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In the spherically symmetric case the dominant energy condition, together with the requirement
of regularity at the center, asymptotic flatness and finiteness of the ADM mass, defines the family
of asymptotically flat globally regular solutions to the Einstein minimally coupled equations which
includes the class of metrics asymptotically de Sitter as r → 0 and asymptotically Schwarzschild
as r → ∞. A source term connects smoothly de Sitter vacuum in the origin with the Minkowski
vacuum at infinity and corresponds to anisotropic vacuum defined macroscopically by the algebraic
structure of its stress-energy tensor invariant under boosts in the radial direction. In the range of
masses m ≥ mcrit, de Sitter-Schwarzschild geometry describes a vacuum nonsingular black hole,
and for m < mcrit it describes G-lump which is a vacuum self-gravitating particle-like structure
without horizons. Quantum energy spectrum of G-lump is shifted down by the binding energy,
and zero-point vacuum mode is fixed at the value corresponding to the Hawking temperature from
the de Sitter horizon. Space-time symmetry changes smoothly from the de Sitter group near the
center to the Lorentz group at infinity and the standard formula for the ADM mass relates it to
de Sitter vacuum replacing a central singularity at the scale of symmetry restoration. This class of
metrics is easily extended to the case of nonzero cosmological constant at infinity. The source term
connects then smoothly two de Sitter vacua which makes possible to relate a spherically symmetric
anisotropic vacuum with an r−dependent cosmological term Λµν .

PACS numbers: 04.70.Bw, 04.20.Dw

I. INTRODUCTION

Confrontation of models with observations in cosmol-
ogy as well as the inflationary paradigm, compellingly
require treating a cosmological constant as a variable dy-
namical quantity. Big value of the cosmological constant
at the very early stage of the Universe evolution is needed
to explain the reason for expansion [1] as well as puzzles
of the standard hot big bang model [2,3]. The key cos-
mological parameter to decide if cosmological constant is
zero or not today, is the product of the Hubble param-
eter and the age of the Universe Ht. In the standard
cosmology without cosmological constant this product
never exceeds the unity, but it is possible in the pres-
ence of a nonzero cosmological constant [3]. Therefore,
if the Hubble parameter and the age of the Universe are
found in observations to satisfy the bound Ht > 1, it
requires a term in the expansion rate equation that acts
as a cosmological constant [4]. With taking into account
uncertainties in models the best fit to achieve consensus
between observational constraints is [4–6]

H = (70− 80)km s−1Mpc−1, t = [(13− 16)± 3]Gy,

Ωmatter = 0.3− 0.4, ΩΛ = 0.6− 0.7,

where Ω = ρtoday/ρcrit, and the critical density ρcrit cor-
responds to Ω = 1.

A cosmological term was introduced by Einstein in
1917 into his equations describing gravity as space-time
geometry (G-field) generated by matter

Gµν = −8πGTµν (1)

to make them consistent with Mach’s principle which was
one of his primary motivations [7]. Einstein’s formula-
tion of Mach’s principle was that some matter has the
property of inertia only because there exists also some
other matter in the Universe ( [8], Ch.2). When Einstein
found that Minkowski geometry is the regular solution to
(1) perfectly describing inertial motion in the absence of
any matter, he modified his equations by adding the cos-
mological term Λgµν in the hope that modified equations

Gµν + Λgµν = −8πGTµν (2)

will have reasonable regular solutions only when matter
is present - if matter is the source of inertia, then in
case of its absence there should not be any inertia [9].
The primary task of Λ was thus to eliminate inertia in
case when matter is absent by eliminating regular G-field
solutions in case when Tµν = 0.

Soon after introducing Λgµν , de Sitter found quite rea-
sonable solution with Λgµν and without Tµν [10],

ds2 =
(

1− Λ
3
r2

)
dt2 − dr2(

1− Λ
3 r2

) − r2dΩ2 (3)

whose nowadays triumphs are well known [2,3].
In de Sitter geometry Λ must be constant by virtue

of the Bianchi identities Gµν
;ν = 0. It plays the role of

a universal repulsion whose physical sense remained ob-
scure during several decades when de Sitter metric has
been mainly used in quantum field theory as a simple
testing ground for developing the quantum field technics
in curved space-time.
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Almost fifty years later, in 1965, two papers appeared
in the same issue of the Soviet Physics JETP, which shed
some light on the physical nature of the de Sitter geome-
try. The first was the paper by Sakharov [11], in which he
suggested that gravitational effects dominate the equa-
tion of state of a cold baryon-lepton superdense matter
at densities ρ ∼ 1074g cm−3 (GUT density is of order
ρ ∼ 1077g cm−3 for GUT scale ∼ 1015GeV) and that
one of possible equations of state in such a regime could
be

p = −ρ (4)

formally corresponding to the equation of state for Λgµν

shifted to the right hand side of the Einstein equation (2)
as some stress-energy tensor. The physical sense of this
operation has been clarified in the second 1965 paper by
Gliner [12] who interpreted Λgµν as corresponding to a
stress-energy tensor of a superdense vacuum

T µν
vac = (8πG)−1Λgµν (5)

In the Petrov classification scheme [13] stress-energy ten-
sors are classified on the basis of their algebraic structure.
When the elementary divisors of the matrix Tµν − λgµν

are real, the eigenvectors of Tµν are non-isotropic and
form a comoving reference frame with the timelike vec-
tor representing a velocity. A comoving reference frame
is defined uniquely if and only if none of the spacelike
eigenvectors λa(a = 1, 2, 3) coincides with a timelike
eigenvalue λ0. A stress-energy tensor (5) with all eigen-
values equal, has an infinite set of comoving reference
frames and hence no preferred one. An observer moving
through de Sitter vacuum (5) cannot in principle mea-
sure his velocity with respect to it, since an observer’s
comoving frame is also comoving for (5) [12]. Gliner sug-
gested that at superhigh densities a continual medium
is formed with attraction between its elements, which is
phenomenologically described by stress-energy tensor (5)
with the negative pressure and the equation of state (4).
The other very important hypothesis suggested by Gliner
in this paper was that such a state could be achieved in
a gravitational collapse [12].

In 1967 De Witt found that quantum effects in one-
loop approximation lead to the vacuum stress-energy ten-
sor of a form [14]

< 0|Tµν |0 >= ρvacgµν (6)

In 1968 Zel’dovich proposed to relate Λgµν to gravita-
tional interaction of virtual particles in vacuum [15].

In 80-s several attempts have been made to eliminate a
black hole singularity by replacing it at the Planck scale
curvature with de Sitter metric using direct matching
of Schwarzschild metric outside to de Sitter metric in-
side a short spacelike transitional layer of the Planckian
depth [16–20]. The matched solutions typically have a

jump at the junction surface which comes from singu-
larity of a tangential pressure there. The situation with
de Sitter-Schwarzschild transition has been analyzed by
Poisson and Israel who suggested to introduce a tran-
sitional layer of ”noninflationary material” of uncertain
depth in which geometry can be self-regulatory and de-
scribable semiclassically down to a few Planckian radii
by the Einstein equations with a source term represent-
ing vacuum polarization effects [21].

Generic properties of ”noninflationary material” have
been considered in Ref. [22] for the case of a smooth tran-
sition from de Sitter vacuum at the origin to Minkowski
vacuum at infinity, and the exact analytical solution has
been found describing a vacuum nonsingular black hole in
a simple semiclassical model for vacuum polarization in
the gravitational field. In the course of Hawking evapo-
ration such a black hole evolves towards a self-gravitating
particle-like vacuum structure without horizons [23], kind
of gravitational vacuum soliton called G-lump [24].

Model-independent analysis of the Einstein spherically
symmetric minimally coupled equations has shown [24]
which kind of geometry they can describe in principle
(no matter which matter source is responsible for a stress-
energy tensor) if certain general requirements are satis-
fied:

a) regularity of metric and density at the center;
b) asymptotic flatness at infinity and finiteness of the

ADM mass;
c) dominant energy condition for Tµν .
The requirements (a)-(c) define the family of asymp-

totically flat solutions with the regular center which in-
cludes the class of metrics asymptotically de Sitter as r →
0 and asymptotically Schwarzschild as r →∞. A source
term belongs to the class of stress-energy tensors invari-
ant under boosts in the radial direction and connects de
Sitter vacuum in the origin with the Minkowskli vacuum
at infinity. Space-time symmetry changes smoothly from
de Sitter group at the center to the Lorentz group at
infinity through the radial boosts in between, and the
standard formula for the ADM mass relates it (generi-
cally, since a matter source can be any from considered
class) to both de Sitter vacuum replacing a singularity
and breaking of space-time symmetry.

This class of metrics can be extended to the case of
non-zero cosmological term at infinity [25] corresponding
to extension of the Einstein cosmological term Λgµν to
an r−dependent second rank symmetric tensor Λµν [26]
connecting in a smooth way two de Sitter vacua with
different values of a cosmological constant.

This talk is organized as follows. In Section II we out-
line de Sitter-Schwarzschild geometry, and in Section III
its extension to the case of non-zero cosmological con-
stant at infinity. In Section IV we present variable cos-
mological term Λµν and quantum energy spectrum of G-
lump. In Section V we outline the results concerning con-
nection between the ADM mass and cosmological term.
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Section VI contains discussion.

II. DE SITTER-SCHWARZSCHILD GEOMETRY

A static spherically symmetric line element can be
written in the standard form (see, e.g., [27], p.239)

ds2 = eµ(r)dt2 − eν(r)dr2 − r2dΩ2 (7)

where dΩ2 is the metric of a unit 2-sphere.
The Einstein equations (1) reduce to ( [27], p.244)

8πGT t
t = 8πGρ(r) = e−ν

(
ν′

r
− 1
r2

)
+

1
r2

(8)

8πGT r
r = −8πGpr(r) = −e−ν

(
µ′

r
+

1
r2

)
+

1
r2

(9)

8πGT θ
θ = 8πGT φ

φ = −8πGp⊥(r) =

−e−ν

(
µ′′

2
+
µ′2

4
+

(µ′ − ν′)
2r

− µ′ν′

4

)
(10)

Here ρ(r) = T t
t is the energy density (we adopted c = 1

for simplicity), pr(r) = −T r
r is the radial pressure, and

p⊥(r) = −T θ
θ = −T φ

φ is the tangential pressure for
anisotropic perfect fluid ( [27], p.243). A prime denotes
differentiation with respect to r.

Integration of Eq.(8) gives [29]

e−ν(r) = 1− 2GM(r)
r

; M(r) = 4π
∫ r

0

ρ(x)x2dx (11)

which has for large r the Schwarzschild asymptotic e−ν =
1− 2Gm/r, where the mass parameter m is given by

m = 4π
∫ ∞

0

ρ(r)r2dr (12)

Analysis of this system in the case when requirements
(a)-(c) are satisfied leads to the following results [24]:

The dominant energy condition T 00 ≥ |T ab| for each
a, b = 1, 2, 3, which holds if and only if [28]

ρ ≥ 0; − ρ ≤ pk ≤ ρ; k = 1, 2, 3 (13)

implies that the local energy density is non-negative and
each principal pressure never exceeds the energy density.
In the limit r → ∞ the condition of finiteness of the
mass (12) requires density profile ρ(r) to vanish at infin-
ity quicker than r−3, and the dominant energy condition
(13) requires both radial and tangential pressures to van-
ish as r → ∞. Then µ′ = 0 and µ =const at infinity,
and the standard boundary condition µ → 0 as r → ∞
leads to asymptotic flatness needed to identify (12) as

the ADM mass [29]. As a result we get the Schwarzschild
asymptotic at infinity

Tµν = 0; ds2 =
(

1−2Gm
r

)
− dr2(

1− 2Gm
r

)−r2dΩ2 (14)

From Eq.(8)-(10) we derive the equation (see also [30])

p⊥ = pr +
r

2
p′r + (ρ+ pr)

GM(r) + 4πGr3pr

2(r − 2GM(r))
(15)

which is generalization of the Tolman-Oppenheimer-
Volkoff equation ( [29], p.127) to the case of different
principal pressures, and the equation [31]

T t
t − T r

r = pr + ρ =
1

8πG
e−ν

r
(ν′ + µ′) (16)

From Eq.(11) it follows that for any regular value of eν(r)

M(r) = 0 at r = 0 and thus ν(r) → 0 as r → 0 [31].
The dominant energy condition allows us to fix asymp-
totic behavior of a mass function and of a metric at ap-
proaching the regular center. Requirement of regularity
of density ρ(r = 0) < ∞, leads, by Eq. (13), to reg-
ularity of pressures. Requirement of regularity of the
metric, eν(r) <∞, leads then, by (16), to ν′+µ′ = 0 and
ν + µ = µ(0) at r = 0 with µ(0) playing the role of the
family parameter.

The weak energy condition, Tµνξ
µξν ≥ 0 for any time-

like vector ξµ, which is satisfied if and only if ρ ≥
0; ρ + pk ≥ 0, k = 1, 2, 3 and which is contained in the
dominant energy condition [28], defines, by Eq.(16), the
sign of the sum µ′ + ν′. In the case when eν(r) > 0 ev-
erywhere, it demands µ′ + ν′ ≥ 0 everywhere. In case
when eν(r) changes sign, the function T t

t − T r
r is zero, by

Eq.(16), at the horizons where e−ν = 0. In the regions
inside the horizons, the radial coordinate r is timelike
and T t

t represents a tension, pr = −T t
t , along the axes of

the spacelike 3-cylinders of constant time r=const [21],
then T t

t −T r
r = −(pr +ρ), and the weak energy condition

still demands ν′ + µ′ ≥ 0 there. As a result the function
µ + ν is a function growing from µ = µ(0) at r = 0 to
µ = 0 at r →∞, which gives µ(0) ≤ 0.

The well known example of solution from this family
is boson stars [32] (for review [33]).

The range of family parameter µ(0) dictated by the
weak energy condition, includes the value µ(0) = 0,
which corresponds to ν + µ = 0 at the center. In this
case the function φ(r) = ν(r) + µ(r) is zero at r = 0
and at r → ∞, its derivative is non-negative, it fol-
lows that φ(r) = 0, i.e., ν(r) = −µ(r) everywhere.
The weak energy condition defines also equation of state
and thus asymptotic behavior as r → 0. The function
φ(r) = µ(r) + ν(r), which is equal zero everywhere for
0 ≤ r < ∞, cannot have extremum at r = 0, therefore
µ′′ + ν′′ = 0 at r = 0 (this is easily proved by contradic-
tion using the Maclaurin rule for even derivatives in the
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extremum). It leads, by using L’Hopital rule in Eq.(16),
to pr + ρ = 0 at r = 0. In the limit r → 0 Eq.(15)
becomes p⊥ = −ρ − r

2ρ
′. The energy dominant condi-

tion (13) requires ρ′ ≤ 0, while regularity of ρ requires
pk + ρ < ∞ and thus |ρ′| < ∞. Then the equation of
state near the center becomes p = −ρ, which gives de
Sitter asymptotic (3) as r→ 0 [24].

Summarizing, we conclude that if we require asymp-
totic flatness, regularity of a density and metric at the
center and finiteness of the ADM mass, then the dom-
inant energy condition defines the family of asymptoti-
cally flat solutions with the regular center which includes
the class of metrics

eµ(r) = e−ν(r) = g(r) = 1− 2GM(r)/r (19)

with M(r) given by Eq.(11), whose behavior in the origin
- asymptotically de Sitter as r → 0, is dictated by the
weak energy condition.

For this class a source term has the algebraic structure

T t
t = T r

r : T θ
θ = T φ

φ (20)

and the equation of state is

pr = −ρ : p⊥ = −ρ− (r/2)ρ′ (21)

It connects de Sitter vacuum Tµν = ρ0gµν in the origin
with the Minkowski vacuum Tµν = 0 at infinity, and gen-
erates de Sitter-Schwarzschild geometry [23] asymptoti-
cally de Sitter as r→ 0 and asymptotically Schwarzschild
as r →∞.

Note, that if we postulate regularity also for pressures,
then the weak energy condition is enough to distinguish
the class of metrics (19) [24].

The weak energy condition p⊥ + ρ ≥ 0 gives ρ′ ≤ 0,
so that it demands monotonic decreasing of a density
profile. By Eq.(10) it leads to the important fact that,
except the point r = 0 where g(r) has the maximum, in
any other extremum g′′ > 0, so that the function g(r) has
in the region 0 < r < ∞ only minimum and the metric
(19) can have not more than two horizons [24].

To find explicit form of M(r) we have to choose some
density profile leading to the needed behavior of M(r) as
r → 0, M(r) ' (4π/3)ρ0r

3. The simplest choice [22]

ρ(r) = ρ0e
−r3/r2

0rg ; r20 = 3/Λ; rg = 2Gm (22)

can be interpreted [23] as due to vacuum polarization in
the spherically symmetric gravitational field as described
semiclassically by the Schwinger formula w ∼ e−Fcrit/F

(see, e.g., [34]) with tidal forces F ∼ rg/r
3 and Fcrit ∼

1/r20, in agreement with the basic idea suggested by Pois-
son and Israel that in Schwarzschild-de Sitter transition
space-time geometry can be self-regulatory as a result of
vacuum polarization effects [21].

The key point is the existence of two horizons, a black
hole event horizon r+ and an internal horizon r−. A

critical value of a mass parameter exists, mcrit, at which
the horizons come together and which puts a lower limit
on a black hole mass [23]. For the model (22)

mcrit ' 0.3mPl

√
ρPl/ρ0 (23)

De Sitter-Schwarzschild configurations are shown in
Fig.1.

FIG. 1. The metric g(r) for de Sitter-Schwarzschild config-
urations plotted for the case of the density profile (22). The
mass parameter m is normalized to mcrit.

For m ≥ mcrit de Sitter-Schwarzschild geometry de-
scribes the vacuum nonsingular black hole (ΛBH) [22],
and global structure of space-time, shown in Fig.2 [23],
contains an infinite sequence of black and white holes
whose future and past singularities are replaced with reg-
ular cores RC asymptotically de Sitter as r→ 0.
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FIG. 2. Penrose-Carter diagram for Λ black hole.

A ΛBH emits Hawking radiation from both black hole
and cosmological horizons with the Gibbons-Hawking
temperature T = h̄κ(2πkc)−1 [35] where κ is the surface
gravity and k is the Boltzmann constant. For a ΛBH the
temperature from horizons is given by [23]

Th =
h̄G

2πckr0

(
M(rh)
r2h

− M ′(rh)
rh

)
(24)

In the limit rg/r0 � 1, the temperature tends to
the Schwarzschild value TSchw = h̄c3/8πGkm on the
black hole horizon and to the de Sitter value TDeS =
−h̄c/2πkr0 on the internal horizon.While a ΛBH loses its
mass, horizons come together, and configuration evolves
towards a self-gravitating particle-like structure without
horizons [23]. Temperature-mass diagram is shown in
Fig.3. Its form is generic for de Sitter-Schwarzschild
geometry and does not depend on particular form of a
density profile. The temperature T+ on BH horizon r+
is positive by general laws of BH thermodynamics [29].
It drops to zero at m = mcrit, while the Schwarzschild
asymptotic requires T+ → 0 as m →∞. As a result the
temperature-mass diagram should have a maximum be-

tween mcrit and m → ∞ [23]. In a maximum a specific
heat is broken and changes sign testifying to a second-
order phase transition in the course of Hawking evapora-
tion and suggesting symmetry restoration to the de Sitter
group in the origin [36].
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FIG. 3. Temperature-mass diagram for Λ black hole.

For masses m < mcrit de Sitter-Schwarzschild geome-
try describes a self-gravitating particle-like vacuum struc-
ture without horizons, globally regular and globally neu-
tral. It resembles Coleman’s lumps - non-singular, non-
dissipative solutions of finite energy, holding themselves
together by their own self-interaction [37]. The lump
idea goes back to the Einstein proposal to describe an
elementary particle by regular solution of nonlinear field
equations as ”bunched field” located in the confined re-
gion where field tension and energy are particularly high
[38]. De Sitter-Schwarzschild lump is regular solution to
the Einstein equations, perfectly localized (see Fig.4) in
a region where field tension and energy are particularly
high (this is the region of the former singularity), so we
can call it G-lump [24].
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FIG. 4. G-lump in the case rg = 0.1r0 (m ' 0.06mcrit).
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It holds itself together by gravity due to balance be-
tween gravitational attraction outside and gravitational
repulsion inside of zero-gravity surface r = rc beyond
which the strong energy condition of singularities the-
orems [28], (Tµν − Tgµν/2)ξµξν) ≥ 0, is violated [23].
The surface of zero gravity is defined by 2ρ + rρ′ = 0.
It is depicted in Fig.5 together with horizons and with
the surface r = rs of zero scalar curvature R(rs) = 0
which represents the characteristic curvature size in the
de Sitter-Schwarzschild geometry. In the case of the den-
sity profile (22) the characteristic size rs is given by

rs =
(

4
3
r20rg

)1/3

=
(
m

πρ0

)1/3

(25)

and confines about 3/4 of the mass m.

FIG. 5. Horizons of ΛBH, surface of zero scalar curvature
r = rs and surface of zero gravity r = rc.

The question of stability of de Sitter-Schwarzschild
configurations is currently under investigation. De Sitter-
Schwarzschild black hole configuration obtained by di-
rect matching of the Schwarzschild metric outside to de
Sitter metric inside of a spacelike three-cylindrical short
transitional layer [20] is a stable configuration in a sense
that the three-cylinder does not tend to shrink down
under perturbations [39]. De Sitter-Schwarzschild con-
figurations considered above represent general case of a
smooth transition with a distributed density profile. The
heuristic argument in favor of their stability comes from
comparison of the ADM mass with the proper mass [29]

µ = 4π
∫∞
0 ρ(r)

(
1− 2GM(r)

r

)−1/2

r2dr. In the spheri-

cally symmetric case the ADM mass represents the to-
tal energy, m = µ+binding energy [29]. In de Sitter-
Schwarzschild geometry µ is bigger than m. This sug-
gests that the configuration might be stable since energy
is needed to break it up [26]. Analysis of stability of a
ΛBH as an isolated system by Poincare’s method, with
the total energy m as a thermodynamical variable and

the inverse temperature as the conjugate variable [40],
shows immediately its stability with respect to spheri-
cally symmetric perturbations. The analysis by Chan-
drasekhar method [41] is straightforward for a ΛBH sta-
bility to external perturbations, in close similarity with
the Schwarzschild and Reissner-Nordström cases. The
potential barriers in one-dimensional wave equations gov-
erning perturbations, external to the event horizon, are
real and positive, and stability follows from this fact
[41]. Preliminary results suggest stability also for the
case of G-lump. In the context of catastrophe-theory
analysis, de Sitter-Schwarzschild configuration resembles
high-entropy neutral type in the Maeda classification, in
which a non-Abelian structure may be approximated as
a sphere of uniform vacuum density ρvac whose radius is
the Compton wavelength of a massive non-Abelian field,
and self-gravitating particle approaches the particle so-
lution in the Minkowski space [42].

III. TWO-LAMBDA GEOMETRY

The class of metrics (19)-(20 is easily extended to the
case of nonzero background cosmological constant λ, by
introducing

T t
t (r) = ρ(r) + (8πG)−1λ (26)

Then the metric function g(r) in Eq.(19) is given by [25]

g(r) = 1− 2GM(r)
r

− λr2

3
(27)

For r� (3rg/Λ)1/3, the metric (27) behaves like de Sitter
metric with cosmological constant Λ + λ, while for r �
(3rg/Λ)1/3 it aproaches the Kottler-Trefftz metric [43]

ds2 =
(

1− rg
r
− λr2

3

)
dt2 −

(
1− rg

r
− λr2

3

)−1

dr2

−r2(dϑ2 + sin2 ϑdϕ2), (28)

which is frequently referred to in the literature as the
Schwarzschild-de Sitter geometry describing cosmologi-
cal black hole. The metric (27) represents thus its non-
singular modification.

The two-lambda space-time has in general three hori-
zons: a cosmological horizon r++, a black hole horizon
r+ and an internal horizon r− which can be formally
identified as the Cauchy horizon (see also [21]) as formed
by zero generators inextendible to the past. The metric
function (27) is plotted in Fig.6.
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case q =

√
Λ/λ = 10 and m = 4

√
3/Λ(c2/G).

In the range of horizons rh � (Λrg/3)1/3 the internal
horizon is given approximately by [25]

r− '
√

3
Λ + λ

[
1 +

1
4rg

√
3

Λ + λ

(
Λ

Λ + λ

)2

[
1 +

5
4rg

√
3

Λ + λ

(
Λ

Λ + λ

)2]]
(29)

for rg �
√

3/Λ + λ(Λ/Λ + λ)2.
In the range of rh � (Λrg/3)1/3, the cosmological hori-

zon is located approximately at

r++ '
√

3
λ
− rg

2
(30)

for rg �
√

3/λ(Λ/λ).
In the interface a horizon can be written in the form

rh = rg + ε, ε� rg which gives the black hole horizon

r+ ' rg

[
1 +

λr2g
3
− exp

(
−Λr2g

3

)]
(31)

for rg within the range
√

3/Λ� rg �
√

3/λ.
Horizon-mass diagram is plotted in Fig.7 for the case

of the density profile given by (22).
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There are two critical values of the mass m, restrict-
ing the mass of a nonsingular cosmological black hole
from below and from above. Within the range of masses
mcr1 < m < mcr2, the metric (27) has three horizons
and describes a nonsingular cosmological black hole. Its
global structure is shown in Fig.8.
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FIG. 8. Penrose-Carter diagram for two-lambda black hole.

This diagram is similar to the case of Reissner-
Nordström-de Sitter geometry [45]. The essential dif-
ference is that the timelike surface r = 0 is regular in
our case. The global structure of nonsingular cosmologi-
cal black hole contains an infinite sequence of asymptot-
ically de Sitter (small background λ) universes U1, U2,
black and white holes BH, WH whose singularities
are replaced with future and past regular cores RC1,
RC2 (with Λ + λ at r → 0), and ”cosmological cores”

7



CC (regions between cosmological horizons and spacelike
infinities). Rectangular regions confined by the surfaces
r = 0 and r = ∞ do not belong to the diagram.

Specification of these regions [44] is given by the invari-
ant quantity [34,46] ∆ = gµνr,µ r,ν . Dependently on the
sign of ∆, space-time is divided into R and T regions
(see [34,46]): In the R regions the normal vector to
the surfaces r =const, Nµ = r,µ is spacelike, and an ob-
server on those surfaces can send radial signals directed
to both inside and outside of them. In the T regions
the normal vector Nµ is timelike, surfaces r =const are
spacelike, and both signals propagate on the same side
of this surface, and any observer can cross the surface
r =const only once and only in the same direction. The
R and T regions are separated by horizons, where
∆ = 0. For the two-lambda space-times, the regions RC
and U are R regions, while the regions BH, WH and
CC are T regions. For the metric in the Kruskal form
∆ = (1/2)g−1

00 r,u r,v ; in the T regions ∆ > 0 , the
vector r,u cannot be zero, and the conditions r,u > 0 and
r,u< 0 are invariant [46]. For r,u< 0, T region is T−
region of contraction, so that BH are T− regions, while
WH are expanding T+ regions, since r,u> 0 there.

Five types of globally regular spherically symmetric
configurations described by two-lambda geometry, are
plotted in Fig.9 for the case q ≡√

Λ/λ = 10.
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FIG. 9. Two-lambda configurations for the case q = 10.
The parameter M is a mass m normalized to (3/G2Λ)1/2.

The critical value of mass at which the internal hori-
zon r− coincides with the black hole horizon r+, defines
the first extreme black hole state. The value mcr1 puts
the lower limit for a black hole mass. It practically does
not depend on the parameter q =

√
Λ/λ and is given

by (23). This extreme black hole is shown in Fig.9 (the
curve M = 3.4). The Schwarzschild-de Sitter family of
singular black holes contains masses between zero and the
size of the cosmological horizon (see, e.g., [47]). Replac-
ing a black hole singularity with a cosmological constant
Λ results in appearance of the lower limit on a mass of

cosmological black hole which is almost the same as in
the case of nonsingular Λ black hole at the Minkowski
space background [23]. It represents the new type spher-
ically symmetric configuration - the extreme neutral non-
singular cosmological black hole whose internal horizon
coincides with a black hole horizon.

An upper limit mcr2, at which the black hole horizon
r+ coincides with the cosmological horizon r++, corre-
sponds to the nonsingular modification of the Nariai so-
lution [48], with the additional internal horizon which is
absent in the Nariai case. The value of mcr2 depends
essentially on the parameter q =

√
Λ/λ (see Fig.7).

Beyond the limiting masses mcr1 and mcr2, there exist
two different types of globally regular spherically sym-
metric configurations:

(i) A spherically symmetric self-gravitating particle-
like structure at the de Sitter background in the range
of masses m < mcr1. This G-lump differs from the case
of Minkowski space background Fig.1 by existence of the
cosmological horizon.

(ii) The case m > mcr2 differs essentially from the
Schwarzschild-de Sitter case by existence of an internal
horizon. Configuration of this type which we called ”de
Sitter bag” [25], corresponds to cosmology with the same
global structure as for de Sitter geometry, but with cos-
mological constant smoothly evolving from Λ in the past
to λ in the future.

IV. VARIABLE COSMOLOGICAL TERM

Stress-energy tensors (20) for the considered class of
metrics belong to the Petrov type [(II)(II)]. The first sym-
bol in the brackets denotes the eigenvalue related to the
timelike eigenvector representing a velocity. Parenthe-
ses combine equal eigenvalues. A stress-energy tensor of
this type has an infinite set of comoving reference frames,
since it is invariant under boosts in the radial direction,
and can be thus identified as describing a spherically sym-
metric anisotropic vacuum (an observer moving through
such a medium cannot in principle measure the radial
component of his velocity with respect to it), i.e., vac-
uum with variable energy density and pressures, macro-
scopically defined by the algebraic structure of its stress-
energy tensor T vac

µν [22]. In the case of nonzero back-
ground λ it connects smoothly two de Sitter vacua with
different values of cosmological constant. This makes it
possible to interpret T vac

µν as corresponding to the exten-
sion of the algebraic structure of the cosmological term
from Λgµν (with Λ=const) to an r-dependent cosmolog-
ical term Λµν = 8πGT vac

µν , evolving from Λµν = Λgµν

as r → 0 to Λµν = λgµν as r → ∞, and satisfying the
equation of state (21) with 8πGρΛ = Λt

t, 8πGpΛ
r = −Λr

r

and 8πGpΛ
⊥ = −Λθ

θ = −Λφ
φ [26].

In quantum field theory cosmological constant Λ is re-
lated to zero-point vacuum energy. A zero-point energy
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of G-lump which clearly represents an elementary spher-
ically symmetric excitation of a vacuum defined macro-
scopically by (20), can be evaluated in simple quantum
minisuperspace model [24]. Since de Sitter vacuum is
trapped within a G-lump, we can model it by a spherical
bubble whose density decreases with a distance. In the
Finkelstein coordinates, de Sitter-Schwarzschild geome-
try is described by the metric

ds2 = dτ2 − 2GM(r(R, τ))
r(R, τ)

− r2(R, τ)dΩ2 (32)

The equation of motion ṙ2 + 2rr̈ − 8πGρ(r)r2 = f(R)
[49], where dot denotes differentiation with respect to τ
and f(R) is constant of integration, has the first integral

ṙ2 − 2GM(r)
r

= f(R) (33)

which resembles the equation of a particle in the potential
V (r) = −GM(r)

r , with the constant of integration f(R)
playing the role of the total energy f = 2E.

A spherical bubble can be described by the minisuper-
space model with a single degree of freedom [50]. The mo-
mentum operator is introduced by p̂ = −ilPl

2d/dr, and
the equation (33) transforms into the Wheeler-DeWitt
equation in the minisuperspace [50] which reduces to the
Schrödinger equation

h̄2

2mPl

d2ψ

dr2
− (V (r) − E)ψ = 0 (34)

with the potential (in the Planckian units)

V (r) = −GM(r)
r

(35)

depicted in Fig.10.

2 4 6 8 10
r

-0.08

-0.06

-0.04

-0.02

0.02

V(r)

FIG. 10. The plot of the potential (35) for G-lump with
rg = 0.1r0(m ' 0.07mcrit).

Near the minimum r = rm the potential takes the form
V (r) = V (rm) + 4πGp⊥(rm)(r − rm)2. Introducing the
variable x = r − rm we reduce Eq.(34) to the equation
for a harmonic oscillator

d2ψ

dx2
− m2

Plω
2x2

h̄2 ψ +
2mPlẼ

h̄2 ψ = 0 (36)

where Ẽ = E − V (rm), ω2 = Λc2p̃⊥(rm), and p̃⊥ is the
dimensionless pressure normalized to vacuum density ρ0

at r = 0; for the density profile (22) p̃⊥(rm) ' 0.2. The
energy spectrum

En = h̄ω

(
n+

1
2

)
− GM(rm)

rm
EPl (37)

is shifted down by the minimum of the potential V (rm)
which represents the binding energy. The energy of zero-
point vacuum mode [24]

Ẽ0 =
√

3p̃⊥
2

h̄c

r0
(38)

never exceeds the binding energy V (rm). It remarkably
agrees with the Hawking temperature from the de Sit-
ter horizon kTH = 1

2π
h̄c
r0

[35], representing the energy of
virtual particles which could become real in the presence
of the horizon. In the case of G-lump which is structure
without horizons, kind of gravitational vacuum exciton,
they are confined by the binding energy V (rm).

V. COSMOLOGICAL TERM AS A SOURCE OF
MASS

The mass of both G-lump and ΛBH is directly con-
nected to cosmological term Λµν by the ADM formula
(12) which in this case reads

m = (2G)−1

∫ ∞

0

Λt
t(r)r

2dr (39)

and relates mass to the de Sitter vacuum at the origin
(which is thus evidently trapped within an object) [24].

The Minkowski geometry allows existence of inertial
mass as the Lorentz invariant m2 = pµp

µ of a test body.
High symmetry of this geometry allows both existence
of inertial frames and of quantity m as the measure of
inertia, but geometry tells nothing about this quantity.

In the Schwarzschild geometry the parameter m is re-
sponsible for geometry, it is identified as a gravitational
mass of a source by asymptotic behavior of the metric at
infinity. By the equivalence principle, gravitational mass
is equal to inertial mass. The inertial mass is represented
thus by a purely geometrical quantity, the Schwarzschild
radius rg which is geometrical fact of the Schwarzschild
geometry [51]. However it still does not tell about origin
of a mass.
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The geometrical fact of de Sitter-Schwarzschild ge-
ometry is that a mass m (identified by Schwarzschild
asymptotic at infinity) is related to cosmological term,
since Schwarzschild singularity is replaced with a de Sit-
ter vacuum. The operation of introducing mass by the
ADM formula (39) is impossible in the de Sitter geom-
etry, since symmetry of the source term Tµν = ρ0gµν =
(8πG)−1Λgµν is too high and ρ0=const everywhere. In
the case of de Sitter-Schwarzschild geometry symmetry
of a source term is reduced from the full Lorentz group
to the Lorentz boosts in the radial direction only. To-
gether with asymptotic flatness this allows introducing
a distinguished point as the center of an object whose
ADM mass is defined by the standard formula (12). The
reduced symmetry of a source and the asymptotic flat-
ness of geometry are responsible for mass of an object
given by (39).

Let us note that this observation does not depend on
identification of a vacuum tensor of the algebraic struc-
ture (20) as corresponding to variable cosmological term
Λµν . Any stress-energy tensor for this class of metrics
(no matter interpreted as Λµν or not) is invariant under
full Lorentz group in the origin and at infinity but only
under radial boosts in between. And for any source from
this class the standard formula (12) for the ADM mass
relates it to both de Sitter vacuum trapped in the origin
and breaking of space-time symmetry.

This picture seems to be in remarkable conformity with
the basic idea of the Higgs mechanism for generation of
mass via spontaneous breaking of symmetry of a scalar
field vacuum from a false vacuum (where Tµν = V (0)gµν ,
and p = −ρ), to a true vacuum Tµν = 0. In both cases
de Sitter vacuum is involved and vacuum symmetry is
broken. Even graphically the gravitational potential g(r)
resembles a Higgs potential (see Fig.11).
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FIG. 11. The gravitational potential g(r) for the case of
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The difference is that in case of a mass coming from
Λµν by (39), the gravitational potential g(r) is generic,
and de Sitter vacuum supplies a particle with a mass
via smooth breaking of space-time symmetry from the
de Sitter group in its center to the Lorentz group at its
infinity.

This leads to the natural assumption [52] that what-
ever would be particular mechanism for mass generation,
a fundamental particle (a particle which does not dis-
play substructure, like a lepton or quark) may have an
internal vacuum core (at the scale where it gets mass) re-
lated to its mass and a geometrical size defined by grav-
ity. Such a core with de Sitter vacuum at the origin and
Minkowski vacuum at infinity can be approximated by de
Sitter-Schwarzschild geometry. Characteristic size in this
geometry is given by (25). It depends on vacuum density
at r = 0 and presents modification of the Schwarzschild
radius rg to the case when singularity is replaced by de
Sitter vacuum. While application of the Schwarzschild
radius to elementary particle size is highly speculative
since obtained estimates are many orders of magnitude
less than lPl, the characteristic size rs gives reasonable
numbers (e.g., rs ∼ 10−18 cm for the electron getting its
mass from the vacuum at the electroweak scale) close to
estimates obtained in experiments (see Fig.12 [52] where
they are compared with electromagnetic (EM) and elec-
troweak (EW) experimental limits).
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VI. DISCUSSION

The main point outlined here is the existence of the
class of globally regular solutions to the minimally cou-
pled GR equations (8)-(10), with a source term of the al-
gebraic structure (20) interpreted as spherically symmet-
ric anisotropic vacuum with variable density and pres-
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sures T vac
µν associated with a time-dependent and spa-

tially inhomogeneous cosmological term Λµν = 8πGT vac
µν ,

whose asymptotic in the origin, dictated by the weak en-
ergy condition, is the Einstein cosmological term Λgµν.

The key difference of Λµν from the quintessence which
is introduced as a time-varying spatially inhomogeneous
component of matter content with negative pressure is
in the algebraic structure of stress tensors. Quintessence
is defined by the equation of state p = −αρ with α < 1
[54]. This corresponds to such a stress-energy tensor Tµν

for which a comoving reference frame is defined uniquely.
The quintessence represents thus a non-vacuum negative-
pressure isotropic alternative to a cosmological constant
Λ while the cosmological tensor Λµν represents the exten-
sion of the algebraic structure of the Einstein cosmolog-
ical term Λgµν which makes it variable and anisotropic.

De Sitter-Schwarzschild geometry (19) describes
generic properties of any configuration satisfying (20) and
requirements (a)-(c), obligatory for any particular model
in the same sense as de Sitter geometry (3) is obligatory
for any matter source satisfying (4).

In the inflationary cosmology which is based on generic
properties of de Sitter vacuum Λgµν independently on
where Λ comes from [1], several mechanisms are inves-
tigated relating Λgµν to matter sources (for review see
[2,53]). Most frequently considered is a scalar field

S =
∫
d4x
√−g

[
R + (∂φ)2 − 2V (φ)

]
(40)

where R is the scalar curvature, (∂φ)2 = gµν∂µφ∂νφ,
with various forms for a scalar field potential V (φ).

The question whether a regular black hole can be ob-
tained as a false vacuum configuration described by (40),
has been addressed in the paper [55], where ”the no-
go theorem” has been proved: Asymptotically flat reg-
ular black hole solutions are absent in the theory (40)
with any non-negative potential V (φ). This result has
been extended to the case of any V (φ) and any asymp-
totic and then generalized to the case of a theory with

the action S =
∫
d4x
√−g

[
R+ F [(∂φ)2, φ]

]
, where F is

an arbitrary function [56], to the multi-scalar theories of
sigma-model type, and to scalar-tensor and curvature-
nonlinear gravity theories [57]. It has been shown that
the only possible regular solutions are either de Sitter-like
with a single cosmological horizon or those without hori-
zons, including asymptotically flat ones. The latter do
not exist for V (φ) ≥ 0, so that the set of causal false vac-
uum structures is the same as known for φ = const case,
namely Minkowski (or anti-de Sitter), Schwarzschild, de
Sitter, and Schwarzschild-de Sitter [56,57], and thus does
not include de Sitter-Schwarzschild configurations.

In the case of complex massive scalar field the regu-
lar structures can be obtained in the minimally coupled
theory with positive V (φ) [58]. These are boson stars

( [33] and references therein), but in this case algebraic
structure of the stress-energy tensor [33] does not satisfy
Eq.(20), and asymptotic at r = 0 is not de Sitter.

The considered connection between r-dependent cos-
mological term Λµν and the ADM mass seems to satisfy
Einstein’s version of Mach’s principle - no matter, no in-
ertia - if we explicitly separate two aspects of the problem
of inertia: existence of inertial frames and existence of in-
ertial mass. In empty space, T vac

µν = 0, inertial frames ex-
ist due to high symmetry of Minkowski geometry, but to
prove it we need a measure of inertia, a test particle with
the inertial mass, i.e. a region in space where Minkowski
vacuum is a little bit disturbed. For the considered class
of metrics with the regular center T vac

µν 6= 0 and the iner-
tial mass is generically related to both reduced symmetry
of a source term (20) (no matter interpreted as Λµν or
not) and de Sitter vacuum trapped in the origin. In other
words, full symmetry of Minkowski space-time is respon-
sible for existence of inertial frames, while its breaking to
Lorentz boosts in the radial direction only is responsible
for inertial mass.
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