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Correct Linearization of Einstein’s Equations

Dmitri Rabounski
E-mail: rabounski@yahoo.com

Routinely, Einstein’s equations are be reduced to a wave form (linearly independent
of the second derivatives of the space metric) in the absence of gravitation, the space
rotation and Christoffel’s symbols. As shown herein, the origin of the problem is the
use of the general covariant theory of measurement. Herein the wave form of Einstein’s
equations is obtained in terms of Zelmanov’s chronometric invariants (physically
observable projections on the observer’s time line and spatial section). The equations
so obtained depend solely upon the second derivatives, even for gravitation, the space
rotation and Christoffel’s symbols. The correct linearization proves that the Einstein
equations are completely compatible with weak waves of the metric.

1 Introduction

Gravitational waves are routinely considered as weak waves
of the space metric, whereby, one takes a Galilean metric
g(0)αβ , whose components are g(0)00 =1, g

(0)

0i =0, g
(0)

ik =−δik,
and says: because gravitating matter is connected to the field
of the metric tensor gαβ by Einstein’s equations∗

Rαβ −
1

2
gαβR = −κTαβ + λgαβ , κ = const> 0 ,

gravitational waves are weak perturbations ζαβ of the Gali-
lean metric. Thus the common metric, consisting of the ini-
tially undeformed and wave parts, is gαβ = g

(0)

αβ + ζαβ .
According to the theory of partial differential equations,

a wave of a field is a Hadamard break [1] in the derivatives
of the field function along the hypersurface of the field
equations (the wave front). The first derivative of a function
at a point determines a direction tangential to it, while the
second derivative determines a normal direction. Thus, if
a surface in a tensor field is the front of the field wave,
the second derivatives of this tensor have breaks there. It
is possible to prove in relation to this case in a Riemann-
ian space with the metric gαβ , that d’Alembert’s operator
= gαβ∇α∇β of this field equals zero†. For instance, the

wave field of a tensorQμν is characterized by the d’Alembert
equations Qμν =0.

We can apply the d’Alembert operator to any tensor field
and equate it to be zero. For this reason any claims that
waves of the space metric cannot exist are wrong, even from
the purely mathematical viewpoint, independently of those
deductions that the authors of those claims adduced.

So, the front of weak wave perturbations ζαβ of a Gali-
lean metric g(0)αβ is determined by breaks in their second
derivatives, while the wave field ζαβ itself is characterized
by the d’Alembert equations

ζαβ = 0 .

∗We write the Einstein equations in the main form containing the λ-
term, because our consideration is outside a discussion of the λ-term.

†Note that the d’Alembert operator consists of the second derivatives.

If the left side of the Einstein equations for the common
metric gαβ = g

(0)

αβ + ζαβ reduced to ζαβ ,‡ the equations
could be reduced to the form

a ζαβ = −κTαβ + λgαβ , where a = const ,

which, in the absence of matter, become the wave equations
ζαβ =0, meaning that the perturbations ζαβ are waves.

As one calculates the left side of the Einstein equations
for the common metric, he obtains a large number of terms
where only one is ζαβ with a numerical coefficient. Thus
one concludes: the Einstein equations are non-linear with
respect to the second derivatives of ζαβ .

In order to prove gravitational waves, theory should lead
to cancellation of all the non-linear terms, as argued by Ed-
dington [2], and Landau and Lifshitz [3]. This process is
so-called the linearization of the Einstein equations.

2 Problems with the linearization

There is much literature about why the non-linear terms
can be cancelled (see Lichnerowicz [4] or Zakharov [5] for
details). All the reasons depend upon one initial factor: the
theory of measurements we use.

We know two theories of measurements in General Rela-
tivity: Einstein’s theory of measurements and Zelmanov’s
theory of physically observable quantities. The first one was
built by Einstein in the 1910’s. Following him§, we consider
the space-time volume of nearby events in order to find a
particular reference frame satisfying the properties of our real
laboratory. We then express our general covariant equations
in terms of the chosen reference frame. Some terms drop
out, because of the properties of the chosen reference frame.
Briefly, as one calculates the Ricci tensor Rαβ = gμνRαμνβ
by the contraction of the Riemann-Christoffel tensor

‡Actually, this problem is to reduce the Ricci tensor for the common
metric gαβ = g

(0)

αβ + ζαβ to ζαβ .
§Einstein gave his theory of measurements partially in many papers.

You can see the complete theory in Synge’s book [6], for instance.

D. Rabounski. Correct Linearization of Einstein’s Equations 3
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Rαμνβ = −Γσμβ Γαν,σ + Γ
σ
μν Γαβ,σ +

+
1

2

(
∂2gμν
∂xα∂xβ

+
∂2gαβ
∂xν∂xμ

−
∂2gαν
∂xμ∂xβ

−
∂2gμβ
∂xα∂xν

)

for gαβ = g
(0)

αβ + ζαβ (see §105 in [3]), he can reduce it to

Rαβ =
1

2
g(0)μν

∂2ζαβ
∂xμ∂xν

=
1

2
ζαβ

and the left side of the Einstein equations to ζαβ , only if:

1. The reference frame is free of forces of gravity;

2. The reference frame is free of rotation;

3. Christoffel’s symbols Γαμν , containing the inhomoge-
neity of space, are all zero.

Of course, we can find a reference frame where the gra-
vitational potential, the space rotation, and the Christoffel
symbols are zero at a given point∗. However they cannot be
reduced to zero in an area. Moreover, a gravitational wave
detector consists of two bodies located far away from each
other. In a Weber solid-body detector the distance is several
metres, while in a laser interferometer the distance can take
even millions of kilometres, as LISA in a solar orbit. It is
wrong to interpret any of those as points. So, gravitational
forces, the space rotation or the Christoffel symbols cannot
be obviated in the equations. This is the main reason why:

By the methods of Einstein’s theory of measurements,
the Einstein equations cannot be mathematically cor-
rectly linearized with respect to the second derivatives
of the weak perturbations ζαβ of the space metric.

Some understand this incompatibility to mean that Ge-
neral Relativity does not permit weak waves of the metric.

This is absolutely wrong, even from the purely math-
ematical viewpoint: the d’Alembert operator = gαβ∇α∇β
may be applied to any tensor field, the field of the weak per-
turbations ζαβ of the metric included, and equated to zero.

This obvious incompatibility can arise for one or both of
the following reasons:

1. Einstein’s equations in their current form are insuffi-
cient to describe our real world;

2. Einstein’s theory of measurements is inadequate for
the four-dimensional pseudo-Riemannian space.

Einstein’s equations were born of his intuition, only the
left side thereof is derived from the geometry. However main
experimental tests of General Relativity, proceeding from the
equations, verify the theory. So, the equations are adequate
for describing our real world to within a first approximation.

At the same time, Einstein’s theory of measurements has
many deficiencies. There are no clear methods for recognition
of physically observable components of a tensor field. It set
up so that the three-dimensional components of a world-
vector field compose its spatially observable part, while the

∗See §7 Special Reference Frames in Petrov’s book [7].

time component is its scalar potential. However this problem
becomes confused for a tensor of higher rank, because it has
time, spatial, and mixed (space-time) components. There are
also other drawbacks (see [8], for instance).

The required mathematical methods have been found by
Zelmanov, who, in 1944, fused them into a complete theory
of physically observable quantities [9, 10, 11].

3 The theory of physically observable quantities

According to Zelmanov, each observer has his own spatial
section, set up by a coordinate net spanned over his real
reference rest-body and extended far away with its gravita-
tional field. The net is replete with a system of synchronized
clocks†. Physically observed by him are projections of world-
quantities onto his time line and spatial section, made by

the projection operators bα= dxα

ds
and hαβ=−gαβ+bαbβ .

Chr.inv.-projections of a world-vector Qα are bαQα=
Q0√
g00

and hiαQ
α=Qi, while chr.inv.-projections of a 2nd rank

world-tensor Qαβ are bαbβQαβ =
Q00
g00 , hiαbβQαβ =

Qi0√
g00

,

hiαh
k
βQ

αβ =Qik. Physically observable properties of the
space are determined by the non-commutativity of the chr.

inv.-operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi
∗∂
∂t

, and

the fact that the chr.inv.-metric tensor hik=−gik+ 1
c2
vivk

may not be stationary. They are the chr.inv.-quantities: the
gravitational inertial force Fi, the space rotation tensor Aik,
and the space deformational rates Dik

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00=1−

w

c2
,

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , vi=−

cg0i
√
g00

,

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln

√
h

∂t
,

where w is gravitational potential, vi is the linear velocity
of the space rotation, h=det ‖hik‖, and

√
−g=

√
h
√
g00 .

The chr.inv.-Christoffel symbols Δijk=h
imΔjk,m are built

like the usual Γαμν = g
ασΓμν,σ , using hik instead of gαβ .

By analogy with the Riemann-Christoffel curvature ten-
sor, Zelmanov derived the chr.inv.-curvature tensor‡

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) ,

from which the contraction Ckj=C ∙∙∙i
kij∙=h

imCkimj gives the

chr.inv.-scalar observable curvature C =Cjj =h
ljClj .

†Projections onto such a spatial section are independent of trans-
formations of the time coordinate — they are chronometric invariants.

‡Here H ...j
lki∙=

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km−Δ

m
klΔ

j
im.
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4 Correct linearization of Einstein’s equations

We now show that Einstein’s equations expressed with phys-
ically observable quantities may be linearized without prob-
lems; proof that waves of weak perturbations of the space
metric are fully compatible with the Einstein equations.

Zelmanov already deduced [9] the Einstein equations in
chr.inv.-components (the chr.inv.-Einstein equations) in the
absence of matter: —

∗∂D

∂t
+DjlD

jl + AjlA
lj +

(
∗∇j −

1

c2
Fj

)

F j = 0 ,

∗∇j
(
hijD −Dij − Aij

)
+
2

c2
FjA

ij = 0 ,

∗∂Dik

∂t
− (Dij+Aij)

(
D
j
k+A

∙j
k∙

)
+DDik+3AijA

∙j
k∙+

+
1

2
(∗∇iFk +

∗∇kFi)−
1

c2
FiFk − c

2Cik = 0 ,

where Zelmanov’s ∗∇k denotes the chr.inv.-derivative∗.
The components of the metric gαβ = g

(0)

αβ + ζαβ , consist-
ing of a Galilean metric and its weak perturbations, are†

g00 = 1 + ζ00 , g0i = ζ0i , gik = −δik + ζik ,

g00 = 1− ζ00, g0i = −ζ0i, gik = −δik − ζik,

hik = δik − ζik, hik = δik , hik = δik+ ζik.

Because ζαβ are weak, the products of their components
or derivatives vanish. In such a case,

Fi =
c

1 + ζ00

(
∂ζ0i
∂t

−
c

2

∂ζ00
∂xi

)

,

Aik =
c

√
1 + ζ00

(
∂ζ0i
∂xk

−
∂ζ0k
∂xi

)

,

Dik = −
1

2
√
1 + ζ00

∂ζik
∂t

, D = hikDik = δikDik ,

Cimnk =
∂2ζmk
∂xi∂xn

+
∂2ζin
∂xm∂xk

−
∂2ζmn
∂xi∂xk

−
∂2ζik

∂xm∂xn
.

After some algebra, we obtain the chr.inv.-Einstein equa-
tions for the metric gαβ = g

(0)

αβ + ζαβ :

1

c2 (1 + ζ00)

∂2ζ

∂t2
+

δkm

(1 + ζ00)

(
∂2ζ00
∂xk∂xm

−
2

c

∂2ζ0m
∂xk∂t

)

= 0 ,

∗So ∗∇kQi=
∗∂Qi

∂xk
+ΔimkQ

m and ∗∇kQi=
∗∂Qi

∂xk
−ΔmikQm are

the chr.inv.-derivatives of a chr.inv.-vector Qi.
†The contravariant tensor gαβ , determined by the main property

gασgσβ = δ
β
α of the fundamental metric tensor as (g(0)ασ+ ζασ)gσβ = δ

β
α ,

is gαβ = g(0)αβ − ζαβ , while its determinant is g= g(0)(1+ ζ). This is
easy to check, taking into account that, because the values of the weak
corrections ζαβ are infinitesimal, their products vanish; while we may move

indices in ζαβ by the Galilean metric tensor g(0)αβ .

δij

c2
√
1 + ζ00

∂2ζ

∂xj∂t
−

1

c2
√
1 + ζ00

∂2ζij

∂xj∂t
+

+
2δimδjn

c
√
1 + ζ00

(
∂2ζ0m
∂xj∂xn

−
∂2ζ0n
∂xj∂xm

)

= 0 ,

1

c2 (1 + ζ00)

∂2ζik
∂t2

−
1

c (1 + ζ00)

(
∂2ζ0k
∂xi∂t

−
∂2ζ0i
∂xk∂t

)

+

+ 2δmn
(
∂2ζmk
∂xi∂xn

+
∂2ζin
∂xm∂xk

−
∂2ζmn
∂xi∂xk

−
∂2ζik

∂xm∂xm

)

= 0 .

Note that the obtained equations are functions of only
the second derivatives of the weak perturbations of the space
metric. So, the Einstein equations have been linearized, even
in the presence of gravitational inertial forces and the space
rotation. This implies: —

By the methods of Zelmanov’s mathematical theory of
chronometric invariants (physically observable quan-
tities), the Einstein equations are linearized in a
mathematically correct way, i. e. without the assum-
ption of a specific reference frame where there are no
gravitational forces or the space rotation.

This is the mathematical proof to the statement: —

Waves of the weak perturbations of the space metric
are fully compatible with the Einstein equations.
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Einstein’s Equivalence Principle and Invalidity of Thorne’s Theory for LIGO

C. Y. Lo
Applied and Pure Research Institute, 17 Newcastle Drive, Nashua, NH 03060, USA

E-mail: c_y_lo@yahoo.com; C_Y_Lo@alum.mit.edu

The theoretical foundation of LIGO’s design is based on the equation of motion derived
by Thorne. His formula, motivated by Einstein’s theory of measurement, shows that
the gravitational wave-induced displacement of a mass with respect to an object is
proportional to the distance from the object. On the other hand, based on the observed
bending of light and Einstein’s equivalence principle, it is concluded that such induced
displacement has nothing to do with the distance from another object. It is shown that
the derivation of Thorne’s formula has invalid assumptions that make it inapplicable
to LIGO. This is a good counter example for those who claimed that Einstein’s
equivalence principle is not important or even irrelevant.

1 Introduction

Since the behavior of binary pulsars has been interpreted
successfully as due to gravitational radiation [1, 2], the exist-
ence of gravitational waves is generally accepted. Moreover,
the Maxwell Newton Approximation,(1) which generates
gravitational waves, has been established independent of the
Einstein equation [3]. However, a direct observation of the
gravitational waves has not been successful because a grav-
itational wave is very weak in nature [4].

To obtain the required sensitivity of detection for gravita-
tional waves, two gigantic laser interferometer gravitational
wave observatories (LIGO) have been built.(2) Currently
they represent the hope of detecting the gravitational waves
directly. The confidence on these new apparatus is based on
the perceived high sensitivity [5] that is designed according
to Thorne’s equation, which is motivated on Einstein’s theory
of measurement [6, 7].

Thorne’s [8] equation of motion is as follows [9]:

m
d2δxj

dt2
=
1

2
m
∂2hTT

jk

∂t2
xk, (1)

where δxk is the displacement of the test particle with mass
m from a fixed object, xk is the Euclidean-like distance
(or the particle’s Cartesian coordinate position) of the test
particle from the fixed object (at the original the space
coordinates), and hTT

jk is the first order of the dimensionless
“gravitational wave field” that induces the displacement.
Then the integration of equation (1) gives,

δxj =
1

2
hTT
jkx

k. (2)

The superscript TT on the gravitational field is to remind
us that the field is “transverse and traceless”.

On the other hand, according to Einstein’s equivalence
principle [10], the Euclidean-like structure [11, 12] that de-
termines the distance between two points is independent

of gravity, and this is supported the observed bending of
light. Thus, the displacement from a fixed object induced
by gravitational wave, according the geodesic equation, has
nothing to do with the distance between them (see Section 2).
In this paper, it will be shown the errors related to eqs. (1)
and (2).

2 Problems in the theory of Thorne

Now let us first derive, according the theory of Thorne
[8], the induced phase delay in the interferometer. Since
the sources of the gravitational waves are very far away,
the waves look very nearly planar as they pass through the
observer’s proper reference frame.(3) If we orient the x, y,
z spatial axes, so the propagation in the z direction, then
the transversality of the waves and traceless mean that the
non-zero components of the wave field are hTT

xx = −hTT
yy ,

hTT
xy = hTT

yx , called respectively the + and ×-polarization.
For a (+)-polarization, if the arm length of the interferometer
is L, we have

δx(t) =
1

2
Lh+(t) for mass on x axis,

δy(t) = −
1

2
Lh+(t) for mass on y axis.

(3)

For a light wavelength λ, if B is the number of bounce
back and forth in the arms, the total phase delay is

4φT = 8πB
δx

λ
= 4πB

L

λ
h+ . (4)

Thus, the sensitivity of the interferometer would be in-
creased with longer arms. If Einstein’s theory of measure-
ment was valid, then eq. (3) would be an expected result.
This explains that eq. (1) was accepted. To show the errors,
some detailed analysis is needed.
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In a Local frame of free fall, Manasse and Misner [12]
claimed that the metric have approximately,

−ds2=(1+R0l0mx
lxm)dt2+

(
4

3
R0ljmx

lxm
)

dxjdt−

−

(

δij−
1

3
Riljmx

lxm
)

dxidxj−O(|xj |3)dxαdxβ
(5)

accurate to the second order in small |xj |. The observer in
the free fall is located at the origin of the local frame. Eq.
(5) is the equation (13.73) in Misner et al. [9]. In the next
step (35.12), they claimed to have the equation,

D2nj

dτ 2
= −Rj0k0n

k = −Rj0k0n
k,

where nj = xjB − x
j
A = xjB

(6)

since xjA=0. In eq. (5), |xj | is restricted to be small. How-
ever, a problem in this derivation is that Rj0k0 may not be
the same at points A and B. Nevertheless, one may argue
that Γμαβ =0 at A, and (6) is reduced to

d2x
j
B

dτ 2
= −Rj0k0 x

k
B =

1

2

∂hTT
jk

∂τ 2
xkB . (7)

If it is applied to the case of LIGO, one must show at
least a miles long xjB could be regarded as very small as (5)
requires. From the geodesic equation, clearly it is impossible
to justify (7) for any frame of reference.

More important, since LIGO is built on the Earth, its
frame of reference is not at free fall when gravitational waves
are considered. The radius of the Earth is 6.3×103 km, but
the expected gravitational wave length is only about 15 km
[9]. Thus, the Earth can no longer be considered as a test
particle when only the gravity of the Sun is considered. In
other words, (5) and (7) are inapplicable to LIGO.

Note that Misner et al. [9] have mistaken Pauli’s ver-
sion(4) as Einstein’s equivalence principle [10], it is natural
that they made related mistakes. For instance, Thorne [15]
incorrectly criticized Einstein’s equivalence principle as
follows:

“In deducing his principle of equivalence, Einstein
ignored tidal gravitation forces; he pretended they do not
exist. Einstein justified ignoring tidal forces by imagining
that you (and your reference frame) are very small.”

However, Einstein has already explained these problems.
For instance, the problem of tidal forces was answered in
Einstein’s letter of 12 July 1953 to Rehtz [16] as follows:

“The equivalence principle does not assert that every
gravitational field (e. g., the one associated with the Earth)
can be produced by acceleration of the coordinate system.
It only asserts that the qualities of physical space, as they
present themselves from an accelerated coordinate system,
represent a special case of the gravitational field.”

Clearly, his principle is for a space where physical requi-
rements are sufficiently satisfied.

In fact, Misner et al. [9] do not understand Einstein’s
equivalence principle and related theorems in Riemannian
space [14, 17]. A simple and clear evidence is in their
eq. (40.14) [9; p. 1107], and they got a physically incorrect
conclusion on the local time of the Earth in the solar system.
Moreover, Ohanian and Ruffini [5; p. 198] also ignored the
Einstein-Minkowski condition and had the same problems as
shown in their eq. (50). However, Liu [18], Straumann [19],
Wald [20], and Weinberg [4] did not make the same mistake.
Note that Ohanian, Ruffini, and Wheeler have proclaimed
that they are non-believers of Einstein’s principles [5].

3 Remarks

In the theory of Thorne, there are major errors because his
understanding of Einstein’s equivalence principle is inad-
equate. His equation was motivated by Einstein’s theory of
measurement, and the superficial consistency with such a
theory makes many theorists had confidence on his equation.
Now, it is clear that such a support from an invalid theory
is proven to be useless. Because Misner et al. [9] do not
understand Einstein’s equivalence principle, they cannot
see that Einstein’s theory of measurement is not self-
consistent [21, 22].

In addition, since LIGO is built on the Earth, the frame
is not at free fall. The radius of the Earth is 6.3×103 km, but
the expected gravitational wave length is only about 15 km
[9]. Thus, the Earth cannot be regarded as a test particle for
gravitational waves. Moreover, Thorne was not aware that
the Einstein equation has no wave solution [1, 2]. Although
Misner, Thorne, and Wheeler [9] claimed plane wave solu-
tions exist, their derivation has been found to be invalid [2,
23]. The second problem has been resolved by a modified
Einstein equation, and it has the Maxwell-Newton Approxi-
mation as the first order equation [1].

In short, the current theory on the detection of grav-
itational waves for LIGO is incorrect. The root of these
problems is due to that they do not understand Einstein’s
equivalence principle.(5) Consequently, they also failed to
see the Euclidean-like structure is necessary(6) in a physical
space [12]. This is a very good counter example for those who
believed the Einstein’s equivalence principle is not important
or even irrelevant [2]. The sensitivity of LIGO will be ad-
dressed in a separate paper [24].
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Endnotes

(1) The Maxwell-Newton Approximation, whose sources are
massive matter, could be identified as a special case of the
so-called linearized approximation that has been found to
be incompatible with Einstein equation for a dynamic situa-
tion [1].

(2) M. Bartusiak [25] has written an interesting book on the
great efforts to build LIGO.

(3) Einstein equation has no physically valid wave solution be-
cause there is no term in Einstein’s equation to accommodate
the energy-stress tensor of a gravitational wave that must
move with the wave [23]. Thus, a wave solution must come
from the modified equation of 1995.

(4) Pauli’s [26] version of the principle of equivalence was
commonly but mistakenly regarded as Einstein’s principle,
although Einstein strongly objected to this version as a mis-
interpretation [15]. In fact, Misner, Thorne, and Wheeler [9;
p. 386] falsely claimed that Einstein’s equivalence principle
is as follows:
“In any and every local Lorentz frame, anywhere and any-
time in the universe, all the (Nongravitational) laws of phys-
ics must take on their familiar special-relativistic form.
Equivalently, there is no way, by experiments confined to
infinitestimally small regions of spacetime, to distinguish one
local Lorentz frame in one region of spacetime frame any
other local Lorentz frame in the same or any other region.”
However, this is only an alternative version of Pauli’s be-
cause the Einstein-Minkowski condition,(7) which requires
that the local space in a free fall must have a local Lorentz
frame, is missing.

(5) There are other surprises. In spite of Einstein’s clarification,
many theorists, including the editors of Nature, Physical
Review, and Science, still do not fully understand special
relativity, in particular E = mc2 [27–30].

(6) An existence of the Euclidean-like structure (that Einstein [6]
called as “in the sense of Euclidean geometry”) is necessary
for a physical space [11, 12]. The Euclidean-like structure
is operationally defined in terms of spatial measurements
essentially the same as Einstein defined the frame of refer-
ence for special relativity [31]. Since the attached measuring
instruments and the coordinates being measured are under
the influence of the same gravity, a Euclidean-like structure
emerges from such measurements as if gravity did not exist.

(7) For the Einstein-Minkowski condition, Einstein [10] address-
ed only the metrics without a crossing space-time element.
This creates a false impression that the Einstein-Minkowski
condition is trivial.
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A theory of 3-space explains the phenomenon of gravity as arising from the time-
dependence and inhomogeneity of the differential flow of this 3-space. The emergent
theory of gravity has two gravitational constants: GN — Newton’s constant, and a
dimensionless constant α. Various experiments and astronomical observations have
shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice
Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision
this value of α. This and other successful tests of this theory of gravity, including the
supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect
in spiral galaxies, shows the validity of this theory of gravity. This success implies that
the non-relativistic Newtonian gravity was fundamentally flawed from the beginning,
and that this flaw was inherited by the relativistic General Relativity theory of gravity.

1 Introduction

In the Newtonian theory of gravity [1] the Newtonian gravi-
tational constant GN determining the strength of this pheno-
menon is difficult to measure because of the extreme weak-
ness of gravity. Originally determined in laboratory experi-
ments by Cavendish [2] in 1798 using a torsion balance, Airy
[3] in 1865 presented a different method which compared
the gravity gradients above and below the surface of the
Earth. Then if the matter density within the neighbourhood
of the measurements is sufficiently uniform, or at most is
horizontally layered and known, then such measurements
then permitted GN to be determined, as discussed below, if
Newtonian gravity was indeed correct. Then the mass of the
Earth can be computed from the value of g at the Earth’s
surface. However two anomalies have emerged for these two
methods: (i) the Airy method has given gravity gradients
that are inconsistent with Newtonian gravity, and (ii) the
laboratory measurements of GN using various geometries for
the test masses have not converged despite ever increasing
experimental sophistication and precision. There are other
anomalies involving gravity such as the so-called “dark-
matter” effect in spiral galaxies, the systematic effects related
to the supermassive blackholes in globular clusters and ellipt-
ical galaxies, the Pioneer 10/11 deceleration anomaly, the so-
called galactic ‘dark-matter’ networks, and others, all suggest
that the phenomenon of gravity has not been understood
even in the non-relativistic regime, and that a significant
dynamical process has been overlooked in the Newtonian
theory of gravity, and which is also missing from General
Relativity.

The discovery of this missing dynamical process arose
from experimental evidence [4, 8, 9] that a complex dyn-
amical 3-space underlies reality. The evidence involves the

repeated detection of the motion of the Earth relative to that
3-space using Michelson interferometers operating in gas
mode [8], particularly the experiment by Miller in 1925/26
at Mt. Wilson, and the coaxial cable RF travel time measure-
ments by Torr and Kolen in Utah in 1985, and the DeWitte
experiment in 1991 in Brussels [8]. In all 7 such experiments
are consistent with respect to speed and direction. It has been
shown that effects caused by motion relative to this 3-space
can mimic the formalism of spacetime, but that it is the 3-spa-
ce that is “real”, simply because it is directly observable [4].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers, but
the formalism is such that the dynamical equations for this
velocity field must transform covariantly under a change of
observer. It has been shown [4, 6] that the phenomenon of
gravity is a consequence of the time-dependence and inhomo-
geneities of v (r, t). So the dynamical equations for v (r, t)
give rise to a new theory of gravity when combined with
the generalised Schrödinger equation, and the generalised
Maxwell and Dirac equations [10]. The equations for v (r, t)
involve the gravitational constant∗ G and a dimensionless
constant that determines the strength of a new 3-space self-
interaction effect, which is missing from both Newtonian
Gravity and General Relativity. Experimental data has re-
vealed [4, 5, 6] the remarkable discovery that this constant is
the fine structure constant α≈ e2/~c≈ 1/137. This dynamics
then explains numerous gravitational anomalies, such as the
borehole g anomaly, the so-called “dark matter” anomaly in
the rotation speeds of spiral galaxies, and that the effective

∗This is different from the Newtonian effective gravitational constant
GN defined later.
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mass of the necessary black holes at the centre of spherical
matter systems, such as globular clusters and spherical gal-
axies, is α/2 times the total mass of these systems. This pre-
diction has been confirmed by astronomical observations [7].

Here we analyse the Greenland and Nevada Test Site
borehole g anomalies, and confirm with increased precision
this value of α.

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [4] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal∗ 3-space as a classical approximation to
this “quantum foam” [10].

2 Dynamical 3-space

Relative to some observer 3-space is described by a velocity
field v (r, t). It is important to note that the coordinate r is
not itself 3-space, rather it is merely a label for an element
of 3-space that has velocity v, relative to some observer.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by [4, 6], in the non-relativistic limit,

∇∙

(
∂v

∂t
+(v ∙∇)v

)

+
α

8

(
(trD)2−tr(D2)

)
=−4πGρ, (1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g(r, t) ≡ lim
Δt→0

v
(
r+v (r, t)Δt, t+Δt

)
−v (r, t)

Δt
=

=
∂v

∂t
+ (v ∙ ∇)v .

(3)

It was shown in [10] that matter has the same acceleration†

as (3), which gave a derivation of the equivalence principle as
a quantum effect in the Schrödinger equation when uniquely
generalised to include the interaction of the quantum system
with the 3-space. These forms are mandated by Galilean
covariance under change of observer‡. This minimalist non-
relativistic modelling of the dynamics for the velocity field

∗The fractal property of 3-space was found [10] from the DeWitte data.
†Except for the acceleration component induced by vorticity.
‡However this does not exclude so-called relativistic effects, such as the

length contraction of moving rods or the time dilations of moving clocks.
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Fig. 1: Upper plot shows speeds from numerical iterative solution
of (7) for a solid sphere with uniform density and radius r= 0.5
for (i) upper curve the case α=0 corresponding to Newtonian
gravity, and (ii) lower curve with α= 1/137. These solutions only
differ significantly near r=0. Middle plot shows matter density
and “dark matter” density ρDM , from (5), with arbitrary scales.
Lower plot shows the acceleration from (3) for (i) the Newtonian
in-flow from the upper plot, and (ii) from the α= 1/137 case. The
difference is only significant near r = 0. The accelerations begin
to differ just inside the surface of the sphere at r= 0.5, according
to (15). This difference is the origin of the borehole g anomaly, and
permits the determination of the value of α from observational data.
This generic singular-g behaviour, at r=0, is seen in the Earth, in
globular clusters and in galaxies.
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Fig. 2: The data shows Log10[MBH/M ] for the “blackhole” or “dark matter” masses MBH for a variety of spherical matter systems with
masses M , shown by solid circles, plotted against Log10[M/M0], where M0 is the solar mass, showing agreement with the “α/2-line”
(Log10[α/2] = −2.44) predicted by (10), and ranging over 15 orders of magnitude. The “blackhole” effect is the same phenomenon as the
“dark matter” effect. The data ranges from the Earth, as observed by the bore hole g anomaly, to globular cluster M15 and G1, and then
to spherical “elliptical” galaxies M32 (E2), NGC 4374 (E1) and M87 (E0). Best fit to the data from these star systems gives α = 1/134,
while for the Earth data in Figs.3,4,5 give α = 1/137. In these systems the “dark matter” or “black hole” spatial self-interaction effect is
induced by the matter. For the spiral galaxies, shown by the filled boxes, where here M is the bulge mass, the blackhole masses do not
correlate with the “α/2-line”. This is because these systems form by matter in-falling to a primordial blackhole, and so these systems are
more contingent. For spiral galaxies this dynamical effect manifests most clearly via the non-Keplerian rotation-velocity curve, which
decrease asymptotically very slowly. See [7] for references to the data.

gives a direct account of the various phenomena noted above.
A generalisation to include relativistic effects of the motion
of matter through this 3-space is given in [4]. From (1) and
(3) we obtain that

∇ ∙ g = −4πGρ− 4πGρDM , (4)

where
ρDM (r) =

α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Universal Law
of Gravitation, in differential form. But for a non-zero α
we see that the 3-space acceleration has an additional effect,
from the ρDM term, which is an effective “matter density”
that mimics the new self-interaction dynamics. This has been
shown to be the origin of the so-called “dark matter” effect
in spiral galaxies. It is important to note that (4) does not
determine g directly; rather the velocity dynamics in (1)
must be solved, and then with g subsequently determined
from (3). Eqn. (4) merely indicates that the resultant non-
Newtonian g could be mistaken as the result of a new form
of matter, whose density is given by ρDM . Of course the
saga of “dark matter” shows that this actually happened, and

that there has been a misguided and fruitless search for such
“matter”.

3 Airy method for determining α

We now show that the Airy method actually gives a technique
for determining the value of α from Earth based borehole
gravity measurements. For a time-independent velocity field
(1) may be written in the integral form

|v (r)|2 = 2G
∫
d3r′

ρ(r′) + ρDM (r
′)

|r− r′|
. (6)

When the matter density of the Earth is assumed to be
spherically symmetric, and that the velocity field is now
radial∗ (6) becomes

v(r)2 =
8πG

r

∫ r

0

s2
[
ρ(s) + ρDM (s)

]
ds+

+ 8πG

∫ ∞

r

s
[
ρ(s) + ρDM (s)

]
ds ,

(7)

∗This in-flow is additional to the observed velocity of the Earth through
3-space.
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where, with v′ = dv(r)/dr,

ρDM (r) =
α

32πG

(
v2

2r2
+
vv′

r

)

. (8)

Iterating (7) once we find to 1st order in α that

ρDM (r) =
α

2r2

∫ ∞

r

sρ(s) ds+O(α2) , (9)

so that in spherical systems the “dark matter” effect is con-
centrated near the centre, and we find that the total “dark
matter” is

MDM ≡ 4π
∫ ∞

0

r2ρDM (r)dr =

=
4πα

2

∫ ∞

0

r2ρ(r)dr +O(α2) =
α

2
M +O(α2) ,

(10)

where M is the total amount of (actual) matter. Hence to
O(α) MDM/M = α/2 independently of the matter density
profile. This turns out to be a very useful property as complete
knowledge of the density profile is then not required in order
to analyse observational data. As seen in Fig. 1 the singular
behaviour of both v and g means that there is a blackhole∗

singularity at r=0. Interpreting MDM in (10) as the mass
of the blackholes observed in the globular clusters M15 and
G1 and in the highly spherical “elliptical” galaxies M32,
M87 and NGC 4374, we obtained [7] α≈ 1/134, as shown
in Fig. 2.

From (3), which is also the acceleration of matter [10],
the gravity acceleration† is found to be, to 1st order in α,
and using that ρ(r)= 0 for r >R, where R is the radius of
the Earth,

g(r) =






(
1 + α

2

)
GM

r2
, r > R ;

4πG

r2

∫ r

0

s2ρ(s) ds+

+
2παG

r2

∫ r

0

(∫ R

s

s′ρ(s′)ds′
)

ds , r < R .

(11)

This gives Newton’s “inverse square law” for r >R, even
when α 6=0, which explains why the 3-space self-interaction
dynamics did not overtly manifest in the analysis of planetary
orbits by Kepler and then Newton. However inside the Earth
(11) shows that g(r) differs from the Newtonian theory, cor-
responding to α=0, as Fig. 1, and it is this effect that allows
the determination of the value of α from the Airy method.

Expanding (11) in r about the surface, r=R, we obtain,
to 1st order in α and for an arbitrary density profile,

∗These are called blackholes because there is an event horizon, but in
all other aspects differ from the blackholes of General Relativity.

†We now use the convention that g(r) is positive if it is radially inward.

g(r) =






GNM
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−
2GNM

R3
(r −R) , r > R ;

GNM

R2
−

(
2GNM

R3
− 4π

(
1−

α

2

)
GNρ

)

×

× (r −R) , r < R .

(12)

where ρ is the matter density at the surface, M is the total
matter mass of the Earth, and where we have defined

GN ≡
(
1 +

α

2

)
G . (13)

The corresponding Newtonian gravity expression is ob-
tained by taking the limit α→ 0,

gN(r) =






GNM

R2
−
2GNM

R3
(r −R) , r >R ;

GNM

R2
−
(
2GNM

R3
− 4πGNρ

)
(r−R) , r <R .

(14)

Assuming Newtonian gravity (14) then means that from
the measurement of difference between the above-ground and
below-ground gravity gradients, namely 4πGNρ, and also
measurement of the matter density, permit the determination
of GN. This is the basis of the Airy method for determining
GN [3].

When analysing the borehole data it has been found [11,
12] that the observed difference of the density gradients was
inconsistent with 4πGNρ in (14), in that it was not given by
the laboratory value of GN and the matter density. This is
known as the borehole g anomaly and which attracted much
interest in the 1980’s. The key point in understanding this
anomaly is that even allowing for the dynamical rescaling
of G, expressions (12) and (14) have a different dependence
on r−R beneath the surface. The borehole data papers [11,
12] report the discrepancy, i. e. the anomaly or the gravity
residual as it is called, between the Newtonian prediction
and the measured below-earth gravity gradient. Taking the
difference between (12) and (14), assuming the same un-
known value of GN in both, we obtain an expression for the
gravity residual

Δg(r) ≡ gN(r)− g(r) =

{
0 , r > R ;

2παGNρ(r−R) , r < R .
(15)

When α 6= 0 we have a two-parameter theory of gravity,
and from (11) we see that measurement of the difference be-
tween the above ground and below ground gravity gradients
is 4π

(
1− α

2

)
GNρ, and this is not sufficient to determine

both GN and α, given ρ, and so the Airy method is now
understood not to be a complete measurement by itself, i. e.
we need to combine it with other measurements. If we now
use laboratory Cavendish experiments to determine GN, then
from the borehole gravity residuals we can determine the
value of α, as already indicated in [5, 6]. As discussed in
Sect. 7 these Cavendish experiments can only determine GN
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Fig. 3: The data shows the gravity residuals for the Greenland
Ice Shelf [11] Airy measurements of the g(r) profile, defined as
Δg(r)= gNewton− gobserved, and measured in mGal (1mGal =
= 10−3 cm/s2) and plotted against depth in km. The gravity
residuals have been offset. The borehole effect is that Newtonian
gravity and the new theory differ only beneath the surface, provided
that the measured above surface gravity gradient is used in both
theories. This then gives the horizontal line above the surface.
Using (15) we obtain α−1 = 137.9± 5 from fitting the slope of the
data, as shown. The non-linearity in the data arises from modelling
corrections for the gravity effects of the irregular sub ice-shelf rock
topography.

up to corrections of order α/4, simply because the analysis
of the data from these experiments assumed the validity of
Newtonian gravity. So the analysis of the borehole residuals
will give the value of α up to O(α2) corrections, which is
consistent with the O(α) analysis reported above.

4 Greenland Ice Shelf borehole data

Gravity residuals from a bore hole into the Greenland Ice
Shelf were determined down to a depth of 1.5 km by Ander
et al. [11] in 1989. The observations were made at the
Dye 3 2033 m deep borehole, which reached the basement
rock. This borehole is 60 km south of the Arctic Circle
and 125 km inland from the Greenland east coast at an
elevation of 2530 m. It was believed that the ice provided
an opportunity to use the Airy method to determine GN, but
now it is understood that in fact the borehole residuals permit
the determination of α, given a laboratory value for GN.
Various steps were taken to remove unwanted effects, such as
imperfect knowledge of the ice density and, most dominantly,
the terrain effects which arises from ignorance of the profile
and density inhomogeneities of the underlying rock. The

borehole gravity meter was calibrated by comparison with an
absolute gravity meter. The ice density depends on pressure,
temperature and air content, with the density rising to its
average value of ρ = 920 kg/m3 within some 200 m of
the surface, due to compression of the trapped air bubbles.
This surface gradient in the density has been modelled by
the author, and is not large enough the affect the results.
The leading source of uncertainty was from the gravitational
effect of the bedrock topography, and this was corrected for
using Newtonian gravity. The correction from this is actually
the cause of the non-linearity of the data points in Fig. 3. A
complete analysis would require that the effect of this rock
terrain be also computed using the new theory of gravity, but
this was not done. Using GN= 6.6742×10−11 m3s−2kg−1,
which is the current CODATA value, see Sect. 7, we obtain
from a least-squares fit of the linear term in (15) to the data
points in Fig. 3 that α−1= 137.9±5, which equals the value
of the fine structure constant α−1= 137.036 to within the
errors, and for this reason we identify the constant α in (1)
as being the fine structure constant. The first analysis [5, 6]
of the Greenland Ice Shelf data incorrectly assumed that
the ice density was 930 kg/m3 which gave α−1= 139 ± 5.
However trapped air reduces the standard ice density to
the ice shelf density of 920 kg/m3, which brings the value
of α immediately into better agreement with the value of
α= e2/~c known from quantum theory.

5 Nevada Test Site borehole data

Thomas and Vogel [12] performed another borehole experi-
ment at the Nevada Test Site in 1989 in which they measured
the gravity gradient as a function of depth, the local average
matter density, and the above ground gradient, also known as
the free-air gradient. Their intention was to test the extracted
Glocal and compare with other values of GN, but of course
using the Newtonian theory. The Nevada boreholes, with
typically 3 m diameter, were drilled as a part of the U.S.
Government tests of its nuclear weapons. The density of
the rock is measured with a γ− γ logging tool, which is
essentially a γ-ray attenuation measurement, while in some
holes the rock density was measured with a coreing tool. The
rock density was found to be 2000 kg/m3, and is dry. This is
the density used in the analysis herein. The topography for
1 to 2 km beneath the surface is dominated by a series of
overlapping horizontal lava flows and alluvial layers. Gravity
residuals from three of the bore holes are shown in Figs.4,
5 and 6. All gravity measurements were corrected for the
Earth’s tide, the terrain on the surface out to 168 km distance,
and the evacuation of the holes. The gravity residuals arise
after allowing for, using Newtonian theory, the local lateral
mass anomalies but assumed that the matter beneath the
holes occurs in homogeneous ellipsoidal layers. Here we
now report a detailed analysis of the Nevada data. First we
note that the gravity residuals from borehole U20AO, Fig. 6,
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Fig. 4: The data shows the gravity residuals for the Nevada
U20AK borehole Airy measurements of the g(r) profile [12],
defined as Δg(r)= gNewton− gobserved, and measured in mGal,
plotted against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15)
to the four linear regions in this data and that in Fig. 5 for the
data from borehole U20AL, we obtain α−1= 136.8 ± 3. The two
fitted regions of data are shown by the two straight lines here and
in Fig. 5.

are not sufficiently linear to be useful. This presumably
arises from density variations caused by the layering effect.
For boreholes UA20AK, Fig. 4, and UA20AL, Fig. 5, we
see segments where the gravity residuals are linear with
depth, where the density is the average value of 2000 kg/m3,
but interspersed by layers where the residuals show non-
linear changes with depth. It is assumed here that these non-
linear regions are caused by variable density layers. So in
analysing this data we have only used the linear regions,
and a simultaneous least-squares fit to (15), with again GN=
= 6.6742×10−11 m3 s−2kg−1 as for the Greenland data
analysis, of these four linear regions gives α−1 = 136.8± 3,
which again is in extraordinary agreement with the value of
137.04 from quantum theory.

6 Ocean measurements

The ideal Airy experiment would be one using the ocean, as
all relevant physical aspects are accessible. Such an expe-
riment was carried out by Zumberge et al. in 1991 [13]

Fig. 5: The data shows the gravity residuals for the Nevada U20AL
borehole Airy measurements of the g(r) profile [12], defined
as Δg(r)= gNewton− gobserved, and measured in mGal, plotted
against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15) to
the four linear regions in this data and that in Fig. 4 for the data
from borehole U20AK in Fig. 4, we obtain α−1= 136.8 ± 3. The
two fitted regions of data are shown by the two straight lines here
and in Fig. 4.

using submersibles. Corrections for sea floor topography,
seismic profiles and sea surface undulations were carried
out. However a true Airy experiment appears not to have
been performed. That would have required the measurement
of the above and below sea-surface gravity gradients. Rather
only the below sea-surface gradients were measured, and
compared with a predicted gravity gradient using the density
of the water and a laboratory value of GN from only one
such experiment and, as shown in Fig. 7, these have a
large uncertainty. Hence this experiment does not permit an
analysis of the data of the form applied to the Greenland
and Nevada observations. The value of GN from this ocean
experiment is shown in Fig. 7 as experiment #12.

7 G experiments

The new theory of gravity, given in (1) for the case of zero
vorticity and in the non-relativistic limit, is a two-parameter
theory; G and α. Hence in experiments to determine G
(or GN) we expect to see systematic discrepancies if the
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Fig. 6: The data shows the gravity residuals from the third Nevada
U20AO borehole Airy measurements of the g(r) profile [12]. This
data is not of sufficient linearity, presumably due to non-uniformity
of density, to permit a fit to the linear form in (15), but is included
here for completeness. There is an arbitrary offset in the residual.

Newtonian theory is used to analyse the data. This is clearly
the case as shown in Fig. 7 which shows the results of such
analyses over the last 60 years. The fundamental problem
is that non-Newtonian effects of size ΔGN/GN≈α/4 are
clearly evident, and effects of this size are expected from
(1). To correctly analyse data from these experiments the
full theory in (1) must be used, and this would involve (i)
computing the velocity field for each configuration of the
test masses, and then (ii) computing the forces by using
(3) to compute the acceleration field. These computations
are far from simple, especially when the complicated matter
geometries of recent experiments need to be used. Essentially
the flow of space results in a non-Newtonian effective “dark
matter” density in (5). This results in deviations from New-
tonian gravity which are of order α/4. The prediction is that
when laboratory Cavendish-type experiments are correctly
analysed the data will permit the determination of both GN

and α, and the large uncertainties in the determination of GN

will no longer occur. Until then the value of GN will continue
to be the least accurately known of all the fundamental
constants. Despite this emerging insight CODATA∗ in 2005
[20] reduced the apparent uncertainties in GN by a factor of
10, and so ignoring the manifest presence of a systematic
effect. The occurrence of the fine structure constant α, in

∗CODATA is the Task Group on Fundamental Constants of the
Committee on Data for Science and Technology, established in 1969.

Fig. 7: Results of precision measurements of GN published in
the last sixty years in which the Newtonian theory was used to
analyse the data. These results show the presence of a systematic
effect, not in the Newtonian theory, of fractional size up to
ΔGN/GN≈α/4, which corresponded with the 1998 error bars
on GN (outer dashed lines), with the full line being the current
CODATA value of GN= 6.6742(10)×10−11 m2s−2kg−1. In 2005
CODATA [20] reduced the error bars by a factor of 10 (inner dashed
lines) on the basis of some recent experiments, and so neglecting
the presence of the systematic effect.

giving the magnitude of the spatial self-interaction effect in
(1), is a fundamental development in our understanding of 3-
space and the phenomenon of gravity. Indeed the implication
is that α arises here as a manifestation of quantum processes
inherent in 3-space.

8 Some history

Here we have simply applied the new two-parameter theory
of 3-space, and hence of gravity, to the existing data from
borehole experiments. However the history of these experi-
ments shows that, of course, the nature of the gravitational
anomaly had not been understood, and so the implications
for fundamental physics that are now evident could not have
been made. The first indications that some non-Newtonian
effect was being observed arose from Yellin [14] and Hinze
et al. [15]. It was Stacey et al. in 1981 [17, 16, 18] who
undertook systematic studies at the Mt. Isa mine in Queens-
land, Australia. In the end a mine site is very unsuited for
such a gravitational anomaly experiment as by their very
nature mines have non-uniform poorly-known density and
usually, as well, irregular surface topography. In the end it
was acknowledged that the Mt. Isa mine data was unreliable.
Nevertheless those reports motivated the Greenland, Nevada
and Ocean experiments, as well as above-ground tower expe-
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riments [19], all with the assumption that the non-Newtonian
effects were being caused by a modification to Newton’s
inverse square law by an additional short-range force —
which also involved the notion of a possible “5th-force”
[21]. However these interpretations were not supported by
the data, and eventually the whole phenomenon of these
gravitational borehole anomalies was forgotten.

9 Conclusions

We have extended the results from an earlier analysis [5, 6]
of the Greenland Ice Shelf borehole g anomaly data by
correcting the density of ice from the assumed value to
the actual value. This brought the extracted value of α
from approximately 1/139 to approximately 1/137, and so
into even closer agreement with the quantum theory value.
As well the analysis was extended to the Nevada borehole
anomaly data, again giving α≈ 1/137. This is significant
as the rock density is more than twice the ice density. As
well we have included the previous results [7] from analysis
of the blackhole masses in globular clusters and elliptical
“spherical” galaxies, which gave α≈ 1/134, but with larger
uncertainty. So the conclusion that α is actually the fine
structure constant from quantum theory is now extremely
strong. These results, together with the successful expla-
nation for the so-called spiral galaxy “dark-matter” effect
afforded by the new theory of gravity, implies that the New-
tonian theory of gravity [1] is fundamentally flawed, even
at the non-relativistic level, and that the disagreement with
experiment and observation can be of fractional order α, or
in the case of spiral galaxies and blackholes, extremely large.
This failure implies that General Relativity, which reduces to
the Newtonian theory in the non-relativistic limit, must also
be considered as flawed and disproven.
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The stellar equations of state treat the Sun much like an ideal gas, wherein the
photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the
solar interior give some credence to these models, especially since it is counterintuitive
that an object with internal temperatures in excess of 1 MK could be existing in
the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient
evidence for the states of matter. The presence of magnetic fields and gravity also
impact the expected phase. In the end, it is the physical expression of a state that
is required in establishing the proper phase of an object. The photosphere does not
lend itself easily to treatment as a gaseous plasma. The physical evidence can be
more simply reconciled with a solar body and a photosphere in the condensed state.
A discussion of each physical feature follows: (1) the thermal spectrum, (2) limb
darkening, (3) solar collapse, (4) the solar density, (5) seismic activity, (6) mass
displacement, (7) the chromosphere and critical opalescence, (8) shape, (9) surface
activity, (10) photospheric/coronal flows, (11) photospheric imaging, (12) the solar
dynamo, and (13) the presence of Sun spots. The explanation of these findings by the
gaseous models often requires an improbable combination of events, such as found in
the stellar opacity problem. In sharp contrast, each can be explained with simplicity
by the condensed state. This work is an invitation to reconsider the phase of the Sun.

Introduction

The stellar phase has important consequences, not only for
modeling the Sun, but indeed, for the proper treatment of
nearly every aspect of astrophysics. Recently, the accepted
temperature of the photosphere has been questioned [1].
This hinges on the proper understanding of both blackbody
radiation [2] and the liquid state [3]. In modern theory,
stars can be essentially infinitely compressed without ever
becoming liquid. Outside the Earth’s oceans, the liquid state
appears all but non-existent in the universe. By invoking the
gaseous equations of state [i. e. 4] without the possibility
of condensation to the liquid and solid state, the accepted
models continue to ignore laboratory findings relative to
the existence of these transformations. These issues are not
simple. However, sufficient evidence exists to bring into
question the gaseous models of the Sun.

The physical evidence

1. The thermal spectrum:

It is hard to imagine that, after more than 100 years, our
understanding of blackbody radiation could be questioned.
If this is the case, it is because of shortcomings in the
work of Gustav Kirchhoff [5, 6] which have previously been
overlooked [7]. The arguments hinged on whether or not
blackbody radiation is in fact universal as initially advanced
by Kirchhoff [5, 6], echoed by Planck [2] and theoretically
confirmed by Einstein [8]. In order to dissect the problem,

Kirchhoff and Planck are treated together, along with the
experimental proof [7]. Einstein’s work [8] can then be
examined from a conceptual viewpoint [9] without bringing
into question any of Einstein’s mathematics. Thus, arguments
against the universality of blackbody radiation have already
been made both on an experimental basis [7] and on a
theoretical one [9]. In reality, the entire foundation for the
liquid model of the Sun rests on the soundness of these
arguments [7, 9]. The belief is that claims of universality
are not only overstated, they are incorrect [9]. As such, it
is improper to assign any astrophysical temperature based
on the existence of a thermal spectrum in the absence of
a known isothermal (not adiabatic) and perfectly absorbing
enclosure [1, 7, 9].

The Sun possesses a thermal signature as reported early
on by Langley [10, 11]. The fact that this spectrum is con-
tinuous in nature leads to difficulties for the gaseous models
[1]. This is because gases are known to emit radiation only
in discrete bands [12]. Consequently, in order to produce the
thermal spectrum of the Sun, theoretical astrophysics must
currently invoke the summation of numerous spectroscopic
processes. Furthermore, this must occur in a slightly shifted
manner within each internal layer of the Sun. Many distinct
physical processes (bound-bound, bound-free, and free-free)
are used to arrive at a single spectrum [i. e. 4]. This con-
stitutes the stellar opacity problem: the summation of many
distinct spectroscopic processes to yield a single spectro-
scopic signature.

In reality, each spectroscopic signature, including the
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thermal spectrum, must arise from a single spectroscopic
process [1]. Just as an NMR spectrum arises from an NMR
process, so must a thermal spectrum arise from a thermal
process. Whatever process takes place with graphite on Earth
must be taking place on the surface of the Sun. That the
gaseous models require many spectroscopic processes along
with gradually and systematically changing stellar opacities
[i. e. 4] is perhaps their greatest obstacle. Gases simply cannot
generate thermal spectra in the absence of a rigid body
(condensed matter) enclosure. They are restricted to emission
in bands.

In contrast, condensed matter can easily generate con-
tinuous spectra [13, 14, 15] as a manifestation of its inherent
lattice structure. Thus, relative to the existence of a continu-
ous solar spectrum, a condensed matter model of the Sun has
distinct advantages.

2. Limb darkening:

The Sun is also characterized by limb darkening. The
solar spectrum becomes less bright when viewing the Sun
from the center to the limb. Since a change in the thermal
spectrum is involved, the gaseous models must once again
invoke the stellar opacity problem. Limb darkening is ex-
plained by inferring the sampling of varying optical depths.
The Sun must be able to slowly and gradually change its
thermal spectrum from one temperature to another based on
depth using a perfect combination of bound-bound, bound-
free and free-free processes at every location inside the Sun.
Gaseous theory therefore places a tremendous constraint on
nature relative to limb darkening. As stated above, it is
not reasonable to expect that a single spectrum is actually
resultant from the infinite sum of many distinct and unrelated
spectroscopic processes. If a thermal spectrum is produced
by the Sun, it must invoke the same mechanism present in
the piece of graphite on Earth. That the gaseous models rely
on varying optical depths in order to explain limb darkening
might appear elegant, but lacks both clarity and support in
experimental physics.

In sharp contrast, angle dependence in thermal emission
is extremely well documented for condensed matter [14,
15]. Changes in optical depth are not required. Rather, a
subtle change in the angle of observation is sufficient. This
is precisely what is observed when we monitor the Sun.
For instance, even the oceans of the Earth are known to
have angle dependent emission intensities at microwave fre-
quencies [16]. Thus, in the condensed matter scenario, limb
darkening is an expression of angle of observation without
having to make any arguments based on optical depth.

3. Solar collapse:

One of the key requirements of the gaseous models is
the need to prevent solar collapse as a result of gravitational
forces. Currently, it is advocated that solar collapse is pre-
vented by electron gas pressure in the solar interior and, for

larger stars, by radiation pressure. However, the existence
of gas pressure relies on the presence of a rigid surface
[i. e. 4]. The atmosphere of the Earth does not collapse
due to the relatively rigid oceanic and continental surfaces.
Within the gaseous models of the stars however, there is
no mechanism to introduce the rigid surface required to
maintain gas pressure. Theoretical arguments are made [i. e.
4] without experimental foundation. The same holds for
internal radiation pressure. There is no experimental basis on
Earth for radiation pressure internal to a single object [13,
14, 15]. It is well-established that for the gaseous models
of the Sun, complete solar collapse would take place in a
matter of seconds should electron gas pressure and internal
radiation pressure cease [i. e. 4]. In sharp contrast, relative
incompressibility is a characteristic of the liquid state. A
liquid Sun is by definition essentially incompressible, and
experimental evidence for such behavior in liquids is abun-
dant. Stellar collapse is excluded by the very nature of the
phase invoked.

4. Solar density:

The Sun has an average density of 1.4 g/cm3. The gaseous
models distribute this density with radial dependence with the
core of the Sun typically approaching a density of 150 g/cm3

and the photosphere 10−7 g/cm3. If the Sun were truly a
gaseous plasma, it would have been much more convenient if
the average density did not so well approximate the density of
the condensed state (> 1 g/cm3). The gaseous models would
be in a much stronger position if the average solar density,
for instance, was 10−4 g/cm3. Such a density would clearly
not lend itself to the condensed state. In contrast, the known
density of the Sun is ideal for a condensed model whose
primary constituents are hydrogen and helium. Moreover, for
the condensed models [1], the radial dependence of density
is not critical to the solution and a uniform distribution of
mass may be totally acceptable.

The density of the Sun very closely approaches that
of all the Jovian planets. Nonetheless, a great disparity in
mass exists between the Sun and these planets. As such, it
is probably best not to enter into schemes which involve
great changes in internal solar densities. The liquid model
maintains simplicity in this area and such a conclusion is
viewed as important.

5. Seismology:

The Sun is a laboratory of seismology [17]. Yet, on
Earth, seismology is a science of the condensed state. It
is interesting to highlight how the gaseous models of the
Sun fail to properly fit seismological data. In the work by
Bahcall et. al. [18] for instance, experimental and theoretical
siesmological findings are compared as a function of Solar
radius. Precise fits are obtained for most of the solar sphere.
In fact, it is surprising how the interior of the Sun can be
so accurately fitted, given that all the data is being acquired
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from the solar surface. At the same time, this work is unable
to fit the data in the exterior 5% of the Sun [18]. Yet,
this is precisely the point from which all the data is being
collected. The reason that this region cannot be fitted is that
the gaseous models are claiming that the photosphere has
a density on the order of 10−7 g/cm3. This is lower than
practical vacuums on Earth. Thus, the gaseous models are
trying to conduct seismology in a vacuum by insisting on
a photospheric density unable to sustain seismic activity.
For the condensed models of the Sun, this complication is
eliminated.

6. Mass displacement:

On July 9, 1996, the SOHO satellite obtained Doppler
images of the solar surface in association with the eruption
of a flare [19, 20]. These images reveal the clear propagation
of transverse waves on the solar surface. The authors of the
scientific paper refer to the mass displacement exactly like
the action resulting from a pebble thrown in a pond. This
is extremely difficult to explain for the gaseous models, yet
trivial for the condensed model. The Doppler images show
the presence of transverse waves. This is something unique to
the condensed state. Gases propagate energy longitudinally.
It can be theoretically argued perhaps that gases can sustain
transverse waves. These however would be on the order of
a few atomic radii at best. In sharp contrast, the waves seen
on the Sun extend over thousands of kilometers. Once again,
the condensed state provides a greatly superior alternative to
the study of transverse waves on the solar surface.

7. The chromosphere and critical opalescence:

Critical opalescence occurs when a material is placed at
the critical point, that combination of temperature, pressure,
magnetic field and gravity wherein the gas/liquid interface
disappears. At the critical point, a transparent liquid becomes
cloudy due to light scattering, hence the term critical opale-
scence. The gas is regaining order, as it becomes ready to
enter the condensed phase. It would appear that the Sun,
through the chromosphere, is revealing to us behavior at the
solar critical point. Under this scenario, the chromosphere is
best viewed as the transition phase between the condensed
photosphere and the gaseous corona.

In order to shed light on this problem, consider that in
the lower region of the corona, the gaseous material exists
at a temperature just beyond the critical temperature. The
temperature is sufficiently elevated, that it is impossible for
condensation to occur, given the gravity present. However, as
one moves towards the Sun, the critical temperature increases
as a result of increased gravity. Consequently, a point will
eventually be reached where the temperature of the region
of interest is in fact below the critical temperature. Con-
densation can begin to occur. As the surface of the Sun is
increasingly approached, the critical temperature increases
further. This is a manifestation of increased gravity and

magnetic forces. By the time the photosphere is reached, the
region of interest is now well below the critical temperature
and the liquid state becomes stable. The surface at this point
is visualized.

Therefore, in the liquid model, the chromosphere repre-
sents that region where matter projected into the corona is
now in the process of re-condensing in order to enter the
liquid state of the photosphere. Such an elegant explanation
of the chromosphere is lacking for the gaseous models.
Indeed, for these models, the understanding of the chromo-
sphere requires much more than elementary chemical prin-
ciples.

8. Shape:

The Sun is not a perfect sphere. It is oblate. Solar oblate-
ness [21] is a direct manifestation of solar rotation and can
best be understood by examining the rotation of liquid masses
[22]. The oblateness of the solar disk has recently come under
re-evaluation. While exact measurements have differed in the
extent of solar oblateness, it appears that the most reliable
studies currently place solar oblateness at 8.77×10−6 [21]. In
order to understand solar oblateness, astrophysics is currently
invoking a relative constant solar density as a function of
radial position [21]. This is in keeping with our understanding
of liquid body rotations [22], but is in direct opposition to
the densities calculated using the gaseous equations of state
[i. e. 4]. Interestingly, a relatively constant density is precisely
what is invoked in the condensed matter model of the Sun
[1]. The question becomes even more important when one
considers stars like Achanar whose oblateness approaches
1.5 [23]. Such an observation would be difficult to rationalize
were the Sun truly gaseous.

9. Surface activity:

The Sun has extensive surface activity and appears to be
boiling. Indeed, several undergraduate texts actually refer to
the Sun as a boiling gas. In addition to the boiling action, the
Sun is characterized by numerous solar eruptions. Both of
these phenomena (boiling and solar eruptions) are extremely
difficult to rationalized for the gaseous models. Gases do not
boil. They are the result of such action. It is an established
fact that liquids boil giving rise to gases. There is no evidence
on Earth that superheating a gas can give rise to a region of
different density capable of erupting from the gaseous mass.
These are extremely complex issues for the gaseous models
since actions resembling both boiling and superheating must
be generated without having recourse to the liquid state.

In contrast, the presence of superheated liquids within
the solar interior could easily explain the production of solar
eruptions. The existence of boiling action is well documented
for the liquid. Nothing further need be added. Phenomena
easily explained in the liquid model, become exceedingly
difficult for the gaseous equations of state.
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10. Photospheric/coronal flow:

It has been well established that the Sun displays pro-
nounced flows at the surface. Matter can be seen rising from,
and descending into, the solar interior. However, matter is
also traversing the solar surface in a manner perpendicular to
established flows in the corona. The photosphere is character-
ized not simply by a change in opacity as the gaseous models
theorize, but by drastically altered directions of material flow
relative to the corona. In the liquid model, the interface
delineated by flow directions can be explained based on the
existence of a phase transition between the photosphere and
the corona. In fact, the orthogonality of mass displacement
at the solar surface relative to the corona is reminiscent of
the orthogonality observed on Earth between the currents in
the oceans and the upward and downwards drafts sometimes
observed in the overlying air. It is not trivial for the gaseous
models to account for the orthogonality of flow between the
photosphere and the corona. By contrast, this is a natural
extension of current knowledge relative to liquid/gaseous
interfaces for the liquid model.

11. Photospheric imaging:

The solar surface has recently been imaged in high re-
solution using the Swedish Solar Telescope [24, 25]. These
images reveal a clear solar surface in 3D with valleys,
canyons, and walls. Relative to these findings, the authors
insist that a true surface is not being seen. Such statements
are prompted by belief in the gaseous models of the Sun.
The gaseous models cannot provide an adequate means for
generating a real surface. Solar opacity arguments are ad-
vanced to caution the reader against interpretation that a
real surface is being imaged. Nonetheless, a real surface is
required by the liquid model. It appears that a real surface is
being seen. Only our theoretical arguments seem to support
our disbelief that a surface is present.

12. Dynamo action:

The Sun is characterized by strong magnetic fields. These
magnetic fields can undergo complex winding and protru-
sions. On Earth however, strong magnetic fields are always
produced from condensed matter. The study of dynamos
relies on the use of molten sodium [26], not gaseous sodium.
It is much more realistic to generate powerful magnetic
fields in condensed matter than in sparse gaseous plasmas.
Consequently, the liquid model and its condensed phase lends
itself much more readily to the requirements that the Sun
possesses strong magnetic fields.

13. Sun spots:

The presence of Sun spots have long been noted on the
solar sphere. Sun spots are often associated with strong mag-
netic activity. The gaseous models explain the existence of
Sun spots with difficulty. The problem lies in the requirement

that different types of order (disorder) can coexist in stellar
gases, based on the presence of a magnetic field. While there
is ample room here for theoretical arguments justifying the
existence of Sun spots in a gaseous model, the situation is
less complex in the liquid model. Thus, if one considers
that the bulk of the solar photosphere exists with hydrogen
and helium adhering to a certain lattice structure, all that is
required is a concentration of magnetic fields within a region
to produce a change in the lattice. The surface of the Sun is
changed from a hypothetical “Type I lattice” to a “Type II
lattice”. The requirement that a strong magnetic field alters
the structure of condensed matter in an ordered lattice from
one form to another, is much less than would be required to
alter the structure of a gaseous plasma (something which has
no inherent lattice).

Conclusion

The evidence in favor of a condensed matter model of the Sun
is overwhelming. For every avenue explored, the condensed
model holds clear advantages in simplicity of understanding.
In fact, it remains surprising that the gaseous models have
been able to survive for so long. This is partially due to the
elegance with which the theoretical framework is established.
Moreover, the gaseous equations of state have such profound
implications for astrophysics.

Consequently, it is recognized that the acceptance of any
condensed matter model will require such dramatic changes
in astrophysics that such adoption cannot be swift. In the
meantime, it is important to set out the physical evidence for
a liquid model both in manuscript [1] and abstract form [27–
30]. Eventually, astrophysics may well be forced to abandon
the gaseous models and their equations of state. It is likely
that this will occur when the field more fully appreciates
the lack of universality in blackbody radiation [7, 9, 31]. At
this time, gases will no longer be hypothesized as suitable
candidates for the emission of thermal radiation. The need
for condensed matter will be self-evident.
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Through the formulation of his law of thermal emission, Kirchhoff conferred upon
blackbody radiation the quality of universality [G. Kirchhoff, Annalen der Physik,
1860, v. 109, 275]. Consequently, modern physics holds that such radiation is
independent of the nature and shape of the emitting object. Recently, Kirchhoff’s
experimental work and theoretical conclusions have been reconsidered [P. M. L. Robi-
taille. IEEE Transactions on Plasma Science, 2003, v. 31(6), 1263]. In this work,
Einstein’s derivation of the Planckian relation is reexamined. It is demonstrated that
claims of universality in blackbody radiation are invalid.

From the onset, blackbody radiation was unique in possessing
the virtue of universality [1, 2]. The nature of the emitting
object was irrelevant to emission. Planck [3], as a student
of Kirchhoff, adopted and promoted this concept [4, 5].
Nonetheless, he warned that objects sustaining convection
currents should not be treated as blackbodies [5].

As previously discussed in detail [6], when Kirchhoff
formulated his law of thermal emission [1, 2], he utilized
two extremes: the perfect absorber and the perfect reflector.
He had initially observed that all materials in his laboratory
displayed distinct emission spectra. Generally, these were
not blackbody in appearance and were not simply related to
temperature changes. Graphite, however, was an anomaly,
both for the smoothness of its spectrum and for its ability
to simply disclose its temperature. Eventually, graphite’s
behavior became the basis of the laws of Stefan [7], Wien
[8] and Planck [3].

For completeness, the experimental basis for universality
is recalled [1, 2, 5, 6]. Kirchhoff first set forth to manufacture
a box from graphite plates. This enclosure was a near perfect
absorber of light (ε=1, κ=1). The box had a small hole
through which radiation escaped. Kirchhoff placed various
objects in this device. The box would act as a transformer
of light [6]. From the graphitic light emitted, Kirchhoff was
able to gather the temperature of the enclosed object once
thermal equilibrium had been achieved. A powerful device
had been constructed to ascertain the temperature of any
object. However, this scenario was strictly dependent on the
use of graphite.

Kirchhoff then sought to extend his findings [1, 2, 5].
He constructed a second box from metal, but this time the
enclosure had perfectly reflecting walls (ε=0, κ=0). Under
this second scenario, Kirchhoff was never able to reproduce
the results he had obtained with the graphite box. No matter
how long he waited, the emitted spectrum was always domi-
nated by the object enclosed in the metallic box. The second
condition was unable to produce the desired spectrum.

As a result, Kirchhoff resorted to inserting a small piece
of graphite into the perfectly reflecting enclosure [5]. Once
the graphite particle was added, the spectrum changed to that
of the classic blackbody. Kirchhoff believed he had achieved
universality. Both he, and later, Planck, viewed the piece of
graphite as a “catalyst” which acted only to increase the speed
at which equilibrium was achieved [5]. If only time was
being compressed, it would be mathematically appropriate to
remove the graphite particle and to assume that the perfect
reflector was indeed a valid condition for the generation of
blackbody radiation.

However, given the nature of graphite, it is clear that
the graphite particle was in fact acting as a perfect absorber.
Universality was based on the validity of the experiment
with the perfect reflector. Yet, in retrospect, and given a
modern day understanding of catalysis and of the speed
of light, the position that the graphite particle acted as a
catalyst is untenable. In fact, by adding a perfect absorber
to his perfectly reflecting box, it was as if Kirchhoff lined
the entire box with graphite. He had unknowingly returned
to the first case. Consequently, universality remains without
any experimental basis.

Nonetheless, physics has long since dismissed the impor-
tance of Kirchhoff’s work [9]. The basis for universality no
longer rests on the experimental proof [i. e. 9], but rather on
Einstein’s theoretical formulation of the Planckian relation
[10, 11]. It has been held [i. e. 9] that with Einstein’s deriva-
tion, universality was established beyond doubt based strictly
on a theoretical platform. Consequently, there appears to no
longer be any use for the experimental proof formulated by
Kirchhoff [1, 2, 5]. Physics has argued [9] that Einstein’s
derivation of the Planckian equations had moved the com-
munity beyond the limited confines of Kirchhoff’s enclosure.
Einstein’s derivation, at least on the surface, appeared totally
independent of the nature of the emitting compound. Black-
body radiation was finally free of the constraints of enclosure.

In his derivation of the Planckian relation, Einstein has
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recourse to his well-known coefficients [10, 11]. Thermal
equilibrium and the quantized nature of light (E= ~ν) are
also used. All that is required appears to be (1) transitions
within two states, (2) absorption, (3) spontaneous emission,
and (4) stimulated emission. However, Einstein also requires
that gaseous atoms act as perfect absorbers and emitters or
radiation. In practice, of course, isolated atoms can never
act in this manner. In all laboratories, isolated groups of
atoms act to absorb and emit radiation in narrow bands and
this only if they possess a dipole moment. This is well-
established in the study of gaseous emissions [12]. As such,
Einstein’s requirement for a perfectly absorbing atom, knows
no physical analogue on earth. In fact, the only perfectly
absorbing materials known, exist in the condensed state.
Nonetheless, for the sake of theoretical discussion, Einstein’s
perfectly absorbing atoms could be permitted.

In his derivation, Einstein also invokes the requirement
of thermal equilibrium with a Wien radiation field [8], which
of course, required enclosure [1, 2]. However, such a field
is uniquely the product of the solid state. To be even more
specific, a Wien’s radiation field is currently produced with
blackbodies typically made either from graphite itself or
from objects lined with soot. In fact, it is interesting that
graphite (or soot) maintain a prominent role in the creation
of blackbodies currently used at the National Bureau of
Standards [13–17].

Consequently, through his inclusion of a Wien’s radiation
field [8], Einstein has recourse to a physical phenomenon
which is known to be created exclusively by a solid. Further-
more, a Wien’s field, directly involves Kirchhoff’s enclosure.
As a result, claims of universality can no longer be supported
on the basis of Einstein’s derivation of the Planckian relation.
A solid is required. Therefore, blackbody radiation remains
exclusively a property of the solid state. The application of
the laws of Planck [3], Stefan [7] and Wien [8] to non-solids
is without both experimental and theoretical justification.
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Many theoretical papers refer to the need to create exotic materials with average
negative energies for the formation of space propulsion anomalies such as “wormholes”
and “warp drives”. However, little hope is given for the existence of such material
to resolve its creation for such use. From the standpoint that non-minimally coupled
scalar fields to gravity appear to be the current direction mathematically. It is proposed
that exotic material is really scalar field interactions. Within this paper the Ginzburg-
Landau (GL) scalar fields associated with superconductor junctions is investigated as
a source for negative vacuum energy fluctuations, which could be used to study the
interactions among energy fluctuations, cosmological scalar (i. e., Higgs) fields, and
gravity.

1 Introduction

Theoretically, exotic material can be used to establish worm-
holes by gravitationally pushing the walls apart [1] and
for the formation of a warp bubble [2] by providing the
negative energy necessary to warp spacetime. Exotic material
in combination with gravitation might also produce a net
acceleration force for highly advanced propellant-less space
propulsion engine cycles.

Negative energy is encountered in models of elementary
particles. For example, Jackson [3] invokes Poincare stress,
to suppress the TeV/c2 contribution of electromagnetic field
energy to the MeV/c2 mass of an electron. Also, the Reissner-
Nordstrom metric [4], devised 50 years before the develop-
ment of scalar fields, predicts effects which are negligible
more than a few femtometers [10−15 m] from a charged par-
ticle.

Exotic material has the requirement of a “negative ave-
rage energy density”, which violates several energy condi-
tions and breaks Lorentz symmetries. Pospelov and Romalis
[5] tell us that the breaking of Lorentz symmetry enables
the CPT symmetry, which combines charge conjugation (C),
parity (P), and time-reversal (T) symmetries, to be violated.
In conventional field theories, the Lorentz and CPT sym-
metries are automatically preserved. But in quantum gravity,
certain restrictive conditions such as locality may no longer
hold, and symmetries may be broken. They also suggest that
quintessence, a very low-energy 5 keV/cm3 scalar field ψ
with wavelength comparable to the size of the observable
universe, is a candidate for dark energy. For in addition
to its effect on the expansion of the universe, quintessence
might also manifest itself through its possible interactions
with matter and radiation [6, 7]. This scalar interaction could
lead to a modification of a mass as a function of coordinates
and violates the equivalence principle: The mass feels an

extra force in the direction of ∇φ (φ is the phase of the
scalar field ψ).

The question is then “Where do we look for exotic
material on the scale of laboratory apparatus?” From the
standpoint that non-minimally coupled scalar fields to gravity
appear to be the current direction mathematically [8]. It
is proposed that exotic material is really scalar field inter-
actions.

Within this paper the Ginzburg-Landau (GL) scalar fields
associated with superconductor junctions is investigated as a
source for negative vacuum energy fluctuations, which could
be used to study the interactions among energy fluctuations,
cosmological scalar (i. e., Higgs) fields, and gravity. Such
an analogy is not much a stretch as it is not hard to show
that the Higgs model is simply a relativistic generalization
of the GL theory of superconductivity, and the classical field
in the Higgs model is analog of cooper-pair Bose condensate
[9]. Here, the mechanisms for scalar field interactions or the
production of exotic material from the superconductor are
discussed and an analogy to energy radiated in gravitational
waves is presented.

2 Background

Theoretical work [1] has shown that vacuum fluctuations near
a black hole’s horizon are exotic due to curvature distortion
of space-time. Vacuum fluctuations come about from the
notion that when one tries to remove all electric and magnetic
fields from some region of space to create a perfect vacuum,
there always remain an excess of random, unpredictable
electromagnetic oscillations, which under normal conditions
averages to zero. However, curvature distortion of space-
time as would occur near black holes causes vacuum energy
fluctuations to become negative and therefore are “exotic”.
In earlier wormhole theories [10, 11], exotic material was

24 G. A. Robertson. Exotic Material as Interactions Between Scalar Fields



April, 2006 PROGRESS IN PHYSICS Volume 2

generally thought to only occur in quantum systems [1]. It
seems that the situation has changed drastically; for it has
now been shown that even classical systems, such as those
built from scalar fields non-minimally coupled to gravity;
violate all energy conditions [8]. Gradually, these energy
conditions are losing their status, which theoretically could
lead even to a workable “warp drive” [12]. Further, recent
mathematical models have shown that the amount of energy
needed for producing wormholes (and possibly warp drives)
is much less than originally thought [13], which may open
the door to laboratory scale experiments.

Given that the answer to exotic material for practical pro-
pulsion applications is somewhere in between vacuum fluc-
tuation in curved space-time and scalar fields non-minimally
coupled to gravity, Ginzburg-Landau (GL) scalar fields asso-
ciated with superconductor junctions could present them-
selves as a medium for studying the interactions among
energy fluctuations, cosmological scalar fields, and gravity.
As in superconductors, the GL scalar field is known [14] to
extend small distances beyond the boundaries of a supercon-
ducting material. That is, in describing the operation of a
Josephson junction array, two or more superconductors can
be entangled over gaps of several micrometers, which is large
compared to atomic distances.

The introduction of scalar fields into cosmology has been
problematic. For example, the Higgs scalar field [15] of
particle physics must have properties much different from the
scalar field hypothesized to cause the universe to increase its
expansion rate 5G years ago. However, the study of particle
physics in conjunction with inflationary cosmology presents a
new understanding of present day physics through the notion
of symmetry breaking [9]. This suggests that the GL scalar
field could possibly bridge the gap between the subatomic
energy and distance scale of particle physics and the galactic
scale of scalar fields in cosmology?

3 Landau-Ginzburg field in the superconductor

The Landau-Ginzburg (GL) field ψ is described as a scalar
function

ψ =
√
n ejθ, (1)

where
√
n infers the degree of electron interactions in the

superconductor and θ is the phase factor of these interactions.
Electrons in a room temperature superconductor material

or normal conductor with no applied external fields are either
confined to an atom or move about the composite molecules
with random phases;

∑
φ ≈ 0 (disorder state). However,

they are generally thought to be confined to the vicinity
of background ions and are positionally fixed. When the
superconductor material is cooled to its critical temperature at
which time a phase transition occurs, the electrons suddenly
agree on a common phase;

∑
φ > 0 (ordered state). Again

they are generally thought to be confined to the vicinity of

background ions and are localized as opposed to gathering
in some region creating a large space charge potential.

In a type I superconductor and as the bulk superconductor
material cools down (or warms up), various size domains
(depending on the cool-down, or warm up, profile) of super-
conductive material can form surrounded by normal conduct-
ive material. When two or more domains are in close pro-
ximity, a superconductor-normal conductor-superconductor
Josephson junction is formed. In a typical bulk type I super-
conductor, composed of small randomly arranged crystals
or grains, proximity effects would cause the electrons of a
single grain to go superconductive (or normal) as a group.

In the type II YBCO superconductor this is also true
with the exception that weakly coupled Josephson junctions
[16] can also form between individual molecules across
the copper oxide planes and across grain boundaries typic-
ally composed of an oxide layer. These are referred to as
superconductor-insulator-superconductor junctions. The in-
sulation planes degrade the time for proximity effects to
cause the electrons of a single grain to go superconductive (or
normal) as a group. Therefore in the type II superconductor,
a superconductor domain can be as small as one molecule
of superconductor material or composed of a multitude of
molecules (i. e., grains).

In both the type I & II superconductor at temperatures
below ∼ 44 K, coherence encompasses all domains, in effect
producing one single domain of phase φ.

When multiple domains exist, gradients between domains
of differing phase φ are accompanied by currents that tunnel
between the domains as the spaces between the domains form
Josephson junctions [14]. The possible current patterns are
restricted by the requirement that the GL scalar function ψ
must be single-valued and infers a current flow of density ~J
given by

~∇ argψ = ~∇φ =
m

2~e|ψ|2
~J ; (2)

neglecting contributions from external magnetic fields.

3.1 The Landau-Ginzburg free energy potential

The Landau-Ginzburg free energy potential V (ψ) refers to
the energy density in the superconductor, and anywhere the
scalar field is non-zero. It can even extend into a region μm
outside the superconductor. The potential contribution to the
free energy (neglecting contributions from external magnetic
fields) is given by the energy density function:

V (ψ) = α |ψ|2+
1

2
β |ψ|4, (3)

where equation (3) can be viewed as a series expansion in
powers of |ψ|2.

Two cases arise as depending whether α is positive or
negative. If α is positive, the minimum free energy occurs at
|ψ|2 = 0, corresponding to the normal state. On the other
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hand, if α < 0, the minimum occurs when

|ψ|2 = |ψ∞|2 =
1

2

√
n1n2 ≈

n3D
2

(4)

for identical domain materials (which is assumed hereon)
where the notation ψ∞ is conventionally used because ψ
approaches this value infinitely deep in the interior of the
superconductor [17], where it is screened from any surface
fields or currents. If the two domains are similar in crystalline
structure, the two domains can be viewed as a single bulk
superconductor and the Landau-Ginzburg free energy poten-
tial case for α < 0 applies. For α < 0

V (ψ∞) =
−α2

2β
=
1

2
α |ψ∞|

2, (5)

which gives

α =
2

|ψ∞|2
V (ψ∞); β =

2

|ψ∞|4
V (ψ∞) . (6)

4 High power flow during phase transition

Given a uniform superconductor, the average energy EJ in
the junction between domains is defined by

EJ 6 Δ|ψ|
2 Vg ≈

1

2
Δn3D Vg . (7)

For the Type II YBCO superconductor n3D ≈ 1.69×1028

m3 and Δ= 0.014 eV [17, 18]. Given that grain size dia-
meters in a typical sinter YBCO superconductor are on
the order of 1 micron, then for an average domain volume
Vg ≈ 10−18 m3, the energy in the junction EJ ≈ 102 GeV. If
the junction energy dissipates on the superconductor relax-
ation time τsc, the powers flow EJ/τsc≈ 1024 eV/s for the
YBCO relaxation time τsc≈ 1016 s.

Such high energy changes during a normal state transition
seems a bit extreme, especially considering that not much
(if any) is mentioned of this phenomena in the literature.
The main reason is that most of the energy should not be
seen external to the superconductor since the initial energy
transfer from the state change is an internal process. However
radiation is known to accompany processes involving
charged particles, such as β decay.

Jackson [3] tells us that the radiation accompanying β
decay is a Bremsstrahlung spectrum: It sometimes bears the
name “inner bremsstrahlung” to distinguish it from brems-
strahlung emitted by the same beta particle in passing through
matter. It appears that the spectrum extends to infinity, there-
by violating conservation of energy. Qualitative agreement
with conservation of energy can obtain by appealing to the
uncertainty principle. That is, the acceleration time τ must be
of the order of τ = ~/E, thereby satisfying the conservation
of energy requirement at least qualitatively.

In the superconductor, the uncertainty principle (at least

qualitatively) allows for the violation of energy conservation
through rapid state change processes, which can produce
vortices in the superconductor when proper phase alignment
exists among domains [19]. In such a case, high energy
radiation, such as Bremsstrahlung accompanying the rapid
magnetic field formation cannot be ruled out as theories
of superconductivity are not sufficiently understood. This
is especially true with the type II superconductor, which
exhibits flux pinning throughout the body of the supercon-
ductor and allows for flux motion during phase transition.

Further, energy levels of EJ ≈ 102 GeV in the domain
junctions could produce tunneling electrons with critical tem-
perature for a phase transition in the Glashow-Weinberg-
Salam theory of weak and electromagnetic interactions [20].
Such high energy phase transitions could then lead to effects
similar to cosmology inflation, an anti-gravity force thought
responsible for the acceleration of the universe [21].

5 Mechanisms for exotic material in the superconductor

In order to produce exotic material or negative vacuum en-
ergy fluctuations from superconductors in terms of curva-
ture distortion of spacetime, asymmetric energy fluctuations
must be produced. Since the Landau-Ginzburg free energy
density is fixed by the number superconductor electrons, the
average time rate of change or phase transition time of the
superconductor electrons must be asymmetric. That is the
power flow eV/s in the phase transition to the superconductor
state must be higher than the power in the phase transition to
the normal state or vise versa. This process of creating a time
varying GL scalar field might then result in a gradient in the
surrounding global vacuum scalar field (Higgs, quintessence,
or etc.) in the direction of ∇φ; being measurable as a gravi-
tation disturbance.

Asymmetric phase transitions would require electrons
with group velocities that are higher than their normal relax-
ation times, which are already relativity short. The combina-
tion of two phenomena associated with superconductors
could achieve this requirement. They are:

(1) The dissipation of the Landau-Ginzburg free energy
potential during a rapid superconductor quench refer-
red to as spontaneous symmetry breaking phase trans-
ition [22], which implies state changes on very short
time scales;

(2) The Hartman effect [23], which implies that the effect-
ive group velocity of the electrons across a supercon-
ductor junction can become arbitrarily large.

Both spontaneous symmetry breaking and the Hartman
effect illustrates Hawking’s [24] point about the elusive defi-
nition of time in a quantum mechanical process. That is,
uncertainty in the theory allow time intervals to be chosen to
illustrate how measurable effects might be produced outside
the superconductor without contradicting experiments with
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conventional solid state physics detectors. One such time
interval of notice is that which occurs during a spontaneous
symmetry breaking phase transitions.

5.1 Spontaneous symmetry breaking phase transition

Phase transitions between the high and low temperature
phases of a superconductor involve spontaneous symmetry
breaking between order (superconductor electron pair) and
disorder (electron) states when the transition occurs over
shorter time periods than depicted by the normal relaxation
times. Kibble [25] explains that symmetry-breaking phase
transitions are ubiquitous in condensed matter systems and
in quantum field theories. There is also good reason to
believe that they feature in the very early history of the
Universe. At which time many such transitions topological
defects of one kind or another are formed. Because of their
inherent stability, they can have important effects on the
subsequent behavior of the system. Experimental evidence
validates this by the presence of a magnetic field [26, 27, 19,
28] during spontaneous symmetry breaking phase transition
experiments.

In general, each superconductor domain must be taken to
follow normal phase transition symmetry, which follows that
the energy within these domains is conserved as anomalous
energy effects have not been observed during rapid super-
conductor quenching of low temperature superconductive
systems, which have been around for decades. However, it
is conceivable that, a small fraction of the energy could be
expended in disturbing nearby vacuum fields, without being
noticed by crystal-switching apparatus. Since experimentally,
the formation of vortices does occur during spontaneous
symmetry breaking phase transitions of coupled domains in
the Type II superconductor, Lorentz symmetry is violated.
This allows for energy conservation violation, whereby, the
assumption can be made that the energy fluctuations in the
junction between superconductor domains interacts with the
vacuum field on a time scale that approaches that of the
Planck scale.

Evidence of this comes from Pospelov and Romalis [5],
who point out that Lorentz violation could possibly be due to
unknown dynamics at the Planck scale. Further, when dealing
with interactions described by massless vector particles
(gluons) within a relativistic local quantum field theory,
Binder [42] indicates that Planck units are assigned to the
background fluctuation level and provide for a common base.
The gluon field plays the same role for quarks as Jackson’s
Poincare stress plays for electrons. Therefore, the choice for
the energy fluctuation time during a spontaneous symmetry
breaking phase transition of electron pairs is taken to be the
Planck time Tpl .

However, the Planck time is too fast to be observed,
which implies that human units must be artificially imposed
when measuring superconductor electron fluctuations (or any

other Planck time phenomena). To explain this, it is noted
that just before electron phase transition and superconductor
pair bonding, each electron had an energy deficit ≈ 1 eV.
From the uncertainty principle, the electron can maintain
this deficit before pairing for a time t according to

t =
~
E
, (8)

which for the paired electron E≈ 2 eV giving t≈ 3.3×10−16

sec. Then by noting

Ep Tpl = E t = ~ (9)

a limitation on the electron power flow exist at E = Ep (the
Planck energy) and t = Tpl. This limitation gives the human
artificial units for Planck time events according to

t =
Ep
E
Tpl . (10)

For example, during an electron pair transition where
t ≈ 3.3×10−16 s, a power flow E/Tpl = Ep/t ≈ 1043 eV/s
per superconductor electron pair is produced, which is much
less than the limit defined by Ep/Tpl ≈ 1071 eV/s.

That is, even though the event could have occurred on
the Planck time Tpl, it took a time t to observe/measure the
energy released. According to the uncertainty principle, the
observed/measured value of the energy is then

E =

(
Tpl
t

)

Ep . (11)

Equation (11) then tells us that energy events that occur
on the Planck time are reduced by the ratio of the Planck
time to the observed/measured time.

The question is then, “Can this uncertainly in the energy
be captured in such a way as to be useable on the human
scale?” Evidence for a yes answer arises in superluminal
electron velocities in nature, which have been associated with
cosmological events, lasers and electrostatic acceleration [29,
30, 31]. In these events however, the total energy in the
system is interpreted from the average group velocity, where-
by energy is conserved.

5.2 The Hartman effect

In the superconductor another superluminal electron phe-
nomena exists, the Hartman effect [23, 32, 33], which is
associated with the junction tunnelling process. The Hartman
effect indicates that for sufficiently large barrier widths, the
effective group velocity of the electrons across a super-
conductor junction can become arbitrarily large, inferring
a violation of energy conservation.

Muga [34] tells us that defining “tunnelling times” has
produced controversial discussion. Some of the definitions
proposed lead to tunnelling conditions with very short times,
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which can even become negative in some cases. This may
seem to contradict simple concepts of causality. The classical
causality principle states that the particle cannot exit a region
before entering it. Thus the traversal time must be positive.
However, when trying to extend this principle to the quantum
case, one encounters the difficulty that the traversal time
concept does not have a straightforward and unique transla-
tion in quantum theory. In fact for some of the definitions
proposed, in particular for the so called “extrapolated phase
time” [35], the naпve extension of the classical causality
principle does not apply for an arbitrary potential, even
though it does work in the absence of bound states.

Generally, the Hartman effect occurs when the time of
passage of the transmitted wave packet in a tunnelling col-
lision of a quantum particle with an opaque square barrier
or junction becomes essentially independent of the barrier
width [23, 36] and the velocity may exceed arbitrarily large
numbers. This “fast tunnelling” has been frequently inter-
preted as, or related to, a “superluminal effect”, see e. g.
[37, 38, 39, 40, 41].

The Hartman effect illustrates Hawking’s (1988) discus-
sion about ambiguities in defining time in relation to quantum
mechanics and cannot be ruled out during spontaneous sym-
metry breaking phase transition. Therefore, large power flows
across the junctions between the domains or junctions are
allowed.

6 Energy radiated in gravitational waves

Arbitrarily large electron group velocities (the Hartman
effect) induced by spontaneous symmetry breaking phase
transitions could conceivably result in a space-like (grav-
itational) disturbance in nearby vacuum scalar fields with
possible momentum and energy transfer about these disturb-
ances for space propulsion applications. Although, a theory
that connects the GL scalar field to gravity has yet to be
presented, here the general formulation for calculating grav-
itational radiation from quadrupolar motion [43] is used
to illustrate the possible energy radiated in a gravitational
wave from the instantaneous power flow through a type II
superconductor.

The power radiated Lrad in gravitational waves is rough-
ly approximated from the ratio of the square of the internal
power flow ΔE/Δt by

Lrad =

(
G

c5

)(
ΔE

Δt

)2
. (12)

The time parameter Δt in equation (11) is ill-defined,
since General Relativity cannot incorporate the uncertainties
of quantum mechanics. For as previously pointed out, even
times as short as the Planck time can be used without violat-
ing experimental observations.

Here, the time parameter is determined by noting that at
the instant of the release of the GL free energy there is a

freeze out time:

t̂ =
√
Tpl τsc (13)

between the transition from the adiabatic (Planck time fluc-
tuations Tpl) and impulse (relaxation time τsc) regimes [26].
This implies an inherent limitation on the power flow though
the superconductor, which from equation (10) implies that

ΔE

Δt
=

E

Tpl
→

Ep

η t̂
(14)

where Δt = η t̂ and where η combines geometric (i. e., size,
shape, number of domains, & etc.), I-V junction character-
istics [44, 45], and any other influence on the propagation of
the electrons through the superconductor.

Given that the observed/measured propagation speed of
the GL free energy (i. e., electron motion) through the super-
conductor is limited to the speed of light c, then

η →
Th

c t̂
(15)

Combining equation (12) with equations (14 &15) the in-
stantaneous power radiated in gravitational waves is given by

Lrad →

(
G

c5

)(
Ep

η t̂

)2
≈

(
G

c5

)(
Ep c

Th

)2
(16)

and the radiated energy in gravitational waves:

Erad → Lrad t̂ (17)

from the freeze-out motion within the superconductor and
noting that the gravitational waves is not effected by the
superconductor properties (i. e., η).

Assuming a superconductor of thickness Th≈ 0.0254 m,
gives the maximum instantaneous power radiated in grav-
itational waves Lrad≈ 1042 eV/s and radiated gravitational
waves energy Erad≈ 1013 eV or ≈ 10−4 J; measurable on
the laboratory scale.

7 Conclusions

The Ginzburg-Landau scalar field associated with the type II
superconductor was discussed as a source of exotic material
to produce gravitational forces for highly advanced propul-
sion related systems. Arbitrarily large electron group velo-
cities (the Hartman effect) induced by spontaneous symmetry
breaking phase transitions were discussed as the mechanisms
for setting up a time-varying GL scalar field, which could
conceivably result in gravitational disturbances in nearby
vacuum scalar fields applicable to space propulsion. The
short time scale behavior discussed provides a possible sign-
ature for an experimentalist to verify that new physics is
occurring. Such experiments could provide insight into the
laws of scalar fields, which need to be formulated for space
propulsion engine cycles.
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Nomenclature

V (ψ) = energy density (eV/m3)
n = electron probability density (electrons/m3)
φ = phase of the scalar field
J = current through a superconductor junction (A/m2)
n3D = 3-D electron density (m3)
2Δ = BCS gap energy (eV)
Vg = average domains volume (m3)
Tpl = Planck Time =

√
~G/c5 ≈ 5×10−44 (s)

~ = Plank’s Constant ≈ 1.06×10−34 (J s)
G = gravitation constant = 6.673×10−11 (N m2/kg2)
c = speed of light = 2.9979×108 (m/s)
Ep = Planck Power ~/Tpl ≈ 1028 (eV)
Th = superconductor thickness (m)
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Exact Theory of a Gravitational Wave Detector. New Experiments Proposed
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We deduce exact solutions to the deviation equation in the cases of both free and
spring-connected particles. The solutions show that gravitational waves may displace
particles in a two-particle system only if they are in motion with respect to each
other or the local space (there is no effect if they are at rest). We therefore propose a
new experimental statement for the detection of gravitational waves: use a suspended
solid-body detector self-vibrating so that there are relative oscillations of its butt-ends.
Or, in another way: use a free-mass detector fitted with suspended, vibrating mirrors.
Such systems may have a relative displacement of the butt-ends and a time shift in the
butt-ends, produced by a falling gravitational wave.

The authors dedicate this paper to the memory of Joseph Weber,
who pioneered the detection of gravitational waves.

1 Introduction

As Borissova recently showed [1] by the Synge equation for
deviating geodesic lines and the Synge-Weber equation for
deviating non-geodesics, Weber’s experimental statement on
gravitational waves [2] is inadequate. His conclusions were
not based upon an exact solution to the equations, but on
an approximate analysis of what could be expected. Weber
expected that a plane weak wave of the space metric (gravi-
tational wave) may displace two particles at rest with respect
to one another. The Weber equations and their solutions
formulated in terms of the physically observable quantities
show instead that gravitational waves cannot displace resting
particles; some effect may be produced only if the particles
are in motion.

Here we deduce exact solutions to both the Synge equa-
tion and the Synge-Weber equation (the exact theory to free-
mass and solid-body detectors). The exact solutions show
that we may alter the construction of both solid-body and
free-mass detectors so that they may register oscillations pro-
duced by gravitational waves. Weber most probably detected
them as claimed in 1968 [3, 4, 5], as his room-temperature
solid-body pigs may have their own relative oscillations of
the butt-ends, whereas the oscillations are inadvertently sup-
pressed as noise in the detectors developed by his all follow-
ers, who have had no positive result in over 35-years.

2 Main equations of the theory

We consider two cases of a simple system consisting of two
particles, either free or connected by a spring. A falling grav-
itational wave as a wave of the space metric deforming the
space should produce some effect in such a system. Therefore
we call such a system a gravitational wave detector.

We will determine the effect produced by a gravitational

wave in both kinds of the two-particle systems.
If the particles are connected by a non-gravitational force

Φα, they move along neighbouring non-geodesic world-lines,
according to the non-geodesic equations of motion∗

dUα

ds
+ ΓαμνU

μUν =
Φα

m0c2
, (1)

while relative oscillations of the world-lines (particles) are
described by the so-called Synge-Weber equation† [2]

D2ηα

ds2
+Rα∙βγδ U

βUδηγ =
1

m0c2
DΦα

dv
dv . (2)

If two neighbouring particles are free (Φα=0), they
move along neighbouring geodesic lines, according to the
geodesic equations of motion

dUα

ds
+ ΓαμνU

μUν = 0 , (3)

while relative oscillations of the geodesics (particles) are
given by the so-called Synge equations [6]

D2ηα

ds2
+Rα∙βγδ U

βUδηγ = 0 . (4)

A solution to the deviation equations (4) or (2) gives the
deviation ηα=(η0, η1, η2, η3) between the particles in the
acting gravitational field. Because the field is unspecified in
the equations (it is hidden in the formula for the metric ds),
the equations allow the deviation to be described in both
regular and wave fields of gravitation. Thus to determine

∗Here Uα= dxα

ds
is the four-dimensional velocity vector of the particle,

tangential to its world-line. It is a unit world-vector: UαUα=1. The
space-time interval ds along the world-line is used as a parameter for
differentiation, m0 is the rest-mass of the particle, Γαμν are Christoffel’s
symbols of the 2nd kind.

†Here D
ds

is the absolute (covariant) differentiation operator; Rα∙βγδ
is the Riemann-Christoffel curvature tensor; ηα= ∂xα

∂v
dv is the relative

deviation vector of the particles; v is a parameter having the same numerical
value along a neighbouring world-line, while dv is the difference between
its values in the world-lines.
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how a gravitational wave causes two test-particles to deviate
from one another, we should use the metric ds for this wave
field and obtain exact solutions to the deviation equation.

Currently, two main kinds of gravitational wave detectors
are presumed:

1. Weber’s solid-body detector — a freely suspended
bulky cylindrical pig, approximated by two masses
connected by a spring (i. e. non-gravitational force).
Oscillations of the butt-ends of the pig in the field
of a falling gravitational wave are formulated by the
Synge-Weber equation of deviating non-geodesics;

2. A free-mass detector, consisting of two freely suspend-
ed mirrors, distantly separated. Each mirror is fitted
with a laser range-finder for producing measurements
of the distance between them. Oscillations of the mir-
rors under a falling gravitational wave formulated by
the Synge equation of deviating geodesics.

Both detectors have a common theory — the Synge-Weber
equation, in comparison to the Synge equation, has just the
non-zero right side with a force Φα connecting the particles.
We may solve them using the same method. Before doing that
however, we analyse Weber’s approach to the main equations
and his simplifications.

3 Weber’s approach and criticism thereof

Weber proceeded from the proposition that a falling gravita-
tional wave should deform a solid-body pig, represented by a
system of two particles connected by a spring. He proposed
the relative displacement of the particles ηα consisting of
a “basic” displacement rα (covariantly constant) and an
infinitely small relative displacement ζα in the butt-ends of
the cylinder caused by a falling gravitational wave

ηα = rα + ζα, ζα � rα,
Drα

ds
= 0 . (5)

Thus the non-geodesic deviation equation is

D2ζα

ds2
+Rα∙βγδ U

βUδ (rγ + ζ γ) =
Φα

m0c2
, (6)

which he transformed to∗

D2ζα

ds2
+

dασ
m0c2

Dζσ

ds
+

kασ
m0c2

ζσ = −Rα∙βγδ (r
γ + ζ γ) . (7)

This equation is like the equation of forced oscillations,
where the curvature tensor is a forcing factor. Weber then
finally transformed the equation to

d2ζα

dt2
+
dασ
m0

dζσ

dt
+
kασ
m0

ζσ = −c2Rα∙0σ0 r
σ, (8)

which can only be obtained under his assumptions:
∗Weber takes Φα as the sum of the returning (elastic) force kασ ζ

σ and
the force dασ

Dζσ

ds
setting up the damping factor (tensors kασ and dασ describe

the peculiarities of the spring).

1. The length r of the pig to be covariantly constant
r=
√
gμνrμrν , which is a “background” for the infini-

tesimal displacement of the butt-ends ζα� rα caused
by a falling gravitational wave. Note that r isn’t the
length η of the pig in the “equilibrium state”. Weber
postulated rα to be covariantly constant, so r is the
“unchanged length”. In such a case Weber has actually
two detectors at the same time: (1) a pig having the co-
variantly constant length r, which remains unchanged
in the field of a falling gravitational wave, (2) a pig
having the length ζ , which, being made from the same
material and connected to the first pig, changes its
length under the same gravitational wave. In actual
experiments a solid-body pig has a monolithic body
which reacts as a whole to external influences. In other
words, by introducing the splitting term ηα= rα+ ζα

into the equation of the deviating non-geodesics (2),
Weber postulated that a falling gravitational wave is
an external entity that forces the particles into resonant
oscillations;

2. Because the cylindrical pig is freely suspended, it is in
free fall;

3. Christoffel’s symbols are all zero, so covariant deriv-
atives became regular derivatives. (Of course, we can
choose a specific reference frame where Γαμν =0 at
each given point. Such a reference frame is known as
locally geodesic. However, since the curvature tensor
is different from zero, Γαμν cannot be reduced to zero in
a finite area [7]. Therefore, if we connect one particle to
a locally geodesic reference frame, in the neighbouring
particle Γαμν 6=0);

4. The butt-ends of the pig are at rest with respect to the
observer (U i=0) all the time before a gravitational
wave passes. This was assumed because the pig was
regularly cooled down to a temperature close to 0 K
in order to suppress internal molecular motions. With
U i=0, there can only be resonant oscillations of the
butt-ends. Parametric oscillations cannot appear there.
Therefore Weber and all his followers have expected
registration of a signal if a falling gravitational wave
produces resonant oscillations in the detector.

Because the same assumptions were applied to the geo-
desic deviation equation, all that has been said is applicable
to a free-mass detector.

Weber didn’t solve his final equation (8). He limited him-
self by usingRα∙0σ0 r

σas a forcing factor in his calculations of
expected oscillations in solid-body detectors. Exact solution
of Weber’s final equation with all his assumptions was ob-
tained by Borissova in the 1970’s [8]. The assumptions
actually mean that the solution of the Weber equation (8),
with his requirement for rα and its length r=

√
gμνrμrν ,

must be covariantly constant: Drα

ds
=0. Borissova showed

that in the case of a gravitational wave linearly polarized
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in the x2 direction, and propagating along x1, the equation
Drα

ds
=0 gives r2= r2(0)

[
1−A sin ωc

(
ct+ x1

)]
(the detector

oriented along x2). From this result, she obtained the Weber
equation (8) in the form∗

d2ζ2

dt2
+ 2λ

dζ2

dt
+Ω20 ζ

2 = −Aω2r2(0) sin
ω

c

(
ct+ x1

)
, (9)

i. e. an equation of forced oscillations, where the forcing
factor is the relative displacement of the particles caused by
the gravitational wave. She then obtained the exact solution:
the relative displacement η2=ηy of the butt-ends is

η2= r2(0)

[
1−A sin

ω

c

(
ct+x1

)]
+Me−λt sin(Ωt+α)−

−
Aω2r2(0)
(Ω20−ω2)

2 cos
(
ωt+ δ +

ω

c
x1
)
,

(10)

where Ω=
√
Ω20−ω2, δ= arctan

2λω
ω2−Ω20

, while M and α

are constants. In this solution the relative oscillations consist
of the “basic” harmonic oscillations and relaxing oscillations
(first two terms), and the resonant oscillations (third term).
As soon as the source’s frequency ω coincides with the basic
frequency of the detector Ω0=ω, resonance occurs: in such
a case even weak oscillations may be registered.

Thus, by his equation (6), Weber actually postulated that
gravitational waves force rest-particles to undergo relative
resonant oscillations. It was amazing that the exact solution
showed that! Moreover, his assumptions led to a specific
construction of the detectors, where parametric oscillations
are obviated. As we show further by the exact solution of
the deviation equations, gravitational waves may produce
oscillations in only moving particles, in both solid-body and
free-mass detectors.

4 Correct solution: a resting detector (Weber’s case)

Our solution of the deviation equations depends on a specific
formula for the space metric whereby we calculate the
Riemann-Christoffel tensor. Because the sources of gravi-
tational waves (double stars, pulsars, etc.) are far away from
us, we expect received gravitational waves to be weak and
plane. Therefore we consider the well-known metric of weak
plane gravitational waves

ds2 = c2dt2 − (dx1)2 − (1 + a)(dx2)2+

+ 2bdx2dx3 − (1− a)(dx3)2,
(11)

where a and b are functions of ct+x1 (if propagation is
along x1), while a and b are infinitesimal so that squares and
products of their derivatives vanish. The wave field described

∗Here 2λ= b
m0

and Ω2(0)=
k
m0

are derived from the formula for the

non-gravitational force Φ2=−kζ2−bζ̇2, acting along x2 in this case. The
elastic coefficient of the “spring” is k, the friction coefficient is b.

by this metric has a purely deformational origin, because it is
derived from the non-stationarity of the spatial components
gik of the fundamental metric tensor gαβ . This metric is
preferred because it satisfies Einstein’s equations in vacuum
Rαβ=0 (Rαβ is Ricci’s tensor).

Because we seek solutions applicable to real experiments,
we solve the deviation equations in the terms of physically
observable quantities†.

The non-geodesic equations of motion (1) have two phys-
ically observable projections [11]

dm

dτ
−
m

c2
Fiv

i +
m

c2
Dikv

ivk =
σ

c
,

d

dτ
(mvi)−mF i+2m

(
Di
k+A

∙i
k∙

)
+mΔiknv

kvn=f i,

(12)

wherem is the relativistic mass of the particle; vi= dxi

dτ
is its

three-dimensional observable velocity, the square of which
is v2=hikvivk; hik=−gik+

g0ig0k
g00

is the observable metric

tensor; dτ =
√
g00dt+

g0i
c
√
g00
dxi is the observable time in-

terval, which is different to the coordinate time interval
dt= 1

c dx
0; Fi= 1√

g00

(
∂w
∂xi
− ∂vi

∂t

)
is the observable gravita-

tional inertial force, where w is the gravitational potential,
while

√
g00=1− w

c2
; vi=−

cg0i√
g00

is the linear velocity of

the space rotation; Aik= 1
2

(
∂vk
∂xi
− ∂vi
∂xk

)
+ 1

2c2
(Fivk−Fkvi)

is the tensor of observable angular velocities of the space
rotation; Dik= 1

2
√
g00

∂hik
∂t

the tensor of observable rates of

the space deformations; Δikn=h
imΔkn,m are the spatially

observable Christoffel symbols, built like Christoffel’s usual
symbols Γαμν= g

ασΓμν,σ using hik instead of gαβ ; σ= Φ0√
g00

is the observable projection of the non-gravitational force Φα

onto the observer’s time line, while f i=Φi is its observable
projection onto his spatial section.

If a particle rests with respect to an observer (vi=0), its
observable equations of motion (12) take the form

dm0

dτ
=
σ

c
= 0 , m0F

i = −f i. (13)

Clearly, if a two-particle system is in free fall (F i=0)
and also rests with respect to an observer (as happens with
a solid-body detector in Weber’s experimental statement), a
non-gravitational force connecting the particles has no effect
on their motion: two resting particles connected by a spring
have the same behaviour as free ones.

Therefore, to find what effect is produced by a gravita-
tional wave on a resting solid-body detector or a free-mass
detector, we should solve the same Synge equations of the
deviating geodesics.

If, as Weber assumed, the observer’s reference frame is
“synchronous” (F i=0,Aik=0, dt= dτ ), the metric of weak

†Physically observable (chronometrically invariant) are the projections
of a four-dimensional quantity onto the time line and the spatial section of
an observer [9]. See a brief account of that in [10], for instance.
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plane gravitational waves (11) has just Dik= 1
2
√
g00

∂hik
∂t
6=0.

Let the wave propagate along x1. Then D22=−D33= 1
2 ȧ

and D23= 1
2 ḃ, where the dot means differentiation by t. The

rest of the components of Dik are zero. In such a case the
time observable projection of the Synge equation (4) van-
ishes, while its spatial observable projection is

d2ηi

dt2
+ 2Di

k

dηk

dt
= 0 , (14)

which is, in component notation,

d2η1

dt2
= 0 ,

d2η2

dt2
+
da

dt

dη2

dt
+
db

dt

dη3

dt
= 0 ,

d2η3

dt2
−
da

dt

dη3

dt
+
db

dt

dη2

dt
= 0 .

(15)

The first of these (the deviating acceleration along the
wave propagation direction x1) shows that transverse waves
don’t produce an effect in the direction of propagation.

We look for exact solutions to the remaining two equa-
tions of (15) in the case where a gravitational wave is linearly
polarized in the x2 direction (b=0). First integrals of the eq-
uations are dη2

dt
=C1 e

−a and dη3

dt
=C2 e

+a. Expanding e−a

and e+a into series (high order terms vanish there), we obtain

dη2

dt
= C1 (1− a) ,

dη3

dt
= C2 (1 + a) . (16)

Let the gravitational wave be simple harmonic ω=const
with a constant amplitude A= const: a=A sin ω

c (ct+x
1).

We then obtain exact solutions to the equations — the non-
zero relative displacements produced in the two-particle sys-
tem by the gravitational wave falling along x1:

η2 = η̇2(0)

[
t+

A

ω
cos

ω

c
(ct+ x1)

]
+ η2(0) −

A

ω
η̇2(0) ,

η3 = η̇3(0)

[
t−

A

ω
cos

ω

c
(ct+ x1)

]
+ η3(0) −

A

ω
η̇3(0) .

(17)

These are the exact solutions of the Synge equation in a
particular case, realised today in all solid-body and free-mass
detectors. Looking at the solutions, we conclude:

Transverse gravitational waves of a deformational sort
may produce an effect in a two-particle system, resting
as a whole with respect to the observer, only if the
particles initially oscillate with respect to each other.
If the particles are at rest in the initial moment of time,
a falling gravitational wave cannot produce relative
displacement of the particles.

Therefore the correct theory of a gravitational wave de-
tector we have built states:

Solid-body and free-mass detectors of current con-
struction cannot register gravitational waves in prin-

ciple; in cooling a solid-body detector and initially
placing two distant mirrors at rest in a free-mass
detector, inherent free oscillations are suppressed,
thereby preventing registration of gravitational waves
by the detectors.

In order to make the detectors sensitive to gravitational
waves, we propose the following changes to their current
construction:

For a free-mass detector: Introduce relative oscillations of the
mirrors along their mutual line of sight. Such a modified
system may have a reaction to a falling gravitational wave
as an add-on to the relative velocity of the mirrors on the
background of their basic relative oscillations.

For a solid-body detector: Don’t cool the cylindrical pig, or bet-
ter, apply relative oscillations of the butt-ends. Then the pig
may have a reaction to a falling gravitational wave: an add-
on to the noise of the self-deforming oscillations regularly
detected as a piezoelectric effect∗.

By the foregoing modifications to the exact theory of a
gravitational wave detector, a solid-body detector, and espe-
cially a free-mass detector, may register gravitational waves.

Our theoretical result shows that to detect gravitational
waves, the best method would be a detector consisting of two
moving “particles”. From the purely theoretical perspective,
this is a general case of the deviation equations, where both
particles move with respect to the observer at the initial
moment of time. We obtain therefore, exact solutions for
the general case and, as a result, consider detectors built on
moving “particles” — a suspended, self-vibrating solid-body
pig or suspended, vibrating mirrors in a free-mass detector.

5 Correct solution: a moving detector (general case)

If Weber had solved the deviation equation in conjunction
with the equations of motion, he would have come to the
same conclusion as us: gravitational waves of the deformat-
ional sort may produce an effect in a two-particle system only
if the particles are in motion. Therefore we are going to solve
the deviation equation in conjunction with the equations of
motion in the general case where both particles move initially

∗Because of this, it is most probable that Weber really detected gravita-
tional waves in his experiments of 1968–1970 [3, 4, 5] where he used room-
temperature detectors “. . . spaced about 2 km. A number of coincident events
have been observed, with extremely small probability that they are statistical.
It is clear that on rare occasions these instruments respond to a common
external excitation which may be gravitational radiation” [3]. “Coincidences
have been observed on gravitational-radiation detectors over a base line of
about 1000 km at Argonne National Laboratory and at the University of
Maryland. The probability that all of these coincidences were accidental is
incredibly small” [4]. “Other experiments involve observations to rule out
the possibility that the detectors are being excited electromagnetically. These
results are evidence supporting an earlier claim that gravitational radiation
is being observed” [5].

We both highly appreciate the work of Joseph Weber (1919–2000).
Surely, if he was still alive he would be enthusiastic about our current results,
and with us, immediately undertake new experiments for the detection of
gravitational waves.
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with respect to the observer (U i 6=0). (We mean that both
particles move at the same velocity.)

We do this with the Synge-Weber equation of the deviat-
ing non-geodesics, because the Synge equation of the deviat-
ing geodesics is actually the same when the right side is zero.

We write the Synge-Weber equation (2) in the expanded
form (with similar terms reduced)

D2ηα

ds2
+2Γαμν

dημ

ds
Uν+

∂Γαβδ
∂xγ

UβUδηγ=
1

m0c2
∂Φα

∂xγ
ηγ , (18)

where ds may be expressed through the observable time in-
terval dτ =

√
g00dt+

g0i
c
√
g00
dxi as ds= cdτ

√
1−v2/c2.

According to Zelmanov [9], any vector Qα has two ob-
servable projections Q0√

g00
and Qi, where the time projection

may be calculated as Q0√
g00
=
√
g00Q

0− 1
c viQ

i. We denote

σ= Φ0√
g00

and f i=Φi for the connecting force Φα, while

ϕ= η0√
g00

and ηi for the deviation ηα.
We consider the Synge-Weber equation (18) in a non-

relativistic case, because the velocity of the particles is ob-
viously small. In such a case, in the metric of weak plane
gravitational waves (11), we have∗

dτ = dt , η0 = η0 = ϕ , Φ0 = Φ0 = σ ,

Γ0kn =
1

c
Dkn , Γi0k =

1

c
Di
k , Γikn = Δ

i
kn ,

(19)

while all other Christoffel symbols are zero. We obtain the
time and spatial observable projections of the Synge-Weber
equation (18), which are

d2ϕ

dt2
+
2

c
Dkn

dηk

dt
vn+

(
ϕ
∂Dkn

∂t
+c

∂Dkn

∂xm
ηm
)
vkvn

c2
=

=
1

m0

(
ϕ

c

∂σ

∂t
+

∂σ

∂xm
ηm
)
,

d2ηi

dt2
+
2

c
Di
k

(
dϕ

dt
vk + c

dηk

dt

)
+ 2Δi

kn
dηk

dt
vn+

+2

(
ϕ

c

∂Di
k

∂t
+
∂Di

k

∂xm
ηm
)
vk+

(
ϕ

c

∂Δi
kn

∂t
+
∂Δi

kn

∂xm
ηm
)
vkvn=

=
1

m0

(
ϕ

c

∂f i

∂t
+
∂f i

∂xm
ηm
)
.

(20)

We solve the deviation equations (20) in the field of a
weak plane gravitational wave falling along x1 and linearly
polarized in the x2 direction (b=0). In such a field we have

D22 = −D33 =
1

2
ȧ ,

d

dx1
=
1

c

d

dt
,

Δ122 = −Δ
1
33 = −

1

2c
ȧ , Δ212 = −Δ

3
13 =

1

2c
ȧ ,

(21)

so that the deviation equations (20) in component form are

∗By the metric of weak plane gravitational waves (11), there is no
difference between upper and lower indices.

d2ϕ

dt2
+
ȧ

c

(
dη2

dt
v2−

dη3

dt
v3
)
+

+
ä

2c2

(
ϕ+η1

)(
(v2)2−(v3)2

)
=
1

m0

(
1

c

∂σ

∂t
+
∂σ

∂xm
ηm
)
,

d2η1

dt2
−
ȧ

c

(
dη2

dt
v2−

dη3

dt
v3
)
−

−
ä

2c2

(
ϕ+η1

)(
(v2)2−(v3)2

)
=
1

m0

(
1

c

∂f1

∂t
+
∂f1

∂xm
ηm
)
,

d2η2

dt2
+
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2 + ȧ

dη2

dt

(
1+

v1

c

)
+

+
ä

c

(
ϕ+ η1

)
(
1+

v1

c

)
v2 =

1

m0

(
1

c

∂f2

∂t
+
∂f2

∂xm
ηm
)
,

d2η3

dt2
−
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v3 − ȧ

dη3

dt

(
1+

v1

c

)
−

−
ä

c

(
ϕ+ η1

)
(
1+

v1

c

)
v3 =

1

m0

(
1

c

∂f3

∂t
+
∂f3

∂xm
ηm
)
.

(22)

This is a system of 2nd order differential equations with
respect to ϕ, η1, η2, η3, where the variable coefficients of
the functions are the quantities ȧ, ä, v1, v2, v3.

We may find a from the given metric of the gravitational
wave field, while vi are the solutions to the non-geodesic
equations of motion (12). By the given non-relativistic case
in a field of weak plane linearly polarized gravitational wave,
the equations of motion take the form

ȧ

2c

(
(v2)2 − (v3)2

)
=

σ

m0
,

dv1

dt
−
ȧ

2c

(
(v2)2 − (v3)2

)
=
f1

m0
,

dv2

dt
+ ȧv2

(

1 +
v1

c

)

=
f2

m0
,

dv3

dt
− ȧv3

(

1 +
v1

c

)

=
f3

m0
.

(23)

5.1 Solution for a free-mass detector

We first find the solution for a simple case, where two
particles don’t interact with each other (Φα=0) — the right
side is zero in the equations. This is a case of a free-mass
detector. We find the quantities vi from the equations of
motion (23), which, since Φα=0, become geodesic

(v2)2 = (v3)2,
dv1

dt
= 0 ,

dv2

dt
+ ȧv2 = 0 ,

dv3

dt
+ ȧv3 = 0 .

(24)

From this we see that a transverse gravitational wave
doesn’t produce an effect in the longitudinal direction: v1=
=v1(0)= const. Therefore, henceforth, v1(0)=0.

D. Rabounski, L. Borissova. Exact Theory to a Gravitational Wave Detector. New Experiments Proposed 35



Volume 2 PROGRESS IN PHYSICS April, 2006

The remaining equations of (24) may be integrated with-
out problems. We obtain: v2=v2(0)e

−a, v3=v3(0)e
+a. As-

suming the wave simple harmonic, ω= const, with a constant
amplitude, A= const, i. e. a=A sin ω

c (ct+x
1), and expand-

ing the exponent into series, we obtain

v2 = v2(0)

[
1− A sin

ω

c
(ct+x1)

]
,

v3 = v3(0)

[
1 + A sin

ω

c
(ct+x1)

]
,

(25)

i. e. a gravitational wave has an effect only in directions
orthogonal to its propagation. Clearly, a gravitational wave
doesn’t affect particles at rest with respect to the local space
where the wave propagates.

Substituting the solutions (25) into the equations of the
deviating non-geodesics (22) and setting the right side to
zero as for geodesics, we obtain

d2ϕ

dt2
+
ȧ

c

(
dη2

dt
v2(0) −

dη3

dt
v3(0)

)
=0 ,

d2η1

dt2
−
ȧ

c

(
dη2

dt
v2(0) −

dη3

dt
v3(0)

)
=0 ,

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2(0)+

ä

c

(
ϕ+η1

)
v2(0)=0 ,

d2η3

dt2
− ȧ

dη3

dt
−
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2(0)−

ä

c

(
ϕ+η1

)
v2(0)=0 .

(26)

Summing the first two equations and integrating the sum,
we obtain ϕ+η1=B1 t+B2, where B1,2 are integration
constants. Substituting these into the other two, we obtain

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c
B1v

2
(0) +

ä

c

(
B1t+B2

)
v2(0) = 0 ,

d2η3

dt2
− ȧ

dη2

dt
−
ȧ

c
B1v

3
(0) −

ä

c

(
B1t+B2

)
v3(0) = 0 .

(27)

The equations differ solely in the sign of a, and can
therefore be solved in the same way. We introduce a new
variable y= dη2

dt
. Then we have a linear uniform equation of

the 1st order with respect to y

ẏ + ȧy = −
ȧ

c
B1v

2
(0) −

ä

c

(
B1t+B2

)
v2(0) , (28)

which has the solution

y = e−F
(

y0 +

∫ t

0

g (t) eF dt

)

, F (t) =

∫ t

0

f (t) dt , (29)

where F (t)= ȧ, g(t)=− ȧ
cB1v

2
(0)−(B1t+B2)v

2
(0). Expand-

ing the exponent into series in the solution, and then integrat-
ing, we obtain

y = η̇2 = η̇2(0)

[
1− A sin

ω

c
(ct+x1)

]
−

−
Aω

c
v2(0)
(
B1t+B2

)
cos

ω

c
(ct+x1) +

Aω

c
B2v

2
(0) .

(30)

Integrating this equation, and applying the same method
for η3, we arrive at the final solutions: the relative displace-
ments η2 and η3 in a free-mass detector are

η2= η2(0)+

(
η̇2(0)+

AωB2v
2
(0)

c

)
t+

A

ω

(
η̇2(0)−

v2(0)
c
B1

)
×

×

[
cos

ω

c
(ct+x1)−1

]
−
Av2(0)
c

(
B1t+B2

)
sin
ω

c
(ct+x1) ,

(31)

η3= η3(0)+

(
η̇3(0)−

AωB2v
3
(0)

c

)
t−

A

ω

(
η̇3(0)−

v3(0)
c
B1

)
×

×

[
cos

ω

c
(ct+x1)−1

]
+
Av3(0)
c

(
B1t+B2

)
sin
ω

c
(ct+x1) .

(32)

With η̇2 and η̇3, we integrate the first two equations of
(26). We obtain thereby the relative displacement η1 in a
free-mass detector and the time shift ϕ at its ends, thus

η1= η̇1(0)t−
A

ωc

(
v2(0)η̇

2
(0)−v

3
(0)η̇

3
(0)

)[
1−cos

ω

c
(ct+x1)

]
+η1(0), (33)

ϕ= ϕ̇(0)t+
A

ωc

(
v2(0)η̇

2
(0)−v

3
(0)η̇

3
(0)

)[
1−cos

ω

c
(ct+x1)

]
+η1(0). (34)

Finally, we substitute ϕ and η1 into ϕ+ η1=B1 t+B2
to fix the integration constants B1= ϕ̇(0)+ η̇

1
(0) and B2=

=ϕ(0)+ η
1
(0).

Thus we have obtained the solutions to the Synge equa-
tion of deviating geodesics. We see that relative displace-
ments of two free particles in the directions x2 and x3, trans-
verse to that of gravitational wave propagation consist of:

1. Displacements, increasing linearly with time;

2. Harmonic oscillations at the frequency ω of a falling
gravitational wave;

3. Oscillations, the amplitude of which increases linearly
with time (last term in the solutions).

The first two of the displacements are permitted in the
transverse direction x2 or x3, only if the particles initially
move in this direction with respect to the local space (v2 6=0
or v3 6=0) or with respect to each other (η̇2 6=0 or η̇3 6=0). For
instance, if they are a rest with respect to x2, an x1-directed
gravitational wave doesn’t displace them in this direction.

The third of the displacements is permitted only if the
particles initially move with respect to each other in the
longitudinal direction (η̇1 6=0).

We see from the solution for η1 that gravitational waves
may displace the particles even in the same direction of
the wave propagation, if the particles initially move in this
direction with respect to each other.

The solution ϕ is the time shift in the clocks located at
both particles, caused by a falling gravitational wave∗. From
(34), this effect is permitted if the particles move both with

∗We assume ϕ(0)=0: time count starts from zero. We assume as well
ϕ̇(0)=0: time flows uniformly in the absence of a wave gravitational field.
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respect to the local space and each other in at least one of
the transverse directions x2 and x3.

In view of these results, we propose a new experimental
statement for the detection of gravitational waves, based on
a free-mass detector.

New experiment for a free-mass detector: A free-mass detector,
where two mirrors are suspended and vibrating so that they
have free oscillations with respect to each other or along par-
allel (vertical or horizontal) lines. With the mirrors oscillating
along parallel lines, such a system moves with respect to the
local space (vi(0) 6=0), while with the mirrors oscillating with
respect to each other the system has non-stationary relative
displacements of the butt-ends (ηi(0) 6=0, η̇

i
(0) 6=0). Accord-

ing to the exact theory of a free-mass detector given above,
a falling gravitational wave produces a relative displacement
of the mirrors, that may be registered with a laser range-
finder (or similar system). Moreover, as the theory predicts,
a time shift is produced in the mirrors, that may be registered
by synchronized clocks located with each of the mirrors: their
asynchronization implies a gravitational wave detection.

5.2 Solution for a solid-body detector

We assume an elastic force connecting two particles in a
solid-body detector to be Φα=−kασ x

σ , where kασ is the
elastic coefficient. We assume the force Φα to be independent
of time, i. e. k0σ =0. In such a case the equations of motion
of the particles (23) take the form

ȧ

2c

(
(v2)2 − (v3)2

)
= 0 ,

dv1

dt
−
ȧ

2c

(
(v2)2 − (v3)2

)
= −

k1σ
m0

xσ,

dv2

dt
+ ȧv2

(

1 +
v1

c

)

= −
k2σ
m0

xσ,

dv3

dt
− ȧv3

(

1 +
v1

c

)

= −
k3σ
m0

xσ.

(35)

Thus a transverse gravitational wave doesn’t produce
an effect in the longitudinal direction x1: v1=v1(0)= const.
Therefore, henceforth, v1=0 and k1σ =0. In such a case the
equations of motion take the form

dv2

dt
+ ȧv2 = −

k2σ
m0

xσ,
dv3

dt
− ȧv3 = −

k3σ
m0

xσ. (36)

The equations differ solely by the sign of ȧ. Therefore
we solve only the first of them. The second equation may be
solved following the same method.

Let k2σ = k
3
σ = k= const, i. e. the solid-body pig is elastic

in only two directions transverse to the direction x1 of the
gravitational wave propagation. With that, the equation of
motion in the x2 direction is

d2x2

dt2
+

k

m0
x2 = − Aω cos

ω

c
(ct+x1)

dx2

dt
. (37)

Denoting x2≡x, k
m0
=Ω2, Aω=−μ, we reduce this

equation to the form

ẍ+Ω2x = μ cos
ω

c
(ct+x1) ẋ , (38)

where μ is the so-called “small parameter”. This is a “quasi-
harmonic” equation: with μ=0, such an equation is a har-
monic oscillation equation; while if μ 6=0 the right side plays
the rôle of an forcing factor — we obtain a forced oscillation
equation.

We solve this equation using the small parameter method
of Poincaré, known also as the perturbation method: we con-
sider the right side as a perturbation of a harmonic oscillation
described by the left side. The Poincaré method is related to
exact solution methods, because a solution produced with the
method is a power series expanded by the small parameter μ
(see Lefschetz, Chapter XII, §2 [12]).

Before we solve (38) we introduce a new variable t′=Ωt
in order to make it dimensionless as in [12], and μ′= μ

Ω

ẍ+ x = μ′ cos
ω

Ωc
(ct′+Ωx1) ẋ , (39)

where we differentiate by t′. A general solution of this equa-
tion, representable as the equivalent system

ẋ = y , ẏ = −x+ μ′ cos
ω

Ωc
(ct′+Ωx1) y (40)

with the initial data x(0) and y(0) at t′=0, is determined by
the series pair (Lefschetz)

x = P0 (x(0), y(0), t
′) + μ′P1 (x(0), y(0), t

′) + . . .

y = Ṗ0 (x(0), y(0), t
′) + μ′ Ṗ1 (x(0), y(0), t

′) + . . .

}

. (41)

We substitute these into (40) and, equating coefficients
in the same orders of μ′, obtain the recurrent system

P̈0 + P0 = 0

P̈1 + P1 = Ṗ0 cos
ω

Ωc
(ct′+Ωx1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .






(42)

with the initial data P0(0)=ξ, Ṗ0(0)=ϑ, P0(0)= Ṗ0(0)=0
(n>0) at t′=0. Because the amplitude A (we have it in the
variable μ′=−ω

ΩA) is small, this problem takes only the first
two equations into account. The first of them is a harmonic
oscillation equation, with the solution

P0 = ξ cos t′ + ϑ sin t′, (43)

while the second equation, with this solution, is

P̈1 + P1 = (−ξ sin t
′ + ϑ cos t′) cos

ω

Ωc
(ct′ +Ωx1) . (44)

This is a linear uniform equation. We solve it following
Kamke (Part III, Chapter II, §2.5 in [13]). The solution is∗

∗Here we go back to the initial variables.
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P1=
ϑΩ2

2

{
cos
[
(Ω−ω)t− ω

c
x1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ ω

c
x1
]

Ω2−(Ω+ω)2

}

−

−
iξΩ2

2

{
sin
[
(Ω−ω)t− ω

c
x1
]

Ω2−(Ω−ω)2
+
sin
[
(Ω+ω)t+ ω

c
x1
]

Ω2−(Ω+ω)2

}

,

(45)

where the brackets contain the real and imaginary parts of
the formula ei(Ω−ω)t−

ω
c x

1

+ ei(Ω+ω)t+
ω
c x

1

. Going back to
x2=x, we obtain the final solution in the reals

x2= ξ cosΩt+ ϑ sinΩt−

−
AωΩϑ

2

{
cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}

,
(46)

while the solution for x3 will differ solely in the sign of the
amplitude A.

With this result we solve the equations of the deviat-
ing non-geodesics (22). Because a solid-body detector has
a freedom for motion less than a free-mass detector, we
assume v1=0, v2=v3, Φ1=0, Φ2=− k

m0
η2, Φ3=− k

m0
η3.

Note that v2=v3 means that the initial conditions ξ and ϑ
are the same in both the directions x2 and x3. Therefore we
obtain

d2ϕ

dt2
= 0 ,

d2η1

dt2
= 0 , (47)

i. e. a gravitational wave doesn’t change both the vertical
size of the pig and the time shift ϕ at its butt-ends: we may
put ϕ=0 and η1=0. With all these, the deviation equation
along x2 takes the form∗

d2η2

dt2
+

k

m0
η2 = −Aω cos

ω

c
(ct+x1)

dη2

dt
, (48)

having the same form as equation (37). So the solution η2 is
like (46), but with the difference that the initial constants ξ
and ϑ depend on η2(0), η

3
(0) and η̇2(0), η̇

3
(0). It is

η2= ξ cosΩt+ ϑ sinΩt−

−
AωΩϑ

2

{
cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}

.
(49)

Thus two spring-connected particles in the field of a
gravitational wave may experience the following effects:

1. Free relative oscillations at a frequency Ω;

2. Forced relative oscillations, caused by the gravitational
wave of frequency ω; they occur in the directions
transverse to the wave propagation;

3. Resonant oscillations, which occur as soon as the grav-
itational wave’s frequency becomes double the fre-
quency of the particle’s free oscillation (ω=2Ω); in
such a case even weak oscillations caused by the grav-
itational wave may be detected;

∗We write and solve only the equation for η2, because it differs to that
for η3 solely by the sign of the amplitude A. See (22).

The second and third effects are permitted only if the
particles have an initial relative oscillation. If there is no
initial oscillation, gravitational waves cannot produce an
effect in such a system. Owing to this result, we propose a
new experimental statement for the detection of gravitational
waves by a solid-body detector.

New experiment for a solid-body detector: Use a solid-body cy-
lindrical pig, horizontally suspended and self-vibrating so
that there are relative oscillations of its butt-ends (η2(0) 6=0,
η̇2(0) 6=0). Such an oscillation may be induced by alternating
electromagnetic current or something like this. Or, alternat-
ively, use a similarly suspended, vibrating pig so that it
has an oscillation in the horizontal plane. Such a system
has a non-zero velocity with respect to the observer’s local
space (v2(0) 6=0, v

3
(0) 6=0). Both systems, according to the

exact theory of a solid-body detector, may have a reaction to
gravitational waves (up to resonance) that may be measured
as a piezo-effect in the pig.
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This is a survey of the fine structure stochastic distributions in measurements obtained
by me over 50 years. It is shown: (1) The forms of the histograms obtained at each
geographic point (at each given moment of time) are similar with high probability, even
if we register phenomena of completely different nature — from biochemical reactions
to the noise in a gravitational antenna, or α-decay. (2) The forms of the histograms
change with time. The iterations of the same form have the periods of the stellar day
(1.436 min), the solar day (1.440 min), the calendar year (365 solar days), and the
sidereal year (365 solar days plus 6 hours and 9 min). (3) At the same instants of the
local time, at different geographic points, the forms of the histograms are the same, with
high probability. (4) The forms of the histograms depend on the locations of the Moon
and the Sun with respect to the horizon. (5) All the facts are proof of the dependance
of the form of the histograms on the location of the measured objects with respect to
stars, the Sun, and the Moon. (6) At the instants of New Moon and the maxima of solar
eclipses there are specific forms of the histograms. (7) It is probable that the observed
correlations are not connected to flow power changes (the changes of the gravity
force) — we did not find the appropriate periods in changes in histogram form. (8) A
sharp anisotropy of space was discovered, registered by α-decay detectors armed with
collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star)
showed no day-long periods, as was also the case for observations at 82◦ North, near
the Pole. Histograms obtained by observations with an Easterly-directed collimator
were determined every 718 minutes (half stellar day) and with observations using a
Westerly-directed collimator. (9) Collimators rotating counter-clockwise, in parallel
with the celestial equator, gave the probability of changes in histograms as the number
of the collimator rotations. (10) Collimators rotating clockwise once a day, show no
day-long periods, and similarly, collimators pointed at the Pole Star, and measurements
taken near the North Pole. All the above lead us to the conclusion (proposition) that the
fine structure of the histograms should be a result of the interference of gravitational
waves derived from orbital motions of space masses (the planets and stars).

Introduction

Earlier we showed that the fine structure of the spectrum of
amplitude variations in the results of measurements of pro-
cesses of different nature (in other words, the fine structure of
the dispersion of results or the pattern of the corresponding
histograms) is subject to “macroscopic fluctuations”, chang-
ing regularly with time. These changes indicate that the
“dispersion of results” that remains after all artifacts are
excluded inevitably accompanies any measurements and ref-
lects very basic features of our world. In our research, we
have come to the conclusion that this dispersion of results is
the effect of space-time fluctuations, which, in their turn,
are caused by the movement of the measured object in
an anisotropic gravitational field. Among other things, this
conclusion means that the examination of the detailed pattern

of distributions obtained from the results of measurement of
the dynamics of processes of different nature uncovers laws
which cannot be revealed using traditional methods for the
analysis of time series.

These assertions are based on the results of long-term
experimental investigations conducted for many decades.
The major part of these results, begun in 1958, is published
in Russian. The goal of this paper is to give a brief review
of those results and provide corresponding references.

The most general conclusion of our research is that there
is evidence that the fine structure of stochastic distributions
is not accidental. In other words, noncasual is the pattern of
histograms plotted from a rather small number of the results
of measurement of the dynamics of processes of different
nature, from biochemical reactions and noise in gravitational
antennae, to α-decay [1–24].
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1 The “effect of near zone”

The first element of evidence of the histogram pattern chang-
ing regularly in time is the “effect of near zone”. This effect
means that similar histograms are significantly more likely
to appear in the nearby (neighbouring) intervals of the time
series of the results of measurements. The similarity of the
pattern of histograms plotted from independent intervals of
a time series implies the presence of an external (towards
the process studied) factor, which determines the pattern of
the histogram. The independence of the “near zone” effect
of the nature of the process indicates that this factor has a
quite general nature.

2 Measurements of processes of different nature

The second element of evidence comes from the similarity
of the pattern of histograms plotted from the results of simul-
taneous independent measurements of processes of different
nature at the same geographical point. In view of the funda-
mental difference in the nature of those processes and
methods of their measurement, such a similarity also means
that the factor, determining the histogram pattern, has a quite
general nature. The similarity of histograms when under
study are the processes, in which the ranges of transduced
energy differ by dozens of orders (40 orders if the matter
concerns the noise in a gravitational antenna, and the phen-
omenon of α-decay), implies that this factor has no relation
to energy.

3 Regular changes in the histogram patterns

The third element of evidence for noncasuality of the histo-
gram patterns is their regular changing with time. The regu-
larities are revealed in the existence of the following periods
in the change of the probability of similar histograms to
appear.

3.1. Near-daily periods; these are well-resolvable “sidereal”
(1436 min) and “solar” (1440 min) daily periods. These
periods imply dependence of the histogram pattern on the rot-
ation of the Earth around its axis. The pattern is determined
by two independent factors: the position relative to the starry
sky and that relative to the Sun.

3.2. Approximately 27-day periods. These periods can be
considered as an indication of the dependence of the histo-
gram pattern on the position relative to the nearby celestial
bodies: the Sun, the Moon and, probably, the planets.

3.3. Yearly periods; these are well-resolvable “calendar” (365
solar days) and “sidereal” (365 solar days plus 6 h and 9 min)
yearly periods.

All these periods imply the dependence of the obtained
histogram pattern on two factors of rotation — (1) rotation
of the Earth around its axis, and (2) movement of the Earth
along its circumsolar orbit.

4 The observed local-time synchronism

The dependence of the histogram pattern on the Earth rotation
around its axis is clearly revealed in the phenomenon of
synchronization at the local time, when similar histograms
are very likely to appear at different geographical points
(from Arctic to Antarctic, in the Western and Eastern hemi-
spheres) at the same local time. It is astonishing that the
local-time synchronism with the precision of 1 min is ob-
served independently of the regional latitude at the most
extreme distances — as extreme as possible on the Earth
(about 15,000 km).

5 The synchronism observed at different latitudes

The dependence of the histogram pattern on the Earth rotation
around its axis is also revealed in the disappearance of the
near-daily periods close to the North Pole. Such measure-
ments were conducted at the latitude of 82◦ North in 2000.
The analysis of histograms from the 15-min and 60-min
segments showed no near-daily periods, but these periods
remain in the sets of histograms plotted from the 1-min
segments. Also remaining was the local-time synchronism
in the appearance of similar histograms.

Following these results, it would be very interesting to
conduct measurements as close as possible to the North Pole.
That was unfeasible, and so we performed measurements
with collimators, which channel α-particles emitted in a
certain direction from a sample of 239Pu. The results of those
experiments made us change our views fundamentally.

6 The collimator directed at the Pole Star

Measurements were taken with the collimator directed at the
Pole Star. In the analysis of histograms plotted from the
results of counting α-particles that were travelling North (in
the direction of the Pole Star), the near-daily periods were not
observed, nor was the near-zone effect. The measurements
were made in Pushchino (54◦ latitude North), but the effect
is as would be expected at 90◦ North, i. e. at the North Pole.
This means that the histogram pattern depends on the spatial
direction of the process measured. Such a dependence, in
its turn, implies a sharp anisotropy of space. Additionally, it
becomes clear that the matter does not concern any “effect”
or “influence” on the object under examination. The case
in point is changes, fluctuations of the space-time emerging
from the rotation of the Earth around its axis and the move-
ment of the planet along its circumsolar orbit [9, 13, 14, 15,
19, 20, 21].

7 The East and West-directed collimators

This effect was confirmed in experiments with two collimat-
ors, directed East and West correspondingly. In those exper-
iments, two important effects were discovered.

40 S. E. Shnoll. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations



April, 2006 PROGRESS IN PHYSICS Volume 2

7.1. The histograms registered in the experiments with the
East-directed collimator (“east histograms”) are similar to
those “west histograms” that are delayed by 718 min, i. e. by
half of the sidereal day.

7.2. No similar histograms were observed in the simultaneous
measurements with the “east” and “west” collimators. With-
out collimators, it is highly probable for similar histograms to
appear at the same place and time. This space-time synchron-
ism disappears when α-particles streaming in the opposing
directions are counted.

These results are in agreement with the concept that the
histogram pattern depends on the vector of the α-particle
emission relative to a certain point at the coelosphere [20].

8 The experiments with the rotating collimators

These investigations were naturally followed by experiments
with rotating collimators [22, 24].

8.1. With the collimator rotating counter-clockwise (i. e.,
together with the Earth), the coelosphere was scanned with
a period equal to the number of the collimator rotations per
day plus one rotation made by the Earth itself. We examined
the dependence of the probability of similar histograms to
appear on the number of collimator rotations per day. Just as
expected, the probability turned out to jump with periods
equal to 1440 min divided by the number of collimator
rotations per day plus 1. We evaluated data at 1, 2, 3, 4,
5, 6, 7, 11 and 23 collimator rotations per day and found
periods equal to 12, 8, 6 etc. hours. The analysis of highly
resolved data (with a resolution of 1 min) revealed that each
of these periods had two extrema: “sidereal” and “solar”.
These results indicate that the histogram pattern is indeed
determined by how the direction of the α-particle emission
relates to the “picture of the heaven” [24].

8.2. When the collimator made 1 clockwise rotation per day,
the rotation of the Earth was compensated for (α-particles
always undergo emission in the direction of the same region
of the coelosphere) and, correspondingly, the daily periods
dissappeared. This result was completely analogous to the
results of measurements near the North Pole and measure-
ments with the immobile collimator directed towards the Pole
Star [20].

8.3. With the collimator placed in the ecliptic plane, directed
at the Sun and making 1 clockwise rotation per day, α-
particles are constantly emitted in the direction of the Sun. As
was expected, the near-daily periods, both solar and sidereal,
disappeared under such conditions.

9 The 718-min period

The pattern of histograms is determined by a complex set
of cosmo-physical factors. It follows from the existence of
the near-27-day periods, that amongst these factors may be

the relative positions and states of the Sun, the Moon and
the Earth. We repeatedly observed similar histograms during
the risings and settings of the Sun and the Moon. A very
large volume of work has been carried out. Yet we have not
found a histogram pattern which would be characteristic for
those instants. A review and analysis of the corresponding
results will be given in a special paper. Here, I shall note one
quite paradoxical result: on the days of equinox one can see
a clear period in the appearance of similar histograms, which
is equal to 718 min (i. e. half of the sidereal day). There is
no such period on the days of solstice. This phenomenon
indicates that the histogram pattern depends on the ecliptic
position of the Sun. If that is indeed so, we can expect that
on the equator the period of 718 min will be observed year-
round.

10 The observations during eclipses

All the results presented above were obtained by the evalu-
ation of tens of thousands of histogram pairs in every exper-
iment, so these results have a stochastic character. A com-
pletely different approach is used in the search for character-
istic histogram patterns in the periods of the New Moon and
solar eclipses. In these cases, we go right to the analysis of the
histogram patterns at a certain predetermined moment. Doing
so, we have discovered an amazing phenomenon. At the
moment of the New Moon, a certain characteristic histogram
appears practically simultaneously at different longitudes and
latitudes — all over the Earth. This characteristic histogram
corresponds to a time segment of 0.5–1.0 min [21]. When
the solar eclipse reaches maximum (as a rule, this moment
does not coincide with the time of the New Moon), a specific
histogram also appears; however, it has a different pattern.
Such specific patterns emerge not only in the moments of
the New Moon or solar eclipses. But the probability of their
appearance at these very moments at different places and on
different dates (months, years) being accidental is extremely
low. These specific patterns do not relate to tidal effects. Nor
do they depend on position on the Earth’s surface, where the
Moon’s shadow falls during the eclipse or the New Moon.

11 The possible nature of “macroscopic fluctuations”

I have presented above a brief review of the main phenomena
that are united by the notion of “macroscopic fluctuations”.
A number of works suggested different hypotheses on the
nature of those phenomena [3, 9, 10, 13–15, 19, 27–31],
concerning some general categories such as discreteness and
continuity, symmetry, the nature of numbers, stochasticity. In
this section of the paper I draw attention to the question of
how some of the discovered phenomena can be considered
in relation to these general categories.

11.1. The non-energetic nature of the phenomena. Fluctua-
tions of space-time [14, 19].
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It is clear that we deal with non-energetic phenomena.
As mentioned above, the ranges of energies in biochemical
reactions, noise in gravitational antennae, and α-decay, differ
by many orders. At the same time, the corresponding histo-
gram patterns are similar with a high probability at the same
local time at different geographical points. The only thing
common to such different processes is the space-time in
which they occur. Therefore, the characteristics of space-
time change every successive moment.

It is important to note that the “macroscopic fluctuations”
do not result from the effect of any factors on the object under
examination. They just reflect the state of the space-time.

The changes in space-time can follow the alterations of
the gravitational field. These alterations are determined by
the movement of the examined object in a heterogeneous
gravitational field. The heterogeneity results from the exist-
ence of “mass thicknesses”, i. e. heavenly bodies. The move-
ment includes the daily rotation of the Earth, its translocation
along its circumsolar orbit and, probably, the drift of the
solar system in the galaxy. All these forms of movement
seem to be reflected in the corresponding periods of variation
of histogram patterns. How the fluctuations of space-time
transform into the pattern of histograms is unclear.

11.2. Fractality [14, 19].
We suppose that the histogram pattern varies due to the

change of the cosmo-physical conditions in the process of
the Earth movement around its axis and along its circumsolar
orbit. Then we might expect that the shorter are the intervals
for which histograms are plotted, the more similar would
be the histogram patterns. This corresponds to the concept
of “lifetime” of a certain idea of form. This concept is an
obvious consequence of the “effect of near zone”, when the
probability of histogram patterns to be similar is higher for
the histograms from the neighbouring intervals.

However, we failed to find such a short interval for which
the histogram pattern “would not have time to change”. The
maximum probability for histograms to be similar only in the
first, the nearest interval, does not change upon variation of
this interval from several hours to milliseconds. This phen-
omenon corresponds to the notion of “fractality”; however,
the physical meaning of this fractality needs to be clarified.

Following the dependence of the histogram pattern on
direction obtained in the experiments with collimators, we
deal with a spatial heterogeneity on the scale of the order of
10−13 cm: the dependence of the histogram pattern should
be determined before the emission of α-particles from the
nucleus. Therefore, to “stop the instant”, stop the histogram
changing, we should have worked with correspondingly small
time intervals. Perhaps this will be possible someday soon.

11.3. The mirror symmetry, chirality of histograms [7].
Quite often (up to 30% of cases), the patterns of the

successive histograms are reflection symmetric. There are
right and left forms, and they may be very complex. This

phenomenon possibly means that chirality is an inherent
feature of space-time.

11.4. “Stochasticity along abscissa and regularity along ord-
inate”.

Our main result — evidence of non-stochasticity of the
fine structure of sampling distributions, i. e. the fine structure
of the spectrum of amplitude fluctuations in processes of any
nature, i. e. the fine structure of the corresponding histograms
— implies the existence of a particular class of macroscopic
stochastic processes.

Among such processes is radioactive decay. This is an
“a priori stochastic” (i. e. stochastic according to the accepted
criteria) process. However, the pattern of histograms (i. e. the
fine structure of the amplitudes of fluctuations of the decay
rate) changes regularly with time.

The point is that in the majority of cases, stochasticity is
treated as an irregular succession of events — succession in
time, just one after another. This is “stochasticity along the
axis of abscisses”.

For macroscopic processes, the distributions of the ampli-
tudes of fluctuations of measured quantities are considered
to correspond to smooth distributions of Gauss-Poisson type.
The available fitting criteria are integral, they are based
on averaging, smoothing of those fluctuations. Such fitting
criteria cannot “sense” the fine structure of distributions.
According to these criteria, the processes we study, such
as radioactive decay, correspond well to traditional views.

However, known for more then a hundred years is a no-
ticeable exception — atomic spectra. While the transitions of
electrons from one level to another are “a priori stochastic”,
the energies of the levels are sharply discrete. The “stochastic
along the abscissa” process of transition is “regular along the
ordinate”.

The result of our work is the discovery of analogous mac-
roscopic processes. In the process of fluctuating, the measur-
ed quantities take values, some of which are observed more
often than the others; there are “forbidden” and “allowed”
values of the measured quantities. This is what we see in the
fine structure of histograms, with all its “peaks and troughs”.
The “macroscopic quantization” differs from the quantization
in the microworld. Here only the “idea of histogram form”
remains invariant, whereas the concrete values, correspond-
ing to extrema, can change. This is the main difference
between the spectra of amplitude fluctuations of macroscopic
processes and the atomic spectra.

11.5. The fine structure of histograms. The presence of “peaks
and troughs” in histogram patterns is a consequence of two
causes: arithmetic (algorithmic) and physical [7, 14, 19].

11.5.1. The arithmetic or algorithmic cause of discreteness
[7, 14, 19] lies in a very unequal number of factors (divisors)
corresponding to the natural sequence. If the measured value
is a result of operations based on the algorithms of division,
multiplication, exponentiation, then discreteness will be
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unavoidable. Correspondingly, the histogram patterns will
be determined by these algorithms. This can be seen, for
example, in the computer simulation of the process of radio-
active decay (Poisson statistics). The pattern of some histo-
grams obtained in such a simulation is indistinguishable
from the pattern of histograms plotted for the radioactive
decay data. However, the sequence of “computer” histogram
patterns, in contrast to that of “physical” ones, does not
depend on time and can be reproduced over and over again by
launching the simulation program with the same parameters.
This sequence is determined by the nature of numbers and
the algorithms used. In our work we experienced an unusual
incident, when the sequence of histogram patterns created by
a random number generator was similar, with high probab-
ility, to the sequence obtained from the radioactive decay
data. If studied systematically, this case might give a clue to
the nature of those “physical algorithms” that determine the
time changes of the patterns of physical histograms [19].

11.5.2. The physical cause of discreteness is the interference
of wave fluxes [19].

The fine structure of histograms, the presence of narrow
extrema, cannot have a probabilistic nature. According to
Poisson statistics, with which radioactive decay roughly ac-
cords, the width of such extrema should be of order N1/2.

Therefore, if neighbouring extrema in the histogram pat-
tern have similar values of N, they should overlap, but they
do not. Such narrow extrema can arise only as a result of
interference. Hence, the fine structure of histograms plotted
from the results of measurements of any nature would be a
result of an interference of some waves. As follows from all
the material presented above, the issue concerns processes
caused by the movement of the Earth (and objects on its
surface) relative to the “mass thicknesses”. So it would be
logical to define the waves whose interference is reflected in
the histogram patterns as “gravitational”.

The results of experiments with collimators, producing
narrow beams of α-particles, lead us to conclude for a sharp
anisotropy of our world. The corresponding wave fluxes
should be very narrow.

Collimators are not necessary to reveal this anisotropy.
We observe highly resolved daily and yearly periods in the
changing of the probability of a certain histogram pattern to
appear repeatedly (the resolution is 1 min). The histogram
patterns specific for the New Moon and solar eclipses can
appear at different geographical points synchronously, with
an accuracy of 0.5 min. The local-time synchronism at dif-
ferent geographical points (almost 15,000 km apart) is also
determined by a sharp extremum on the curve of distribution
over intervals with a resolution of 1 min. In the experiments
with the rotation of collimators, the “sidereal” and “solar”
periods are also observed with one-minute resolution.

Taken together, all these facts can mean that we deal with
narrowly directed wave fluxes, “beams”. The narrowness of

these putative fluxes or beams is smaller than the aperture
of collimators. Collimators with the diameter of 0.9 mm and
length of 10 mm isolate in the coelosphere a window of about
5◦, corresponding to approximately 20 min of the Earth’s
daily rotation rate. This fact, noted by Kharakoz, could be
explained if we admit that the “beams” are more narrow than
the aperture of our collimators.

Even with the fact that the matter concerns the changes of
the histogram pattern and the movement of the Earth relative
to the sphere of fixed stars, the Moon and the Sun, it is not
necessary to consider anisotropy as being only due to the
heterogeneous distribution of masses (presence of celestial
bodies) in space. It is possible that this anisotropy is caused
by a preferential direction, which, for example, is due to
the drift of the solar system towards the constellation of
Hercules. The existence of such a direction is an old problem
of physics. In this connection, of great value for us are the
results of the interference experiments of Dayton Miller [43],
the experiments and conception of Alais [42], de Witte’s
measurements [47] and Cahill’s conception [44, 46]. It is
necessary to mention that several years ago, Lyapidevsky
[29] and Dmitrievsky [30] considered the preferential direct-
ion in space as the cause of the effects we observed.

In this case, we can say that for many years, we have
studied phenomena indicating the existence of gravitational
waves. Then the problem of detection of gravitational waves
can be approached differently: instead of using bulky and ex-
pensive devices, such as Weber’s antennae, one could register
the changes of the fine structure of histograms plotted from
the results of measurements of certain chosen processes.

The fine structure of the histogram pattern we registered
while solar eclipses manifests a resonance in an interference
picture, built by a bulky space masses. Most probable this is
a gravitational wave pattern. The histogram patterns specific
for solar eclipses recall to Crother’s analysis of Kepler’s laws
in General Relativity, wherein he showed that space-time is
locally anisotropic for a rotating spherical body [49]. In this
situation, we suppose that of principal importance are works
by Borissova [50] and Rabounski [51] on the theory and
methods of detection of gravitational waves and the concept
of “global scaling” advanced by Hartmut Muller [52].
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By recurring to Geometric Probability methods it is shown that the coupling constants,
αEM , αW , αC , associated with the electromagnetic, weak and strong (color) force
are given by the ratios of measures of the sphere S2 and the Shilov boundaries
Q3=S

2×RP 1, squashed S5, respectively, with respect to the Wyler measure
ΩWyler[Q4] of the Shilov boundary Q4=S3×RP 1 of the poly-disc D4 (8 real dim-
ensions). The latter measure ΩWyler[Q4] is linked to the geometric coupling strength
αG associated to the gravitational force. In the conclusion we discuss briefly other
approaches to the determination of the physical constants, in particular, a program
based on the Mersenne primes p-adic hierarchy. The most important conclusion of
this work is the role played by higher dimensions in the determination of the coupling
constants from pure geometry and topology alone and which does not require to invoke
the anthropic principle.

1 Geometric probability

Geometric Probability [1] is the study of the probabilities in-
volved in geometric problems — the distributions of length,
area, volume, etc. for geometric objects under stated condi-
tions. One of the most famous problem is the Buffon’s Needle
Problem of finding the probability that a needle of length l
will land on a line, given a floor with equally spaced parallel
lines a distance d apart. The problem was posed by the French
naturalist Buffon in 1733. For l < d the probability is

P =
1

2π

∫ 2π

0

dθ
l |cos θ|
d

=
4 l

2πd

∫ π
2

0

cos θ=
2l
πd
=

2ld
πd2

. (1.1)

Hence, the Geometric Probability is essentially the ratio
of the areas of a rectangle of length 2d, and width l and
the area of a circle of radius d. For l > d, the solution is
slightly more complicated [1]. The Buffon needle problem
provides with a numerical experiment that determines the
value of π empirically. Geometric Probability is a vast field
with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure con-
stant may be related to π. This is the case as Wyler found
long ago [2]. We will take the fine structure constant based
on Feynman’s physical interpretation of the electron’s charge
as the probability amplitude that an electron emits/absorbs a
photon. The clue to evaluate this probability within the con-
text of Geometric Probability theory is provided by the el-
ectron self-energy diagram. Using Feynman’s rules, the self-
energyΣ(p) as a function of the electron’s incoming/outgoing
energy-momentum pμ is given by the integral involving the
photon and electron propagator along the internal lines

−iΣ(p)=(−ie)2
∫

d4k

(2π)4
γμ

i

γρ(pρ−kρ)−m
−igμν
k2

γν . (1.2)

The integral is taken with respect to the values of the pho-
ton’s energy-momentum kμ. By inspection one can see that

the electron self-energy is proportional to the fine structure
constant αEM ∼ e2, the square of the probability amplitude
(in natural units of ~= c= 1) and physically represents the
electron’s emission of a virtual photon (off-shell, k2 6=0) of
energy-momentum kρ at a given moment, followed by an
absorption of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy
graph, we will evaluate the Geometric Probability that an
electron emits a photon at t=−∞ (infinite past) and re-
absorbs it at a much later time t=+∞ (infinite future). The
off-shell (virtual) photon associated with the electron self-
energy diagram asymptotically behaves on-shell at the very
moment of emission (t=−∞) and absorption (t=+∞).
However, the photon can remain off-shell in the intermediate
region between the moments of emission and absorption by
the electron. The fact that Geometric Probability is a classical
theory does not mean that one cannot derive the fine structure
constant (which involves the Planck constant) because the
electron self-energy diagram is itself a quantum (one-loop)
Feynman process; i. e. one can recur to Geometric Probability
to assign proper geometrical measures to Feynman diagrams,
not unlike the Twistor-diagrammatic version of the Feynman
rules of QFT.

The topology of the boundaries (at conformal infinity) of
the past and future light-cones are spheres S2 (the celestial
sphere). This explains why the (Shilov) boundaries are es-
sential mathematical features to understand the geometric
derivation of all the coupling constants. In order to describe
the physics at infinity we will recur to Penrose’s ideas [12]
of conformal compactifications of Minkowski spacetime by
attaching the light-cones at conformal infinity. Not unlike the
one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere.

∗This paper is based on a talk given at the Second Intern. p-adic Con-
ference in Mathematics and Physics (Belgrade, Serbia, September, 2005).
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The conformal group leaves the light-cone fixed and it does
not alter the causal properties of spacetime despite the rescal-
ings of the metric. The topology of the conformal compact-
ification of real Minkowski spacetime M̄4=S

3×S1/Z2=
=S3×RP 1 is precisely the same as the topology of the
Shilov boundary Q4 of the 4 complex-dimensional poly-
disc D4. The action of the discrete group Z2 amounts to an
antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification of
the past timelike infinity i− with the future timelike infi-
nity, i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces)
complex domains, G/K [9]–[11] are not the same as the ord-
inary topological boundaries (except in some special cases).
The reason being that the action of the isotropy group K of
the origin is not necesarily transitive on the ordinary topo-
logical boundary. Shilov boundaries are the minimal subspa-
ces of the ordinary topological boundaries which implement
the Maldacena-’T Hooft-Susskind holographic principle [15]
in the sense that the holomorphic data in the interior (bulk)
of the domain is fully determined by the holomorphic data
on the Shilov boundary. The latter has the property that the
maximum modulus of any holomorphic function defined on
a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions
is an 8 real-dim Hyperboloid of constant negative scalar
curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle)
moving in a 4D Anti de Sitter space AdS4. The poly-disc is
a Hermitian symmetric homogeneous coset space associated
with the 4D conformal group SO(4, 2) sinceD4=SO(4, 2)
/SO(4)×SO(2). Its Shilov boundary Shilov (D4)=Q4 has
precisely the same topology as the 4D conformally compacti-
fied real Minkowski spacetime Q4= M̄4=S

3×S1/Z2=
=S3×RP 1. For more details about Shilov boundaries, the
conformal group, future tubes and holography we refer to the
article by Gibbons [14] and [9], [18].

The role of the conformal group in gravity in these ex-
pressions (besides the holographic bulk/boundary AdS/CFT
duality correspondence [15]) stems from the MacDowell
Mansouri-Chamseddine-West formulation of gravity based
on the conformal group SO(3, 2)which has the same number
of 10 generators as the 4D Poincaré group. The 4D vielbein
eaμ which gauges the spacetime translations is identified with
the SO(3, 2) generator A[a5]μ , up to a crucial scale factor R,
given by the size of the Anti de Sitter space (de Sitter space)
throat. It is known that the Poincaré group is the Wigner-
Inonu group contraction of the de Sitter Group SO(4,1) after
taking the throat size R=∞. The spin-connection ωabμ that
gauges the Lorentz transformations is identified with the
SO(3, 2) generator A[ab]μ . In this fashion, the eaμ, ω

ab
μ are en-

coded into the A[mn]μ SO(3, 2) gauge fields, where m, n run
over the group indices 1, 2, 3, 4, 5. A word of caution, gravity

is a gauge theory of the full diffeomorphisms group which
is infinite-dimensional and which includes the translations.
Therefore, strictly speaking gravity is not a gauge theory
of the Poincaré group. The Ogiovetsky theorem shows that
the diffeomorphisms algebra in 4D can be generated by an
infinity of nested commutators involving the GL(4, R) and
the 4D Conformal Group SO(4, 2) generators.

In [19] we have shown why the MacDowell-Mansouri-
Chamseddine-West formulation of gravity, with a cosmolog-
ical constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-
Simons-Higgs theory based on the conformal SO(3, 2)
group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived to be precisely the
geometric-mean between the UV Planck scale and the IR
throat size of de Sitter (Anti de Sitter) space. Setting the
throat size to coincide with the future horizon scale (of an
accelerated de Sitter Universe) given by the Hubble scale
(today) RH , the geometric mean relationship yields the ob-
served value of the vacuum energy density ρ∼ (LPRH)−2=
=(LP )

−4(L2P /R
2
H)∼ 10−120M4

Planck. Nottale [24] gave a
different argument to explain the small value of ρ based on
Scale Relativistic arguments. It was also shown in [19] why
the Euclideanized AdS2n spaces are SO(2n−1, 2) instantons
solutions of a non-linear sigma model obeying a double self
duality condition.

A typical objection to the possibility of being able to
derive the values of the coupling constants, from pure thought
alone, is that there are an infinite number of possible analyt-
ical expressions that accurately reproduce the values of the
couplings within the experimental error bounds. However,
this is not our case because once the gauge groups U(1),
SU(2), SU(3) are known there are unique expressions
stemming from Geometric Probability which furnish the
values of the couplings. Another objection is that it is a mean-
ingless task to try to derive these couplings because these
are not constants per se but vary with respect to the energy
scale. The running of the coupling constants is an artifact
of the perturbative Renormalization Group program. We will
see that the values of the couplings derived from Geometric
Probability are precisely those values that correspond to the
natural physical scales associated with the EM, Weak and
Strong forces.

Another objection is that physical measurements of ir-
rational numbers are impossible because there are always
experimental limitations which rule out the possibility of act-
ually measuring the infinite number of digits of an irrational
number. This experimental constraint does not exclude the
possibility of deriving exact expressions based on π as we
shall see. We should not worry also about obtaining numeric-
al values within the error bars in the table of the coupling
constants since these numbers are based on the values of
other physical constants; i. e. they are based on the particular
consensus chosen for all of the other physical constants.
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In our conventions, αEM = e
2/4π= 1/137.036 . . . in the

natural units of ~= c= 1, and the quantities αweak, αcolor are
the Geometric Probabilities g̃2w, g̃

2
c , after absorbing the fac-

tors of 4π of the conventional αW =(g
2
w/4π), αC =(g

2
c/4π)

definitions used in the Renormalization Group (RG) program.

2 The fine structure constant

In order to define the Geometric Probability associated with
this process of the electron’s emission of a photon at i−

(t=−∞), followed by an absorption at i+ (t=+∞), we
must take into account the important fact that the photon is
on-shell k2=0 asymptotically (at t=±∞), but it can move
off-shell k2 6=0 in the intermediate region which is repre-
sented by the interior of the 4D conformally compactified
real Minkowski spacetime which agrees with the Shilov
boundary of D4 (the four-complex-dimensional poly-disc)
Q4= M̄4=S

3×S1/Z2=S3×RP 1. The Q4 has four-real-
dimensions which is half the real-dimensions of D4 (2×4=8).

The measure associated with the celestial spheres S2 (as-
sociated with the future/past light-cones) at timelike infinity
i+, i−, respectively, is V (S2)= 4πr2= 4π (r= 1). Thus, the
net measure corresponding to the two celestial spheres S2 at
timelike infinity i± requires an overall factor of 2 giving
2V (S2)= 8π (r= 1). The factor of 8π= 2×4π can also be
interpreted in terms of the two-helicity degrees of freedom,
corresponding to a spin 1 massless photon, assigned to the
area of the celestial sphere. The Geometric Probability is
defined by the ratio of the (dimensionless volumes) measures
associated with the celestial spheres S2 at i+, i− timelike
infinity, where the photon moves on-shell, relative to the
Wyler measure ΩWyler[Q4] associated with the full interior
region of the conformally compactified 4D Minkwoski space
Q4= M̄4=S

3×S1/Z2=S3×RP 1, where the massive el-
ectron is confined to move, as it propagates from i− to i+,
(and off-shell photons can also live in):

αEM=
2V (S2)
ΩWyler[Q4]

=
8π

ΩWyler[Q4]
=

1

137.03608 . . .
(2.1a)

after inserting the Wyler measure

ΩWyler[Q4]=
V (S4)V (Q5)

[V (D5)]
1
4

=
8π2

3
8π3

3

(
π5

24×5!

)− 1
4

. (2.1b)

The Wyler measure ΩWyler[Q4] [2] is not the standard
measure (dimensionless volume) V (Q4)= 2π3 calculated by
Hua [10] but requires some elaborate procedure.

It was realized by Smith [5] that the presence of the
Wyler measure in the expression for αEM given by eq.-
(2.1) was consistent with Wheeler ideas that the observed
values of the coupling constants of the Electromagnetic,
Weak and Strong Force can be obtained if the geometric
force strengths (measures related to volumes of complex
homogenous domains associated with the U(1), SU(2),

SU(3) groups, respectively ) are all divided by the geometric
force strength of gravity αG (related to the SO(3, 2)MMCW
Gauge Theory of Gravity ) and which is not the same as the
4D Newton’s gravitational constant GN ∼m−2

Planck. Hence,
upon dividing these geometric force strengths by the geo-
metric force strength of gravity αG one is dividing by the
Wyler measure factor because (see below) αG≡ΩWyler[Q4].

Furthermore, the expression for ΩWyler[Q4] is also con-
sistent with the Kaluza-Klein compactification procedure of
obtaining Maxwell’s EM in 4D from pure gravity in 5D
since Wyler’s expression involves a 5D domain D5 from
the very start; i. e. in order to evaluate the Wyler measure
ΩWyler [Q4] one requires to embed D4 into D5 because
the Shilov boundary space Q4=S3×RP 1 is not adequate
enough to implement the action of the SO(5) group, the
compact version of the Anti de Sitter Group SO(3, 2) that
is required in the MacDowell-Mansouri-Chamseddine-West
(MMCW) SO(3, 2) gauge formulation of gravity. However,
the Shilov boundary of D5 given by Q5=S4×RP 1 is ad-
equate enough to implement the action of SO(5) via isometr-
ies (rotations) on the internal symmetry space S4=SO(5)/
SO(4). This justifies the embedding procedure of D4 → D5

The 5 complex-dimensional poly-disc D5=SO(5, 2)/
SO(5)×SO(2) is the 10 real-dim Hyperboloid H10 corres-
ponding to the relativistic curved phase space of a particle
moving in 5D Anti de Sitter Space AdS5. The Shilov bound-
ary Q5 of D5 has 5 real dimensions (half of the 10-real-
dim of D5). One cannot fail to notice that the hyperboloid
H10 can be embedded in the 11-dim pseudo-Euclidean R9,2

space, with two-time like directions. This is where 11-dim
lurks into our construction.

Having displayed Wyler’s expression of the fine structure
constant αEM in terms of the ratio of dimensionless measures,
we shall present a Fiber Bundle (a sphere bundle fibration
over a complex homogeneous domain) derivation of the
Wyler expression based on the bundle S4→E→D5, and
explain below why the propagation (via the determinant of
the Feynman propagator) of the electron through the interior
of the domain D5 is what accounts for the “obscure” factor
V (D5)

1/4 in Wyler’s formula for αEM .
We begin by explaining why Wyler’s measure ΩWyler[Q4]

in eq.-(2.1) corresponds to the measure of a S4 bundle fibered
over the base curved-space D5=SO(5, 2)/SO(5)×SO(2)
and weighted by a factor of V (D5)−1/4. This S4→E→D5
bundle is linked to the MMCW SO(3, 2) Gauge Theory
formulation of gravity and explains the essential role of the
gravitational interaction of the electron in Wyler’s formula
[5] corroborating Wheeler’s ideas that one must normalize
the geometric force strengths with respect to gravity in order
to obtain the coupling constants. The subgroup H =SO(5)
of the isotropy group (at the origin) K =SO(5)×SO(2)
acts naturally on the Fibers F =S4=SO(5)/SO(4), the
internal symmetric space, via isometries (rotations). Locally,
and only locally, the Fiber bundle E is the product D5×S4.
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The restriction of the Fiber bundle E to the Shilov boundary
Q5 is written as E|Q5 and locally is the product of Q5×S4,
but this is not true globally unless the fiber bundle admits a
global section (the bundle is trivial). So, the volume V (E|Q5)
does not necessary always factorize as V (Q5)×V (S4). Set-
ting aside this subtlety, we shall pursue a more physical route,
suggested by Wyler in unpublished work [3]∗, to explain the
origin of the “obscure normalization” factor V (D5)

1/4 in
Wyler’s measure ΩWyler[Q4] = (V (S

4)×V (Q5)/V (D5)1/4),
which suggests that the volumes may not factorize.

The relevant physical feature of this measure factor
V (D5)

1/4 is that it encodes the spinorial degrees of freedom
of the electron, like the factor of 8π encodes the two-helicity
states of the massless photon. The Feynman propagator of a
massive scalar particle (inverse of the Klein-Gordon operator)
(DμD

μ−m2)−1 corresponds to the kernel in the Feynman
path integral that in turn is associated with the Bergman
kernel Kn(z, z

′) of the complex homogenous domain Dn,
proportional to the Bergman constant kn≡ 1/V (Dn), i. e.

(DμD
μ−m2)−1(xμ)=

1

(2πμ)D

∫
dDp

e−ipμx
μ

p2−m2+ iε
↔

↔ Kn(z, z̄
′) =

1
V (Dn)

(1−zz̄′)−2n,

(2.2)

where we have introduced a momentum scale μ to match
units in the Feynman propagator expression, and the Berg-
man Kernel Kn(z, z̄

′) of Dn whose dimensionless entries
are z=(z1, z2, . . . , zn), z′=(z′1, z

′
2, . . . , z

′
n) is given as

Kn(z, z̄
′) =

1
V (Dn)

(1− zz̄′)−2n (2.3a)

V (Dn) is the dimensionless Euclidean volume found by
Hua V (Dn)= (πn/2

n−1n!) and satisfies the reproducing and
normalization properties

f(z)=

∫

Dn

f(ξ)Kn(z, ξ)d
nξdnξ̄ ,

∫

Dn

Kn(z, z̄)d
nzdnz̄=1. (2.3b)

The key result that can be inferred from the Feynman
propagator (kernel) ↔ Bergman kernel Kn correspondence,
when μ= 1, is the (2π)−D↔ (V (Dn))

−1 correspondence;
i. e. the fundamental hyper-cell in momentum space (2π)D

(when μ=1) corresponds to the dimensionless volume V (Dn)
of the domain, whereD= 2n real dimensions. The regulariz-
ed vacuum-to-vacuum amplitude of a free real scalar field is
given in terms of the zeta function ζ(s)=

∑
i λ

−s
i associated

with the eigenvalues of the Klein-Gordon operator by

Z =<0|0>=
√
det(DμDμ−m2)−1∼ exp

[
1
2
dζ

ds
(s=0)

]
. (2.4)

In case of a complex scalar field we have to double the
number of degrees of freedom, the amplitude then factorizes
into a product and becomes Z =det(DμDμ−m2)−1.

Since the Dirac operator D= γμDμ+ m is the “square-

∗I thank Frank (Tony) Smith for this information and many discussions.

root” of the Klein-Gordon operatorD†D=DμDμ−m2+R
(R is the scalar curvature of spacetime that is zero in Min-
kowski space) we have the numerical correspondence
√
det(D)−1 =

√
det
(
DμDμ −m2

)−1/2
=

=

√√
det
(
DμDμ−m2

)−1
↔ k1/4n =

(
1

V (Dn)

)1/4
,

(2.5)

because detD†= detD, and

detD = etr lnD = etr ln(DμD
μ−m2)1/2 =

= e
1
2 tr ln(DμD

μ−m2) =
√
det(DμDμ −m2) .

(2.6)

The vacuum-to-vacuum amplitude of a complex Dirac
field Ψ (a fermion, the electron) is Z = det(γμDμ+m)=
= detD∼ exp[−(dζ/ds)(s=0)]. Notice the det(D) behav-
ior of the fermion versus the det(DμDμ−m2)−1 behavior
of a complex scalar field due to the Grassmanian nature of
the Gaussian path integral of the fermions. The vacuum-to-
vacuum amplitude of a Majorana (real) spinor (half of the
number of degrees of freedom of a complex Dirac spinor) is
Z =

√
det(γμDμ+m). Because the complex Dirac spinor

encodes both the dynamics of the electron and its anti-
particle, the positron (the negative energy solutions), the
vacuum-to-vacuum amplitude corresponding to the electron
(positive energy solutions, propagating forward in time) must
be then Z =

√
det(γμDμ+m).

Therefore, to sum up, the origin of the “obscure” factor
V (D5)

1/4 in Wyler’s formula is the normalization condition
of V (S4)×V (Q5) by a factor of V (D5)1/4 stemming from
the correspondence V (D5)1/4↔Z =

√
det(γμDμ+m) and

which originates from the vacuum-to-vacuum amplitude of
the fermion (electron) as it propagates forward in time in the
domainD5. These last relations emerge from the correspond-
ence between the Feynman fermion (electron) propagator
in Minkowski spacetime and the Bergman Kernel of the
complex homogenous domain after performing the Wyler
map between an unbounded domain (the interior of the future
lightcone of spacetime) to a bounded one. In general, the
Bergman Kernel gives rise to a Kahler potential F (z, z̄)=
= logK(z, z̄) in terms of which the Bergman metric on Dn
is given by

gij̄ =
∂2F

∂zi∂z̄i
. (2.7)

We must emphasize that this Geometric probability ex-
planation is very different from the interpretations provided in
[2, 5, 6, 7] and properly accounts for all the numerical factors.
Concluding, the Geometric Probability that an electron emits
a photon at t=−∞ and absorbs it at t=+∞, is given by
the ratio of the dimensionless measures (volumes):

αEM =
2V (S2)
ΩWyler[Q4]

= 8π
1

V (S4)

1
V (Q5)

[V (D5)]
1
4 =

=
9

8π4

(
π5

24×5!

)1/4
=

1
137.03608 . . .

(2.8)
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in very good agreement with the experimental value. This is
easily verified after one inserts the values of the Euclidean-
ized regularized volumes found by Hua [10]

V (D5) =
π5

24×5!
, V (Q5) =

8π3

3
, V (S4) =

8π2

3
. (2.19)

In general

V (Dn) =
πn

2n−1n!
, V (Sn−1) =

2πn/2

Γ(n/2)
, (2.10)

V (Qn)=V (S
n−1×RP 1)=V (Sn−1)×V (RP 1) =

=
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
.
(2.11)

Objections were raised to Wyler’s original expression
by Robertson [4]. One of them was that the hyperboloids
(discs) are not compact and whose volumes diverge because
the Lobachevsky metric diverges on the boundaries of the
poly-discs. Gilmore explained [4] why one requires to use
the Euclideanized regularized volumes because Wyler had
shown that it is possible to map an unbounded physical
domain (the interior of the future light cone) onto the interior
of a homogenous bounded domain without losing the causal
structure and on which there exist also a complex structure.
A study of Shilov boundaries, holography and the future tube
can be found in [14].

Furthermore, in order to resolve the scaling problems
of Wyler’s expression raised by Robertson, Gilmore showed
why it is essential to use dimensionless volumes by setting
the throat sizes of the Anti de Sitter hyperboloids to r= 1,
because this is the only choice for r where all elements in the
bounded domains are also coset representatives, and there-
fore, amount to honest group operations. Hence the scaling
objections against Wyler raised by Robertson were satisfact-
ory solved by Gilmore [4]. Thus, all the volumes in this sec-
tion and forth, are based on setting the scaling factor r= 1.

The question as to why the value of αEM obtained in
Wyler’s formula is precisely the value of αEM observed
at the scale of the Bohr radius aB , has not been solved,
to our knowledge. The Bohr radius is associated with the
ground (most stable) state of the Hydrogen atom [5]. The
spectrum generating group of the Hydrogen atom is well
known to be the conformal group SO(4, 2) due to the fact
that there are two conserved vectors, the angular momentum
and the Runge-Lentz vector. After quantization, one has two
commuting SU(2) copies SO(4)=SU(2)×SU(2). Thus,
it makes physical sense why the Bohr-scale should appear
in this construction. Bars [16] has studied the many physical
applications and relationships of many seemingly distinct
models of particles, strings, branes and twistors, based on the
(super) conformal groups in diverse dimensions. In particular,
the relevance of two-time physics in the formulation ofM , F ,
S theory has been advanced by Bars for some time. The Bohr
radius corresponds to an energy of 137.036×2×13.6 eV∼

∼ 3.72×103eV. It is well known that the Rydberg scale, the
Bohr radius, the Compton wavelength of electron, and the
classical electron radius are all related to each other by a
successive scaling in products of αEM .

To finalize this section and based on the MMCW SO(3, 2)
Gauge Theory formulation of gravity, with a Gauss-Bonnet
topological term plus a cosmological constant, the (dimen-
sionless) Wyler measure was defined as the geometric coupl-
ing strength of gravity [5]:

ΩWyler[Q4] =
V (S4)V (Q5)

[V (D5)]
1
4

≡ αG . (2.12)

The relationship between αG and the Newtonian grav-
itational G constant is based on the value of the coupling
(1/16πG) appearing in the Einstein-Hilbert Lagrangian
(R/16πG), and goes as follows:

(16πG)(m2
Planck) = αEMαG = 8π ⇒

⇒ G =
1

16π
8π

m2
Planck

=
1

2m2
Planck

⇒

⇒ Gm2
proton =

1
2

(
mproton

mPlanck

)2
∼ 5.9×10−39

(2.13)

and in natural units ~=c=1 yields the physical force strength
of gravity at the Planck Energy scale 1.22×1019 GeV. The
Planck mass is obtained by equating the Schwarzschild radius
2GmPlanck to the Compton wavelength 1/mPlanck associated
with the mass; where mPlanck

√
2= 1.22×1019 GeV and the

proton mass is 0.938 GeV. Some authors define the Planck
mass by absorbing the factor of

√
2 inside the definition of

mPlanck= 1.22×1019 GeV.

3 The weak and strong couplings

We turn now to the derivation of the other coupling constants.
The Fiber Bundle picture of the previous section is essential
in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for a
particle to emit and later absorb a SU(2), SU(3) gauge
boson, can both be obtained by using the main formula de-
rived from Geometric Probability (as ratios of dimensionless
measures/volumes) after one identifies the suitable homogen-
eous domains and their Shilov boundaries to work with.

Since massless gauge bosons live on the lightcone, a
null boundary in Minkowski spacetime, upon performing the
Wyler map, the gauge bosons are confined to live on the
Shilov boundary. Because the SU(2) bosons W±, Z0 and
the eight SU(3) gluons have internal degrees of freedom
(they carry weak and color charges) one must also include the
measure associated with the their respective internal spaces;
namely, the measures relevant to Geometric Probability cal-
culations are the measures corresponding to the appropriate
sphere bundles fibrations defined over the complex bounded
homogenous domains Sm→E→Dn.
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Furthermore, the Geometric Probability interpretation for
αweak, αstrong agrees with Wheeler’s ideas [5] that one must
normalize these geometric force strengths with respect to the
geometric force strength of gravity αG=ΩWyler[Q4] found in
the last section. Hence, after these explanations, we will show
below why the weak and strong couplings are given, respect-
ively, by the ratio of the measures (dimensionless volumes):

αweak =
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG

=
Ω[Q3]

(8π/αEM)
, (3.1)

αcolor =
Ω[squashedS5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG

=
Ω[sq.S5]

(8π/αEM)
. (3.2)

As always, one must insert the values of the regularized
(Euclideanized) dimensionless volumes provided by Hua
[10] (set the scale r= 1). We must also clarify and emphasize
that we define the quantities αweak, αcolor as the probabilities
g̃2W , g̃2C , by absorbing the factors of 4π in the conventional
αW =(g

2
W/4π), αC =(g

2
C/4π) definitions (based on the Re-

normalization Group (RG) program) into our definitions of
probability g̃2W , g̃2C .

Let us evaluate the αweak. The internal symmetry space
is CP 1=SU(2)/U(1) ( a sphere S2∼CP 1) where the
isospin group SU(2) acts via isometries on CP 1. The Shilov
boundary ofD2 isQ2=S1×RP 1 but is not adequate enough
to accommodate the action of the isospin group SU(2).
One requires to have the Shilov boundary of D3 given
byQ3=S2×S1/Z2=S2×RP 1 that can accommodate the
action of the SU(2) group on S2. A Fiber Bundle over D3=
=SO(3, 2)/SO(3)×SO(2) whose H =SO(3)∼SU(2)
subgroup of the isotropy group (at the origin) K =SO(3)×
×SO(2) acts on S2 by simple rotations. Thus, the relevant
measure is related to the fiber bundle E restricted to Q3 and
is written as V (E|Q3).

One must notice that due to the fact that the SU(2) group
is a double-cover of SO(3), as one goes from the SO(3)
action on S2 to the SU(2) action on S2 , one must take into
account an extra factor of 2 giving then

V (CP 1) = V
(
SU(2)/U(1)

)
=

= 2V
(
SO(3)/U(1)

)
= 2V (S2) = 8π .

(3.3)

In order to obtain the weak coupling constant due to
the exchange of W±Z0 bosons in the four-point tree-level
processes involving four leptons, like the electron, muon, tau,
and their corresponding neutrinos (leptons are fundamental
particles that are lighter than mesons and baryons) which are
confined to move in the interior of the domain D3, and can
emit (absorb) SU(2) gauge bosons,W±Z0, in the respective
s, t, u channels, one must take into account a factor of the
square root of the determinant of the fermionic propagator,√
detD−1=

√
det (γμDμ +m)−1, for each pair of leptons,

as we did in the previous section when an electron emitted
and absorbed a photon. Since there are two pairs of leptons in
these four-point tree-level processes involving four leptons,

one requires two factors of
√
det (γμDμ +m)−1, giving

a net factor of det (γμDμ +m)−1 and which corresponds

now to a net normalization factor of k1/2n =(1/V (D3))1/2,
after implementing the Feynman kernel ↔ Bergman kenel
correspondence. Therefore, after taking into account the
result of eq.-(3.3), the measure of the S2→E→D3 bundle,
restricted to the Shilov boundary Q3, and weighted by the
net normalization factor (1/V (D3))1/2, is

Ω(Q3) = 2V (S2)
V (Q3)

V (D3)1/2
. (3.4)

Therefore, the Geometric probability expression is given
by the ratio of measures (dimensionless volumes):

αweak=
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG

=
2V (S2)V (Q3)
V (D3)1/2

αEM

8π
=

= (8π)(4π2)

(
π3

24

)− 1
2 αEM

8π
= 0.2536 . . .

(3.5)

that corresponds to the weak coupling constant (g2/4π based
on the RG convention) at an energy of the order of

E =M = 146 GeV ∼
√
M2
W+

+M2
W−

+M2
Z (3.6)

after the expressions inserted (setting the scale r= 1)

V (S2) = 4π , V (Q3) = 4π2, V (D3) =
π3

24
(3.7)

into the formula (3-5). The relationship to the Fermi coupling
goes as follows (with the energy scale E=M = 146 GeV):

GF ≡
αW

M2
⇒ GF m

2
proton =

(
αW

M2

)

m2
proton =

= 0.2536×

(
mproton

146 GeV

)2
∼ 1.04×10−5

(3.8)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αweak obtained
from Geometric Probability corresponds to the energy scale
related to the W+, W−, Z0 boson mass, after spontaneous
symmetry breaking.

Finally, we shall derive the value of αcolor from eq.-
(3.2) after one defines what is the suitable fiber bundle.
The calculation is based on the book by L. K. Hua [10,
p. 40, 93]. The symmetric space with the SU(3) color force
as a local group is SU(4)/SU(3)×U(1) which corresponds
to a bounded symmmetric domain of type I(1,3) and has a
Shilov boundary that Hua calls the “characteristic manifold”
CI(1,3). The volume V

(
CI(m,n)

)
is:

V (CI) =
(2π)mn−m(m−1)/2

(n−m)! (n−m+ 1)! . . . (n− 1)!
(3.9)

so that for m= 1 and n= 3 the relevant volume is then
V (CI)= (2π)3/2! = 4π3. We must remark at this point that
CI( 1, 3) is not the standard round S5 but is the squashed
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five-dimensional S̃5.∗

The domain of which CI(1,3) is the Shilov boundary is
denoted by Hua as RI(1,3) and whose volume is

V (RI) =
1! 2! . . . (m− 1)! 1! 2! . . . (n− 1)!πmn

1! 2! . . . (m+ n− 1)!
(3.10)

so that for m=1 and n=3 it gives V (RI)=1!2!π3/1!2!3! =
=π3/6 and it also agrees with the volume of the standard
six-ball.

The internal symmetry space (fibers) is as follows CP 2=
=SU(3)/U(2) whose isometry group is the color SU(3)
group. The base space is the 6D domainB6=SU(4)/U(3)=
=SU(4)/SU(3)×U(1) whose subgroup SU(3) of the iso-
tropy group (at the origin) K =SU(3)×U(1) acts on the
internal symmetry space CP 2 via isometries. In this special
case, the Shilov and ordinary topological boundary of B6
both coincide with the squashedS5 [5].

Since Gilmore, in response to Robertson’s objections to
Wyler’s formula [2], has shown that one must set the scale
r= 1 of the hyperboloids Hn (and Sn) and use dimensionles
volumes, if we were to equate the volumes V (CP 2)=
=V (S4, r= 1) [5], this would be tantamount of choosing
another scale [25] R (the unit of geodesic distance in CP 2)
that is different from the unit of geodesic distance in S4 when
the radius r= 1, as required by Gilmore. Hence, a bundle
map E→E′ from the bundle CP 2→E→B6 to the bundle
S4→E′→B6, would be required that would allow us to
replace the V (CP 2) for V (S4, r= 1). Unless one decides to
calibrate the unit of geodesic distance in CP 2 by choosing
V (CP 2)=V (S4).

Using again the same results described after eq.-(2.2),
since a quark can emit and absorb later on a SU(3) gluon (in
a one-loop process), and is confined to move in the interior
of the domain B6, there is one factor only of the square
root of the determinant of the Dirac propagator

√
detD−1=

=
√√

det (DμDμ−m2)−1 and which is associated with

a normalization factor of k1/4n =(1/V (B6))1/4. Therefore,
the measure of the bundle S4→E′→B6 restricted to the
squashedS5 (Shilov boundary of B6), and weighted by the
normalization factor (1/V (B6))1/4, is then

Ω[squashedS5] =
V (S4) V (squashedS5)

V (B6)1/4
(3.11)

and the ratio of measures

αS=
Ω[sq.S5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG

=
V (S4)V (sq.S5)

V (B6)1/4
αEM

8π
=

=

(
8π2

3

)

(4π3)

(
π3

6

)−1/4
αEM

8π
= 0.6286 . . .

(3.12)

matches, remarkably, the strong coupling value α= g2/4π
at an energy E related precisely to the pion masses [5]

∗Frank (Tony) Smith, private communication.

E = 241 MeV ∼
√
m2
π+ +m

2
π− +m

2
π0 . (3.13)

The one-loop Renormalization Group flow of the coupl-
ing is given by [28]:

αs(E
2)=αs(E

2
0)

[
1+

(
11− 2

3
Nf (E

2)
)

4π
αs(E

2
0)ln

(
E2

E20

)]−1
(3.14)

where Nf (E2) is the number of quark flavors whose mass
M2<E2. For the specific numerical details of the evaluation
(in energy-intervals given by the diverse quark masses) of
the Renormalization Group flow equation (3-14) that yields
αS(E= 241 MeV)∼ 0.6286 we refer to [5]. Once more, it is
unknown why the value of αcolor obtained from Geometric
Probability corresponds to the energy scale E= 241 MeV
related to the masses of the pions. The pions are the known
lightest quark-antiquark pairs that feel the strong interaction.

Rigorously speaking, one should include higher-loop cor-
rections to eq.-(3.14) as Weinberg showed [28] to determine
the values of the strong coupling at energy scales E= 241
MeV. This issue and the subtleties behind the calibration of
scales (volumes) by imposing the condition V (CP 2)=V (S4)
need to be investigated. For example, one could calibrate
lengths in terms of the units of geodesic distance in CP 2

(based on Gilmore’s choice of r= 1) giving V (CP 2)=
=V (S5; r= 1)/V (S1; r= 1)=π2/2! [25], and it leads now
to the value of αS = 0.1178625 which is very close to the
value of αS at the energy scale of the Z-boson mass (91.2
GeV) and given by αS = 0.118 [28].

4 Mersenne primes p-adic hierarchy. Other approaches

To conclude, we briefly mention other approaches to the de-
termination of the physical parameters. A hierarchy of coupl-
ing constants, including the cosmological constant, based on
Seifert-spheres fibrations was undertaken by [26]. The ratios
of particle masses, like the proton to electron mass ratio
mp/me∼ 6π5 has also been calculated using the volumes of
homogeneous bounded domains [5, 6]. A charge-mass-spin
relationship was investigated in [27]. It is not known whether
this procedure should work for Grand Unified Theories
(GUT) based on the groups like SU(5), SO(10), E6, E7,
E8, meaning whether or not one could obtain, for example,
the SU(5) coupling constant consistent with the Grand Uni-
fication Models based on the SU(5) group and with the
Renormalization Group program at the GUT scale.

Beck [8] has obtained all of the Standard Model para-
meters by studying the numerical minima (and zeros) of
certain potentials associated with the Kaneko coupled two-
dim lattices (two-dim non-linear sigma-like models which
resemble Feynman’s chess-board lattice models) based on
Stochastic Quantization methods. The results by Smith [5]
(also based on Feynman’s chess board models and hyper-
diamond lattices) are analytical rather than being numerical
[8] and it is not clear if there is any relationship between
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these latter two approaches. Noyes has proposed an iterated
numerical hierarchy based on Mersenne primes Mp= 2p− 1
for certain values of p= primes [20], and obtained a quite
large number of satisfactory values for the physical para-
meters. An interesting coincidence is related to the iterated
Mersenne prime sequence

M2 = 22 − 1 = 3 , M3 = 23 − 1 = 7 ,

M7 = 27 − 1 = 127 , 3+ 7+ 127 = 137 ,

M127 = 2127 − 1 ∼ 1.69×1038 ∼

(
MPlanck

mproton

)2
.

(4.1)

Pitkanen has also developed methods to calculate phys-
ical masses recurring to a p-adic hierarchy of scales based
on Mersenne primes [21].

An important connection between anomaly cancellation
in string theory and perfect even numbers was found in
[23]. These are numbers which can be written in terms
of sums of its divisors, including unity, like 6= 1+ 2+ 3,
and are of the form P (p)= 1

2 2p(2p− 1) if, and only if,
2p− 1 is a Mersenne prime. Not all values of p= prime
yields primes. The number 211− 1 is not a Mersenne prime,
for example. The number of generators of the anomaly free
groups SO(32), E8×E8 of the 10-dim superstring is 496
which is an even perfect number. Another important group
related to the unique tadpole-free bosonic string theory is
the SO(213)=SO(8192) group related to the bosonic string
compactified on the E8×SO(16) lattice. The number of
generators of SO(8192) is an even perfect number since
213− 1 is a Mersenne prime. For an introduction to p-adic
numbers in Physics and String theory see [22].

A lot more work needs to be done to be able to answer
the question: is all this just a mere numerical coincidence or
is it design? However, the results of the previous sections
indicate that it is very unlikely that these results were just
a mere numerical coincidence (senseless numerology) and
that indeed the values of the physical constants could be
actually calculated from pure thought, rather than invoking
the anthropic principle; i. e. namely, based on the interplay
of harmonic analysis, geometry, topology, higher dimensions
and, ultimately, number theory. The fact that the coupling
constants involved the ratio of measures (volumes) may cast
some light on the role of the world-sheet areas of strings,
and world volumes of p-branes, as they propagate in target
spacetime backgrounds of diverse dimensions.
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A Brief History of Black Holes
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Neither the layman nor the specialist, in general, have any knowledge of the historical
circumstances underlying the genesis of the idea of the Black Hole. Essentially,
almost all and sundry simply take for granted the unsubstantiated allegations of
some ostentatious minority of the relativists. Unfortunately, that minority has been
rather careless with the truth and is quite averse to having its claims corrected,
notwithstanding the documentary evidence on the historical record. Furthermore, not a
few of that vainglorious and disingenuous coterie, particularly amongst those of some
notoriety, attempt to dismiss the testimony of the literature with contempt, and even
deliberate falsehoods, claiming that history is of no importance. The historical record
clearly demonstrates that the Black Hole has been conjured up by combination of
confusion, superstition and ineptitude, and is sustained by widespread suppression
of facts, both physical and theoretical. The following essay provides a brief but
accurate account of events, verifiable by reference to the original papers, by which the
scandalous manipulation of both scientific and public opinion is revealed.

It has frequently been alleged by theoretical physicists (e. g.
[1, 2]) that Newton’s theory of gravitation either predicts
or adumbrates the black hole. This claim stems from a
suggestion originally made by John Michell in 1784 that
if a body is sufficiently massive, “all light emitted from such
a body would be made to return to it by its own power of
gravity”. The great French scientist, P. S. de Laplace, made
a similar conjecture in the eighteenth century and undertook
a mathematical analysis of the matter.

However, contrary to popular and frequent expert opin-
ion, the Michell-Laplace dark body, as it is actually called,
is not a black hole at all. The reason why is quite simple.

For a gravitating body we identify an escape velocity.
This is a velocity that must be achieved by an object to
enable it to leave the surface of the host body and travel out
to infinity, where it comes to rest. Therefore, it will not fall
back towards the host. It is said to have escaped the host.
At velocities lower than the escape velocity, the object will
leave the surface of the host, travel out to a finite distance
where it momentarily comes to rest, then fall back to the
host. Consequently, a suitably located observer will see the
travelling object twice, once on its journey outward and once
on its return trajectory. If the initial velocity is greater than
or equal to the escape velocity, an observer located outside
the host, anywhere on the trajectory of the travelling object,
will see the object just once, as it passes by on its outward
unidirectional journey. It escapes the host. Now, if the escape
velocity is the speed of light, this means that light can leave
the host and travel out to infinity and come to rest there. It
escapes the host. Therefore, all observers located anywhere
on the trajectory will see the light once, as it passes by
on its outward journey. However, if the escape velocity is

greater than the speed of light, then light will travel out to
a finite distance, momentarily come to rest, and fall back to
the host, in which case a suitably located observer will see
the light twice, once as it passes by going out and once upon
its return. Furthermore, an observer located at a sufficiently
large and finite distance from the host will not see the light,
because it does not reach him. To such an observer the host
is dark: a Michell-Laplace dark body. But this does not mean
that the light cannot leave the surface of the host. It can, as
testified by the closer observer. Now, in the case of the black
hole, it is claimed by the relativists that no object and no
light can even leave the event horizon (the “surface”) of the
black hole. Therefore, an observer, no matter how close to
the event horizon, will see nothing. Contrast this with the
escape velocity for the Michell-Laplace dark body where, if
the escape velocity is the speed of light, all observers located
on the trajectory will see the light as it passes out to infinity
where it comes to rest, or when the escape velocity is greater
than the speed of light, so that a suitably close observer will
see the light twice, once when it goes out and once when
it returns. This is completely opposite to the claims for the
black hole. Thus, there is no such thing as an escape velocity
for a black hole, and so the Michell-Laplace dark body is
not a black hole. Those who claim the Michell-Laplace dark
body a black hole have not properly understood the meaning
of escape velocity and have consequently been misleading
as to the nature of the alleged event horizon of a black hole.
It should also be noted that nowhere in the argument for the
Michell-Laplace dark body is there gravitational collapse to
a point-mass, as is required for the black hole.

The next stage in the genesis of the black hole came with
Einstein’s General Theory of Relativity. Einstein himself
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never derived the black hole from his theory and never
admitted the theoretical possibility of such an object, always
maintaining instead that the proposed physical basis for its
existence was incorrect. However, he was never able to
demonstrate this mathematically because he did not under-
stand the basic geometry of his gravitational field. Other
theoreticians obtained the black hole from Einstein’s equa-
tions by way of arguments that Einstein always objected to.
But Einstein was over-ruled by his less cautious colleagues,
who also failed to understand the geometry of Einstein’s
gravitational field.

The solution to Einstein’s field equations, from which the
black hole has been extracted, is called the “Schwarzschild”
solution, after the German astronomer Karl Schwarzschild,
who, it is claimed by the experts, first obtained the solution
and first predicted black holes, event horizons, and Schwarz-
schild radii, amongst other things. These credits are so com-
monplace that it comes as a surprise to learn that the famous
“Schwarzschild” solution is not the one actually obtained by
Karl Schwarzschild, even though all the supposed experts
and all the textbooks say so. Furthermore, Schwarzschild
did not breathe a word about black holes, because his true
solution does not allow them.

Shortly after Einstein published the penultimate version
of his theory of gravitation in November 1915, Karl Schwarz-
schild [3] obtained an exact solution for what is called the
static vacuum field of the point-mass. At that time Schwarz-
schild was at the Russian Front, where he was serving in the
German army, and suffering from a rare skin disease con-
tracted there. On the 13th January 1916, he communicated
his solution to Einstein, who was astonished by it. Einstein
arranged for the rapid publication of Schwarzschild’s paper.
Schwarzschild communicated a second paper to Einstein
on the 24th February 1916 in which he obtained an exact
solution for a sphere of homogeneous and incompressible
fluid. Unfortunately, Schwarzschild succumbed to the skin
disease, and died about May 1916, at the age of 42.

Working independently, Johannes Droste [4] obtained
an exact solution for the vacuum field of the point-mass.
He communicated his solution to the great Dutch scientist
H. A. Lorentz, who presented the solution to the Dutch Royal
Academy in Amsterdam at a meeting on the 27th May
1916. Droste’s paper was not published until 1917. By then
Droste had learnt of Schwarzschild’s solution and therefore
included in his paper a footnote in acknowledgement. Droste
anticipated the mathematical procedure that would later lead
to the black hole, and correctly pointed out that such a
procedure is not permissible, because it would lead to a
non-static solution to a static problem. Contra-hype!

Next came the famous “Schwarzschild” solution, actually
obtained by the great German mathematician David Hilbert
[5], in December 1916, a full year after Schwarzschild ob-
tained his solution. It bears a little resemblance to Schwarz-
schild’s solution. Hilbert’s solution has the same form as

Droste’s solution, but differs in the range of values allowed
for the incorrectly assumed radius variable describing how
far an object is located from the gravitating mass. It is this
incorrect range on the incorrectly assumed radius variable by
Hilbert that enabled the black hole to be obtained. The vari-
able on the Hilbert metric, called a radius by the relativists,
is in fact not a radius at all, being instead a real-valued
parameter by which the true radii in the spacetime manifold
of the gravitational field are rightly calculated. None of the
relativists have understood this, including Einstein himself.
Consequently, the relativists have never solved the problem
of the gravitational field. It is amazing that such a simple
error could produce such a gigantic mistake in its wake,
but that is precisely what the black hole is — a mistake for
enormous proportions. Of course, the black hole violates the
static nature of the problem, as pointed out by Droste, but the
black hole theoreticians have ignored this important detail.

The celebrated German mathematician, Hermann Weyl
[6], obtained an exact solution for the static vacuum field of
the point-mass in 1917, by a very elegant method. He derived
the same solution that Droste had obtained.

Immediately after Hilbert’s solution was published there
was discussion amongst the physicists as to the possibility
of gravitational collapse into the nether world of the nascent
black hole. During the Easter of 1922, the matter was con-
sidered at length at a meeting at the Collège de France, with
Einstein in attendance.

In 1923 Marcel Brillouin [7] obtained an exact solution
by a valid transformation of Schwarzschild’s original so-
lution. He demonstrated quite rigorously, in relation to his
particular solution, that the mathematical process, which later
spawned the black hole, actually violates the geometry as-
sociated with the equation describing the static gravitational
field for the point-mass. He also demonstrated rigorously
that the procedure leads to a non-static solution to a static
problem, just as Droste had pointed out in 1916, contradicting
the very statement of the initial problem to be solved —
what is the gravitational field associated with a spherically
symmetric gravitating body, where the field is unchanging in
time (static) and the spacetime outside the body is free of
matter (i. e. vacuum), other than for the presence of a test
particle of negligible mass?

In mathematical terms, those solutions obtained by
Schwarzschild, Droste and Weyl, and Brillouin, are mutually
consistent, in that they can be obtained from one another
by an admissible transformation of coordinates. However,
Hilbert’s solution is inconsistent with their solutions because
it cannot be obtained from them or be converted to one
of them by an admissible transformation of coordinates.
This fact alone is enough to raise considerable suspicions
about the validity of Hilbert’s solution. Nonetheless, the
relativists have not recognised this problem either, and have
carelessly adopted Hilbert’s solution, which they invariably
call “Schwarzschild’s” solution, which of course, it is cer-
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tainly not.
In the years following, a number of investigators argued,

in one way or another, that the “Schwarzschild” solution,
as Hilbert’s solution became known and Schwarzschild’s
real solution neglected and forgotten, leads to the bizarre
object now called the black hole. A significant subsequent
development in the idea came in 1949, when a detailed but
erroneous mathematical study of the question by the Irish
mathematical physicist J. L. Synge [8], was read before the
Royal Irish Academy on the 25th April 1949, and published
on the 20th March 1950. The study by Synge was quite ex-
haustive but being based upon false premises its conclusions
are generally false too. Nonetheless, this paper was hailed
as a significant breakthrough in the understanding of the
structure of the spacetime of the gravitational field.

It was in 1960 that the mathematical description of the
black hole finally congealed, in the work of M. D. Kruskal
[9] in the USA, and independently of G. Szekeres [10] in
Australia. They allegedly found a way of mathematically
extending the “Schwarzschild” solution into the region of
the nascent black hole. The mathematical expression, which
is supposed to permit this, is called the Kruskal-Szekeres
extension. This formulation has become the cornerstone of
modern relativists and is the fundamental argument upon
which they rely for the theoretical justification of the black
hole, which was actually christened during the 1960’s by the
American theoretical physicist, J. A. Wheeler, who coined
the term.

Since about 1970 there has been an explosion in the
number of people publishing technical research papers, text-
books and popular science books and articles on various
aspects of General Relativity. A large proportion of this
includes elements of the theory of black holes. Quite a
few are dedicated exclusively to the black hole. Not only
is there now a simple black hole with a singularity, but also
naked singularities, black holes without hair, supermassive
black holes at the centres of galaxies, black hole quasars,
black hole binary systems, colliding black holes, black hole
x-ray sources, charged black holes, rotating black holes,
charged and rotating black holes, primordial black holes,
mini black holes, evaporating black holes, wormholes, and
other variants, and even white holes! Black holes are now
“seen” everywhere by the astronomers, even though no one
has ever found an event horizon anywhere. Consequently,
public opinion has been persuaded that the black hole is a
fact of Nature and that anyone who questions the contention
must be a crackpot. It has become a rather lucrative business,
this black hole. Quite a few have made fame and fortune
peddling the shady story.

Yet it must not be forgotten that all the arguments for the
black hole are theoretical, based solely upon the erroneous
Hilbert solution and the meaningless Kruskal-Szekeres ex-
tension on it. One is therefore lead to wonder what it is that
astronomers actually “see” when they claim that they have

found yet another black hole here or there.
Besides the purely mathematical errors that mitigate the

black hole, there are also considerable physical arguments
against it, in addition to the fact that no event horizon has
ever been detected.

What does a material point mean? What meaning can
there possibly be in the notion of a material object without
any spatial extension? The term material point (or point-
mass) is an oxymoron. Yet the black hole singularity is
supposed to have mass and no extension. Moreover, there is
not a single shred of experimental evidence to even remotely
suggest that Nature makes material points. Even the electron
has spatial extent, according to experiment, and to quantum
theory. A “point” is an abstraction, not a physical object. In
other words, a point is a purely mathematical object. Points
and physical objects are mutually exclusive by definition. No
one has ever observed a point, and no one ever will because
it is unobservable, not being physical. Therefore, Nature
does not make material points. Consequently, the theoretical
singularity of the black hole cannot be a point-mass.

It takes an infinite amount of observer time for an object,
or light, to reach the event horizon, irrespective of how
far that observer is located from the horizon. Similarly,
light leaving the surface of a body undergoing gravitational
collapse, at the instant that it passes its event horizon, takes
an infinite amount of observer time to reach an observer,
however far that observer is from the event horizon. There-
fore, the black hole is undetectable to the observer since he
must wait an infinite amount of time to confirm the existence
of an event horizon. Such an object has no physical meaning
for the observer. Furthermore, according to the very same
theoreticians, the Universe started with a Big Bang, and
that theory gives an alleged age of 14 billion years for
the Universe. This is hardly enough time for the black hole
to form from the perspective of an external observer. Con-
sequently, if black holes exist they must have been created
at the instant of the Bang. They must be primordial black
holes. But that is inconsistent with the Bang itself, because
matter at that “time”, according to the Big Bang theoreticians,
could not form lumps. Even so, they cannot be detected by
an external observer owing to the infinite time needed for
confirmation of the event horizon. This now raises serious
suspicions as to the validity of the Big Bang, which is just an-
other outlandish theory, essentially based upon Friedmann’s
expanding Universe solution, not an established physical
reality as the astronomers would have us believe, despite
the now commonplace alleged observations they adduce to
support it.

At first sight it appears that the idea of a binary system
consisting of two black holes, or a hole and a star, and
the claim that black holes can collide, are physical issues.
However, this is not quite right, notwithstanding that the
theoreticians take them as well-defined physical problems.
Here are the reasons why these ideas are faulty. First, the
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black hole is allegedly predicted by General Relativity. What
the theoreticians routinely fail to state clearly is that the black
hole comes from a solution to Einstein’s field equations when
treating of the problem of the motion of a test particle of
negligible mass in the vicinity of a single gravitating body.
The gravitational field of the test particle is considered too
small to affect the overall field and is therefore neglected.
Therefore, Hilbert’s solution is a solution for one gravitating
body interacting with a test particle. It is not a solution for
the interaction of two or more comparable masses. Indeed,
there is no known solution to Einstein’s field equations for
more than one gravitating body. In fact, it is not even known
if Einstein’s field equations actually admit of solutions for
multi-body configurations. Therefore, there can be no mean-
ingful theoretical discussion of black hole binaries or collid-
ing black holes, unless it can be shown that Einstein’s field
equations contain, hidden within them, solutions for such
configurations of matter. Without at least an existence the-
orem for multi-body configurations, all talk of black hole
binaries and black hole collisions is twaddle (see also [11]).
The theoreticians have never provided an existence theorem.

It has been recently proved that the black hole and the
expanding Universe are not predicted by General Relativity
at all [12, 13], in any circumstances. Since the Michell-
Laplace dark body is not a black hole either, there is no
theoretical basis for it whatsoever.
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This article discusses Neutrosophic Logic interpretation of the Schrödinger’s cat
paradox. We argue that this paradox involves some degree of indeterminacy (unknown)
which Neutrosophic Logic could take into consideration, whereas other methods
including Fuzzy Logic could not. For a balanced discussion, other interpretations
have also been discussed.

1 Schrödinger equation

As already known, Schrödinger equation is the most used
equation to describe non-relativistic quantum systems. Its re-
lativistic version was developed by Klein-Gordon and Dirac,
but Schrödinger equation has wide applicability in particular
because it resembles classical wave dynamics. For intro-
duction to non-relativistic quantum mechanics, see [1].

Schrödinger equation begins with definition of total en-
ergy E = ~p 2/2m. Then, by using a substitution

E = i~
∂

∂t
, P =

~
i
∇, (1)

one gets [2] [

i~
∂

∂t
+ ~

∇̄2

2m
− U (x)

]

ψ = 0 (2)

or
i∂

∂t
ψ = Hψ . (3)

While this equation seems quite clear to represent quan-
tum dynamics, the physical meaning of the wavefunction
itself is not so clear. Soon thereafter Born came up with hy-
pothesis that the square of the wavefunction has the meaning
of chance to find the electron in the region defined by dx
(Copenhagen School). While so far his idea was quickly
adopted as “standard interpretation”, his original “guiding
field” interpretation has been dropped after criticism by Hei-
senberg over its physical meaning [3]. Nonetheless, a de-
finition of “Copenhagen interpretation” is that it gives the
wavefunction a role in the actions of something else, namely
of certain macroscopic objects, called “measurement appa-
ratus”, therefore it could be related to phenomenological
formalism [3].

Nonetheless, we should also note here that there are other
approaches different from Born hypothesis, including:

• The square of the wavefunction represents a measure
of the density of matter in region defined by dx (De-
terminism school [3, 4, 5]). Schrödinger apparently
preferred this argument, albeit his attempt to demon-
strate this idea has proven to be unfruitful;

• The square of wavefunction of Schrödinger equation as
the vorticity distribution (including topological vorti-
city defects) in the fluid [6];

• The wavefunction in Schrödinger equation represents
tendency to make structures;

• The wavemechanics can also be described in terms
of topological Aharonov effect, which then it could
be related to the notion of topological quantization
[7, 8]. Aharonov himself apparently argues in favour
of “realistic” meaning of Schrödinger wave equation,
whose interpretation perhaps could also be related to
Kron’s work [9].

So forth we will discuss solution of this paradox.

2 Solution to Schrödinger’s cat paradox

2.1 Standard interpretation

It is known that Quantum Mechanics could be regarded more
as a “mathematical theory” rather than a physical theory [1,
p. 2]. It is wave mechanics allowing a corpuscular duality.
Already here one could find problematic difficulties: i. e.
while the quantity of wavefunction itself could be computed,
the physical meaning of wavefunction itself remains inde-
finable [1]. Furthermore, this notion of wavefunction corres-
ponds to another fundamental indefinable in Euclidean geo-
metry: the point [1, p. 2]. It is always a baffling question for
decades, whether the electron could be regarded as wave,
a point, or we should introduce a non-zero finite entity [4].
Attempts have been made to describe wave equation in such
non-zero entity but the question of the physical meaning of
wavefunction itself remains mystery.

The standard Copenhagen interpretation advertised by
Bohr and colleagues (see DeBroglie, Einstein, Schrödinger
who advocated “realistic” interpretation) asserts that it is
practically impossible to know what really happens in quan-
tum scale. The quantum measurement itself only represents
reading in measurement apparatus, and therefore it is difficult
to separate the object to be measured and the measurement
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apparatus itself. Bohr’s phenomenological viewpoint perhaps
could be regarded as pragmatic approach, starting with the
request not to attribute a deep meaning to the wave function
but immediately go over to statistical likelihood [10]. Con-
sequently, how the process of “wave collapse” could happen
remains mystery.

Heisenberg himself once emphasized this viewpoint
when asked directly the question: Is there a fundamental
level of reality? He replied as follows:

“This is just the point: I do not know what the words
fundamental reality mean. They are taken from our
daily life situation where they have a good meaning,
but when we use such terms we are usually extrapol-
ating from our daily lives into an area very remote
from it, where we cannot expect the words to have
a meaning. This is perhaps one of the fundamental
difficulties of philosophy: that our thinking hangs in
the language. Anyway, we are forced to use the words
so far as we can; we try to extend their use to the
utmost, and then we get into situations in which they
have no meaning” [11].

A modern version of this interpretation suggests that at
the time of measurement, the wave collapses instantaneously
into certain localized object corresponding to the action of
measurement. In other words, the measurement processes
define how the wave should define itself. At this point, the
wave ceases to become coherent, and the process is known as
“decoherence”. Decoherence may be thought of as a way of
making real for an observer in the large scale world only one
possible history of the universe which has a likelihood that
it will occur. Each possible history must in addition obey the
laws of logic of this large-scale world. The existence of the
phenomenon of decoherence is now supported by laboratory
experiments [12]. It is worthnoting here, that there are also
other versions of decoherence hypothesis, for instance by
Tegmark [13] and Vitiello [14].

In the meantime, the “standard” Copenhagen interpreta-
tion emphasizes the role of observer where the “decoherence
viewpoint” may not. The problem becomes more adverse
because the axioms of standard statistical theory themselves
are not fixed forever [15, 16]. And here is perhaps the
source of numerous debates concerning the interpretation
and philosophical questions implied by Quantum Mechanics.
From this viewpoint, Neutrosophic Logic offers a new view-
point to problems where indeterminacy exists. We will dis-
cuss this subsequently. For a sense of balance, we also
discuss a number of alternative interpretations. Nonetheless
this article will not discuss all existing interpretations of the
quantum wavefunction in the literature.

2.2 Schrödinger’s cat paradox

To make the viewpoint on this paradox a bit clearer, let us
reformulate the paradox in its original form.

According to Uncertainty Principle, any measurement
of a system must disturb the system under investigation,
with a resulting lack of precision in the measurement. Soon
after reading Einstein-Podolsky-Rosen’s paper discussing in-
completeness of Quantum Mechanics, Schrödinger in 1935
came up with a series of papers in which he used the “cat
paradox” to give an illustration of the problem of viewing
these particles in a “thought experiment” [15, 17]:

“One can even set up quite ridiculous cases. A cat
is penned up in a steel chamber, along with the follow-
ing diabolical device (which must be secured against
direct interference by the cat): in a Geiger counter
there is a bit of radioactive substance, so small,
that perhaps in the course of one hour one of the
atoms decays, but also, with equal probability, per-
haps none; if it happens, the counter tube discharges
and through a relay releases a hammer which shatters
a small flask of hydrocyanic acid. If one has left
this entire system to itself for an hour, one would
say that the cat still lives if meanwhile no atom has
decayed. The first atomic decay would have poison-
ed it. The wave-function of the entire system would
express this by having in it the living and the dead
cat (pardon the expression) mixed or smeared into
equal parts.”

In principle, Schrödinger’s thought experiment asks
whether the cat is dead or alive after an hour. The most
logical solution would be to wait an hour, open the box, and
see if the cat is still alive. However once you open the box
to determine the state of the cat you have viewed and hence
disturbed the system and introduced a level of uncertainty
into the results. The answer, in quantum mechanical terms,
is that before you open the box the cat is in a state of being
half-dead and half-alive.

Of course, at this point one could ask whether it is
possible to find out the state of the cat without having to
disturb its wavefunction via action of “observation”.

If the meaning of word “observation” here is defined
by to open the box and see the cat, and then it seems that
we could argue whether it is possible to propose another
equally possible experiment where we introduce a pair of
twin cats, instead of only one. A cat is put in the box while
another cat is located in a separate distance, let say 1 meter
from the box. If the state of the cat inside the box altered
because of poison reaction, it is likely that we could also
observe its effect to its twin, perhaps something like “sixth
sense” test (perhaps via monitoring frequency of the twin
cat’s brain).

This plausible experiment could be viewed as an alter-
native “thought experiment” of well-known Bell-Aspect-type
experiment. One could also consider an entangled pair of
photons instead of twin cats to conduct this “modified” cat
paradox. Of course, for this case then one would get a bit
complicated problem because now he/she should consider
two probable state: the decaying atom and the photon pair.
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We could also say that using this alternative configurat-
ion, we know exact information about the Cat outside, while
indeterminate information about the Cat inside. However,
because both Cats are entangled (twin) we are sure of all
the properties of the Cat inside “knows” the state of the Cat
outside the box, via a kind of “spooky action at distance”
reason (in Einstein’s own word)∗.

Therefore, for experimental purpose, perhaps it would be
useful to simplify the problem by using “modified” Aspect-
type experiment [16]. Here it is proposed to consider a de-
caying atom of Cesium which emits two correlated photons,
whose polarization is then measured by Alice (A) on the
left and by Bob (B) on the right (see Fig. 1). To include
the probable state as in the original cat paradox, we will
use a switch instead of Alice A. If a photon comes to this
switch, then it will turn on a coffee-maker machine, therefore
the observer will get a cup of coffee†. Another switch and
coffee-maker set also replace Bob position (see Fig. 2). Then
we encapsulate the whole system of decaying atom, switch,
and coffee-maker at A, while keeping the system at B side
open. Now we can be sure, that by the time the decaying atom
of Cesium emits photon to B side and triggers the switch at
this side which then turns on the coffee-maker, it is “likely”
that we could also observe the same cup of coffee at A side,
even if we do not open the box.

We use term “likely” here because now we encounter a
“quasi-deterministic” state where there is also small chance
that the photon is shifted different from −0.0116, which is
indeed what the Aspect, Dalibard and Roger experiment de-
monstrated in 1982 using a system of two correlated photons
[16]. At this “shifted” phase, it could be that the switch will
not turn on the coffee-maker at all, so when an observer
opens the box at A side he will not get a cup of coffee.

If this hypothetical experiment could be verified in real
world, then it would result in some wonderful implications,
like prediction of ensembles of multi-particles system, — or
a colony of cats.

Another version of this cat paradox is known as GHZ pa-
radox: “The Greenberger-Horne-Zeilinger paradox exhibits
some of the most surprising aspects of multiparticle entangle-
ment” [18]. But we limit our discussion here on the original
cat paradox.

2.3 Hidden-variable hypothesis

It would be incomplete to discuss quantum paradoxes, in
particular Schrödinger’s cat paradox, without mentioning
hidden-variable hypothesis. There are various versions of
this argument, but it could be summarised as an assertion

∗The authors are grateful to Dmitri Rabounski for his valuable com-
ments discussing a case of entangled twin Cats.

†The “coffee-maker” analogue came to mind after a quote: “A math-
ematician is a device for turning coffee into theorems” — Alfréd Rényi, a
Hungarian mathematician, 1921–1970. (As quoted by Christopher J. Mark.)

that there is “something else” which should be included in
the Quantum Mechanical equations in order to explain thor-
oughly all quantum phenomena. Sometimes this assertion can
be formulated in question form [19]: Can Quantum Mech-
anics be considered complete? Interestingly, however, the
meaning of “complete” itself remains quite abstract (fuzzy).

Figure 1: Aspect-type experiment

Figure 2: Aspect-type experiment in box

An interpretation of this cat paradox suggests that the
problem arises because we mix up the macroscopic systems
(observer’s wavefunction and apparatus’ wavefunction) from
microscopic system to be observed. In order to clarify this,
it is proposed that “. . . the measurement apparatus should
be described by a classical model in our approach, and the
physical system eventually by a quantum model” [20].

2.4 Hydrodynamic viewpoint and diffusion interpre-
tation

In attempt to clarify the meaning of wave collapse and deco-
herence phenomenon, one could consider the process from
(dissipative) hydrodynamic viewpoint [21]. Historically, the
hydrodynamic/diffusion viewpoint of Quantum Mechanics
has been considered by some physicists since the early years
of wave mechanics. Already in 1933, Fuerth showed that
Schrödinger equation could be written as a diffusion equation
with an imaginary diffusion coefficient [1]

Dqm =
i~
2m

. (4)

But the notion of imaginary diffusion is quite difficult
to comprehend. Alternatively, one could consider a classical
Markov process of diffusion type to consider wave mechan-
ics equation. Consider a continuity equation

∂ρ

∂t
= −∇ (ρv) , (5)

where v= v0=D∇ lnρ (see [1]), which is a Fokker-Planck
equation. Then the expectation value for the energy of par-
ticle can be written as [1]
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<E> =

∫ (
mv2

2
+
D2m

2
D ln ρ2 + eV

)

ρd3x . (6)

Alternatively, it could be shown that there is exact mapp-
ing between Schrödinger equation and viscous dissipative
Navier-Stokes equations [6], where the square of the wave-
function of Schrödinger equation as the vorticity distribution
(including topological vorticity defects) in the fluid [6]. This
Navier-Stokes interpretation differs appreciably from more
standard Euler-Madelung fluid interpretation of Schrödinger
equation [1], because in Euler method the fluid is described
only in its inviscid limit.

2.5 How neutrosophy could offer solution to Schrödin-
ger’s paradox

In this regard, Neutrosophic Logic as recently discussed by
one of these authors [22, 23, 24] could offer an interesting
application in the context of Schrödinger’s cat paradox. It
could explain how the “mixed” state could be. It could
be shown, that Neutrosophic probability is useful to those
events, which involve some degree of indeterminacy (un-
known) and more criteria of evaluation — as quantum phys-
ics. This kind of probability is necessary because it provides
a better representation than classical probability to uncertain
events [25]. This new viewpoint for quantum phenomena
is required because it is known that Quantum Mechanics is
governed by uncertainty, but the meaning of “uncertainty”
itself remains uncertain [16].

For example the Schrödinger’s Cat Theory says that the
quantum state of a photon can basically be in more than one
place in the same time which, translated to the neutrosophic
set, means that an element (quantum state) belongs and does
not belong to a set (a place) in the same time; or an element
(quantum state) belongs to two different sets (two different
places) in the same time. It is a problem of “alternative worlds
theory well represented by the neutrosophic set theory.

In Schrödinger’s equation on the behavior of electromag-
netic waves and “matter waves” in quantum theory, the wave
function ψ, which describes the superposition of possible
states, may be simulated by a neutrosophic function, i. e.
a function whose values are not unique for each argument
from the domain of definition (the vertical line test fails,
intersecting the graph in more points).

Now let’s return to our cat paradox [25]. Let’s consider a
Neutrosophic set of a collection of possible locations (posi-
tions) of particle x. And let A and B be two neutrosophic
sets. One can say, by language abuse, that any particle x
neutrosophically belongs to any set, due to the percentages of
truth/indeterminacy/falsity involved, which varies between
−0 and 1+. For example: x (0.5, 0.2, 0.3) belongs to A
(which means, with a probability of 50% particle x is in a
position of A, with a probability of 30% x is not in A, and
the rest is undecidable); or y (0, 0, 1) belongs to A (which

normally means y is not for sure in A); or z (0, 1, 0) belongs
to A (which means one does know absolutely nothing about
z’s affiliation with A). More general, x { (0.2–0.3), (0.40–
0.45)∪ [0.50–0.51], (0.2, 0.24, 0.28) } belongs to the set A,
which mean:

• Owning a likelihood in between 20–30% particle x is
in a position of A (one cannot find an exact approxim-
ate because of various sources used);

• Owning a probability of 20% or 24% or 28% x is not
in A;

• The indeterminacy related to the appurtenance of x to
A is in between 40–45% or between 50–51% (limits
included);

• The subsets representing the appurtenance, indeterm-
inacy, and falsity may overlap, and n_sup= 30%+
+ 51%+ 28%> 100% in this case.

To summarize our proposition [25], given the Schrödin-
ger’s cat paradox is defined as a state where the cat can be
dead, or can be alive, or it is undecided (i. e. we don’t know if
it is dead or alive), then herein the Neutrosophic Logic, based
on three components, truth component, falsehood compo-
nent, indeterminacy component (T, I, F), works very well. In
Schrödinger’s cat problem the Neutrosophic Logic offers the
possibility of considering the cat neither dead nor alive, but
undecided, while the fuzzy logic does not do this. Normally
indeterminacy (I) is split into uncertainty (U) and paradox
(conflicting) (P).

We could expect that someday this proposition based on
Neusotrophic Logic could be transformed into a useful guide
for experimental verification of quantum paradox [15, 10].

Above results will be expanded into details in our book
Multi-Valued Logic, Neutrosophy, and Schrödinger Equation
that is in print.
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In the present article, we argue that it is possible to generalize Schrödinger equation
to describe quantization of celestial systems. While this hypothesis has been described
by some authors, including Nottale, here we argue that such a macroquantization was
formed by topological superfluid vortice. We also provide derivation of Schrödinger
equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid
dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize
Schrödinger equation to describe quantization of celestial
systems, based on logarithmic nature of Schrödinger equa-
tion, and also its exact mapping to Navier-Stokes equa-
tions [1].

While this notion of macro-quantization is not widely ac-
cepted yet, as we will see the logarithmic nature of Schrödin-
ger equation could be viewed as a support of its applicability
to larger systems. After all, the use of Schrödinger equation
has proved itself to help in finding new objects known as
extrasolar planets [2, 3]. And we could be sure that new
extrasolar planets are to be found in the near future. As an
alternative, we will also discuss an outline for how to derive
Schrödinger equation from simplification of Ginzburg-
Landau equation. It is known that Ginzburg-Landau equation
exhibits fractal character, which implies that quantization
could happen at any scale, supporting topological interpret-
ation of quantized vortices [4].

First, let us rewrite Schrödinger equation in its common
form [5] [

i
∂

∂t
+
∇̄2

2m
− U (x)

]

ψ = 0 (1)

or

i
∂ψ

∂t
= Hψ . (2)

Now, it is worth noting here that Englman and Yahalom
[5] argues that this equation exhibits logarithmic character

lnψ(x, t) = ln
(
|ψ(x, t)|

)
+ i arg

(
ψ(x, t)

)
. (3)

Schrödinger already knew this expression in 1926, which
then he used it to propose his equation called “eigentliche
Wellengleichung” [5]. Therefore equation (1) can be re-
written as follows

2m
∂
(
ln|ψ|

)

∂t
+2∇̄ ln |ψ|∇̄arg

[
ψ
]
+∇̄∇̄arg

[
ψ
]
=0 . (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]
was also based on generalization of Schrödinger equation
to describe quantization of celestial systems. It is known
that Nottale-Schumacher’s method [6] could predict new
exoplanets in good agreement with observed data. Nottale’s
scale-relativistic method is essentially based on the use of
first-order scale-differentiation method defined as follows [2]

∂V

∂(lnδt)
= β (V ) = a+ b V + . . . . (5)

Now it seems clear that the natural-logarithmic derivat-
ion, which is essential in Nottale’s scale-relativity approach,
also has been described properly in Schrödinger’s original
equation [5]. In other words, its logarithmic form ensures
applicability of Schrödinger equation to describe macro-
quantization of celestial systems. [7, 8]

2 Quantization of celestial systems and topological
quantized vortices

In order to emphasize this assertion of the possibility to de-
scribe quantization of celestial systems, let us quote Fischer’s
description [4] of relativistic momentum from superfluid
dynamics. Fischer [4] argues that the circulation is in the
relativistic dense superfluid, defined as the integral of the
momentum

γs =

∮
pμ dx

μ = 2πNv ~ , (6)

and is quantized into multiples of Planck’s quantum of action.
This equation is the covariant Bohr-Sommerfeld quantization
of γs. And then Fischer [4] concludes that the Maxwell
equations of ordinary electromagnetism can be written in
the form of conservation equations of relativistic perfect fluid
hydrodynamics [9]. Furthermore, the topological character of
equation (6) corresponds to the notion of topological elect-
ronic liquid, where compressible electronic liquid represents
superfluidity [25]. For the plausible linkage between super-
fluid dynamics and cosmological phenomena, see [16–24].
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It is worth noting here, because vortices could be defined
as elementary objects in the form of stable topological exci-
tations [4], then equation (6) could be interpreted as Bohr-
Sommerfeld-type quantization from topological quantized
vortices. Fischer [4] also remarks that equation (6) is quite
interesting for the study of superfluid rotation in the context
of gravitation. Interestingly, application of Bohr-Sommerfeld
quantization for celestial systems is known in literature [7, 8],
which here in the context of Fischer’s arguments it has
special meaning, i. e. it suggests that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale [4]. In our opinion, this result supports known
experiments suggesting neat correspondence between con-
densed matter physics and various cosmology phen-
omena [16–24].

To make the conclusion that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale a bit conceivable, let us consider the problem
of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this
hypothesis we could begin with the Bohr-Sommerfeld’s con-
jecture of quantization of angular momentum. This con-
jecture may originate from the fact that according to BCS
theory, superconductivity can exhibit macroquantum phen-
omena [26, 27]. In principle, this hypothesis starts with
observation that in quantum fluid systems like superfluidity
[28]; it is known that such vortexes are subject to quantization
condition of integer multiples of 2π, or

∮
vsdl= 2πn~/m.

As we know, for the wavefunction to be well defined and
unique, the momenta must satisfy Bohr-Sommerfeld’s quant-
ization condition [28]

∮

Γ

p dx = 2πn~ (6a)

for any closed classical orbit Γ. For the free particle of unit
mass on the unit sphere the left-hand side is [28]

∫ T

0

v2dτ = ω2T = 2πω , (7)

where T = 2π/ω is the period of the orbit. Hence the quantiz-
ation rule amounts to quantization of the rotation frequency
(the angular momentum): ω=n~. Then we can write the
force balance relation of Newton’s equation of motion [28]

GMm

r2
=
mv2

r
. (8)

Using Bohr-Sommerfeld’s hypothesis of quantization of
angular momentum, a new constant g was introduced [28]

mvr =
ng

2π
. (9)

Just like in the elementary Bohr theory (before Schrödin-
ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]

r =
n2g2

4π2GMm2
, (10)

which can be rewritten in the known form of gravitational
Bohr-type radius [2, 7, 8]

r =
n2GM

v20
, (11)

where r, n, G, M , v0 represents orbit radii, quantum number
(n= 1, 2, 3, . . . ), Newton gravitation constant, and mass of
the nucleus of orbit, and specific velocity, respectively. In
this equation (11), we denote [28]

v0 =
2π

g
GMm. (12)

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific
velocity v0 is 144 km/sec for planetary systems. By noting
that m is meant to be mass of celestial body in question, then
we could find g parameter (see also [28] and references cited
therein).

Using this equation (11), we could predict quantization of
celestial orbits in the solar system, where for Jovian planets
we use least-square method and use M in terms of reduced
mass μ= (M1+M2)

M1M2
. From this viewpoint the result is shown

in Table 1 below [28].
For comparison purpose, we also include some recent

observation by Brown-Trujillo team from Caltech [29–32].
It is known that Brown et al. have reported not less than four
new planetoids in the outer side of Pluto orbit, including
2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VB12 (at
76 AU, dubbed as Sedna). And recently Brown-Trujillo team
reported a new planetoid finding, called 2003UB31 (97 AU).
This is not to include their previous finding, Quaoar (42 AU),
which has orbit distance more or less near Pluto (39.5 AU),
therefore this object is excluded from our discussion. It is
interesting to remark here that all of those new “planetoids”
are within 8% bound from our prediction of celestial quant-
ization based on the above Bohr-Sommerfeld quantization
hypothesis (Table 1). While this prediction is not so precise
compared to the observed data, one could argue that the
8% bound limit also corresponds to the remaining planets,
including inner planets. Therefore this 8% uncertainty could
be attributed to macroquantum uncertainty and other local
factors.

While our previous prediction only limits new planet
finding until n= 9 of Jovian planets (outer solar system),
it seems that there are sufficient reasons to suppose that
more planetoids in the Oort Cloud will be found in the near
future. Therefore it is recommended to extend further the
same quantization method to larger n values. For prediction
purpose, we include in Table 1 new expected orbits based
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Object No. Titius Nottale CSV Observ. Δ, %

1 0.4 0.43

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 −6.95

Mars 6 16 15.4 15.4 15.24 −1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 −10.00

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 −7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 −3.72

2003EL61 7 557.7 520 −7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserv. 10 1138.1

Unobserv. 11 1377.1

Table 1: Comparison of prediction and observed orbit distance of
planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For
Jovian planets corresponding to quantum number n= 10 and
n= 11, our method suggests that it is likely to find new
orbits around 113.81 AU and 137.71 AU, respectively. It is
recommended therefore, to find new planetoids around these
predicted orbits.

As an interesting alternative method supporting this pro-
position of quantization from superfluid-quantized vortices
(6), it is worth noting here that Kiehn has argued in favor of
re-interpreting the square of the wavefunction of Schrödinger
equation as the vorticity distribution (including topological
vorticity defects) in the fluid [1]. From this viewpoint, Kiehn
suggests that there is exact mapping from Schrödinger equa-
tion to Navier-Stokes equation, using the notion of quantum
vorticity [1]. Interestingly, de Andrade and Sivaram [33] also
suggest that there exists formal analogy between Schrödinger
equation and the Navier-Stokes viscous dissipation equation:

∂V

∂t
= ν∇2V , (13)

where ν is the kinematic viscosity. Their argument was based
on propagation torsion model for quantized vortices [23].
While Kiehn’s argument was intended for ordinary fluid,
nonetheless the neat linkage between Navier-Stokes equation
and superfluid turbulence is known in literature [34, 24].

At this point, it seems worth noting that some criticism
arises concerning the use of quantization method for de-
scribing the motion of celestial systems. These criticism
proponents usually argue that quantization method (wave
mechanics) is oversimplifying the problem, and therefore
cannot explain other phenomena, for instance planetary mig-
ration etc. While we recognize that there are phenomena
which do not correspond to quantum mechanical process, at
least we can argue further as follows:

1. Using quantization method like Nottale-Schumacher
did, one can expect to predict new exoplanets (extra-
solar planets) with remarkable result [2, 3];

2. The “conventional” theories explaining planetary mig-
ration normally use fluid theory involving diffusion
process;

3. Alternatively, it has been shown by Gibson et al. [35]
that these migration phenomena could be described via
Navier-Stokes approach;

4. As we have shown above, Kiehn’s argument was based
on exact-mapping between Schrödinger equation and
Navier-Stokes equations [1];

5. Based on Kiehn’s vorticity interpretation one these
authors published prediction of some new planets in
2004 [28]; which seems to be in good agreement with
Brown-Trujillo’s finding (March 2004, July 2005) of
planetoids in the Kuiper belt;

6. To conclude: while our method as described herein
may be interpreted as an oversimplification of the real
planetary migration process which took place some-
time in the past, at least it could provide us with useful
tool for prediction;

7. Now we also provide new prediction of other planet-
oids which are likely to be observed in the near future
(around 113.8 AU and 137.7 AU). It is recommended
to use this prediction as guide to finding new objects
(in the inner Oort Cloud);

8. There are of course other theories which have been
developed to explain planetoids and exoplanets [36].
Therefore quantization method could be seen as merely
a “plausible” theory between others.

All in all, what we would like to emphasize here is
that the quantization method does not have to be the true
description of reality with regards to celestial phenomena.
As always this method could explain some phenomena, while
perhaps lacks explanation for other phenomena. But at least
it can be used to predict something quantitatively, i. e. mea-
surable (exoplanets, and new planetoids in the outer solar
system etc.).

In the meantime, it seems also interesting here to consider
a plausible generalization of Schrödinger equation in partic-
ular in the context of viscous dissipation method [1]. First,
we could write Schrödinger equation for a charged particle
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interacting with an external electromagnetic field [1] in the
form of Ulrych’s unified wave equation [14]
[
(−i~∇− qA)μ(−i~∇− qA)μψ

]
=

=

[

−i2m
∂

∂t
+ 2mU(x)

]

ψ .
(14)

In the presence of electromagnetic potential, one could
include another term into the LHS of equation (14)
[
(−i~∇− qA)μ(−i~∇− qA)μ + eA0

]
ψ =

= 2m

[

−i
∂

∂t
+ U(x)

]

ψ .
(15)

This equation has the physical meaning of Schrödinger
equation for a charged particle interacting with an external el-
ectromagnetic field, which takes into consideration Aharonov
effect [37]. Topological phase shift becomes its immediate
implication, as already considered by Kiehn [1].

As described above, one could also derived equation
(11) from scale-relativistic Schrödinger equation [2, 3]. It
should be noted here, however, that Nottale’s method [2,
3] differs appreciably from the viscous dissipative Navier-
Stokes approach of Kiehn [1], because Nottale only considers
his equation in the Euler-Newton limit [3]. Nonetheless,
it shall be noted here that in his recent papers (2004 and
up), Nottale has managed to show that his scale relativistic
approach has linkage with Navier-Stokes equations.

3 Schrödinger equation derived from Ginzburg-
Landau equation

Alternatively, in the context of the aforementioned superfluid
dynamics interpretation [4], one could also derive Schrödin-
ger equation from simplification of Ginzburg-Landau equa-
tion. This method will be discussed subsequently. It is known
that Ginzburg-Landau equation can be used to explain vari-
ous aspects of superfluid dynamics [16, 17]. For alternative
approach to describe superfluid dynamics from Schrödinger-
type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction
of N bosons of a reduced mass m∗ can be described as [40]

−

(
~2

2m∗

)

∇2ψ + κ |ψ|2ψ = i~
∂ψ

∂t
. (16)

For some conditions, it is possible to replace the potential
energy term in equation (16) with Hulthen potential. This
substitution yields

−

(
~2

2m∗

)

∇2ψ + VHulthenψ = i~
∂ψ

∂t
, (17)

where

VHulthen = −Ze
2 δ e−δr

1− e−δr
. (18)

This equation (18) has a pair of exact solutions. It could
be shown that for small values of δ, the Hulthen potential (18)
approximates the effective Coulomb potential, in particular
for large radius

V eff

Coulomb = −
e2

r
+
`(`+ 1) ~2

2mr2
. (19)

By inserting (19), equation (17) could be rewritten as

−

(
~2

2m∗

)

∇2ψ+

[

−
e2

r
+
`(`+1)~2

2mr2

]

ψ = i~
∂ψ

∂t
. (20)

For large radii, second term in the square bracket of LHS
of equation (20) reduces to zero [41],

`(`+ 1)~2

2mr2
→ 0 , (21)

so we can write equation (20) as
[

−

(
~2

2m∗

)

∇2 + U(x)

]

ψ = i~
∂ψ

∂t
, (22)

where Coulomb potential can be written as

U(x) = −
e2

r
. (22a)

This equation (22) is nothing but Schrödinger equation
(1), except for the mass term now we get mass of Cooper
pairs. In other words, we conclude that it is possible to re-
derive Schrödinger equation from simplification of (Gross-
Pitaevskii) Ginzburg-Landau equation for superfluid dyn-
amics [40], in the limit of small screening parameter, δ.
Calculation shows that introducing this Hulthen effect (18)
into equation (17) will yield essentially similar result to (1),
in particular for small screening parameter. Therefore, we
conclude that for most celestial quantization problems the
result of TDGL-Hulthen (20) is essentially the same with the
result derived from equation (1). Now, to derive gravitational
Bohr-type radius equation (11) from Schrödinger equation,
one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of
Schrödinger equation from (Gross-Pitaevskii) Ginzburg-
Landau equation is in good agreement with our previous con-
jecture that equation (6) implies macroquantization corres-
ponding to superfluid-quantized vortices. This conclusion is
the main result of this paper. Furthermore, because Ginzburg-
Landau equation represents superfluid dynamics at low-
temperature [40], the fact that we can derive quantization
of celestial systems from this equation seems to support
the idea of Bose-Einstein condensate cosmology [42, 43].
Nonetheless, this hypothesis of Bose-Einstein condensate
cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,
Neutrosophy, and Schrödinger Equation that is in print.
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A great deal of misunderstandings and mathematical errors are involved in the currently
accepted theory of the gravitational field generated by an isotropic spherical mass. The
purpose of the present paper is to provide a short account of the rigorous mathematical
theory and exhibit a new formulation of the problem. The solution of the corresponding
equations of gravitation points out several new and unusual features of the stationary
gravitational field which are related to the non-Euclidean structure of the space.
Moreover it precludes the black hole from being a mathematical and physical notion.

1 Introduction

If the structure of the spacetime is actually non-Euclidean as
is postulated by general relativity, then several non-Euclidean
features will manifest themselves in the neighbourhoods of
the sources of the gravitational field. So, a spherical distrib-
ution of matter will appear as a non-Euclidean ball and the
concentric with it spheres will possess the structure of non-
Euclidean spheres. Specifically, if this distribution of matter
is isotropic, such a sphere will be characterised completely
by its radius, say ρ, and its curvature radius which is a
function of ρ, say g (ρ), defining the area 4π(g (ρ))2 of the
sphere as well as the length of circumference 2πg (ρ) of
the corresponding great circles. It is then expected that the
function g (ρ) will play a significant part in the conception
of the metric tensor related to the gravitational field of the
spherical mass. Of course, in formulating the problem, we
must distinguish clearly the radius ρ, which is introduced as
a given length, from the curvature radius g (ρ), the determin-
ation of which depends on the equations of gravitation.
However the classical approach to the problem suppresses
this distinction and assumes that the radius af the sphere is the
unknown function g (ρ). This glaring mistake underlies the
pseudo-theorem of Birkhoff as well as the classical solutions,
which have distorted the theory of the gravitational field.

Another glaring mistake of the classical approach to the
problem is related to the topological space which underlies
the definition of the metric tensor. The spatial aspect of the
problem suggests to identify the centre of the spherical mass
with the origin of the vector space R3 which is moreover
considered with the product topology of three real lines. Re-
garding the time t , several assumptions suggest to consider
it (or rather ct) as a variable describing the real line R. It fol-
lows that the topological space pertaining to the considered
situation is the space R×R3 equipped with the product top-
ology of four real lines. This simple and clear algebraic and
topological situation has been altered from the beginnings of
general relativity by the introduction of the so-called polar
coordinates of R3 which destroy the topological structure of
R3 and replace it by the manifold with boundary

[
0,+∞

[
×S2.

The use of polar coordinates is allowed in the theory of
integration, because the open set ] 0,+∞ [×] 0, 2π [×] 0, π [ ,
described by the point (r, φ, θ), is transformed diffeomorph-
ically onto the open set

R3 −
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

and moreover the half-plane
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

is of zero measure in R3. But in general relativity this half-
plane cannot be omitted. Then by choosing two systems of
geographic coordinates covering all of S2, we define a C∞

mapping of
[
0,+∞

[
×S2 onto R3 transgressing the fund-

amental principle according to which only diffeomorphisms
are allowed. In fact, this mapping is not even one-to-one:
All of {0} × S2 is transformed into the origin of R3. This
situation gives rise to inconsistent assertions. So, although the
origin of R3 disappears in polar coordinates, the meaningless
term “the origin r=0” is commonly used. Of course, the
value r=0 does not define a point but the boundary {0}×S2

which is an abstract two-dimensional sphere without physical
meaning. In accordance with the idea that the value r=0
defines the origin, the relativists introduce transformations
of the form r =h (r), r> 0, in order to “change the origin”.
This extravagant idea goes back to Droste, who claims that
by setting r= r+2μ, μ= km

c2
, we define a “new radial co-

ordinate r ” such that the sphere r=2μ reduces to the “new
origin r=0”. Rosen [2] claims also that the transformation
r= r+2μ allows to consider a mass point placed at the ori-
gin r=0 ! The same extravagant ideas are introduced in the
definition of the so-called harmonic coordinates by Lanczos
(1922) who begins by the introduction of the transformation
r= r+μ in order to define the “new radial coordinate r”.

The introduction of the manifold with boundary[
0,+∞

[
×S2 instead of R3, hence also the introduction

of R ×
[
0,+∞

[
×S2 instead of R×R3, gives also rise to

misunderstandings and mistakes regarding the space metrics
and the spacetime metrics as well.

Given a C∞ Riemannian metric on R3 , its transform in
polar coordinates is a C∞ quadratic form on

[
0,+∞

[
×S2,
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positive definite on ] 0,+∞
[
×S2 and null on {0} ×S2.

(This is, in particular, true for the so-called metric of R3

in polar coordinates, namely ds2= dr2+ r2dω2 with dω2=
= sin2 θdφ2+ dθ2 in the domain of validity of (φ, θ).) But
the converse is not true. A C∞ form on

[
0,+∞

[
×S2

satisfying the above conditions is associated in general with
a form on R3 presenting discontinuities at the origin of R3.
So the C∞ form 2dr2+ r2dω2, conceived on

[
0,+∞

[
×S2,

results from a uniquely defined form on R3, namely

dx2 +
(xdx)

2

‖x‖2
,

(here dx2=dx21+dx
2
2+dx

2
3, xdx=x1dx1+x2dx2+x3dx3)

which is discontinuous at x=(0, 0, 0).
Now, given a C∞ spacetime metric on R×R3, its trans-

form in polar coordinates is a C∞ form degenerating on the
boundary R×{0}×S2. But the converse is not true. A C∞

spacetime form on R×
[
0,+∞

[
×S2 degenerating on the

boundary R× {0} × S2 results in general from a spacetime
form on R×R3 presenting discontinuities. For instance, the
so-called Bondi metric

ds2 = e2Adt2 + 2eA+Bdtdr − r2dω2

whereA=A(t, r),B=B(t, r), conceals singularities, because
it results from a uniquely defined form on R×R3, namely

ds2 = e2Adt2 + 2eA+B
(xdx)

‖x‖
dt− dx2 +

(xdx)
2

‖x‖

which is discontinuous at x=(0, 0, 0). It follows that the
current practice of formulating problems with respect to
R×

[
0,+∞

[
×S2, instead of R×R3, gives rise to mislead-

ing conclusions. The problems must be always conceived
with respect to R× R3.

2 SΘ(4)-invariant and Θ(4)-invariant tensor fields on
R× R3.

The metric tensor is conceived naturally as a tensor field
invariant by the action of the rotation group SO(3). However,
although SO(3) acts naturally on R3, it does not the same
on R×R3, and this is why we are led to introduce the group
SΘ(4) consisting of the matrices

(
1 OH
OV A

)

with OH =(0, 0, 0), OV =
(
0
0
0

)
and A∈SO (3). We intro-

duce also the group Θ(4) consisting of the matrices of the
same form for which A∈O(3). Obviously SΘ(4) is a sub-
group of Θ(4).

With these notations, the metric tensor related to the iso-
tropic distribution of matter is conceived as a SΘ(4)-invariant
tensor field on R×R3. SΘ(4)-invariant tensor fields appear
in several problems of relativity, so that it is convenient

to study them in detail. Their rigorous theory appears in a
previous paper [7] together with the theory of the pure SΘ(4)-
invariant tensor fields which are not used in the present paper.

It is easily seen that a function h(x0, x1, x2, x3) is SΘ(4)-
invariant (or Θ(4)-invariant) if and only if it is of the form
f(x0 , ‖x‖). Of course we confine ourselves to the case where
f(x0 , ‖x‖) is C∞ with respect to the coordinates x0, x1,
x2, x3 on R×R3.

Proposition 2.1 f(x0 , ‖x‖) is C∞ on R× R3 if and only
if the function f(x0 , u) with (x0 , u) ∈ R× [0,+∞ [ is C∞

on R × [0,+∞ [ and such that its derivatives of odd order
with respect to u at u = 0 vanish.

The functions satisfying these conditions constitute an
algebra which will be denoted by Γ0. As a corollary, we see
that f(x0 , ‖x‖) belongs to Γ0 if and only if the function
h(x0 , u) defined by setting

h(x0 , u) = h(x0 ,−u) = f(x0 , u) , u > 0

is C∞ on R×R. It follows in particular that, if the function
f(x0 , ‖x‖) belongs to Γ0 and is strictly positive, then the
functions 1

f(x0 ,‖x‖)
and

√
f(x0 ,‖x‖) belong also to Γ0. Now,

if T (x0 , x), x=(x1, x2, x3), is an SΘ(4)-invariant (or Θ(4)-
invariant) tensor field on R × R3, then, for every function
f ∈Γ0, the tensor field f(x0 , ‖x‖) T (x0 , x) is also SΘ(4)-
invariant (or Θ(4)-invariant). Consequently the set of SΘ(4)-
invariant (or Θ(4)-invariant) tensor fields constitutes a Γ0-
module. In particular, we are interesting in the sub-module
consisting of the covariant tensor fields of degree 2. The
proof of the following proposition is given in the paper [7].

Proposition 2.2 Let T (x0 , x) be an SΘ(4)-invariant C∞

covariant symmetric tensor field of degree 2 on R × R3.
Then there exist four functions q00 ∈Γ0 , q01 ∈Γ0 , q11 ∈Γ0 ,
q22 ∈Γ0 such that

T (x0 , x) = q00 (x0 , ‖x‖) (dx0 ⊗ dx0)+

+ q01 (x0 , ‖x‖)
(
dx0 ⊗ F (x) + F (x)⊗ dx0

)
+

+ q11 (x0 , ‖x‖)E(x) + q22 (x0 , ‖x‖)
(
F (x)⊗ F (x)

)
,

whereE(x)=
∑3

1 (dxi⊗dxi) and F (x)=
∑3

1 xidxi . More-
over T (x0 , x) is Θ(4)-invariant.

So, the components gαβ of T (x0 , x) are defined by
means of the four functions q00, q01, q11, q22 as follows

g00 = q00 , g0i = gi0 = xi q01 ,

gii = q11 + x
2
i q22 , gij = xixj q22 ,

where i, j=1, 2, 3; i 6= j. Suppose now that the tensor field
T (x0 , x) is a metric tensor, namely a symmetric tensor field
of signature (+1,−1,−1,−1). Then we write it usually as a
quadratic form

ds2 = q00dx
2
0 + 2q01 (xdx) dx0 + q11dx

2 + q22 (xdx)
2
.
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Since x0= t is the time coordinate, we have q00=
= q00 (x0 , ‖x‖) > 0 for all (x0 , x) ∈ R×R3, so the function
f = f(x0 , ‖x‖)=

√
q00 (x0 , ‖x‖) is strictly positive and C∞

on R × R3. Consequently the function f1=
q01
f

is also C∞

on R × R3, namely a function belonging to Γ0, and we can
write the metric into the form

ds2 =
(
fdt+ f1 (xdx)

)2
+ q11dx

2 +
(
q22 − f

2
1

)
(xdx)

2

which makes explicit the corresponding spatial (positive de-
finite) metric −q11dx2−

(
q22−f21

)
(xdx)

2 with −q11> 0
and−q11−

(
q22− f21

)
‖x‖2> 0 on R×R3. So we can intro-

duce the strictly positive C∞ functions

`1 = `1 (t, ‖x‖) =
√
−q11 (t, ‖x‖)

and
` = ` (t, ‖x‖) =

√
`21 − ‖x‖2

(
q22 − f21

)

which possess a clear geometrical meaning:

`1 serves to define the curvature radius g (t, ρ)=
= g (t, ‖x‖)= ‖x‖`1(t, ‖x‖) = ρ `1(t, ρ), (ρ = ‖x‖),
of the non-Euclidean spheres centered at the origin of
R3, whereas ` defines the element of length on the
spatial radial geodesics.

Consequently it is very convenient to put the metric into
a form exhibiting explicitly `1 and `. This is obtained by
remarking that the C∞ function q22− f21 can be written as

`21 − `
2

ρ2
.

Of course the last expression is C∞ everywhere on
account of the condition `1(t, 0)= `(t, 0) and the fact that
`1 ∈Γ0, `∈Γ0. It follows that

ds2 =
(
fdt+ f1 (xdx)

)2
− `21dx

2 −
`2 − `21
ρ2

(xdx)
2
(2.1)

or
ds2 = f2dt2 + 2ff1 (xdx) dt− `

2
1dx

2+

+

(
`21 − `

2

ρ2
+ f21

)

(xdx)
2 (2.2)

with the components

g00 = f2, g0i = gi0 = xiff1 ,

gii = −`
2
1 + x

2
i

(
`21 − `

2

ρ2
+ f21

)

,

gij = xixj

(
`21 − `

2

ρ2
+ f21

)

, i, j = 1, 2, 3; i 6= j .

There are two significant functions which do not appear
in (2. 1) and are not C∞ on R×R3:

1. First the already considered curvature radius g (t, ρ)=
= ρ`1(t, ρ) of the non-Euclidean spheres centered at
the origin;

2. Secondly the function h(t, ρ)= ρf1(t, ρ) which ap-
pears in the equations defining the radial motions of

photons outside the matter, namely the equations

(fdt + f1ρ dρ)
2 = `2dρ2 or fdt + ρf1dρ =±`dρ

which imply necessarily |h|6 ` in order that both the
ingoing and outgoing motions be possible [4]. In any
case the condition |h|6 ` must also be valid inside
the matter in order that the nature of the variable t
as time coordinate be preserved. Moreover h vanishes
for ρ=0.

Of course g and h are C∞ with respect to (t, ρ) ∈
R×[0,+∞ [, but since ρ=‖x‖ is not differentiable at the ori-
gin, they are not differentiable on the subspace R×{(0, 0, 0)}
of R × R3. However, on account of their geometrical and
physical significance, we introduce them in the computations
remembering that, for any global solution on R × R3, the
functions `1 =

g
ρ and f1 =

h
ρ appearing in (2.1) must be

elements of the algebra Γ0.

3 The Ricci tensor and the equations of gravitation

In order to obtain the equations of gravitation related to (2.1),
we have first to introduce the Christoffel symbols and then
compute the components of the Ricci tensor. At first sight
the computations seem to be extremely complicated, but the
Θ(4)-invariance of the metric allows to obtain a great deal of
simplification in accordance with the following proposition,
the proof of which is given in the paper [8].

Proposition 3.1 (a) The Christoffel symbols of the first kind
as well as those of the second kind related to (2.2) are the
components of a Θ(4)-invariant tensor field; (b) The curva-
ture tensor, the Ricci tensor, and the scalar curvature relat-
ed to (2.2) are Θ(4)-invariant; (c) If an energy-momentum
tensor satisfies the equations of gravitation related to (2.2),
it is Θ(4)-invariant.

Corollary 3.1. The Christoffel symbols of the second kind
related to (2.2) depend on ten C∞ functions Bα=Bα(t, ρ),
(α=0, 1, 2, . . . , 9), as follows:

Γ000 = B0 , Γ00i = Γ
0
i0 = B1xi , Γi00 = B2xi ,

Γ0ii = B3 +B4x
2
i , Γ0ij = Γ

0
ji = B4xixj ,

Γii0 = Γ
i
0i = B5 +B6x

2
i , Γij0 = Γ

i
0j = B6xixj ,

Γiii = B7x
3
i + (B8 + 2B9)xi ,

Γijj = B7xix
2
i +B8xi , Γ

j
ij = Γ

j
ji = B7xix

2
j +B9xi ,

Γijk = B7xixjxk , i, j, k = 1, 2, 3; j 6= k 6= i .

Regarding the Ricci tensor Rαβ , since it is symmetric
and Θ(4)-invariant, its components are defined, according to
proposition 2.2, by four functions Q00=Q00(t, ρ), Q01=
=Q01(t, ρ), Q11=Q11(t, ρ), Q22=Q22(t, ρ) as follows:

R00=Q00 , R0i=Ri0=Q01xi , Rii=Q11+x
2
iQ22 ,

Rij =xixjQ22 , i, j=1, 2, 3; i 6= j .
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In the same way, an energy-momentum tensor Wαβ satis-
fying the equations of gravitation related to (2.2) is defined
by four functions of (t, ρ), say E00, E01, E11, E22:

W00 = E00 , W0i = xiE01 , Wii = E11 + x
2
iE22 ,

Wij = xixjE22 , i, j = 1, 2, 3; i 6= j .

Moreover, since the scalar curvature R=Q is Θ(4)-
invariant, it is a function of (t, ρ): R=Q=Q(t, ρ).

It follows that the equations of gravitation (with cosmo-
logical constant −3λ)

Rαβ −

(
Q

2
+ 3λ

)

gαβ +
8πk

c4
Wαβ = 0

can be written from the outset as a system of four equations
depending uniquely on (t, ρ):

Q00 −

(
Q

2
+ 3λ

)

f2 +
8πk

c4
E00 = 0 ,

Q01 −

(
Q

2
+ 3λ

)

ff1 +
8πk

c4
E01 = 0 ,

Q11 +

(
Q

2
+ 3λ

)

`21 +
8πk

c4
E11 = 0 ,

Q22 −

(
Q

2
+ 3λ

)(
`21 − `

2

ρ2
+ f21

)

+
8πk

c4
E22 = 0 .

Note that it is often convenient to replace the last equation
by the equation

Q11+ρ
2Q22−

(
Q

2
+3λ

)
(
ρ2f21−`

2
)
+
8πk

c4
(
E11+ρ

2E22
)
=0.

In order to apply these equations to special situations, it
is necessary to give the explicit expressions of Q00, Q01,
Q11, Q22 by means of the functions Bα, (α = 0, 1, 2, ..., 9),
appearing in the Christoffel symbols. We recall the results of
computation

Q00 =
∂

∂t

(
3B5 + ρ

2B6
)
− ρ

∂B2
∂ρ

−

−B2
(
3 + 4ρ2B9 − ρ

2B1 + ρ
2B8 + ρ

2B7
)
−

− 3B0B5 + 3B
2
5 + ρ

2B6
(
−B0 + 2B5 + ρ

2B6
)
,

Q01 =
∂

∂t

(
ρ2B7 +B8 + 4B9

)
−
1

ρ

∂B5
∂ρ

− ρ
∂B6
∂ρ

+

+B2
(
B3+ρ

2B4
)
− 2B6

(
2+ρ2B9

)
−B1

(
3B5+ρ

2B6
)
,

Q11 = −
∂B3
∂t

− ρ
∂B8
∂ρ

−
(
B0 +B5 + ρ

2B6
)
B3+

+
(
1− ρ2B8

)(
B1 + ρ

2B7 +B8 + 2B9
)
− 3B8 ,

Q22 = −
∂B4
∂t

+
1

ρ

∂

∂ρ
(B1 +B8 + 2B9) +B

2
1 +B

2
8 −

− 2B29 − 2B1B9 + 2B3B6 +
(
−B0 −B5 + ρ

2B6
)
B4+

+
(
−3 + ρ2 (−B1 +B8 − 2B9)

)
B7 .

4 Stationary vacuum solutions

The radial motion of the isotropic spherical distribution of
matter generates a non-stationary (dynamical) gravitational
field extending beyond the boundary in the exterior space.
This field is defined by non-stationaryΘ(4)-invariant vacuum
solutions of the equations of gravitation and exhibits essential
and unusual features related to the propagation of gravitation.
Several problems related to it are not yet clarified. But, in
any case, in order to establish and understand the dynamical
solutions, a previous knowledge of the stationary solutions
is necessary. This is why, in the sequel we confine ourselves
to the simple problems related to the stationary vacuum
solutions. So we suppose that we have a stationary metric

ds2 =
(
fdt+f1 (xdx)

)2
− `21dx

2−
`2 − `21
ρ2

(xdx)
2
, (4.1)

where f=f(ρ), f1=f1(ρ), `1=`1(ρ), `=`(ρ).
Of course, we have also to take into account the signif-

icant functions

h = h(ρ) = ρf1(ρ) , g = g(ρ) = ρ`1(ρ) ,

which are not differentiable at the origin (0, 0, 0). Every half-
line issuing from the origin, x1=α1ρ , x2=α2ρ , x3=α3ρ
(where 06 ρ<+∞ and α21+α

2
2+α

2
3=1) is a geodesic of

the spatial metric `21dx
2+

`2−`21
ρ2

(xdx)
2 so that the geodesic

distance δ of the origin from the point x=(x1, x2, x3) is
defined by the integral

δ =

∫ ρ

0

`(u)du, ρ = ‖x‖.

As already noticed, the function `(ρ), where 06 ρ<+∞,
is strictly positive, but it cannot be arbitrarily given. Suppose,
for instance, that

`(ρ) =
ε

ρ2
, ε = const > 0

on [1,+∞ [ . Then the geodesic distance δ=
∫ 1
0
`(u)du+

+
∫ ρ
1

ε
u2
du=

∫ 1
0
`(u)du+ ε− ε

ρ tends to the finite value
∫ 1
0
`(u)du+ ε as ρ→∞, which cannot be physically ac-

cepted. Consequently the positive function `(ρ) is allowable
only if the integral

∫ ρ
0
`(u)du tends to +∞ as ρ→+∞.

This being said, it is easy to see that the functions Bα =
Bα(ρ), (α=0, 1, . . . , 9), occurring in the Christoffel sym-
bols resulting from the stationary metric (4.1) are defined by
the following formulae:

B0 = −
hf ′

`2
, B1 =

f ′

ρf
−
h2f ′

ρf`2
,

B2 =
ff ′

ρ `2
, B3 =

hgg′

ρ2f`2
,

B4 =
hf ′

ρ2f2
−

h3f ′

ρ2f2`2
+

h′

ρ2f
−

h`′

ρ2f`
−

hgg′

ρ4f`2
,
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B5 = 0 , B6 =
hf ′

ρ2`2
,

B7 =
h2f ′

ρ3f`2
+

`′

ρ3`
+

gg′

ρ5`2
−
2g′

ρ3g
+
1

ρ4
,

B8 =
1

ρ2
−

gg′

ρ3`2
, B9 = −

1

ρ2
+
g′

ρg
.

Then inserting these expressions in the formulae brought
out at the end of the previous section, we find the functions

Q00 = f

(

−
f ′′

`2
+
f ′`′

`3
−
2f ′g′

`2g

)

, g = ρ`1 ,

Q01 =
h

ρf
Q00 , h = ρf1 ,

Q11 =
1

ρ2

(

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2

)

,

Q11 + ρ
2Q22 =

f ′′

f
+
2g′′

g
−
f ′`′

f`
−
2`′g′

`g
+
h2

f2
Q00 ,

which are everywhere valid, namely outside as well as inside
the matter, Specifically, by using them, we can establish the
gravitational equations outside the matter with electromag-
netic field and cosmological constant. However, in the pre-
sent short account, our purpose is to put forward the most
significant elementary facts, and this is why we confine our-
selves to the pure gravitational field outside the matter with-
out cosmological constant. Then Q=R=0, λ=0, so that
Q00=0, Q01=0, Q11=0, Q11+ρ2Q22=0. Since Q00=0
impliesQ01=0, we have finally the following three equations

−f ′′ +
f ′`′

`
−
2f ′g′

g
= 0 , (4.2)

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2
= 0 , (4.3)

f ′′ +
2fg′′

g
−
f ′`′

`
−
2f`′g′

`g
= 0 , (4.4)

By adding (4.2) to (4.4) we obtain

f ′g′

f
= g′′ −

`′g′

`
(4.5)

and inserting this expression of f ′g′

f
into (4.3), we find the

equation
−1 +

g′2

`2
+
2gg′′

`2
−
2`′gg′

`3
= 0

which implies d
dρ

(
−g+ gg′2

`2

)
=0 so that

−g +
gg′2

`2
= −2A = const. (4.6)

On the other hand (4.5) can be written as (f`)′g′=(f`) g′′

whence d
dρ

(
g′

f`

)
=0 and

f` = cg′, (where c = const) . (4.7)

The equations (4.6) and (4.7) define the general stationary
solution outside the matter. The function h does not appear
in them, but it is not empty of physical meaning as is usually

believed. It occurs in the problem as a function satisfying
the condition |h| 6 `. The different allowable choices of h
correspond to different significations of the time coordinate.

Proposition 4.1. If A=0, the solution defined by (4.6) and
(4.7) is a pseudo-Euclidean metric (or, better, a family of
pseudo-Euclidean metrics).
Proof. On account of A=0, (4.6) implies g′= ` and next
(4.7) gives f=c. Referring to (4.1) and setting

∫ ρ
0
vf(v)dv=

=α (ρ), we have

dα(ρ) = ρf1(ρ)dρ = f1(ρ)xdx

and
f(ρ)dt+ f1(ρ)xdx = d

(
ct+ α (ρ)

)
,

which suggests the transformation τ = t+ α(ρ)
c . On the other

hand, since `= g′= (ρ`1)′= ρ`′1+ `1, we have

`21dx
2+
`2−`21
ρ2

(xdx)2=`21dx
2+2`1`

′
1
(xdx)2

‖x‖
+ `′

2
1 (xdx)

2 =

=

(
`1dx1 + x1`

′
1
xdx

ρ

)2
+

(
`1dx2 + x2`

′
1
xdx

ρ

)2
+

+

(
`1dx3+x3`

′
1
xdx

ρ

)2
=
(
d (`1x1)

)2
+
(
d (`1x2)

)2
+
(
d (`1x3)

)2

so that by setting y1= `1x1, y2= `1x2, y3= `1x3, we ob-
tain the metric in the standard pseudo-Euclidean form ds2=
= c2dτ 2− (dy21 + dy

2
2 + dy

2
3). In the sequel we give up this

trivial case and assume A 6= 0.

5 Punctual sources of the gravitational field do not exist

(4.6) is a first order differential equation with respect to the
unknown function g = g(ρ), so that its general solution
depends on an arbitrary constant. But (4.6) contains already
the constant A and moreover the function ` = `(ρ) which
is not given. Consequently the general solution of (4.6)
contains two constants. Moreover, it seems that it depends
on the function `(ρ), namely that to every allowable function
`(ρ) there corresponds a solution of (4.6) depending on two
constants. However, we can prove that the function `(ρ) is
not actually involved in the general solution of (4.6).

Since the geodesic distance δ=
∫ ρ
0
`(u)du=β (ρ) is a

strictly increasing function of ρ tending to +∞ as ρ→+∞,
the inverse function ρ = γ (δ) is also a strictly increasing
function of δ tending to +∞ as δ→+∞. Consequently g (ρ)
can be considered as a function of δ:

G(δ) = g
(
γ (δ)

)
.

It follows that the determination of G(δ) as a function of
the geodesic distance δ, which possesses an intrinsic meaning
with respect to the stationary metric, allows its definition
with respect to any other radial coordinate depending diffeo-
morphically on δ.
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Now, since δ = β
(
γ(δ)

)
, we have 1= dβ

dρ
dρ
dδ
= `(ρ)γ ′(δ)

and G′=G′(δ)= g′(ρ)γ ′(δ)= g′(ρ)

`(ρ)
, so that the equation

(4.6) takes the form −G+GG′2=−2A or

GG′2 = G− 2A (5.1)

which does not contain the function `.
Regarding (4.7), it is obviously replaced by the equation

F = cG′

with F =F (δ)= f
(
γ(δ)

)
. The functions F andG are related

to a stationary metric which results from the stationary metric
(4.1) by the introduction of the new space coordinates:

yi =
δ

ρ
xi =

β(ρ)

ρ
xi , (5.2)

where i=1, 2, 3; ‖y‖=δ; ‖x‖=ρ. This transformation is
C∞ everywhere, even at the origin, because the function
B(ρ)= β(ρ)

ρ (where B(0)= `(0)) belongs to the algebra Γ0.

In fact, since β′(ρ)= `(ρ), we have β(ρ)= ρ
∫ 1
0
β′(ρu)du=

= ρ
∫ 1
0
`(ρu)du and

B(ρ) =

∫ 1

0

`(ρu)du ,

consequently B(2m+1)(ρ) =
∫ 1
0
`(2m+1)(ρu)u2m+1du and

since `∈Γ0 implies `(2m+1)(0) = 0, we obtain

B(2m+1) (0) = 0 , (m = 0, 1, 2, 3, . . . )

and, from proposition 2.1, it follows that B ∈ Γ0.
The inverse of (5.2) is defined by the equations

xi = Δ(δ)yi , i = 1, 2, 3 , (5.3)

where Δ(δ) = ρ
β(ρ)

= γ(δ)

δ
. Since γ (δ) = δ

∫ 1
0
γ ′ (δu)du =

= δ
∫ 1
0

du
`(γ(δu))

, it can be shown by induction that the function

Δ(δ) = γ(δ)

δ
=
∫ 1
0

du
`(γ(δu))

is an element of the algebra Γ0,
so that (5.3) is universally valid. A simple computation gives

xdx =
3∑

1

xidxi =
γγ ′

δ
(ydy) ,

dx2 =

3∑

1

dx2i =

(
γ ′2

δ2
−
γ2

δ4

)

(ydy)
2
+
γ2

δ2
dy2

so that, by setting F (δ)=f
(
γ(δ)

)
, F1(δ)=f1

(
γ(δ)

)γ(δ)γ ′(δ)
δ

,

L1(δ)= `1
(
γ(δ)

)γ(δ)
δ

, L(δ)= `
(
γ(δ)

)
γ ′(δ)= 1, we obtain

the transformed metric

ds2 =
(
Fdt+ F1(ydy)

)2
−

(

L21dy
2+
1−L21
δ2

(ydy)
2

)

(5.4)

which is related to the geodesic distance δ = ‖y‖ and the
functions F andG. Instead of h(ρ), we have now the function

H = H(δ) = δF1(δ), and moreover the invariant curvature
radius of the spheres δ = const. is given by the function

G = G(δ) = δL1(δ) .

Before solving the equation (5.1), we can anticipate that
the values of the solution G(δ) do not cover the whole
half-line [0,+∞ [ or, possibly, the whole open half-line
] 0,+∞ [ , because by taking a sequence of positive values
δn→ 0, we have G(δn)→ 0 and then the equation (5.1)
implies A=0 contrary to our assumption A 6=0. (This con-
clusion follows also from (4.6), because g(0)= 0 implies
A=0.) So, we are led to anticipate that the values of the
solution G(δ) cover a half-line [α,+∞ [ with α> 0. This
important property, which implies that the source of the field
cannot be reduced to a point, will be verified by the explicit
expression of the solution.

Now, since G(δ) > α> 0 and G− 2A > 0 according to
(5.1), the function G(δ) is obtained by the equation

dG

dδ
=

√

1−
2A

G

and since
√
1− 2A

G > 0, G(δ) is a strictly increasing funct-

ion of δ. Moreover G(δ) can not remain bounded because
dG
dδ
→ 1 as G→ +∞.
Technically, we have first to obtain the inverse function

δ = P (G) by integrating the equation

dδ

dG
=

1
√
1− 2A

G

which implies also that δ = P (G) is a strictly increasing and
not bounded function of G. Now, we introduce an auxiliary
fixed positive length ξ which will not appear in the final
result, but it is needed in order to carry out correctly the
computations. In fact, since G, A, G−2A represent also
lengths, the ratios G

ξ
, G−2A

ξ
are dimensionless, so that we

can introduce the logarithm

ln

(√
G
ξ
+

√
G− 2A

ξ

)

and since d
dG

(√
G (G−2A) + 2A ln

(√
G
ξ
+
√

G−2A
ξ

))
=

= 1√
1− 2A

G

the preceding equation gives δ=P (G),

δ = B+
√
G(G− 2A)+2A ln

(√
G
ξ
+

√
G− 2A

ξ

)

(5.5)

where B= const. It follows that

δ

G(δ)
=
P (G)

G
=
B

G
+

√

1−
2A

G
+
2A

G
ln

(√
G
ξ
+

√
G−2A
ξ

)

and since we have 2A
G
ln
(√

G
ξ
+
√

G−2A
ξ

)
= 2A

G
ln
√

G
ξ
+

+ 2A
G
ln
(
1 +

√
1− 2A

G

)
→ 0 as G→+∞ we have
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δ

G(δ)
= 1 + ε(δ),

G(δ)

δ
=

1

1 + ε(δ)

with ε(δ)→ 0 as δ→+∞. This property allows to determine
the constant A by using the so-called Newtonian approxim-
ation of the metric (5.4) for the great values of the distance δ.
Classically this approximation is referred to the static metric,
namely to the case where F1=0. We have already seen that
|δF1(δ)|6 1, but this condition does not imply that δF1(δ)
possesses a limit as δ→+∞. So we accept the condition
F1(δ)= 0 for the derivation of the Newtonian approximation,
without forgetting that we have to do with a specific choice
of F1 used for convenience in the case of a special problem.

This being said, the Newtonian approximation is obtain-
ed by setting ε(δ)= 0 and F1=0 . Then since F = cG′=

= c
√
1− 2A

G
= c
√
1− 2A

δ
− 2Aε (δ)

δ
, 1−L21=1−

(
1

1+ε (δ)

)
2
,

and ‖y‖
δ
=1, we get the form

ds2 = c2
(

1−
2A

δ

)

dt2 − dy2

which, by means of a known argument, leads to identify c2A
δ

with km
δ

, whence A = km
c2
= μ.

Since G− 2A> 0, we have G(δ)> 2μ, so that, as anti-
cipated, G(δ) possesses the strictly positive greatest lower
bound 2μ, which, as we see, is independent of the second
constant B appearing in the solution (5.5). It follows that
the strictly increasing function G(δ) appears as an implicit
function defined by the equation

δ = B +
√
G (G− 2μ) + 2μ ln

(√
G
ξ
+

√
G− 2μ
ξ

)

.

The greatest lower bound 2μ is obtained for δ=B+

+ 2μ ln
√

2μ
ξ and this is why it is convenient to introduce, in-

stead ofB, the constant δ0=B+2μ ln
√

2μ
ξ

, which allows to

write δ= δ0+
√
G (G− 2μ)+2μ ln

(√
G
2μ+

√
G
2μ−1

)
or

δ = δ0 +

∫ G

2μ

du
√
1− 2μ

u

, G = G(δ) > 2μ

which does not contain the auxiliary length ξ. The solution
is completed by the determination of the function

F = cG′ = c

√

1−
2μ

G (δ)
.

As far as H(δ)= δF1(δ) is concerned, we repeat that it
is introduced simply as a C∞ function vanishing for δ=0
and satisfying the condition |H(δ)|6 1.

What about the new constant δ0 ? From the mathematical
point of view, negative values of δ0 are not excluded. So, we
distinguish the following cases (see Figure):

(a) δ0< 0. Then the values of G(δ) for δ06 δ < 0 are
meaningless physically, because G(δ) is conceived on
[0,+∞ [ . But the value δ=0 is also excluded because

∫ G(0)

2μ

du
√
1− 2μ

u

=−δ0> 0

implies G(0)> 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently there exists a constant
δ1> 0 (the radius of the considered distribution of
matter) such that only the restriction of G(δ) to
[δ1,+∞ [ is taken into account.

(b) δ0=0. Then
∫ G(0)

2μ

du
√
1− 2μ

u

= 0

so that G(0)= 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently the solution is valid, as
previously, on a half-line [δ1,+∞ [ with δ1> 0.

(c) δ0> 0. Then G(δ0)= 2μ, F (δ0)= 0, so that the metric
degenerates for δ= δ0. A degenerate metric does not
possess physical meaning. Consequently, there exists
a constant δ1>δ0 (the radius of the sphere bounding
the matter) such that the solution is physically valid
only on the half-line [δ1,+∞ [ .

Whatever the case may be, the vacuum solution is not de-
fined for δ < δ1. In other words, the ball ‖y‖6 δ1 is occupied
by matter, so that the source of the field cannot be reduced to
a point. The constant δ0 is related to a boundary condition,
namely the value of the curvature radius of the sphere bound-
ing the matter. In fact, if δ1 is the radius of this sphere, and the
value G(δ1) is known, then the value δ0 is easily obtained:

δ0 = δ1 −
√
G(δ1) (G(δ1)− 2μ) −

− 2μ ln

(√
G(δ1)
2μ

+

√
G(δ1)
2μ

− 1

)

.
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However, it is difficult, even impossible, to obtain G(δ1)
by direct measurements. So the value δ0 is to be found
indirectly by taking into account the phenomena induced
by δ0. This problem will be treated in another paper.

The most impressive characteristic of the solution is per-
haps the non-Euclidean structure of the space and specifically
the strong non-Euclidean properties in the neighbourhood
of the origin. If the theory is applicable to the elementary
particles, then strong deviations from the Euclidean geometry
are to be expected in the world of microphysics. Together
with the new geometrical ideas, the solution brings about an
improvement of the law of gravitation in accordance with
Poincaré’s prediction: “Il est difficile de ne pas supposer
que la loi véritable contient des termes complémentaires qui
deviendraient sensibles aux petites distances” [1]. In fact, the
Newton potential

−
km

δ
is an approximation of the more accurate expression

−
km

G(δ)

which depends on the curvature radius G(δ). There is a sign-
ificant discrepancy between the two formulae. Although, as
shown earlier, the ratio G(δ)

δ
converges to 1, the difference

δ −G(δ) = P (G)−G = δ0 +

+ 2μ ln

(√
G
2μ
+

√
G
2μ
− 1

)

−
2μ

1 +
√
1− 2μ

G

tends to +∞ as δ→+∞. Moreover G(δ) depends not only
on the radius δ, but also on the constant δ0. Of course, the dis-
tinction between Newton’s theory and Einstein’s theory does
not reduce to the distinction between δ and G(δ). Einstein’s
theory provides a new entity, namely a spacetime metric.

A last question regards the “boundary conditions at in-
finity”. Classically it is required that the metric admit as
limit form the standard pseudo-Euclidean metric as δ→+∞.
Since, as already remarked, δF1(δ) does not possess a limit
as δ→+∞, this requirement presupposes that F1=0, name-
ly that we are dealing with a static metric. Then the metric
can be written as

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−

−

((
G(δ)

δ

)2
dy2 +

1

δ2

(

1−

(
G(δ)

δ

)2)

(ydy)
2

)

and since G(δ)→+∞, G(δ)
δ
→ 1, ‖y‖

δ
=1, we find, in fact,

“at infinity” the standard pseudo-Euclidean form

ds2 = c2dt2 − dy2.

Note that, if we introduce the so-called polar coordinates,
this conclusion fails. In fact, then we have the form

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−
(
dδ2+

(
G(δ)

)2(
sin2 θdφ2+dθ2

))

which does not possess a limit form as δ→+∞.

6 Black holes do not exist

The pseudo-theory of black holes appeared as a consequence
of misunderstandings and mathematical errors brought out
in detail in the papers [3, 5, 6]. We emphasize that the
so-called “horizon” does not represent an observable value
of the curvature radius G(δ). According to the established
rigorous solution, 2μ is the greatest lower bound of the
vacuum solution G(δ) and is defined for a certain value
δ0 of the new constant. If δ06 0 there exists no real sphere
with the curvature radius 2μ, and the physically valid part
of the solution is defined for δ> δ1, where δ1 is a strictly
positive value such that G(δ1)> 2μ. On the other hand,
if δ0> 0, the degeneracy of the metric for δ= δ0 implies
that the corresponding sphere lies inside the matter, so that
the vacuum solution is valid for δ> δ1 where δ1>δ0 and
G(δ1)> 2μ. Whatever the case may be, the notion of black
hole is inconceivable.
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Paris, 1968.

2. Rosen N. General Relativity with a background metric. Found.
of Phys., 1980, 10, Nos. 9/10, 673–784.
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Gravitational Perturbations as a Possible Cause for Instability
in the Measurements of Positron Annihilation

Boris P. Vikin∗

The Faculty of Physics, Voronezh State University, Voronezh, Russia

The annihilation of positrons is measured in a wide range of studies in the field of
physical chemistry [1, 2]. One of the problems in these studies is the instability of the
results of measurements [3–5]. As shown in our research, instability may result from
the change of nonregistering gravitational effects related to alteration of the tidal forces
upon the change of moon phases and the seasonal changes of the distance between the
Earth and the Sun.

1 Materials and methods

A sample of 22Na (5 mCu) was used as a source of positrons.
The yield of positronium (I2) and the parameters of its
annihilation at the passage through organic liquids were mea-
sured by two techniques: either angular (parapositronium)
or temporal (orthopositronium) correlations of annihilation
quanta were registered. The yield of positronium was mea-
sured with a setup of “fast-slow coincidences”. The setup
was assembled according to a typical scheme, had the time
resolution of 0.5 ns and was connected to a multichannel
amplitude recorder [1, 2].

2 Results

In the experiments, I2-parameter and spectra of triplet posi-
tronium were measured in the toluol samples purified from
oxygen by the method of vacuum freezing-out and the sam-
ples under oxygen (0.6 atm). The measurements were con-
ducted daily over a period of 3 months (November, 1981 —
February, 1982).

Fig. 1 shows that in the oxygen-depleted samples, regular
fluctuations in the positronium yield are observed, which
correlate with the changes of the moon phase. The yield is
maximal in the times close to the new moon and minimal in
the times close to the full moon.

In the presence of oxygen, Fig. 2, no reliable effects were
revealed. It can be explained by a specific influence of
oxygen on the processes of formation and annihilation of
positronium [1, 2]. However, these experiments indicate sta-
bility of the setup itself.

In addition to periodical fluctuations, one can see a trend
in the series of measurements: the mean level of I2 grows
from November to February. This trend may be due to
the seasonal change of the distance between the Earth and
the Sun.

In more large scale the seasonal changes of positronium
yield apparent from Fig. 3, which presents average results

∗Submitted via Simon E. Shnoll. All correspondence addressed to the
author should be directed to Simon E. Shnoll (e-mail: shnoll@iteb.ru).
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Fig. 1: Yield of positronium correlate with the changes of the Moon
phases.
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Fig. 2: Yield of positronium in the presence of oxygen.
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Fig. 3: Seasonal changes of positronium yield in 1980–1981.
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Fig. 4: Distribution of measuring results of positronium yield at the
case of the experimental setup relocating up (triangles) and down
(circles), with the height difference 1.5 m.

of large number of experiments provided in 1980–1981. It’s
possible to see that minimal yield is observable for summer
solstice (June — July) and maximal yield for winter solstice
(December — February).

The reliability of the conclusion that the yield of posi-
tronium depends on the tidal changes in gravity force was
checked in the experiments of 1984–1985, in which the setup
used for measuring I2 was relocating up-and-down, with the
height difference of 1.5 m. The measurements (1500 in total)
were alternated (up/down) every 20 min. Finally, an Iup2 /I

down
2

ratio was calculated. Fig. 4 shows a smoothed distribution
of the results obtained. The mean of this ratio is 1.00447
for all the measurements. The root-mean-square error equals
to ± 0.00064. Thus, lifting the setup 1.5 m higher results in
a reliable increase in the positronium yield (the difference
amounts to 7σ).
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Photon Physics of Revised Electromagnetics
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Conventional theory, as based on Maxwell’s equations and associated quantum electro-
dynamical concepts in the vacuum, includes the condition of zero electric field diver-
gence. In applications to models of the individual photon and to dense light beams such
a theory exhibits several discrepancies from experimental evidence. These include the
absence of angular momentum (spin), and the lack of spatially limited geometry in the
directions transverse to that of the propagation. The present revised theory includes
on the other hand a nonzero electric field divergence, and this changes the field
equations substantially. It results in an extended quantum electrodynamical approach,
leading to nonzero spin and spatially limited geometry for photon models and light
beams. The photon models thereby behave as an entirety, having both particle and
wave properties and possessing wave-packet solutions which are reconcilable with
the photoelectric effect, and with the dot-shaped marks and interference patterns on a
screen by individual photons in a two-slit experiment.

1 Introduction

Conventional electromagnetic theory based on Maxwell’s
equations and quantum mechanics has been very successful
in its applications to numerous problems in physics, and
has sometimes manifested itself in an exceptionally good
agreement with experiments. Nevertheless there exist areas
within which these joint theories do not provide fully ade-
quate descriptions of physical reality. As stated by Feyn-
man [1], there are difficulties associated with the ideas of
Maxwell’s theory which are not solved by and not directly as-
sociated with quantum mechanics. Thus the classical theory
of electromagnetism is in its conventional form an unsatis-
factory theory of its own.

Maxwell’s equations have served as a guiding line and
basis for conventional quantum electrodynamics (QED) in
which there is a vacuum state with a vanishing electric field
divergence [2]. The quantized equations become equivalent
to the classical field equations in which all field quantities
are replaced by their expectations values [3]. According to
Schiff [2] and Heitler [3], the Poynting vector further forms
the basis for the quantized field momentum. Consequently,
QED will also become subject to the shortcomings of a
conventional field theory.

When applying such a theory to photon physics, it will
lead to irrelevant results in a number of important cases.
This occurs with the experimentally confirmed existence of
angular momentum of individual photons and of light beams
with a spatially limited cross-section, with the behaviour of
individual photons as needle radiation in the photoelectric
effect and in two-slit experiments, and with the particle-wave
duality of the photon.

As a consequence of the revealed limitations, modified
theories leading beyond Maxwell’s equations have been ela-
borated by several authors. Among these there is an approach

described in this paper [4–9]. It is based on a vacuum state
that can give rise to local space charges and currents in
addition to the displacement current. This changes the field
equations in a substantial way, thus resulting in an extended
quantum electrodynamical (“EQED”) approach.

In the applications to photon physics the nonzero electric
field divergence may appear as small, but it still comes out to
have an essential effect on the end result. In other applications
of the present theory, such as on an electron model [6, 7] not
being treated here, the electric field divergence terms appear
as large contributions already in the basic field equations.

2 Basis of present theory

The vacuum is not merely an empty space. There is a nonzero
level of its ground state, the zero-point-energy, which derives
from the quantum states of the harmonic oscillator [2]. An
experimentally verified example of the related electromag-
netic vacuum fluctuations is the Casimir effect [10]. Electron-
positron pair formation due to an energetic photon also in-
dicates that local positive and negative electric charges can
be created out of an electrically neutral vacuum state. The
basic physical concept of the present theory is therefore the
appearance of a local charge density in such a state. In its
turn, this becomes associated with a nonzero electric field
divergence. The inclusion of the latter can as well be taken
as a starting point of a corresponding field theory.

2.1 Lorentz invariant field equations

In presence of electric space charges and related current
densities, a general form of the Proca-type equation

�Aμ ≡

(
1

c2
∂2

∂t2
−∇2

)

Aμ = μ0Jμ , μ = 1, 2, 3, 4 (1)

can be taken as a four-dimensional starting point of the pre-
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sent field equations, given in SI units. Here Aμ= (A, iφ/c) ,
where A and φ are the magnetic vector potential and the
electrostatic potential in three-space, and

Jμ = (j, icρ̄) (2)

is the four-current density. The right-hand member of equa-
tion (1) and the form (2) are now given a new interpretation,
where ρ̄ is the nonzero electric charge density in the vacuum,
and j stands for an associated three-space current density.
Maxwell’s equations are recovered when the current den-
sity (2) disappears, and equation (1) reduces to the d’Alem-
bert equation. The present charge and current densities should
not become less conceivable than the conventional concepts
of a nonzero curl of the magnetic field and an associated
displacement current. All these concepts can be regarded as
intrinsic properties of the electromagnetic field.

Physical experience further supports that also the present
revised and extended field equations should remain Lorentz
invariant. This implies that the current (2) has to transform
as a four-vector, and its square then becomes invariant to a
transform from one inertial frame K to another such frame
K′. Thus

j2 − c2ρ̄2 = j′2 − c2ρ̄ ′2 = const . (3)

In addition, the current density j should exist only when
there is also a charge density ρ̄, and this implies that the
constant in equation (3) vanishes. Since j and ρ̄ must behave
as space and time parts of Jμ, the disappearance of this
constant merely becomes analogous to the choice of origin
for the space and time coordinates. Consequently the final
form of he current density (2) becomes

j = ρ̄ (C, ic) C2 = c2. (4)

It is obvious that ρ̄ as well as the velocity vector C vary
from one inertial frame to another and do not become Lorentz
invariant, whereas this is the case of Jμ.

It can be shown [6, 7] that there is a connection between
the current density (4) and the electron theory by Dirac.
A different form of the current density in equation (1) has
further been introduced by de Broglie and Vigier [11] and
applied by Evans and Vigier [12]. It explicitly includes a
small nonzero photon rest mass.

The three-dimensional representation of the extended eq-
uations in the vacuum now becomes

curl B/μ0 = ε0 (div E)C+ ε0∂E/∂t (5)

curl E = −∂B/∂t (6)

div E = ρ̄/ε0 (7)

for the electric and magnetic fields E and B. Here the first
term of the right-hand member of equation (5) and equa-
tion (7) are the new parts introduced. Thus, there is a change

from a homogeneous to an inhomogeneous system of equat-
ions, a new degree of freedom is introduced by the nonzero
electric field divergence, and the latter produces an asym-
metry in the appearance of the electric and magnetic fields.

The presence in equations (5) and (7) of the dielectric
constant ε0 and the magnetic permeability μ0 of the convent-
ional vacuum may require further explanation. In the present
approach the vacuum is considered not to include electrically
polarized or magnetized atoms or molecules. In this respect
equation (7) is the same as in the theory of plasmas which
contain freely moving charged particles in a background of
empty vacuum space.

A nonzero magnetic field divergence is not adopted in this
theory, because this is so far a possible but not experimentally
supported supposition which is here left as an open question.

Using vector identities, the basic equations (5)–(7) yield
the local momentum equation

div2S = ρ̄ (E+C×B) +
∂

∂t
g (8)

and the local energy equation

−div S = ρ̄ E ∙C+
∂

∂t
wf . (9)

Here 1
c2
S is the electromagnetic stress tensor,

g = ε0E×B =
1

c2
S (10)

can be interpreted as an electromagnetic momentum density
with S denoting the Poynting vector, and

wf =
1

2
ε0
(
E2 + c2B2

)
(11)

representing the electromagnetic field energy density. The
angular momentum density becomes

s = r× S/c2 (12)

where r is the radius vector from the origin.
Combination of equations (5) and (6) results in an ext-

ended wave equation for the electric field
(
∂2

∂t2
− c2∇2

)

E+

(

c2∇+C
∂

∂t

)

(div E) = 0 . (13)

A divergence operation on equation (5) results in
(
∂

∂t
+C ∙ ∇

)

(div E) = 0 , (14)

provided that div C = 0.

2.2 Quantization of the revised theory

In the conventional QED formalism Maxwell’s equations
with a vanishing electric field divergence have been used as a
basis, also including the Poynting vector in the representation
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of the quantized field momentum [2, 3]. The quantized equa-
tions then become equivalent to the classical ones in which
the field quantities are replaced by their expectation values.

A similar situation also has to apply to the present revised
equations. The resulting solutions are expected not to be
too far from the truth, by representing the most probable
trajectories. A rigorous extended quantum electrodynamical
(EQED) formulation would imply that the field equations are
quantized already from the outset. However, to simplify the
analysis, we will instead solve the extended equations as they
stand, and impose relevant quantum conditions afterward.
For the considered photon models these conditions are given
by the energy hν related to the frequency ν, and by the
angular momentum h/2π of the individual photon with the
property of a boson particle.

3 Axisymmetric model of the individual photon

When elaborating a model of the individual photon as a
propagating boson, a wave or wave-packet with preserved
and limited geometrical shape and undamped motion in a
defined direction of space has to be taken as a starting point.
This leads to cylindrical geometry and waves. A cylindrical
frame (r, ϕ, z) becomes appropriate, with its z-axis in the
direction of propagation. We further introduce a velocity
vector of helical geometry

C = c (0, cosα, sinα) (15)

where the angle α is constant and 0< cosα� 1 for reasons
to be clarified later. As will be shown, the component Cz
is related to the wave propagation in the axial direction,
and the component Cϕ to the angular momentum and an
associated small nonzero rest mass. Here we choose the
positive values of sinα and cosα, but have in general both
signs representing the two directions of propagation and the
two spin directions.

The wave equation (13) now leads to
(

D1−
1

r2
+
1

r2
∂2

∂ϕ2

)

Er−
2

r2
∂

∂ϕ
Eϕ =

∂

∂r
(div E) (16)

(

D1 −
1

r2
+
1

r2
∂2

∂ϕ2

)

Eϕ −
2

r2
∂

∂ϕ
Er =

=

[
1

r

∂

∂ϕ
+
1

c
(cosα)

∂

∂t

]

(div E)

(17)

(

D1+
1

r2
∂2

∂ϕ2

)

Ez =

[
∂

∂z
+
1

c
(sinα)

∂

∂t

]

(div E) (18)

where

D1 =
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
−
1

c2
∂2

∂t2
. (19)

Equation (14) further becomes
(
∂

∂t
+ c cosα

1

r

∂

∂ϕ
+ c sinα

∂

∂z

)

(div E) = 0 . (20)

In this section restriction is made to purely axisymmetric
normal modes for which ∂/∂ϕ=0, and where every quantity
Q has the form Q= Q̂ (r) exp

[
i (−ωt+ kz)

]
with a given

angular frequency ω and wave number k.

3.1 Shortcomings of a conventional model

Turning first to a model based on Maxwell’s equations, the
system (16)–(18) with a vanishing electric field divergence
results in the electric field components

Êr = k1r r + k2r/r

Êϕ = k1ϕ r + k2ϕ/r

Êz = k1z ln r + k2z

(21)

and similar expressions for the magnetic field. The solutions
for Er and Eϕ were first deduced by Thomson [13] who
called attention to their divergent character, thus becoming
unsuitable for a limited model.

However, an even more serious shortcoming arises from
the requirement that the divergences of the fields have to
vanish. Thus the second order equations (16)–(18) and their
solutions (21) have to be checked with respect to the first
order equations of an identically vanishing field divergence.
This implies that

2kr1 + ik (k1zln r + k2z) ≡ 0 (22)

for all k and r. Consequently Ez and k1r have to vanish, only
Eϕ and k2r remain nonzero, and similar results apply to the
magnetic field. This implies that the wave becomes purely
transverse, that the Poynting vector (10) has a component in
the direction of propagation only, and that there is no spin in
the axial direction.

3.2 Axisymmetric models in revised theory

For an axisymmetric normal mode, equation (20) of the
revised theory yields the dispersion relation

ω/k = c sinα = v , k2 − ω2/c2 = k2 cos2 α (23)

where v stands for the phase velocity which becomes equal
to the group velocity ∂ω/∂k. The parameter cosα must be
small here, such as not to get in conflict with experiments of
the Michelson-Morley type. For cosα6 10−4 the difference
between v and c would thus become less than a change in
the eight decimal of c. Equations (16), (17) and (23) further
combine to

−k2 cos2 αEr = ik
∂Ez
∂r

(24)
(
∂2

∂r2
+
1

r

∂

∂r
−
1

r2
− k2 cos2 α

)

Eϕ =

= − (tg α)

(
∂2

∂r2
+
1

r

∂

∂r
− k2 cos2 α

)

Ez .

(25)
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A generating function

G0 ∙G = Ez + (cotα)Eϕ , G = R(ρ) ei(−ωt+kz) (26)

can now be found which has the amplitude G0, a normalized
dimensionless part G, the normalized coordinate ρ = r/r0,
and the characteristic radius r0 of the configuration repre-
sented by the radial function R. The function (26) generates
the solutions

Er = −iG0
(
θ cos2 α

)−1 ∂

∂ρ

[(
1− ρ2D

)
G
]

(27)

Eϕ = G0 (tgα) ρ
2DG (28)

Ez = G0
(
1− ρ2D

)
G (29)

where

D = Dρ − θ
2 cos2 α , Dρ =

∂2

∂ρ2
+
1

ρ

∂

∂ρ
(30)

and θ = kr0. The solutions (27)–(29) are reconfirmed by
insertion into equations (16)–(18). The magnetic field com-
ponents are derived from the induction law (6). The helical-
like structure of the obtained solution, with its axial field
components, is similar but not identical to that deduced by
Evans and Vigier [12].

From the normal modes a wave packet solution is now
formed which has finite extensions, and a narrow line width
as required by experimental observation. We are free to
rewrite the amplitude factor (26) as G0= g0 cos

2 α. The
wave packet has the amplitude

Ak =

(
k

k20

)

e−z
2
0(k−k0)

2

(31)

in the interval dk being centered around the main wave num-
ber k0. Here 2z0 represents the axial length of the packet.
With z = z̄ − vt and the notation

Ē0=E0(z̄)=

(
g0
k0r0

)( √
π

k0z0

)

exp

[

−

(
z̄

2z0

)2
+ ik0 z̄

]

(32)

the spectral averages of the field components are

Ēr = −iE0
[
R5 + (θ

′
0)
2R1

]
(33)

Ēϕ = E0θ0(sinα)(cosα)
[
R3 − (θ

′
0)
2R1

]
(34)

Ēz = E0θ0(cos
2 α)

[
R4 + (θ

′
0)
2R1

]
(35)

where θ0 = k0r0, θ′0 = θ0 cosα and

R1 = ρ2R, R3 = ρ2DρR, R4 =
(
1− ρ2Dρ

)
R, (36)

R5 =
d

dρ

[(
1− ρ2Dρ

)
R
]
, R7 =

(
d

dρ
+
1

ρ

)
(
ρ2R

)
. (37)

The packet components
(
Ēϕ, Ēz, B̄r

)
are in phase with

the generating function (26). The components
(
Ēr, B̄ϕ, B̄z

)

are ninety degrees out of phase with it. We now choose the
real part of the function (26), i. e. G = R(ρ) cos kz̄, which
is symmetric with respect to the axial center z̄ = 0 of the
moving wave packet. Then the real part of the form (32)
is adopted, from which

(
Ēϕ, Ēz, B̄r

)
become symmetric

and
(
Ēr, B̄ϕ, B̄z

)
antisymmetric. Under these conditions the

integrated electric charge and magnetic moment vanish.
The electromagnetic field energy density (11) defines an

equivalent total mass

m =
1

c2

∫
wf dV ∼=

2πε0
c2

∫ +∞

−∞
rE2r drdz̄ (38)

to lowest order. Integration and quantization yields

m = a0Wm
∼=
hν0
c2

, Wm =

∫
ρR25 dρ , (39)

where

a0 = ε0 π
5/2
√
2 z0

(
g0/ck

2
0z0
)2
≡ 2a∗0 g

2
0 (40)

and ν0 = c/λ0. Here the slightly reduced phase and group
velocity (23) can be associated with a very small nonzero
photon rest mass m0 = m cosα.

Turning finally to the momentum balance, all integrated
volume forces in equation (8) vanish on account of the
symmetry properties, and expression (12) gives

s =

∫
sz dV = −2πε0

∫ +∞

−∞

∫
r2ĒrB̄z drdz̄ . (41)

It reduces to the quantum condition

s=a0r0c(cosα)Ws=
h

2π
, Ws=−

∫
ρ2R5R7 dρ . (42)

So far the radial function R has not been specified. We
first consider the case where it is finite at the axis ρ = 0 and
tends to zero at large ρ, as in the form

R(ρ) = ργe−ρ (43)

where γ > 0. In principle, the factor in front of the exponent-
ial would have to be replaced by a power series of ρ, but since
we will proceed to the limit of large γ, only one dominating
term becomes sufficient. The exponential factor in (43) is
further included to secure the convergence of any moment
with R. The function (43) has a sharply defined maximum at
the radius r̂ = γr0. Combination of relations (39) and (42)
finally results in an effective photon diameter

2r̂ =
λ0

π cosα
(44)

being independent of γ and the exponential factor in equa-
tion (43).

We next consider the alternative of a radial function R
which diverges at the axis, i. e.

R(ρ) = ρ−γe−ρ. (45)
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Here r̂ = r0 can be taken as an effective radius. To obtain
finite integrated values of the total mass m and spin s, small
lower limits ρm and ρs are now introduced in the integrals
of Wm and Ws. We further introduce

r0 = cr ∙ ε , g0 = cg ∙ ε
β (46)

such as to make the characteristic radius r0 and the factor
g0 shrink to small but nonzero values as the lower limits ρm
and ρs approach zero. In equations (46), ε is an independent
smallness parameter, 0<ε� 1, and cr, cg and β stand for
positive constants. Equations (40), (39) and (44) combine to

m = a∗0 γ
5c2g
(
ε2β/ρ2γm

) ∼= h/λ0 c , (47)

s = a∗0 γ
5c2gcrc(cosα)

(
ε2β+1/ρ2γ−1m

)
= h/2π . (48)

To obtain finite m and s it is then necessary that

ρm = εβ/γ , ρs = ε(2β+1)(2γ−1). (49)

We are here free to choose β= γ�1 by which ρs∼=ρm=
= ε. This leads to a similar set of geometrical configurations
which have a shape being independent of ρm, ρs and ε in the
range of small ε. From equations (47) and (48) the effective
photon diameter finally becomes

2r̂ =
ελ0

π cosα
(50)

which is independent of γ, β and the exponential factor.

3.3 Summary on the photon model

• Conventional theory results in a model of the individ-
ual photon which has no spin, and is not reconcilable
with a limited geometrical shape.

• The present axisymmetric wave packet model is radi-
ally polarized, does not consist of purely transverse
elementary waves as in conventional theory, has a non-
zero spin and an associated very small rest mass, and
a helical-like field structure.

• The spatial dimensions of the present model are limit-
ed. The solutions are reconcilable with the concepts of
needle radiation proposed by Einstein. This provides
an explanation of the photoelectric effect in which a
photon knocks out an electron from an atom, and of
the dot-shaped marks on a screen in two-slit experi-
ments on individual photons as reported by Tsuchiya
et al. [14]. As an example with cosα= 10−4 and
λ0= 3×10−7m, equation (44) yields a diameter 2r̂=
= 10−3m, and equation (50) results in 2r̂6 10−7m
when ε6 cosα for needle-like radiation.

• The present individual photon model is relevant in
respect to particle-wave dualism. A subdivision into a
particle and an associated pilot wave is not necessary,
because the rest mass merely constitutes an integrating

part of the total field energy. The wave packet behaves
as an entirety, having particle and wave properties at
the same time. There is a particle like behaviour such
as by needle radiation and a nonzero rest mass, and a
wave-like behaviour in terms of interference between
cylindrical waves. The rest mass may make possible
“photon oscillations” between different modes [8],
such as those of the results (44) and (50).

4 Screw-shaped light

In a review by Battersby [15] new results have been reported
on twisted light in which the energy travels along a cork-
screw-shaped path. These discoveries are expected to become
important in communication and microbiology.

In this section, equations (16)–(18) will be applied to
screw-shaped waves with the factor

exp
[
i(−ωt+ m̄ϕ+ kz)

]
= exp (iθm) (51)

and m̄ as a positive or negative integer. Since the analysis is
similar to that of Section 3.2, we shall leave out its details.

4.1 Shortcomings of the conventional analysis

With Maxwell’s equations the system (16)–(18) reduces to
[

Dρ −

(
1 + m̄2

)

ρ2

]

(Er, iEϕ)−
2m̄2

ρ2
(iEϕ , Er) = 0 , (52)

[

Dρ −
m̄2

ρ2

]

Ez = 0 . (53)

For nonzero values of m̄, equations (52) combine to

Êr = c1r ρ
1±m̄ + c2r ρ

−(1±m̄) = ± iÊϕ (54)

when 1± m̄ 6= 0 and

Êr = c1r0 + c2r0 ln ρ = ± iÊϕ (55)

when 1± m̄ = 0. Further equation (53) gives

Êz = c1z ρ
m̄ + c2z ρ

−m̄. (56)

As in Section 3.1 these results become divergent.
An even more serious shortcoming is again due to an

identically vanishing electric and magnetic field divergence.
This makes the axial components Ez and Bz disappear, thus
resulting in a vanishing spin.

4.2 Twisted modes in revised theory

For nonzero values of m̄, the second term in equation (20)
introduces complications. This problem is approached by
limiting the analysis to sufficient small cosα, and the dis-
persion relation to be approximated by relations (23). From

82 B. Lehnert. Photon Physics of Revised Electromagnetics



April, 2006 PROGRESS IN PHYSICS Volume 2

equation (18) can be seen that Ez is of the order of cos2 α
as compared to Er and Eϕ when m̄ 6= 0. Equation (16) then
takes the approximate form

Er∼=−
( r
m̄

)[

1−k2
(
cos2α

)( r
m̄

)2]( ∂

∂r
+
1

r

)

(iEϕ) . (57)

When inserting this relation into equation (17), the latter
is identically satisfied up to the order cos2 α. The component
iEϕ can be used as a generating function

iEϕ = G0G G = R(ρ) eiθm . (58)

The analysis proceeds in forming a wave packet of
narrow line width, as given in detail elsewhere [9]. The
radial forms (43) and (45) lead to effective diameters for
which a factor |m̄|3/2 has to be added in the denominators
of expressions (44) and (50). These diameters also apply to
radially polarized dense light beams, because the mass and
angular momentum are both proportional to the same number
of photons.

5 Boundary conditions and spin of light beams

A light beam of low photon density can merely be regarded as
a stream of non-interacting photons. At high photon densities
a unidirectional beam of limited cross-section becomes more
complex. The observed angular momentum of such a linearly
or elliptically polarized beam has been proposed to be due
to transverse spatial derivatives at its boundary [3, 16]. The
angular momentum which would have existed for the in-
dividual photons in the beam core have been imagined to
be substituted by the momentum generated in the boundary
region. However, the detailed explanation is so far not clear.

In this section a dense light beam is considered where the
individual photons in the beam core overlap each other, such
as to form a plane classical electromagnetic (EM) wave as
conceived in earlier considerations [7, 8]. Outside the beam
there is a vacuum region. The main purpose is to analyze
the boundary conditions and the angular momentum of this
system.

5.1 Definitions of beam conditions

A beam is considered having an arbitrary cross-section of
large size as compared to its characteristic wave lengths. The
analysis of a general case with elliptically polarized modes of
various wave lengths can be subdivided into a study on each
of the included elementary and linearly polarized modes of a
specific wave length. A further simplification is provided by
the narrow boundary region where the boundary conditions
can be applied separately to every small local segment. The
analysis is then limited to one linearly polarized core wave.
In its turn, this wave can be subdivided into two waves of
the same frequency, but having electric field vectors which
are perpendicular and parallel to the local segment.

The following analysis starts with an investigation in
terms of Maxwell’s equations. It then proceeds by the revised
theory, first on a flat-shaped configuration with main electric
field vectors being either perpendicular or parallel to the
boundary. Finally a simplified study is undertaken on a beam
of circular cross-section.

5.2 Shortcomings of the conventional analysis

We consider a beam which propagates in the z-direction of
a frame (x, y, z) and where every field quantity Q has the
form Q̂(x, y) exp

[
i (−ωt+ kz)

]
. The conventional limit of

the field equation (13) then reduces to

[

k20 −

(
∂2

∂x2
+

∂2

∂y2

)]

(E,B) = 0 (59)

where k20 = k2−
(
ω
c

)2
can have any value. A separable form

X(x) ∙ Y (y) of each component then leads to

k20 = k20x+k
2
0y , X ′′/X = k20x , Y ′′/Y = k20y , (60)

where k20x and k20y can have any sign and value. The solution
for the electric field becomes

Ēν =
[
aν1 exp(k0xx) + aν2 exp(−k0xx)

]
∙

∙
[
bν1 exp(k0yy) + bν2 exp(−k0yy)

] (61)

with ν=x, y, z and an analogous form for the magnetic
field. The divergences have to vanish identically. With the
solution (61), this leads to a purely transverse wave with zero
spin as shown by equation (12). Further one should either
have Ex=Ey =0 and Bx=By =0, or k0x= k0y = k0=0
and ω2= k2c2. There are no transverse derivatives in an
exact solution.

The alternative has also be taken into account where k0
is zero already from the beginning. Then

Ēν = (cν1x+ cν2) (dν1y + dν2) . (62)

With these solutions inserted into the condition of vanish-
ing field divergence

Ēx = c0x+c1y+c2 , Ēy = c3x−c0y+c4 , Ēz = 0 . (63)

All the obtained solutions thus have a vanishing spin,
and are not reconcilable with a beam of spatially limited
cross-section.

5.3 Revised equations of flat-shaped geometry

We now proceed to a revised analysis of flat-shaped beam
geometry. With z still in the direction of propagation and
x along the normal of the boundaries of a slab-like beam,
all field quantities become independent of y. The velocity
vector is given by a form similar to (15), having a small
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component Cy along the boundary and a large component
Cz in the direction of propagation.

Now equation (14) yields the same dispersion relation
as (23), and the three component equations reduce to

Ex = −
i

k cos2α

∂Ez
∂x

, (64)

(

k2 cos2α−
∂2

∂x2

)(

Ey +
sinα

cosα
Ez

)

= 0 . (65)

ConsequentlyEz can be considered as a generating funct-
ion of Ex and Ey . One solution of equation (65) is found
where Ey has the same spatial profile as Ez and

Ey = −
sinα

cosα
Ez . (66)

5.4 Two special cases of flat-shaped geometry

A flat-shaped (slab-like) beam is now considered which has
a core region −a<x<a and two narrow boundary regions,
−(a + b)<x<−a and a<x<a+ b, with thickness d=
= b− a. With the frame chosen in Section 5.3, we first
consider the case where Ex is the main electric component.
Within the core a homogeneous linearly polarized EM wave
is assumed to exist, having the constant components E0x and
B0y . In the boundary region an axial field component Ez is
chosen which increases linearly with x, from zero at x = a,
and in such a way that Ex of equation (64) becomes matched
to E0x at x= a. In the same region the field Ez further
passes a maximum, and then drops to zero at the vacuum
interface x = a+ b. The resulting field Ex is reversed in the
boundary layer, having a maximum strength of the order of
E0x. With E0x=O(1) in respect to the smallness parameter
cosα, equations (64) and (66) show that Ez =O(cos2 α) and
Ey =O(cosα). Here By is of zero order and matches B0y at
the edge of the core. The components of the Poynting vector
are Sx=0 and

Sy ∼= c (cosα)ε0E
2
x , Sz ∼= c (sinα)ε0E

2
x . (67)

Thus there is a primary flow of momentum Sz in the
direction of propagation, and a secondary flow Sy along the
boundary, but no flow across it. The field energy density
finally becomes wf ∼= ε0E

2
x.

Turning to the second case where Ey is the main electric
component and is parallel to the boundary, there is an EM
core wave with the components E0y and B0x. In a small
range of x near x= a the axial field Ez is assumed to be
constant, and Ex=0. Relation (66) then makes it possible to
matchEy toE0y at x= a. Moreover, the field Ez is chosen to
decrease towards zero when approaching the outer boundary
x = a+ b. According to equation (64) the field Ex increases
from zero at x= a to a maximum, and then drops towards
zero when approaching the outer boundary at x = a + b.
Combination of equations (64) and (66) yields

|Ex/Ey| = λ/2πLcy cosα (68)

where λ = 2π/k and Lcy stands for the characteristic length
of the derivative of Ey . As an example with λ/Lcy = 10−4

and cosα = 10−4, equation (68) gives a ratio of about 0.16.
The Poynting vector components become Sx = 0 and

Sy = c (cosα)ε0E
2
y

[
1 + sin2α (Ex/Ey)

2
]
/ sin2α , (69)

Sz = c ε0E
2
y

[
1 + sin2α (Ex/Ey)

2
]
/ sin2α . (70)

The energy density is wf ∼= ε0E
2
y as long as E2x � E2y .

5.5 Simplified analysis on the spin of a beam

A simplified analysis is performed on a beam of circular
cross-section. The frame is redefined for a linearly polarized
EM core wave E0 = (E0, 0, 0) and B0 = (0, B0, 0). With
the angle θ between the y-direction and the radial direction,
the electric components are

E0⊥ = E0 sin θ , E0‖ = E0 cos θ (71)

in the perpendicular and parallel directions of the boundary.
The solutions of Section 5.4 are now matched to these core
components at the inner surface of the boundary layer. The
energy density is wf = ε0E

2 where E2 = E20 at the edge of
the beam core.

With the numerical example of Section 5.4 as a reference
where E2x�E2y , the Poynting vector components in the
transverse direction now add up to

St = c(cosα) ε0E
2 . (72)

The energy density of the beam core can be written as

εE20 = nphc/λ (73)

where np is the number of equivalent photons per unit
volume. With the spin h/2π of each photon, the core contains
a total angular momentum per unit length

sc = r20nph/2 = ε0E
2
0λr

2
0/2c (74)

with r0 standing for the core radius. From equations (12)
and (72) the angular momentum generated per axial length
in the boundary layer becomes on the other hand

sb = 2π(cosα) εE
2
0 fE r

2
0 d/c (75)

where d is the thickness of the boundary layer and fE < 1 is
a profile factor of E2 across the layer. Thus

sb
sc
=
4π (cosα)fE d

λ
. (76)

Here sb= sc when the equivalent angular momentum of
the core is compensated by that generated in the boundary
layer. As an example, for λ= 3×10−7m, fE = 0.2 and d=
= 10−3m this becomes possible when cosα= 10−4.
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5.6 Summary of the analysis on a dense light beam

• Conventional theory leads to a vanishing spin, and is
not reconcilable with a beam of limited extensions in
its transverse directions. A limited cross-section can
only appear in an approximate solution when the char-
acteristic lengths of the transverse derivatives are much
larger than the included wavelengths.

• The present revised theory leads to a Poynting vector
with a primary component in the direction of propagat-
ion, and a secondary component in the transverse di-
rections which generates a spin.

• The angular momentum represented by the spin of the
photons in the beam core is substituted by a real spin
generated in the boundary layer.

• Even large transverse spatial derivatives and a corres-
ponding limited beam cross-section can exist accord-
ing to the revised theory.

6 Conclusions

Conventional theory which is based on Maxwell’s equations
and the associated quantum electrodynamical concepts in
the vacuum state includes the condition of zero electric field
divergence. When being applied to the physics of the individ-
ual photon and of dense light beams, such a theory exhibits a
number of discrepancies from experimental evidence. These
shortcomings include the absence of spin and of spatially
limited geometry in the directions which are transverse to
that of the propagation.

The present revised theory on the vacuum state is based
on a nonzero electric field divergence which introduces an
additional degree of freedom into the field equations, thereby
changing the latter and their solutions substantially as com-
pared to the conventional ones. The resulting extended quan-
tum electrodynamics (EQED) makes it possible for both
individual photons and for dense light beams to possess a
nonzero spin, and to have a spatially limited geometry in
the transverse directions. Moreover the individual photon
models behave as an entirety in having both particle and
wave properties. There are wave-packet solutions with the
character of needle radiation which become reconcilable with
the photoelectric effect, and with the dot-shaped marks and
interference patterns due to individual photons in two-slit
experiments.
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We explore Yang’s Noncommutative space-time algebra (involving two length scales)
within the context of QM defined in Noncommutative spacetimes and the holographic
area-coordinates algebra in Clifford spaces. Casimir invariant wave equations
corresponding to Noncommutative coordinates and momenta in d-dimensions can be
recast in terms of ordinary QM wave equations in d+2-dimensions. It is conjectured
that QM over Noncommutative spacetimes (Noncommutative QM) may be described
by ordinary QM in higher dimensions. Novel Moyal-Yang-Fedosov-Kontsevich star
products deformations of the Noncommutative Poisson Brackets are employed to
construct star product deformations of scalar field theories. Finally, generalizations
of the Dirac-Konstant and Klein-Gordon-like equations relevant to the physics of
D-branes and Matrix Models are presented.

1 Introduction

Yang’s noncommutative space time algebra [1] is a generali-
zation of the Snyder algebra [2] (where now both coordinates
and momenta are not commuting) that has received more
attention recently, see for example [3] and references therein.
In particular, Noncommutative p-brane actions, for even p+1
= 2n-dimensional world-volumes, were written explicitly
[15] in terms of the novel Moyal-Yang (Fedosov-Kontsevich)
star product deformations [11, 12] of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with
the noncommuting world-volume coordinates qA, pA forA =
= 1, 2, 3, . . . n. The latter noncommuting coordinates obey
the noncommutative Yang algebra with an ultraviolet LP
(Planck) scale and infrared (R) scale cutoff. It was shown
why the novel p-brane actions in the “classical” limit ~eff =
= ~LP /R→ 0 still acquire nontrivial noncommutative cor-
rections that differ from ordinary p-brane actions. Super p-
branes actions in the light-cone gauge are also amenable to
Moyal-Yang star product deformations as well due to the fact
that p-branes moving in flat spacetime backgrounds, in the
light-cone gauge, can be recast as gauge theories of volume-
preserving diffeomorphisms. The most general construction
of noncommutative super p-branes actions based on non
(anti) commuting superspaces and quantum group methods
remains an open problem.

The purpose of this work is to explore further the conse-
quences of Yang’s Noncommutative spacetime algebra within
the context of QM in Noncommutative spacetimes and the
holographic area-coordinates algebra in Clifford spaces [14].
In section 2 we study the interplay among Yang’s Noncom-
mutative spacetime algebra and the former area-coordinates
algebra in Clifford spaces. In section 3 we show how Casimir
invariant wave equations corresponding to Noncommutative
coordinates and momenta in D-dimensions, can be recast in

terms of ordinary QM wave equations in D+2-dimensions.
In particular, we shall present explicit solutions of the D’Ala-
mbertian operator in the bulk of AdS spaces and explain its
correspondence with the Casimir invariant wave equations
associated with the Yang’s Noncommutative spacetime al-
gebra at the projective boundary of the conformally compact-
ified AdS spacetime. We conjecture that QM over Noncom-
mutative spacetimes (Noncommutative QM) may be describ-
ed by ordinary QM in higher dimensions.

In section 4 we recur to the novel Moyal-Yang (Fedosov-
Kontsevich) star products [11, 12] deformations of the Non-
commutative Poisson Brackets to construct Moyal-Yang star
product deformations of scalar field theories. The role of
star products in the construction of p-branes actions from
the large N limit of SU(N) Yang-Mills can be found in [6]
and in the Self-Dual Gravity/SU(∞) Self Dual Yang-Mills
relation in [7, 8, 9, 10]. Finally, in the conclusion 5, we
present the generalizations of the Dirac-Konstant equations
(and their “square” Klein-Gordon type equations) that are
relevant to the incorporation of fermions and the physics of
D-branes and Matrix Models.

2 Noncommutative Yang’s spacetime algebra in terms
of area-coordinates in Clifford spaces

The main result of this section is that there is a subalgebra of
the C-space operator-valued coordinates [13] which is iso-
morphic to the Noncommutative Yang’s spacetime algebra
[1, 3]. This, in conjunction to the discrete spectrum of angular
momentum, leads to the discrete area quantization in multi-
ples of Planck areas. Namely, the 4D Yang’s Noncommutat-
ive space-time algebra [3] (written in terms of 8D phase-
space coordinates) is isomorphic to the 15-dimensional sub-
algebra of the C-space operator-valued coordinates associat-
ed with the holographic areas of C-space. This connection
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between Yang’s algebra and the 6D Clifford algebra is pos-
sible because the 8D phase-space coordinates xμ, pμ (assoc-
iated to a 4D spacetime) have a one-to-one correspondence
to the X̂μ5; X̂μ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra). Furhermore,
Tanaka [3] has shown that the Yang’s algebra [1] (with
15 generators) is related to the 4D conformal algebra (15
generators) which in turn is isomorphic to a subalgebra of
the 4D Clifford algebra because it is known that the 15
generators of the 4D conformal algebra SO(4, 2) can be
explicitly realized in terms of the 4D Clifford algebra as
shown in [13].

The correspondence between the holographic area coord-
inates XAB↔λ2ΣAB and the angular momentum variables
when A,B= 1, 2, 3, . . . 6 yields an isomorphism between the
holographic area coordinates algebra in Clifford spaces [14]
and the noncommutative Yang’s spacetime algebra in D= 4.
The scale λ is the ultraviolet lower Planck scale. We begin
by writing the exchange algebra between the position and
momentum coordinates encapsulated by the commutator

[
X̂μ6, X̂56

]
= −iλ2η66X̂μ5 ↔

[
λ2R

~
p̂μ, λ2Σ56

]

= −iλ2η66λx̂μ
(2.1)

from which we can deduce that

[
p̂μ, Σ56

]
= −iη66

~
λR

x̂μ, (2.2)

hence, after using the definition N =(λ/R)Σ56, where R
is the infrared upper scale, one has the exchange algebra
commutator of pμ and N of the Yang’s spacetime algebra
given by

[p̂μ,N ] = −iη66
~
R2

x̂μ. (2.3)

From the commutator
[
X̂μ5, X̂56

]
= −

[
X̂μ5, X̂65

]
= iη55λ2X̂μ6 ↔

[
λx̂μ, λ2Σ56

]
= iη55λ2λ2

R

~
p̂μ

(2.4)

we can deduce that

[
x̂μ,Σ56

]
= iη55

λR

~
p̂μ (2.5)

and after using the definition N =(λ/R)Σ56 one has the
exchange algebra commutator of xμ and N of the Yang’s
spacetime algebra

[x̂μ,N ] = iη55
λ2

~
p̂μ. (2.6)

The other relevant holographic area-coordinates commu-
tators in C-space are
[
X̂μ5, X̂ν5

]
=−iη55λ2X̂μν ↔ [x̂μ, x̂ν ]=−iη55λ2Σμν (2.7)

that yield the noncommuting coordinates algebra after having
used the representation of the C-space operator holographic

area-coordinates

iX̂μν ↔ iλ2
1

~
Mμν = iλ2Σμν , iX̂56 ↔ iλ2Σ56, (2.8)

where we appropriately introduced the Planck scale λ as one
should to match units. From the correspondence

p̂μ =
~
R
Σμ6 ↔

~
R

1

λ2
X̂μ6 (2.9)

one can obtain nonvanishing momentum commutator
[
X̂μ6, X̂ν6

]
=−iη66λ2X̂μν↔ [p̂μ, p̂ν ]=−iη66

~2

R2
Σμν. (2.10)

The signatures for AdS5 space are η55=+1; η66=−1
and for the Euclideanized AdS5 space are η55=+1 and
η66=+1. Yang’s space-time algebra corresponds to the latter
case. Finally, the modified Heisenberg algebra can be read
from the following C-space commutators

[
X̂μ5, X̂ν6

]
= iημνλ2X̂56 ↔

[x̂μ, p̂μ] = i~ημν
λ

R
Σ56 = i~ημνN .

(2.11)

Eqs-(2.1–2.11) are the defining relations of Yang’s Non-
commutative 4D spacetime algebra [1] involving the 8D
phase-space variables. These commutators obey the Jacobi
identities. There are other commutation relations like [Mμν ,
xρ], . . . that we did not write down. These are just the well
known rotations (boosts) of the coordinates and momenta.

When λ→ 0 and R→∞ one recovers the ordinary com-
mutative spacetime algebra. The Snyder algebra [2] is reco-
vered by setting R→∞ while leaving λ intact. To recover
the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka
[3] has shown the the spectrum of the operatorN=(λ/R)Σ56

is discrete given by n(λ/R). This is not suprising since
the angular momentum generator M56 associated with the
Euclideanized AdS5 space is a rotation in the now compact
x5 − x6 directions. This is not the case in AdS5 space since
η66=−1 and this timelike direction is no longer compact.
Rotations involving timelike directions are equivalent to non-
compact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra
from Yang’s Noncommutative spacetime algebra, and the
standard uncertainty relations ΔxΔp > ~ with the ordinary
~ term, rather than the n~ term, one needs to take the limit
n → ∞ limit in such a way that the net combination of
n λR → 1. This can be attained when one takes the double
scaling limit of the quantities as follows

λ→ 0 , R→∞ , λR→ L2,

lim
n→∞

n
λ

R
= n

λ2

λR
=
nλ2

L2
→ 1.

(2.12)

From eq-(2.12) one learns then that

nλ2 = λR = L2. (2.13)

The spectrum n corresponds to the quantization of the
angular momentum operator in the x5−x6 direction (after
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embedding the 5D hyperboloid of throat size R onto 6D).
Tanaka [3] has shown why there is a discrete spectra for the
spatial coordinates and spatial momenta in Yang’s spacetime
algebra that yields a minimum length λ (ultraviolet cutoff
in energy) and a minimum momentum p= ~/R (maximal
length R, infrared cutoff). The energy and temporal coord-
inates had a continous spectrum.

The physical interpretation of the double-scaling limit
of eq-(2.12) is that the the area L2=λR becomes now
quantized in units of the Planck area λ2 as L2=nλ2. Thus
the quantization of the area (via the double scaling limit)
L2=λR=nλ2 is a result of the discrete angular momentum
spectrum in the x5−x6 directions of the Yang’s Noncommu-
tative spacetime algebra when it is realized by (angular mo-
mentum) differential operators acting on the Euclideanized
AdS5 space (two branches of a 5D hyperboloid embedded
in 6D). A general interplay between quantum of areas and
quantum of angular momentum, for arbitrary values of spin,
in terms of the square root of the CasimirA ∼ λ2

√
j (j + 1),

has been obtained a while ago in Loop Quantum Gravity by
using spin-networks techniques and highly technical area-
operator regularization procedures [4].

The advantage of this work is that we have arrived at
similar (not identical) area-quantization conclusions in terms
of minimal Planck areas and a discrete angular momentum
spectrum n via the double scaling limit based on Clifford
algebraic methods (C-space holographic area-coordinates).
This is not surprising since the norm-squared of the holo-
graphic Area operator has a correspondence with the quad-
ratic Casimir ΣABΣAB of the conformal algebra SO(4, 2)
(SO(5, 1) in the Euclideanized AdS5 case). This quadratic
Casimir must not be confused with the SU(2) Casimir J2

with eigenvalues j (j+ 1). Hence, the correspondence given
by eqs-(2.3–2.8) gives A2 ↔ λ4ΣABΣ

AB .
In [5] we have shown whyAdS4 gravity with a topologic-

al term; i. e. an Einstein-Hilbert action with a cosmological
constant plus Gauss-Bonnet terms can be obtained from the
vacuum state of a BF-Chern-Simons-Higgs theory without
introducing by hand the zero torsion condition imposed in the
McDowell-Mansouri-Chamsedine-West construction. One of
the most salient features of [5] was that a geometric mean
relationship was found among the cosmological constant Λc,
the Planck area λ2 and theAdS4 throat size squaredR2 given
by (Λc)−1 = (λ)2(R2). Upon setting the throat size to be of
the order of the Hubble scale RH and λ = LP (Planck scale),
one recovers the observed value of the cosmological constant
L−2P R−2H =L−4P (LP /RH)

2∼ 10−120M4
P . A similar geo-

metric mean relation is also obeyed by the condition λR=
=L2(=nλ2) in the double scaling limit of Yang’s algebra
which suggests to identify the cosmological constant as Λc=
=L−4. This geometric mean condition remains to be invest-
igated further. In particular, we presented the preliminary
steps how to construct a Noncommutative Gravity via the
Vasiliev-Moyal star products deformations of the SO(4, 2)

algebra used in the study of higher conformal massless spin
theories in AdS spaces by taking the inverse-throat size 1/R
as a deformation parameter of the SO(4, 2) algebra. A Moyal
deformation of ordinary Gravity via SU(∞) gauge theories
was advanced in [7].

3 Noncommutative QM in Yang’s spacetime from
ordinary QM in higher dimensions

In order to write wave equations in non-commuting space-
times we start with a Hamiltonian written in dimensionless
variables involving the terms of the relativistic oscillator
(let us say oscillations of the center of mass) and the rigid
rotor/top terms (rotations about the center of mass)

H =

(
pμ
~/R

)2
+

(
xμ
LP

)2
+
(
Σμν

)2
(3.1)

with the fundamental difference that the coordinates xμ and
momenta pμ obey the non-commutative Yang’s space time
algebra. For this reason one cannot naively replace pμ any
longer by the differential operator −i~∂/∂xμ nor write the
Σμν generators as 1

~
(xμ∂xν−x

ν∂xμ). The correct coordinate
realization of Yang’s noncommutative spacetime algebra re-
quires, for example, embedding the 4-dim space into 6-dim
and expressing the coordinates and momenta operators as
follows

pμ
(~/R)

↔ Σμ6 = i
1

~

(
Xμ∂X6 −X

6∂Xμ

)
,

xμ
LP

↔ Σμ5 = i
1

~

(
Xμ∂X5 −X

5∂Xμ

)
,

Σμν ↔ i
1

~

(
Xμ∂Xν −X

ν∂Xμ

)
,

N = Σ56 ↔ i
1

~

(
X5∂X6 −X

6∂X5

)
.

(3.2)

This allows to express H in terms of the standard angular
momentum operators in 6-dim. The XA=Xμ, X5, X6 co-
ordinates (μ= 1, 2, 3, 4) and PA=Pμ, P 5, P 6 momentum
variables obey the standard commutation relations of ordi-
nary QM in 6-dim, namely —

[
XA, XB

]
=0,

[
PA, PB

]
=0,[

XA, PB
]
= i~ηAB , so that the momentum admits the stand-

ard realization as PA=−i~∂/∂XA.
Therefore, concluding, the Hamiltonian H in eq-(3.1)

associated with the non-commuting coordinates xμ and mo-
menta pμ in d− 1-dimensions can be written in terms of the
standard angular momentum operators in (d−1)+2 = d+1-
dim as H = C2 − N 2, where C2 agrees precisely with the
quadratic Casimir operator of the SO(d−1, 2) algebra in the
spin s = 0 case,

C2=ΣABΣ
AB=(XA∂B−XB∂A)(X

A∂B−XB∂A) . (3.4)

One remarkable feature is that C2 also agrees with the
d’Alambertian operator for the Anti de Sitter Space AdSd of
unit radius (throat size) (DμDμ)AdSd as shown by [18].
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The proof requires to show that the d’Alambertian oper-
ator for the d+1-dim embedding space (expressed in terms of
the XA coordinates) is related to the d’Alambertian operator
in AdSd space of unit radius expressed in terms of the
z1, z2, . . . , zd bulk intrinsic coordinates as

(DμD
μ)Rd+1 = −

∂2

∂ρ2
−
d

ρ

∂

∂ρ
+
1

ρ2
(DμD

μ)AdS ⇒

C2=ρ
2(DμD

μ)Rd+1+

[
(d−1)+ρ

∂

∂ρ

]
ρ
∂

∂ρ
=(DμD

μ)AdSd .

(3.5)

This result is just the hyperbolic-space generalization
of the standard decomposition of the Laplace operator in
spherical coordinates in terms of the radial derivatives plus a
term containing the square of the orbital angular momentum
operator L2/r2. In the case of nontrivial spin, the Casimir
C2 = ΣABΣ

AB+SABS
AB has additional terms stemming

from the spin operator.
The quantity Φ(z1, z2, . . . , zd)|boundary restricted to the

d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit throat size, whose topology is
Sd−2×S1) is the sought-after solution to the Casimir invar-
iant wave equation associated with the non-commutative xμ

coordinates and momenta pμ of the Yang’s algebra (μ=
= 1, 2, . . . , d−1). Pertaining to the boundary of the conform-
ally compactified AdSd space, there are two radii R1, R2
associated with Sd−2 and S1, respectively, and which must
not be confused with the two scales R, LP appearing in eq-
(3.1). One can choose the units such that the present value
of the Hubble scale (taking the Hubble scale as the infrared
cutoff) is R= 1. In these units the Planck scale LP will be
of the order of LP ∼ 10−60. In essence, there has been a
trade-off of two scales LP , R with the two radii R1, R2.

Once can parametrize the coordinates of AdSd=AdSp+2
by writing there, according to [17], X0=R cosh(ρ) cos(τ ),
Xp+1=R cosh(ρ) sin(τ ), Xi=R sinh(ρ)Ωi.

The metric of AdSd=AdSp+2 space in these coordinates
is ds2=R2

[
−(cosh2 ρ)dτ 2+ dρ2+(sinh2 ρ)dΩ2

]
, where

06 ρ and 06 τ < 2π are the global coordinates. The topo-
logy of this hyperboloid is S1×R p+1. To study the causal
structure of AdS it is convenient to unwrap the circle S1

(closed-timelike coordinate τ ) to obtain the universal cov-
ering of the hyperboloid without closed-timelike curves and
take −∞6 τ 6+∞. Upon introducing the new coordinate
06 θ < π

2 related to ρ by tan(θ)= sinh(ρ), the metric is

ds2 =
R2

cos2 θ

[
−dτ 2 + dθ2 + (sinh2 ρ)dΩ2

]
. (3.6)

It is a conformally-rescaled version of the metric of
the Einstein static universe. Namely, AdSd=AdSp+2 can
be conformally mapped into one-half of the Einstein static
universe, since the coordinate θ takes values 06θ< π

2 rather
than 06θ<π. The boundary of the conformally compactified
AdSp+2 space has the topology of Sp × S1 (identical to
the conformal compactification of the p + 1-dim Minkow-
ski space). Therefore, the equator at θ= π

2 is a boundary of

the space with the topology of Sp. Ωp is the solid angle
coordinates corresponding to Sp and τ is the coordinate
which parametrizes S1. For a detailed discussion of AdS
spaces and the AdS/CFT duality see [17].

The d’Alambertian in AdSd space (of radius R, later we
shall set R = 1) is

DμD
μ =

1
√
g
∂μ(
√
ggμν∂ν) =

=
cos2 θ

R2

[
−∂2τ+

1

(R tan θ)p
∂θ
(
(R tan θ)p∂θ

)
]
+

L2

R2 tan2 θ

(3.7)

where L2 is the Laplacian operator in the p-dim sphere Sp

whose eigenvalues are l (l+ p− 1).
The scalar field can be decomposed as follows

Φ=eωRτYl(Ωp)G(θ); the wave equation (DμDμ−m2)Φ=0

leads to the equation
[
cos2 θ

(
ω2+ ∂2θ +

p
tan θ cos2 θ

∂θ
)
+

+ l(l+p−1)
tan2 θ

−m2R2
]
G(θ) = 0, whose solution is

G(θ) = (sin θ)l (cos θ)λ± 2F1(a, b, c; sin θ) . (3.8)

The hypergeometric function is defined as

2F1(a, b, c, z) =
∑ (a)k(b)k

(c)kk!
zn, (3.9)

where |z|<1, (λ)0=1, (λ)k=
Γ(λ+k)
Γ(λ) =λ(λ+1)(λ+2) . . .

(λ+ k−1), k=1, 2, . . . , while a = 1
2 (l+λ±−ωR), b=

= 1
2 (l+λ±+ωR), c= l+ 1

2 (p+ 1)> 0, λ±=
1
2 (p+ 1)±

± 1
2

√
(p+ 1)2+ 4(mR)2.

The analytical continuation of the hypergeometric func-
tion for |z| > 1 is

2F1(a, b, c, z) =

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt
(3.10)

with Real(c)> 0 and Real(b)> 0. The boundary value
when θ= π

2 gives

lim
z→1−

F (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3.11)

Let us study the behaviour of the solution G(θ) in the
massless case: m=0, λ−=0, λ+= p+1.

Solutions with λ+=p+1 yield a trivial value of G(θ)=0
at the boundary θ = π

2 since cos (π2 )
p+1=0. Solutions with

λ−=0 lead to cos (θ)λ−=cos (θ)0= 1 prior to taking the
limit θ= π

2 . The expression cos (π2 )
λ− =00 is ill defined.

Upon using l’Hospital rule it yields 0. Thus, the limit θ= π
2

must be taken afterwards the limit λ−=0:

lim
θ→ π

2

[
cos(θ)λ−

]
= lim

θ→ π
2

[
cos(θ)0

]
= lim

θ→ π
2

[1] = 1. (3.12)
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In this fashion the value of G(θ) is well defined and
nonzero at the boundary when λ−=0 and leads to the value
of the wavefunction at the boundary of the conformally
compactified AdSd (for d = p+ 2 with radius R)

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ωR+ l+p+1

2

)
Γ
(
−ωR+ l+p+1

2

) . (3.13a)

upon setting the radius of AdSd space to unity it gives

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ω+ l+p+1

2

)
Γ
(
−ω+ l+p+1

2

) . (3.13b)

Hence, Φbound in eq-(3.13b) is the solution to the Casi-
mir invariant wave equation in the massless m=0 case

C2Φ =

[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
+ N 2

]

Φ = 0 (3.14)

and (when R=1)
[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
]

Φ=
[
C2−N

2
]
Φ=−ω2Φ (3.15)

sinceN = Σ56 is the rotation generator along the S1 compo-
nent of AdS space. It acts as ∂/∂τ only on the eiωRτ piece of
Φ. Concluding: Φ(z1, z2, . . . , zd)|boundary, restricted to the
d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit radius and topology Sd−2×S1)
given by eq-(3.12), is the sought-after solution to the wave
equations (3.13, 3.14) associated with the non-commutative
xμ coordinates and momenta pμ of the Yang’s algebra and
where the indices μ range over the dimensions of the bound-
ary μ= 1, 2, . . . , d − 1. This suggests that QM over Yang’s
Noncommutative Spacetimes could be well defined in terms
of ordinary QM in higher dimensions! This idea deserves
further investigations. For example, it was argued by [16]
that the quantized Nonabelian gauge theory in d dimensions
can be obtained as the infrared limit of the corresponding
classical gauge theory in d+ 1-dim.

4 Star products and noncommutative QM

The ordinary Moyal star-product of two functions in phase
space f(x, p), g(x, p) is

(f ∗ g)(x, p) =
∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−tx ∂tpf(x, p)

)(
∂tx∂

s−t
p g(x, p)

)
(4.1)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the
~ → 0 limit the star product f ∗ g reduces to the ordinary
pointwise product fg of functions. The Moyal product of
two functions of the 2n-dim phase space coordinates (qi, pi)
with i = 1, 2 . . . n is

(f ∗ g)(x, p) =
n∑

i

∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−txi ∂tpif(x, p)

)(
∂txi∂

s−t
pi g(x, p)

)
.

(4.2)

The noncommutative, associative Moyal bracket is

{f, g}MB =
1
i~

(
f ∗ g − g ∗ f

)
. (4.3)

The task now is to construct novel Moyal-Yang star
products based on the noncommutative spacetime Yang’s
algebra. A novel star product deformations of (super) p-brane
actions based on the noncommutative spacetime Yang’s al-
gebra where the deformation parameter is ~eff = ~LP /R, for
nonzero values of ~, was obtained in [15] The modified
(noncommutative) Poisson bracket is now given by

{F (qm, pm),G (qm, pm)}Ω =

= (∂qmF){q
m, qn}(∂qnG) + (∂pmF){p

m, pn}(∂pnG)+

+ (∂qmF){q
m, pn}(∂pnG) + (∂pmF){p

m, qn}(∂qnG) ,

(4.4)

where the entries {qm, qn} 6=0, {pm, pn} 6=0, and also
{pm, qn}=−{qn, pm} can be read from the commutators de-
scribed in section 2 by simply defining the deformation pa-
rameter ~eff ≡ ~(LP /R). One can generalize Yang’s original
4-dim algebra to noncommutative 2n-dim world-volumes
and/or spacetimes by working with the 2n+ 2-dim angular-
momentum algebra SO(d, 2)=SO(p+1, 2)=SO(2n, 2).

The Noncommutative Poisson brackets Ω(qm, qn)=
= {qm, qn}NCPB, Ω(pm, pn)= {pm, pn}NCPB, Ω(qm, pn)=
=−Ω(pn, qm)= {qm, pn}NCPB

Ω(qm, qn) = lim
~eff→0

1

i~eff

[
qm, qn

]
= −

L2

~
Σmn, (4.5a)

Ω(pm, pn) = lim
~eff→0

1

i~eff

[
pm, pn

]
= −

~
L2
Σmn, (4.5b)

Ω(qm, pn) = lim
~eff→0

1

i~eff

[
qm, pn

]
= −ηmn, (4.5c)

defined by above expressions, where Σmn is the “classical”
~eff = (~LP /R) → 0 limit (R→∞, LP → 0, RLP = L2,
~ 6=0) of the quantity Σmn= 1

~
(XmPn−XnPm), after em-

bedding the d−1-dimensional spacetime (boundary of AdSd)
into an ordinary (d−1)+2-dimensional one. In the R→∞,
. . . limit, the AdSd space (the hyperboloid) degenerates into
a flat Minkowski spacetime and the coordinates qm, pn, in
that infrared limit, coincide with the coordinates Xm, Pn.
Concluding, in the “classical” limit (R→∞, . . . , flat limit)
one has

Σmn ≡
1
~

(
XmPn−XnPm

)
→

1
~

(
qmpn− qnpm

)
(4.5d)

and then one recovers in that limit the ordinary definition of
the angular momentum in terms of commuting coordinates
q’s and commuting momenta p’s.
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Denoting the coordinates (qm, pm) by Zm and when
the Poisson structure Ωmn is given in terms of constant
numerical coefficients, the Moyal star product is defined in
terms of the deformation parameter ~eff = ~LP /R as

(F ∗ G)(z) ≡

≡ exp
[
(i~eff)Ω

mn∂(z1)m ∂(z2)n

]
F(z1)G(z2)|z1=z2=z

(4.6)

where the derivatives ∂(z1)m act only on the F(z1) term and

∂
(z2)
n act only on the G(z2) term. In our case the generalized

Poisson structure Ωmn is given in terms of variable coeffi-
cients, it is a function of the coordinates, then ∂Ωmn 6=0,
since the Yang’s algebra is basically an angular momentum
algebra, therefore the suitable Moyal-Yang star product given
by Kontsevich [11] will contain the appropriate corrections
∂Ωmn to the ordinary Moyal star product.

Denoting by ∂m=∂/∂zm=(∂/∂qm; ∂/∂pm) the Moyal-
Yang-Kontsevich star product, let us say, of the Hamiltonian
H(q, p) with the density distribution in phase space ρ (q, p)
(not necessarily positive definite), H(q, p) ∗ ρ (q, p) is

Hρ+ i~effΩ
mn(∂mH∂nρ)+

+
(i~eff)2

2
Ωm1n1Ωm2n2(∂2m1m2

H)(∂2n1n2 ρ)+

+
(i~eff)2

3

[
Ωm1n1(∂n1Ω

m2n2)×

× (∂m1∂n2H∂n2 ρ− ∂m2H∂m1∂n2 ρ)
]
+O(~3eff) ,

(4.7)

where the explicit components of Ωmn are given by eqs-
(4.5a–4.5d). The Kontsevich star product is associative up to
second order [11] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(~3eff).

The most general expression of the Kontsevich star pro-
duct in Poisson manifold is quite elaborate and shall not
be given here. Star products in curved phase spaces have
been constructed by Fedosov [12]. Despite these technical
subtlelties it did not affect the final expressions for the
“classical” Noncommutative p-brane actions as shown in
[15] when one takes the ~eff→ 0 “classical” limit. In that
limit there are still nontrivial noncommutative corrections to
the ordinary p-brane actions.

In the Weyl-Wigner-Gronewold-Moyal quantization
scheme in phase spaces one writes

H(x, p) ∗ ρ (x, p) = ρ (x, p) ∗H(x, p) = Eρ (x, p) , (4.8)

where the Wigner density function in phase space associated
with the Hilbert space state |Ψ> is

ρ (x, p, ~) =
1

2π

∫
dy Ψ∗

(
x−
~y
2

)
Ψ
(
x+
~y
2

)
e
ipy
~ (4.9)

plus their higher dimensional generalizations. It remains to be
studied if this Weyl-Wigner-Gronewold-Moyal quantization
scheme is appropriate to study QM over Noncommutative
Yang’s spacetimes when we use the above Moyal-Yang-
Kontsevich star products. A recent study of the Yang’s Non-

commutative algebra and discrete Hilbert (Buniy-Hsu-Zee)
spaces was undertaken by Tanaka [3].

Let us write down the Moyal-Yang-Konstevich star de-
formations of the field theory Lagrangian corresponding to
the scalar field Φ=Φ(XAB) which depends on the holo-
graphic-area coordinates XAB [13]. The reason one should
not try to construct the star product of Φ(xm) ∗ Φ(xn)
based on the Moyal-Yang-Kontsevich product, is because the
latter star product given by eq-(4.7) will introduce explicit
momentum terms in the r.h.s of Φ(xm) ∗ Φ(xm), stemming
from the expression Σmn=xmpn−xnpm of eq-(4.5d), and
thus it invalidates writing φ=φ(x) in the first place. If the
Σmn were numerical constants, like Θmn, then one could
write the Φ(xm) ∗ Φ(xm) in a straightforward fashion as it
is done in the literature.

The reason behind choosing Φ=Φ(XAB) is more clear
after one invokes the area-coordinates and angular momen-
tum correspondence discussed in detail in section 2. It allows
to properly define the star products. A typical Lagrangian is

L=−Φ∗∂2XABΦ
(
XAB

)
+
m2

2
Φ
(
XAB

)
∗Φ
(
XAB

)
+

+
gn

n
Φ(XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n Φ

(
XAB

) (4.10)

and leads to the equations of motion

−
(
∂/∂XAB

)(
∂/∂XAB

)
Φ
(
XAB

)
+m2Φ

(
XAB

)
+

+ gn Φ
(
XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n−1 Φ

(
XAB

)
= 0

(4.11)

when the multi-symplectic ΩABCD form is coordinate-
independent, the star product is

(Φ ∗ Φ)(ZAB) ≡ exp
[(
iλΩABCD∂XAB∂Y AB

)]
×

×Φ(XAB)Φ
(
Y AB

)∣∣
X=Y=Z

=

= exp
[(
ΣABCD∂XAB∂Y AB

)]
Φ
(
XAB

)
Φ
(
Y AB

)∣∣
X=Y=Z

(4.12)

where ΣABCD is derived from the structure constants of
the holographic area-coordinate algebra in C-spaces [14] as:[
XAB , XCD

]
= ΣABCD ≡ iL2P

(
ηADXBC− ηACXBD+

+ ηBCXAD− ηBDXAC
)
. There are nontrivial derivative

terms acting on ΣABCD in the definition of the star product
(Φ ∗Φ)(ZMN ) as we have seen in the definition of the Kon-
tsevich star productH(x, p) ∗ ρ (x, p) in eq-(4.7). The expan-
sion parameter in the star product is the Planck scale squared
λ = L2P . The star product has the same functional form as (4-
7) with the only difference that now we are taking derivatives
w.r.t the area-coordinatesXAB instead of derivatives w.r.t the
variables x, p, hence to order O(L4P ), the star product is

Φ ∗ Φ = Φ2 +ΣABCD(∂ABΦ ∂CDΦ)+

+
1
2
ΣA1B1C1D1ΣA2B2C2D2(∂2A1B1A2B2Φ)(∂

2
C1D1C2D2

Φ)+

+
1
3

[
ΣA1B1C1D1(∂C1D1 Σ

A2B2C2D2)×

× (∂A1B1 ∂A2B2 Φ ∂C2D2Φ−B1 ↔ B2)
]
.

(4.13)
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Notice that the powers of iL2P are encoded in the defini-
tion of ΣABCD. The star product is noncommutative but is
also nonassociative at the order O(L6P ) and beyond. The
Jacobi identities would be anomalous at that order and be-
yond. The derivatives acting on ΣABCD are

(∂C1D1Σ
A2B2C2D2) =

= iL2P
(
ηA2D2 δB2C2C1D1

− ηA2C2 δB2D2

C1D1

)
+

+ iL2P
(
ηB2C2 δA2D2

C1D1
− ηB2D2 δA2C2C1D1

)
.

(4.14)

where δABCD = δACδ
B
D − δADδ

B
C and the higher derivatives like

∂2A1B1C1D1
ΣA2B2C2D2 will be zero.

5 On the generalized Dirac-Konstant equation in Clif-
ford spaces

To conclude this work we will discuss the wave equations
relevant to fermions. The “square” of the Dirac-Konstant
equation (γ[μν]Σμν)Ψ=λΨ yields

(γ[μν]γ[ρτ ]ΣμνΣρτ )Ψ = λ2Ψ ⇒
[
γ[μνρτ ] + (ημργ[ντ ] − ημτγ[νρ] + . . . )+

+ (ημρηντ1− ημτηνρ1)
]
ΣμνΣρτΨ = λ2Ψ

(5.2)

where we omitted numerical factors. The generalized Dirac
equation in Clifford spaces is given by [13]

−i

(
∂

∂σ
+ γμ

∂

∂xμ
+ γ[μν]

∂

∂xμν
+ . . .

+ γ[μ1μ2...μd]
∂

∂xμ1μ2...μd

)

Ψ = λΨ ,

(5.3)

where σ, xμ, xμν , . . . are the generalized coordinates assoc-
iated with the Clifford polyvector in C-space

X=σ1+γμxμ+γ
μ1μ2xμ1μ2+ . . . γ

μ1μ2...μdxμ1μ2...μd (5.4)

after the length scale expansion parameter is set to unity. The
generalized Dirac-Konstant equations in Clifford-spaces are
obtained after introducing the generalized angular momen-
tum operators [14]

Σ[[μ1μ2...μn][ν1ν2...νn]] = X [[μ1μ2...μn]P [ν1ν2...νn]] =

= X [μ1μ2...μn]
i∂

∂X[ν1ν2...νn]
−X [ν1ν2...νn]

i∂

∂X[μ1μ2...μn]

(5.5)

by writing
∑

n

γ[[μ1μ2...μn]γ[ν1ν2...νn]]Σ[[μ1μ2...μn][ν1ν2...νn]]Ψ=λΨ(5.6)

and where we sum over all polyvector-valued indices (anti-
symmetric tensors of arbitrary rank). Upon squaring eq-(5.4),
one obtains the Clifford space extensions of the D0-brane
field equations found in [3] which are of the form

[

XAB ∂

∂XCD
−XCD ∂

∂XAB

]

×

×

[

XAB
∂

∂XCD
−XCD

∂

∂XAB

]

Ψ = 0 ,

(5.6)

where A,B = 1, 2, . . . , 6. It is warranted to study all these
equations in future work and their relation to the physics of
D-branes and Matrix Models [3]. Yang’s Noncommutative
algebra should be extended to superspaces, meaning non-
anti-commuting Grassmanian coordinates and noncommut-
ing bosonic coordinates.
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Declaración de Libertad Académica
(Derechos cientı́ficos del Ser Humano)

Artı́culo 1: Preámbulo

El comienzo del siglo XXI refleja, más que en cualquier
otra época de la historia de la Humanidad, el profundo signi-
ficado del papel de la Ciencia y la Tecnologı́a en los asuntos
humanos.

La naturaleza poderosamente influyente de la Ciencia y
Tecnologı́a modernas ha conducido a la percepción general
de que los descubrimientos más importantes pueden reali-
zarse principalmente o solamente mediante grandes grupos
de investigación gubernamentales o corporativos con acceso
a un instrumental enormemente caro y una gran cantidad de
personal de apoyo.

La impresión general es, sin embargo, mı́tica, y ocul-
ta la naturaleza real de cómo se realizan los descubrimien-
tos cientı́ficos. Los caros y enormes proyectos tecnológicos,
independientemente de su complejidad, no son sino el re-
sultado de la aplicación de profundas ideas cientı́ficas de
pequeños grupos de investigadores incansables o cientı́fi-
cos solitarios, quienes con frecuencia trabajan aislados. Un
cientı́fico que trabaja solo es ahora y en el futuro, y como
sucedió en el pasado, capaz de hacer un descubrimiento que
pueda influir sustancialmente en el destino de la Humanidad
y cambiar la faz del planeta entero en el cual somos unos
habitantes insignificantes.

Los descubrimientos revolucionarios son realizados ge-
neralmente por individuos que trabajan en posiciones subor-
dinadas en agencias gubernamentales, instituciones de en-
señanza e investigación, o en empresas comerciales. Por lo
tanto, el investigador está también con frecuencia ligado o
limitado por los directores de instituciones y corporaciones,
quienes trabajando en una dirección diferente, buscan con-
trolar y aplicar el descubrimiento y la investigación cientı́fica
para beneficio personal o de una organización, o incluso para
su gloria personal.

La memoria histórica de los descubrimientos cientı́ficos
está repleta de ejemplos de supresión y ridiculización por
los poderes establecidos, que aún ası́ se revelaron y reivin-
dicaron en años posteriores por la marcha inexorable de la
necesidad práctica y la ilustración intelectual. Ası́ mismo, el

*Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.geocities.com/ptep online/.

Versión original en inglés por Dmitri Rabounski, editor en jefe de la
revista Progress in Physics. E-mail: rabounski@yahoo.com.

Traducido al español por Juan Francisco González Hernández.
E-mail: jfgh.teorfizikisto@gmail.com. Editado por Jorge Mahecha Gómez.
E-mail: mahecha@fisica.udea.edu.co.

registro histórico es modificado y mancillado por el plagio
y la deliberada mala interpretación, perpetrados por gente
sin escrúpulos, motivados por la envidia y avaricia. Y ası́ es
también hoy dı́a.

El objetivo de esta Declaración es mantener y fomen-
tar la doctrina fundamental acerca de que la investigación
cientı́fica debe estar libre de influencias represivas latentes
o abiertas de dirigentes burocráticos, polı́ticos, religiosos o
monetarios, y que la creación cientı́fica es un derecho hu-
mano no inferior a otros derechos y manifestar fervientes
esperanzas de que logren expresarse en los tratados interna-
cionales y en la ley internacional.

Todos los cientı́ficos que la apoyen, deberán ser fieles a
los principios de esta Declaración, como signo de solidari-
dad con la comunidad cientı́fica internacional en cuestión, y
para conceder el Derecho de los ciudadanos del mundo a la
creación cientı́fica de acuerdo a sus aptitudes individuales y
disposición, para el avance de la ciencia y, con su extrema
capacidad como ciudadanos decentes en un mundo indecen-
te, para el beneficio de la Humanidad. La Ciencia y la Tec-
nologı́a han sido demasiado tiempo siervos de la opresión.

Artı́culo 2: Quién es un cientı́fico

Un cientı́fico es cualquier persona que hace Ciencia.
Cualquier persona que colabora con un cientı́fico en el de-
sarrollo y propuesta de ideas y datos en la investigación o
aplicación es también un cientı́fico. La posesión de una cua-
lificación formal no es un prerrequisito para que una persona
sea un cientı́fico.

Artı́culo 3: Dónde se produce la Ciencia

La investigación cientı́fica se puede desarrollar en cual-
quier lugar, por ejemplo, en un lugar de trabajo, durante un
curso formal de educación, durante un programa académico
patrocinado, en grupos, o como individuos que llevan a cabo
una investigación independiente en casa.

Artı́culo 4: Libertad de elección del tema de investiga-
ción

Muchos cientı́ficos que trabajan en aras de obtener un
grado de investigador avanzado o en otros programas de ins-
tituciones académicas tales como universidades y centros de
estudios avanzados, están limitados para trabajar en un tema
de investigación de su propia elección por académicos se-
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nior y/o funcionarios administrativos, no a causa de la falta
de instrumentos de apoyo sino a causa de que la jerarquı́a
académica y/o otros funcionarios simplemente no aprueban
la lı́nea de pensamiento debido a su potencial conflicto con
el dogma preestablecido, teorı́as favoritas en boga, o la fi-
nanciación de otros proyectos que pueden ser desacreditados
por la investigación propuesta. La autoridad de la mayorı́a
ortodoxa es invocada bastante a menudo para obstaculizar
un proyecto de investigación para que la autoridad y los pre-
supuestos no se vean cuestionados. Esta práctica común es
una obstrucción deliberada al libre pensamiento cientı́fico, es
extremadamente anticientı́fica, y es criminal. No puede ser
tolerada.

Un cientı́fico que trabaja para cualquier institución aca-
démica, autoridad o agencia, tiene que ser completamente
libre para elegir un tema de investigación, limitado sola-
mente por los recursos materiales disponibles y las aptitu-
des intelectuales capaces de ser ofrecidas por la institución
académica, agencia o autoridad. Si un cientı́fico lleva a cabo
una investigación como un miembro de un grupo de colabo-
ración, los directores de investigación y lı́deres del equipo
deberán estar limitados a labores consultivas en relación a
la escogencia de un tema relevante de investigación por un
cientı́fico del grupo.

Artı́culo 5: Libertad de elección de métodos de investi-
gación

Ocurre con frecuencia que se ejerce presión sobre un
cientı́fico por parte del personal administrativo o académi-
cos senior en relación a un proyecto de investigación rea-
lizado en un medio académico, para forzar al cientı́fico a
adoptar métodos de investigación diferentes a aquellos que
el cientı́fico hubiera elegido, sin más razón que la preferen-
cia personal, sesgo, polı́tica institucional, mandatos editoria-
les, o la autoridad colectiva. Esta práctica, que está bastante
extendida, es una negación deliberada de la libertad de pen-
samiento y no debe ser permitida.

Un cientı́fico no comercial o académico tiene el derecho
de desarrollar un tema de investigación en cualquier forma
razonable y por cualquier medio razonable que él considere
más efectivo. La decisión final acerca de cómo será realizada
debe ser tomada por el cientı́fico mismo.

Si un cientı́fico no comercial o académico trabaja co-
mo un miembro de un equipo no comercial o académico de
cientı́ficos, los lı́deres del proyecto y directores de investi-
gación deberán tener solamente derechos consultivos y no
deberán en modo alguno influenciar, entorpecer o limitar los
métodos o tema de investigación del cientı́fico en el grupo.

Artı́culo 6: Libertad de colaboración y participación en
la investigación

Hay un elemento significativo de rivalidad institucional
en la práctica de la Ciencia moderna, unida a elementos de

envidia personal y la preservación de la reputación y crédi-
to personal a toda costa, independiente de las realidades
cientı́ficas. Esto ha conducido a menudo a los cientı́ficos a
abstenerse de invitar a colegas competentes localizados en
instituciones rivales u otros sin afiliación académica. Esta
práctica es también una obstrucción deliberada del progreso
cientı́fico.

Si un cientı́fico no comercial o académico necesita la co-
laboración de otra persona y esa otra persona está de acuerdo
en ofrecérsela, el cientı́fico tiene libertad de invitar a esa per-
sona para prestarle ésa y cualquier otra ayuda, en el caso en
que tal ayuda esté en un presupuesto de investigación aso-
ciado. Si el auxilio es independiente de las consideraciones
del presupuesto, el cientı́fico es libre de escoger a la persona
a su discreción, libre de toda interferencia por cualquier otra
persona quien quiera que sea.

Artı́culo 7: Libertad de desacuerdo en la discusión cien-
tı́fica

Debido a los celos furtivos y al interés adquirido, la
Ciencia moderna aborrece la discusión abierta y premedita-
damente proscribe a aquellos cientı́ficos que cuestionan los
puntos de vista ortodoxos. Muy a menudo, cientı́ficos de
excepcional capacidad, que señalan las deficiencias en las
teorı́as actuales o la interpretación de los datos, son califi-
cados de chiflados, de forma que sus ideas puedan ser con-
venientemente ignoradas. Ellos son pública y privadamente
denostados y sistemáticamente barridos de las convencio-
nes cientı́ficas, seminarios y coloquios para que sus ideas
no puedan encontrar audiencia. La falsificación deliberada
de datos y la interpretación errónea de la teorı́a son aho-
ra instrumentos frecuentes de personas sin escrúpulos en la
supresión de los hechos, tanto técnicos como históricos. Se
han formado comités internacionales de cientı́ficos malva-
dos y estos comités albergan y dirigen convenciones inter-
nacionales a las que solamente sus acólitos pueden presentar
artı́culos, independientemente de la calidad de los mismos.
Estas comisiones obtienen grandes sumas de dinero públi-
co para financiar sus proyectos patrocinados, por medio del
engaño y la mentira. Cualquier objeción a las bases cientı́fi-
cas de sus propuestas es silenciada por cualquier medio a
su disposición, de forma que el dinero pueda continuar flu-
yendo a las cuentas de sus proyectos, y sean mantenidos en
sus empleos bien remunerados. Cientı́ficos opuestos a esta
praxis han sido despedidos por orden suya; otros han sido
impedidos de ocupar posiciones académicas por una red de
cómplices corruptos. En otras situaciones, algunos han sido
expulsados de su candidatura a programas de educación su-
perior tales como la tesis doctoral, por expresar ideas que
minan una teorı́a de moda, independientemente del tiempo
que una teorı́a ortodoxa pueda tener. El hecho fundamental
de que ninguna teorı́a cientı́fica es definitiva e inviolable, y
que es entonces susceptible de discutirse y reexaminarse, es
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ignorado completamente. De esta forma, también ignoran el
hecho de que un fenómeno puede tener varias explicaciones
plausibles, y maliciosamente desacreditan cualquier expli-
cación que vaya en contra de la ortodoxia, recurriendo sin
vacilación al uso de argumentos no cientı́ficos para justificar
sus opiniones sesgadas.

Todos los cientı́ficos deben ser libres de discutir su in-
vestigación y la de los demás sin temor de ser ridiculizados
sin fundamento en público o en privado, o ser acusados, des-
acreditados o impugnados de cualquier otra forma mediante
alegatos insustanciales. Ningún cientı́fico deberá ser puesto
en posición de arriesgar su sustento o reputación por expre-
sar una opinión cientı́fica. La libertad de expresión cientı́fica
debe ser lo principal. El uso de la autoridad para refutar
un argumento cientı́fico no es cientı́fico y no se usará pa-
ra amordazar, suprimir, intimidar, condenar al ostracismo, o
ejercer cualquier forma de coacción o supresión contra un
cientı́fico. La supresión deliberada de hechos o argumentos
cientı́ficos bien por omisión o bien por acción, y la manipu-
lación deliberada de datos para apoyar un argumento o para
desacreditar una idea contraria es un fraude a la Ciencia,
es un verdadero crimen cientı́fico. Los principios de la evi-
dencia deberán guiar toda discusión cientı́fica, sean estos de
naturaleza teórica o experimental, o bien una combinación
de ambos.

Artı́culo 8: Libertad de publicar resultados cientı́ficos

Una lamentable censura de artı́culos cientı́ficos ha lle-
gado ahora a ser la práctica estándar de los comités edi-
toriales de las principales revistas y archivos electrónicos,
y su séquito de alegados revisores expertos. Los revisores
son, en su mayorı́a, protegidos por el anonimato de forma
que un autor no pueda verificar su alegada calidad de ex-
perto. Los artı́culos son ahora rutinariamente rechazados si
el autor no está de acuerdo o contradice una teorı́a preferi-
da y la ortodoxia establecida. Muchos artı́culos se rechazan
ahora automáticamente por virtud de la aparición en la lista
de autores de un cientı́fico particular que no ha encontra-
do favores con los editores, los revisores u otros censores
expertos, sin cualquier consideración acerca del contenido
del artı́culo. Hay una lista negra de cientı́ficos disidentes y
esta lista se comunica entre las directivas editoriales partici-
pantes. Todas estas prácticas amenazan con crecer el sesgo
y constituyen una supresión del libre pensamiento, y deben
ser condenadas por la comunidad cientı́fica internacional.

Todos los cientı́ficos deberán tener el derecho de pre-
sentar sus resultados cientı́ficos, enteros o en parte, en con-
ferencias cientı́ficas relevantes, y a publicar los mismos en
revistas cientı́ficas impresas, archivos electrónicos, y cual-
quier otro medio. A ningún cientı́fico deberá rechazársele
sus artı́culos o informes cuando se les envı́e para publica-
ción a las revistas cientı́ficas, archivos electrónicos o cual-
quier otro medio, simplemente porque su trabajo cuestione

la opinión actual de la mayorı́a, entre en conflicto con las
ideas de una dirección editorial, mine las bases de otros pro-
yectos actuales o planificados por otros cientı́ficos, esté en
conflicto con cualquier dogma polı́tico o credo religioso, o
la opinión personal de otro, y ningún cientı́fico será coloca-
do en listas negras o en cualquier otra forma censurado o
impedido de publicar por cualquier otra persona sea quien
sea. Ningún cientı́fico bloqueará, modificará o de otra forma
interferirá con la publicación del trabajo de un cientı́fico ba-
jo la promesa de recibir cualquier contrapartida o cualquier
otro soborno.

Artı́culo 9: Coautorı́a de artı́culos cientı́ficos

Es un secreto a voces en los cı́rculos cientı́ficos que mu-
chos coautores de artı́culos de investigación tienen de he-
cho poco o nada que ver con la investigación referida en
su interior. Muchos supervisores de estudiantes graduados,
por ejemplo, no son contrarios a poner sus nombres en los
artı́culos escritos por aquellos que sólo en forma nominal
trabajan bajo su supervisión. En muchos casos, la persona
que en realidad escribe el artı́culo tiene un intelecto superior
al supervisor nominal. En otros casos, de nuevo por propósi-
tos de notoriedad, reputación, dinero, prestigio, y similares,
personas que no participan son incluidas en un artı́culo como
coautores. Los autores reales de tales artı́culos pueden sola-
mente objetar, al riesgo de ser posteriormente penalizados
de alguna manera, o incluso expulsados de la candidatura
a sus estudios superiores de investigación o del equipo de
investigación, según el caso. Muchos han sido de hecho ex-
pulsados bajo tales circunstancias. Esta práctica espantosa
no debe tolerarse. Sólo aquellos individuos responsables de
una investigación deberı́an ser acreditados como autores.

Ningún cientı́fico invitará a otro a ser incluido y ningún
cientı́fico deberá permitir que su nombre sea incluido como
coautor de un artı́culo cientı́fico si no contribuyeron signi-
ficativamente a la investigación presentada en el artı́culo.
Ningún cientı́fico deberá permitir que él o ella mismos sean
coaccionados por cualquier representante de una institución
académica, corporación, agencia gubernamental, o cualquier
otra persona, para incluir su nombre como coautor de la
concerniente investigación a la que ellos no contribuyeron
significativamente a cambio de contrapartidas u otros sobor-
nos. Ninguna persona deberá inducir o intentar inducir a un
cientı́fico en cualquier forma para permitir que el nombre del
cientı́fico sea incluido como coautor de un artı́culo cientı́fico
a cuyos temas no contribuyeron de forma significativa.

Artı́culo 10: Independencia de afiliación

Muchos cientı́ficos se contratan a corto plazo. Con el fin
del contrato, termina también la afiliación académica. Es a
menudo polı́tica de las directivas editoriales el no permitir la
publicación por parte de personas que no posean afiliación
académica o comercial. En ausencia de afiliación, muchos
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recursos no están disponibles para el cientı́fico, y se reducen
las posibilidades de presentar charlas y artı́culos en las con-
ferencias. Esto es una práctica viciosa que debe detenerse.
La Ciencia no reconoce afiliaciones de ningún tipo.

Ningún cientı́fico será rechazado para presentar artı́culos
en conferencias, coloquios o seminarios, de la publicación
en cualquier medio, del acceso a las bibliotecas académicas
o publicaciones cientı́ficas, de la asistencia a encuentros cien-
tı́ficos, o de dar conferencias, por carecer de una afiliación
con una institución académica, instituto cientı́fico, gobierno
o laboratorio comercial, o cualquier otra organización.

Artı́culo 11: Acceso abierto a la información cientı́fica

La mayorı́a de los libros especializados sobre asuntos
cientı́ficos y muchas revistas cientı́ficas rinden poca o ningu-
na ganancia de forma que los editores comerciales no están
dispuestos a publicarlos sin una contribución de dinero por
parte de instituciones académicas, agencias gubernamenta-
les, fundaciones filantrópicas y similares. Bajo estas circuns-
tancias, los editores comerciales deberı́an permitir el acceso
libre a las versiones electrónicas de las publicaciones, y es-
forzarse por mantener el coste de los materiales impresos a
un mı́nimo.

Todos los cientı́ficos se esforzarán en asegurar que sus
artı́culos de investigación estén disponibles para la comu-
nidad cientı́fica internacional libre de coste, o de forma al-
ternativa, si no puede evitarse, al mı́nimo coste. Todos los
cientı́ficos deberı́an tomar medidas activas para hacer sus
libros técnicos accesibles al precio más bajo posible para
que la información cientı́fica esté disponible a la más amplia
audiencia cientı́fica internacional.

Artı́culo 12: Responsabilidad ética de los cientı́ficos

La Historia atestigua que los descubrimientos cientı́ficos
se usan para ambos extremos, el bien y el mal, para el be-
neficio de la Humanidad y la destrucción de otros. Ya que el
progreso de la Ciencia y la Tecnologı́a no puede parar, de-
berı́an establecerse medios para evitar la aplicación maléfica
de las mismas. Sólo un gobierno democráticamente elegido,
libre de sesgos raciales, religiosos o de cualquier otro tipo,
puede salvaguardar la civilización. Sólo comités, tribunales
y gobiernos democráticamente elegidos pueden proteger el
derecho de la libre creación cientı́fica. En la época actual,
varios estados no democráticos y regı́menes totalitarios con-
ducen una investigación activa en Fı́sica Nuclear, Quı́mica,
Virologı́a, Ingenierı́a Genética, etcétera, para producir ar-
mas quı́micas, nucleares y biológicas. Ningún cientı́fico de-
berı́a colaborar voluntariamente con estados no democráticos
o regı́menes totalitarios. Cualquier cientı́fico coaccionado a
trabajar en el desarrollo de armas para tales estados deberı́a
encontrar formas y medios para ralentizar o incluso detener
el progreso de programas de investigación y de reducir la

producción cientı́fica para que la civilización y la democra-
cia puedan finalmente prevalecer.

Todos los cientı́ficos adquieren una responsabilidad mo-
ral por sus creaciones y descubrimientos cientı́ficos. Ningún
cientı́fico se unirá voluntariamente al diseño o construcción
de armas de cualquier tipo para estados no democráticos o
regı́menes totalitarios o permitirá que sus aptitudes cientı́fi-
cas y conocimientos sean aplicados al desarrollo de nada
nocivo para la Humanidad. Un cientı́fico vivirá bajo el dic-
tado de que todo gobierno no democrático y la violación de
los Derechos Humanos son criminales.

6 de marzo de 2006 Editor en jefe
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