching a set of coordinates and a set of
locally inertial frames does not make the spacetime abso-
lute.

9. According to the principle of equivalence, a gravitating
frame is equivalent to an accelerating frame. So if there is
no acceleration, then there is no gravity. If the river is
falling at constant velocity in the vertical direction but
still converging horizontally because of the spherical con-
vergence of the flow, then you would feel a tidal squash-
ing in the horizontal direction, so in that case there would
be gravity.
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