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ABSTRACT

We show that derivation of Friedmann’s equations from the Einstein-Hilbert action, paying attention to the

requirements of isotropy and homogeneity during the variation, leads to a different interpretation of pressure

than what is typically adopted. Our derivation follows if we assume that the unapproximated metric and Einstein

tensor have convergent perturbation series representations on a sufficiently large Robertson-Walker coordinate

patch. We find the source necessarily averages all pressures, everywhere, including the interiors of compact

objects. We demonstrate that our considerations apply (on appropriately restricted spacetime domains) to the

Kerr solution, the Schwarzschild constant-density sphere, and the static de-Sitter sphere. From conservation

of stress-energy, it follows that material contributing to the averaged pressure must shift locally in energy. We

show that these cosmological energy shifts are entirely negligible for non-relativistic material. In relativistic

material, however, the effect can be significant. We comment on the implications of this study for the dark

energy problem.
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1. INTRODUCTION

The foundations of modern cosmology, by Peebles (1980),

Bardeen (1980), and Kodama & Sasaki (1984) have become

standard textbook material (e.g. Dodelson 2003; Hu 2004).

All these treatments begin from Einstein’s equations

Gµν(η, x) = 8πGT µν(η, x). (1)

One then assumes that a reasonable description of the cosmos

is a perturbed spatially flat Robertson-Walker (RW) geome-

try

gµν ≡ a2(η)
[

ηµν + ǫh
(1)
µν (η, x)

]

, (2)

where

ηµνdxµdxν ≡ −dη2 + dx2. (3)

This metric encodes the Copernican Principle: on large

scales, the universe has no preferred locations or directions.

In other words, the zero-order universe is homogeneous and

isotropic.
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Almost immediately, the procedure encounters trouble.

Substitution of Equation (2) into Equation (1) gives

Gµν(η) + O(ǫ)(η, x) = 8πGT µν(η, x). (4)

This equation is inconsistent if T µν encodes O(1) position-

dependent sources. Gravitational radiation signatures of

ultra-compact object mergers, as first reported by Abbott et al.

(2016), provide direct evidence that such sources exist. To

address this issue, one can instead proceed with the following

definition:

T µν(η, x) ≡ T
µν

(0)
(η) + ǫT

µν

(1)
(η, x). (5)

Isotropy and homogeneity then constrain the O(1) contribu-

tion into the form of a perfect fluid

T
µν

(0)
=

[

ρ(η) + P(η)
]

uµuν + P(η)a−2ηµν. (6)

The functions P(η) and ρ(η) can then be determined from

data, and compared to theoretical expectations.

To predict P(η) and ρ(η) in the redshift z & 40 universe,

overwhelming evidence of a hot big bang justifies summing

the second moments of a Boltzmann distribution fi for each

species i at some temperature Ti

T
µν

(0)
(η) ∝

∑

i

∫

pµpν

p0
fi
[|p|, Ti(η)

]

d3 p. (7)
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In the z . 40 universe, however, structures may have begun

to form and appropriate distribution functions are unknown.

In the spirit of Kaiser (2017, §3), we can try to estimate P(η)

and ρ(η) at late times with linear perturbation theory. We

begin from a single star:

1. Hypothesis (vacuum): exterior to the star is effec-

tively vacuum.

2. Hypothesis (spherical symmetry): the star is spheri-

cal to a very good approximation.

3. ∴ Birkhoff’s theorem =⇒ the star is perceived as a

point mass to good approximation.

At sufficient distance from the star, the Newtonian monopole

limit is recovered. One then invokes superposition and aver-

ages over an ensemble of such point masses to produce ρ(η).

Performing these averages over distinct regions in space re-

veals a lower-bound volumeV, beyond which the ρ(η) com-

puted at different points agree. The observational success

of linear perturbation theory supports the expectation that

the rest-mass densities of such ensembles should dominate

any kinetic contributions by ∼ 105. Alternatively, following

Weinberg (1972, p. 474) or Peebles (1993, p. 297), one ap-

plies Birkhoff to a round ball1 cut out from some presumed

RW universe. The interior region is now vacuum and the

conclusion becomes that whatever was inside the region can

be averaged and reintroduced as a point mass. In this case,

the interior motions contribute zero pressure to the exterior

universe. Either way, the predicted contribution to T
µν

(0)
(η)

is a P(η) ≃ 0 perfect fluid. Observations, however, are

consistent with a late-time universe dominated instead by an

apparently fixed-density P(η) = −ρ(η) perfect fluid.

At this point, we have built a cosmological model by as-

suming an RW metric ansatz and then constructing an appro-

priate stress tensor. One could instead imagine starting with

Einstein’s equations for the actual matter distribution and ask

what must be done to arrive at an RW metric. This alternative

approach proceeds as follows, where we summarize aspects

of Wetterich (2003, §1) and Ellis (2011, §2). Observe that

the matter in the visible universe is distributed uniformly on

sufficiently large spatial volumes V. This suggests taking a

spatial average of Einstein’s Eqns. (1)

〈Gµν(η, x)〉V = 8πG 〈T µν(η, x)〉V , (8)

and defining

T
µν

(0)
(η) ≡ 〈T µν(η, x)〉V . (9)

1 in geometer language, a “ball” is anything diffeomorphic to a “round

ball.”

The objects appearing in this equation are components, so

care must be taken to ensure that the averages are covariant.

Suppose we perform averages with an RW metric defined2

by

gRW
µν (η) ≡

〈

gµν(η, x)
〉

V
. (10)

This is reasonable because a spatially averaged quantity is

isotropic and homogeneous, by construction. At early times,

we expect gµν ≃ gRW
µν because gravitational collapse has not

yet introduced spatial dependence into the matter distribu-

tion. The nonlinearity of the Einstein tensor as a function of

the metric, however, implies that

Gµν(η) ≡ Gµν
[

gRW
µν

]

,

〈

Gµν
[

gµν(η, x)
]〉

V
. (11)

in general. Here we have used square braces to indicate that

Gµν is a differential operator acting on the metric. The dis-

crepancy is expected to grow larger as gravitational collapse

forms inhomogeneous, small-scale structures. If one defines

the difference

Xµν(η) ≡ Gµν(η) −
〈

Gµν
[

gµν(η, x)
]〉

V
, (12)

then the spatially averaged Einstein’s Eqns. (8) become

Gµν(η) = 8πGT
µν

(0)
(η) + Xµν(η). (13)

This additional term Xµν is called the cosmological backre-

action. It has been claimed by Räsänen (2004), Kolb et al.

(2006), and others that the cosmological backreaction will

manifest as an apparentP(η) = −ρ(η) perfect fluid. This pur-

ported ability to explain the accelerated late-time expansion

of the universe, by averaging the left side of Einstein’s equa-

tions, has generated significant interest in the backreaction

community.

There is vigorous disagreement, most recently between

Green & Wald (2014) and Buchert et al. (2015), about the

relevance of cosmological backreaction. We believe that

this disagreement can be distilled into a single question:

what is the correct way to construct a large-scale homoge-

neous model of a small-scale inhomogeneous universe within

the framework of GR? It is clear that construction of any

isotropic and homogeneous global model from Einstein’s lo-

cal differential equations requires removing position depen-

dence. Indeed, both the Birkhoff approach and the backreac-

tion approach take spatial averages. The lack of any unique

prescription for which averages to perform, however, is a fun-

damental ambiguity in our understanding of how to use Ein-

stein’s equations to extract physics on the largest scales.

2 As pointed out by Wetterich (2003, see the text below Equation (7)),

constructing an RW metric via averaging may lead to a metric significantly

different than that inferred from dynamical measurements within the actual

spacetime.
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In this paper, we show how to resolve the ambiguity.

We develop an internally consistent perturbative treatment

of both the metric and the stress tensor directly from the

Einstein-Hilbert (EH) action. The main results of this paper

are as follows:

• Friedmann’s acceleration equation and conservation of

stress energy without effective source terms of geomet-

ric origin, together with;

• an explicit expression for P(η), which may not vanish

at late times.

These results are to be contrasted with expectations, respec-

tively, of an additional backreaction term and a pressure-free

stress tensor via Birkhoff’s theorem.

The rest of this paper is organized as follows. In §2, we

precisely define our gravitational model within the context of

GR. We then derive the appropriate equations of motion, tak-

ing great care to enforce the RW model symmetries at each

step of the calculation. In §3, we determine how various as-

trophysical sources, including strong ones, contribute to the

equations of motion. In §4, we highlight the observational

consequences of P(η) , 0. In §5, we summarize our results.

In Appendix A, we provide a detailed discussion of boundary

terms. In Appendix B, we provide additional calculations,

which support §3.3. Throughout this paper, we set c ≡ h ≡ 1

and use the (−,+,+,+) signature.

2. FRIEDMANN’S EQUATIONS FROM THE ACTION

We adopt GR as encoded in the EH action. Everywhere

on the manifold M, there exists a well-defined3 metric g

and a well-defined collection of other fields Ψ. These com-

bine to give a well-defined stress-tensor T. We note that the

model builder’s arbitrary choice for approximating g does not

change the actual Ψ. We make these statements precise, be-

ginning with the following

Assumption 1 There exists a series representation (this in-

cludes the coordinates) for the actual metric

gµν(η, x)

∣

∣

∣

∣

∣

∣

U⊂M
≡ lim

N→∞
a(η)2















ηµν +

N
∑

n=1

ǫnh(n)
µν (η, x)















ǫ < 1,

(14)

which converges on some compact submanifold (with bound-

ary)U ⊂ M. The components h
(n)
µν are at least twice contin-

uously differentiable (C2) onU.

This representation need not be unique. For the purposes of

all subsequent discussions, however, we only require the ex-

istence of such convergent representations. If U is not con-

nected, then we take Assumption 1 to mean that there exists

3 i.e. unique and representation independent

such a representation on each connected component. The

factors of ǫn encode the relative magnitude of the terms in the

expansion. In other words, for fixed µ and ν, each component

−1 6 h
(n)
µν 6 1 for all n. This guarantees that the representa-

tion is dominated by a convergent power series. Truncation

of Equation (14) at N = 1 produces Equation (2). In this

sense, Equation (14) generalizes the covariant linear pertur-

bation theory metric ansatz to arbitrary order.

Formal substitution of Equation (14) into Einstein’s equa-

tions will give a formal power series in ǫ. We do not know, a

priori, the relative magnitudes of these terms or if this series

converges. This occurs because the Einstein tensor and the

stress tensor are proportional and we have not constrained

the matter fields Ψ. Since we wish to solve Einstein’s equa-

tions perturbatively, order-by-order in ǫ on U, we make the

following

Assumption 2 There exist length scales Ln(η, x) such that

the Einstein tensor can be expanded as

Gµν(η, x)

∣

∣

∣

∣

∣

∣

U⊂M
≡ lim

N→∞

N
∑

n=0

ǫn















Ḡ
(n)
µν

L2
n















(η, x) ǫ < 1, (15)

where
∣

∣

∣Ḡ
(n)
µν

∣

∣

∣ 6 1 and ǫ is the same as in Equation (14).

Following Lin & Segel (1988, §6.3), these length scales are

combined, at each order, with length scales set by derivatives

of Ψ within the stress tensor to produce dimensionless field

equations. The existence of Ln is reasonable because the Ein-

stein tensor contains at most second derivatives of the metric,

which we have defined to be at least C2. The components of

the Einstein tensor are thus continuous on a compact set, and

thus bounded. Note that Ln , 0, as we have assumed that

Einstein’s equations are well-defined everywhere onM, and

U ⊂ M. The particular finite values of Ln do not matter. As-

sumption 2 guarantees their existence so that field equations,

at each order in the perturbation, can be well-defined.

Taken together, Assumptions 1 and 2 establish sufficient

conditions for Einstein’s equations to be solved perturba-

tively on U. They do not assert that low-order approxi-

mations are always useful. On the contrary, it may be that

infinitely many terms are required to describe a region of

spacetime. Our concern is not with utility, but with exis-

tence of well-defined representations for g. This will guaran-

tee that equations governing the lowest-order terms remain

valid even on submanifolds of U with strong gravity. As

is standard in the literature, we will indicate the order N at

which field equations are truncated with O
(

ǫN
)

, even though

we write dimensionful field equations. No confusion will

arise, as Assumptions 1 and 2 guarantee that a perturbative

solution is always possible.

2.1. The Action Principle for Gravity
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Given Assumptions 1 and 2, we work exclusively onU. In

the context of gravity, the action principle demands that

δ
{

S G

[

gµν
]

+ S M

[

gµν,Ψ(η, x)
]}

∣

∣

∣

∣

∣

∣

Ψ

≡ 0 (16)

where S G is a gravitational action, S M is a matter action, and

Ψ is held fixed for the variation δ. By the definition given

in Weinberg (1972, §12.2), the symmetric, rank-(2,0), stress

tensor T µν enters Einstein’s equations through

δS M

∣

∣

∣

∣

∣

∣

Ψ

≡ 1

2

∫

U
T µνδgµν

√
−g d4x. (17)

Here, g is the metric determinant. Note that we have flipped

indices, relative to Weinberg’s definition, and thus incur a

minus sign through the metric variation

δ
(

δαβ

)

= 0 = δ
(

gαµgβµ
)

. (18)

Weinberg’s definition encodes the standard assumption that

S M comes from a Lagrange scalar density LM ,

δS M =

∫

U
δ
(

LM

√−g
)

d4x (19)

=

∫

U

[

1
√−g

δ

δgµν

(

LM

√−g
)

]

δgµν
√−g d4x. (20)

Comparison of Equation (17) with Equation (20) reveals that,

under the integral, one may identify

T µν =
2
√−g

δ

δgµν

{

LM

[

Ψ(η, x), gµν
] √
−g

}

. (21)

The stress tensor components are, therefore, a mixture of the

metric and the non-gravitational contributions Ψ(η, x). The

non-gravitational contributions Ψ(η, x) have no explicit de-

pendence on g, and thus are unaltered by the model builder’s

choice of metric model. Of course, the Ψ(η, x) are implic-

itly constrained by the eventual equations of motion. Any

premature constraint, before equations of motion consistent

with the action principle are determined, risks introducing

inconsistencies into the field equations.

Let R be the Ricci scalar, built from the Levi-Civita con-

nection of any metric. The EH gravitational action is

S G ≡
1

16πG

∫

U
R
√
−g d4x. (22)

We use the representation of the metric given in Equa-

tion (14). For the purposes of computation, we now pa-

rameterizeU. While there is observational evidence that the

universe began in a nearly singular hot and dense point, it is

not clear how far back in time one can “safely” apply GR.

We thus restrict consideration to

η ∈
[

ηi, η f

]

. (23)

Here ηi is some arbitrary initial time and η f > ηi can either be

arbitrary, in the case of matter domination, or any time below

the asymptotic value in the case of dark energy domination.

Note that because U is compact, an action defined over it

will never diverge. For the moment, consider a closed 3-ball

V ⊂ R3 so that

U ≡ V ×
[

ηi, η f

]

. (24)

We will often useV to represent both this compact subman-

ifold and its volume, which is the integral of the Euclidean

volume form over this submanifold.

We now work only through O(1). From Equation (14), to

leading order, the approximation is

gµν = a2(η)
[

ηµν + O(ǫ)
]

. (25)

This gives, for the metric determinant and inverse metric

variation,

√
−g = a4 + O(ǫ) (26)

δgµν = −2ηµνa−3δa + O(ǫ). (27)

Following Wald (2010, Equation (D.9), p. 446), we may ex-

ploit that the flat RW metric is a conformal rescaling of flat

space to write

R = −6ηµνa−3∂µ∂νa + O(ǫ), (28)

where the derivatives are simple partials. Note that we have

used Assumption 2 to regard the Ricci scalar of the bare (not

multiplied by the scale factor) metric as O(ǫ).

Substitution into the definition of the gravitational action

S G gives

S G = −
3

8πG

∫

U
ηµνa(∂µ∂νa) d4x + O(ǫ). (29)

Performing the variation gives

δS G = −
3

8πG

∫

U

[

δa(∂µ∂µa) + a(∂µ∂µδa)
]

d4x (30)

plus terms O(ǫ). Integrating by parts twice gives

δS G = −
3

4πG

∫

U
δa∂µ∂µa d4x + B + O(ǫ) (31)

where we have separated off a total divergence term

B = − 3

8πG

∫

U
∂µ {ηµν [a∂νδa − δa∂νa]} d4x. (32)

This term becomes a boundary term, which is usually dis-

carded. We must be more careful in our RW setting, how-

ever, because we do not have spatial control of the variations

δa(η). Detailed consideration of the boundary term can be

found in Appendix A, where we show that the term should

still be discarded. Consistent with this result, we now set

B = 0.
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2.2. Symmetry of the Variation δa

We now arrive at the crucial step, which reveals the impor-

tance of working directly from the EH action. Only varia-

tions consistent with the RW model symmetries are permit-

ted. In other words, the variations δa of the scale factor a(η)

must be functions of conformal time alone: δa(η). Since the

integrand in Equation (31) depends only on η, we have that

δS G = −
3

4πG

∫ η f

ηi

δa∂µ∂µa dη

∫

V
d3x + O(ǫ). (33)

Here we have used Fubini’s theorem to write the compactly

supported integral as an iterated integral. Note that the spatial

integration is just the comoving volumeV, so

δS G = −
3

4πG

∫ η f

ηi

δa∂µ∂µaVdη + O(ǫ). (34)

To compute the variation of the matter action, first note that

T µνδgµν = 2aηµνT
µνδa + O(ǫ) (35)

= 2a−1δa
[

gµν − O(ǫ)
]

T µν + O(ǫ) (36)

= 2a−1T
µ
µδa + O(ǫ) (37)

where T
µ
µ is the trace of the stress tensor. Substitution into

Equation (17), restricted toU, gives

δS M =

∫ η f

ηi

∫

V
a3T

µ
µ (η, x)δa d3x dη + O(ǫ). (38)

Again, because a and δa depend only on η, we have that

δS M =

∫ η f

ηi

a3δa

[∫

V
T
µ
µ (η, x) d3x

]

dη + O(ǫ). (39)

The trace of the stress tensor cannot be moved through the

integral. The trace continues to be position-dependent, even

though the metric at zero order is position-independent, be-

cause the stress tensor depends on Ψ(η, x). These fields are

not explicitly constrained by our (or any) choice of metric

model. The quantity in the square brackets, because of the in-

tegration overV, is formally independent of position. Note,

however, that it could be sensitive to the choice of the region

V. This will be elaborated upon in §2.3, where we discuss

the physical significance ofV.

We now combine the variation of the gravitational action

Equation (34) with that of the matter action Equation (39).

The action principle as stated in Equation (16) becomes
∫ η f

ηi

δa

[

− 3

4πG
∂µ∂µaV + a3

∫

V
T
µ
µ (η, x) d3x

]

dη ≡ 0.

(40)

Applying the Fundamental Theorem of Variational Calculus

then gives the consistent equation of motion

3

4πG
∂µ∂µaV = a3

∫

V
T
µ
µ (η, x) d3x. (41)

Dividing by the constants on the left naturally reveals

∂µ∂µa =
4πG

3
a3 1

V

∫

V
T
µ
µ (η, x) d3x (42)

=
4πG

3
a3

〈

T
µ
µ (η, x)

〉

V
, (43)

which is the spatial-slice average of the stress tensor’s trace.

This expression is manifestly coordinate-invariant:

• the trace of any tensor is a general coordinate scalar;

and

• by Assumption 1, the notion of a spatial slice is geo-

metrically well-defined (e.g. O’neill 1983, §12, p. 342)

The spatial integration in this average, and the volume to nor-

malize it, come directly from the action principle. Expand-

ing the derivatives and trace gives Friedmann’s acceleration

equation

d2a

dη2
=

4πG

3
a3

〈

ρ(η, x) −
3

∑

i=1

Pi(η, x)

〉

V

(44)

expressed in conformal time. Though the trace is invari-

ant, ρ(η, x) and Pi(η, x) are the diagonal components of the

generic stress tensor in the RW preferred coordinate system.

This is the coordinate system in which the metric takes the

form of Equation (14). One may introduce the definitions

ρ(η) ≡ 〈

ρ(η, x)
〉

V (45)

3P(η) ≡
〈 3
∑

i=1

Pi(η, x)

〉

V

(46)

to arrive at the typical presentation of Friedmann’s acceler-

ation equation in conformal time. Note, however, that these

defined ρ(η) and P(η) must be spatial-slice averages of the

unapproximated quantities.

2.3. Significance of the SubmanifoldV
The spatial average contains the arbitrary closed 3-ballV.

This enters the construction because we must guarantee that

the action integral remains well-defined. This means that

Equation (44) represents a continuum of Friedmann models.

We may understand the parameterV as follows. Fix a ra-

dius b and pick some event P ∈ U. Compute the spatial

averages, at all η, of the stress trace over a round ball of ra-

dius b centered at the spatial location of P. The resulting

source will determine how a(η) evolves in conformal time.

With the same b, repeat this procedure at a distinct event

Q ∈ U, which lies in the same spatial slice as P. If the Q

spatial averages do not agree with the P spatial averages, the

dynamics for a(η) need not agree. This can happen because

matter is not distributed uniformly on small scales. In other
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words, well-defined field equations for a(η) require a volume

large enough so that the averaged density and pressures are

position-independent.

Observations (e.g. Hogg et al. 2005; Scrimgeour et al.

2012; Nadathur 2013) suggest that, at the present epoch,

there is a radius

b∗ ∼ 180 Mpc, (47)

beyond which the averaged quantities are position-independent.

We will assume thatV contains a round ball of at least radius

b∗. Note that the specific value of b∗ is unimportant for the

purposes of our argument. Strong evidence for hierarchical

formation of structure tells us that, throughout time, these

averaged quantities remain position-independent. In other

words, any suchV suffices for all earlier epochs.

2.4. Resolution of the Averaging Ambiguity

Friedmann’s equation, as given in Equation (44) with V
interpreted according to §2.3, resolves all ambiguity in our

understanding of how to use Einstein’s equations to extract

physics on the largest scales. Consistent with our motivation

of cosmological backreaction in §1, the action includes an

integration of degrees of freedom present in the metric over

the spatial volumeV. At zero order, however, the only such

degree of freedom is the scale factor a(η). It is already con-

strained by the RW model assumption (not the universe) to

be position-independent. The required integration produces

the spatial-slice volumeV, as seen in Equation (34). In other

words, given Assumptions 1 and 2, the action principle pro-

duces equations of motion without any cosmological backre-

action Xµν(η).

It is important to note that, given a different starting ansatz,

one can arrive at a different cosmological model. This differ-

ent cosmological model could possibly exhibit a backreac-

tion: additive and position-independent contributions of ge-

ometric origin. The presence or absence of such terms is an

artifact of the particular model and is logically distinct from

the actual metric tensor onU. Our Assumption 1 reduces to

the RW metric when truncated at N = 0, and to the typical

covariant linear perturbation metric when truncated at N = 1.

What we have shown is that, within these frameworks, there

is zero cosmological backreaction Xµν(η).

Inspection of Equation (44) and Equation (46) reveals that

the position-independent pressure P(η) of any Friedmann

model must include all contributions from pressures interior

to compact objects onV. In other words, given Assumptions

1 and 2, using Birkhoff’s theorem to construct a cosmologi-

cal source to Friedmann’s equations is inconsistent with the

action principle. In general, use of Birkhoff’s theorem in cos-

mological contexts is only appropriate under very restricted

settings, which we derive and discuss in §3.1. We summarize

these statements for clarity.

Our Friedmann’s equation is an unambiguous and

coordinate-invariant consequence of Assumptions 1,

2, and the EH action.

• There is no backreaction. Inhomogenieties in

the spatial distribution of matter do not affect

the source to Friedmann’s equation.

• Pressures interior to all compact objects con-

tribute to Friedmann’s equation.

These consequences arise because the RW metric

cannot distinguish spatial regions. Perturbatively

consistent equations of motion thus require a zero

order source without explicit or implicit notions of

interior.

2.5. Covariant Conservation of Stress-Energy at Zero Order

It is instructive to show how careful application of symme-

try considerations also produces the consistent conservation

of stress-energy statement. To derive the appropriate rela-

tion, note that a general coordinate scalar, such as the matter

action, cannot change under coordinate transformations. It is

shown in Weinberg (1972, §12.3) that this restriction implies

∆S M = 0 =

∫

U
ǫλ∇νT νλ (η, x)

√
−g d4x, (48)

where ǫλ is an arbitrary (infinitesimal) vector field. Since

ǫλ is arbitrary, the above equation immediately leads to the

familiar statement of covariant conservation of stress-energy:

∇νT νλ (η, x) = 0. (49)

Note that we deviate slightly from Weinberg’s notation and

use ∆ to distinguish the change in S M induced by a coor-

dinate change from any hypothetical change induced by the

variational differential δ. We continue to interpretV consis-

tent with §2.3 For clarity, we will continue to explicitly write

the time and position dependence of the generic stress tensor.

At zero order, the position-independent vector fields ǫλ(η)

are the only ones permissible by RW model symmetries. For

consistency, we must restrict ourselves to these vector fields.

Note that Equation (48) is true for arbitrary ǫλ, so it is true for

position-independent ǫλ(η). Thus, we may commute though

the spatial integral as before:

0 =

∫ η f

ηi

ǫλ(η)a4

∫

V

[

∂νT
ν
λ (η, x) + ΓννρT

ρ

λ
(η, x)

− Γρ
λν

T νρ (η, x)
]

d3x dη + O(ǫ).

(50)

This is permissible because the preferred RW frame is a func-

tion of η alone. We now expand the derivative term and apply
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Stokes’ theorem on the spatial slice

∫ η f

ηi

ǫλ(η)a4

{∫

V

[

∂0T 0
λ (η, x) + ΓννρT

ρ

λ
(η, x)

− Γρ
λν

T νρ (η, x)
]

d3x

+

∫

∂V
T k
λ (η, x) d2xk

}

dη = 0.

(51)

Because we are interested in the conservation condition, set

λ = 0 so that the vector T k
0

is an energy flow. By Einstein’s

equations T k
0
∼ Gk

0
, but Gk

0
∼ O(ǫ) by Assumption 2, so

the boundary term must be dropped at this order

0 =

∫ η f

ηi

a4ǫ0
∫

V

[

∂0T 0
0 (η, x) + ΓννρT

ρ

0
(η, x)

− Γρ
0ν

T νρ (η, x)
]

d3x dη.

(52)

A standard calculation gives

Γ0
0ν = Hηδ

0
ν Γk

0ν = Hηδ
k
ν Γννρ = 4Hηδ

0
ρ (53)

where Hη ≡ a−1da/dη. All of these connection components

are dependent on η alone, so that dividing through byV gives

∂

∂η

〈

T 0
0 (η, x)

〉

V
+ 3Hη

〈

T 0
0 (η, x)

〉

V
− Hη

〈

T k
k (η, x)

〉

V
= 0,

(54)

which is the appropriate continuum of conservation of stress-

energy statements.

2.6. Generalizations

The most general RW metric takes the form

ds2 = −b(τ)2dτ2 + a(τ)2dxidx jγi j, (55)

where γi j can be the metric for any 3-space of constant cur-

vature and b(τ) is a gauge degree of freedom. In the previous

computation, we have fixed the gauge by defining

b(τ) dτ ≡ a(η) dη. (56)

If one keeps the b(τ) degree of freedom, and varies with re-

spect to it, the typical Friedmann energy equation is obtained

(see Suzuki et al. 1996, Equation (9)). In this way, one can

reproduce Equation (54) entirely within the variational for-

malism. Non-flat spatial slices lead to the same conclusions

with respect to computation of the source terms.

The formalism developed in this section has also been ap-

plied to the next order in ǫ. The advantage is that source

terms to the field equations are generated unambiguously.

This has been verified by Croker (2018, §3) at O(ǫ) for the

scalar modes, where a lengthy calculation in longitudinal

gauge reproduces the standard equations.

3. APPLICABILITY OF THE METRIC

REPRESENTATION TO PHYSICAL SOURCES

In the previous section, we showed that if Eqns. (14) and

(15) converge on some regionU, then all densities and pres-

sures in U will affect a(η) according to Equation (44). In

this section, we show that Equation (44) continues to hold on

small scales and inside particular strong sources.

We will proceed in four steps. First, we will determine a

spacetime region u ⊂ U where typical strong, local gravity

solutions can be used consistently in a cosmological setting.

Second, we consider a Kerr BH, which requires extending the

results of §2 to additional boundaries. Third, we consider a

Schwarzschild constant-density sphere because this solution

dominates many solutions of physical interest. Finally, we

consider a static de-Sitter sphere, because generalizations of

such spheres have been proposed as BH replacements.

3.1. Spacetime Domain for Consistent Use of Strong, Local

Gravity Approximations in Cosmological Settings

First, fix some time of interest η0 and consider some later

time η0 + ∆η. We may express Equation (14) at η0 + ∆η as

gµν = a2(η0 + ∆η)
[

ηµν + . . .
]

(57)

=















a2(η0) + 2∆η

(

a
da

dη

)
∣

∣

∣

∣

∣

∣

η0

+ . . .















[

ηµν + . . .
]

(58)

= a2(η0)















1 + 2∆η

(

1

a

da

dη

)
∣

∣

∣

∣

∣

∣

η0

+ . . .















[

ηµν + . . .
]

. (59)

If we define a reciprocal timescale

H0
η ≡

(

1

a

da

dη

)
∣

∣

∣

∣

∣

∣

η0

, (60)

then the series expansion of Equation (14) about η0 gives

gµν

∣

∣

∣

∣

u
= a2(η0)















ηµν + lim
N→∞

N
∑

n=1

ǫnh(n)
µν (η, x) + O

(

∆ηH0
η

)















.

(61)

Now choose ∆η such that the correction is small

∆η ≪
(

H0
η

)−1
. (62)

For any fixed ǫ < 1, the O
(

∆ηH0
η

)

term allows the approxi-

mation to be cut off at finite N

N <
log

[

∆ηH0
η

]

log ǫ
. (63)

For physical reasons, we may choose a spatial volume v ⊂ V,

whose light-crossing time is less than ∆η

v1/3 < ∆η. (64)
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Note that mathematically, however, the following arguments

will not depend on this spatial restriction. We will restrict our

attention to η ∈ [η0, η0 + ∆η] and define a spacetime domain

u ⊂ U

u ≡ [η0, η0 + ∆η] × v. (65)

Note that u is a spacetime “hockey puck,” which encloses a

region of the spatial sliceV required for the spatial averages

in Equation (44). Under a constant rescaling of the represen-

tation

η′ ≡ ηa(η0) x′ ≡ xa(η0), (66)

Equation (61) becomes

gµν

∣

∣

∣

∣

u
= ηµν + lim

N→∞

N
∑

n=1

ǫnh(n)
µν

(

η′, x′
)

+ O
(

∆ηH0
η

)

. (67)

This is the same metric, so the dynamics are unchanged. In

other words, it may be possible to use asymptotically flat

models within a universe described by Equation (14). Con-

clusions drawn from such models, however, are only valid on

the restricted spacetime u. In particular, conclusions drawn

on u cannot be trivially extended off of u. We summarize for

clarity. If the real world satisfies Assumptions 1 and 2, then

for short intervals asymptotically flat models are permissible,

but only for short intervals.

This is another reason why Birkhoff’s theorem cannot be

used to infer cosmological behavior. Given a sequence of

times {η j} and suitable symmetry, one can use Birkhoff’s

theorem to construct a sequence of Schwarzschild exterior

spacetimes characterized uniquely by a sequence of masses

{M j}. Without global knowledge of the actual metric, how-

ever, no relation between the M j can be established.

We emphasize, however, that the converse relation holds.

In other words, it is always correct to proceed globally from

Equation (14) to locally, as represented by Equation (67).

This follows because u ⊂ U. This means Friedmann’s equa-

tion remains valid at all events in u, where the metric takes

the form given in Equation (67). This means that any source

on u, which produces a metric of the form Equation (67), will

influence the dynamics of a(η) at η0, in the manner given by

Equation (44).

For all subsequent discussion, we fix some time η0 and we

fix some ǫ < 1. Because we have the large-scale solution

by virtue of Assumptions 1 and 2, we have a well-defined

H0
η(η0). Now choose ∆η and N > 0 so that Equation (63)

is satisfied. We now have a well-defined u given by Equa-

tion (65). Strong sources defined in u will the contribute to

the dynamics of a(η0) through the spatial average over u at η0,

as required by Friedmann’s equations given in Equation (44).

We now study some specific sources of interest.

3.2. The Kerr Spacetime

LIGO (e.g. Abbott et al. 2016) and the Event Horizon Telescope Collaboration et al.

(2019) have established the existence of ultracompact objects

consistent with the Kerr geometry. In this section, we will

establish that the cosmological formalism developed con-

tinues to operate near to ultrarelativistic, spinning, sources.

Since the Kerr spacetime is asymptotically flat, the consider-

ations of §3.1 necessarily restrict use of the Kerr geometry to

timescales≪ 1/H0
η . In particular, we determine an appropri-

ate submanifold u′ ⊂ u defined in Equation (65), where the

Kerr spacetime satisfies Assumptions 1 and 2 in the approx-

imate sense of Equation (67). For a convenient reference on

the Kerr spacetime, we refer the reader to Visser (2007).

In Kerr-Schild coordinates, the Kerr metric is

ds2 =

(

ηµν +
Rsr(x)3

r(x)4 + A2z2
ℓµℓν

)

dxµdxν, (68)

where Rs is the Schwarzschild radius for some fixed mass

M, A encodes dimensionful information about the spin,4 and

r(x) is a function of the position coordinates x, y, and z. We

will henceforth drop the explicit indication of x dependence

for r. The covector ℓµ is defined to be null with respect to ηµν
and has the form

ℓµ ≡
(

1,
rx + Ay

r2 + A2
,

ry − Ax

r2 + A2
,

z

r

)

. (69)

Since ηµνℓµℓν ≡ 0, it follows that

1 =

(

rx + Ay

r2 + A2

)2

+

(

ry − Ax

r2 + A2

)2

+

(

z

r

)2

, (70)

which implicitly defines r. Since each term on the right hand

side is positive, we see that the components of ℓµ satisfy

|ℓµ| 6 1. (71)

It follows immediately that

ℓkℓ j 6 ℓ0|ℓ j| 6 ℓ0ℓ0 = 1. (72)

To avoid a naked singularity, we require that

A < M, (73)

which maintains real-valued solutions for the horizon sur-

faces.

By Equation (72), a necessary and sufficient condition to

write the metric in the form of Equation (67) is

Rsr
3

r4 + A2z2
6 ǫ. (74)

4 Visser (2007) uses a, but because we have used a for the RW scale

factor, we have switched to A
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This restriction is saturated when

ǫr4 − Rsr
3 + ǫA2z2 = 0. (75)

By Descartes’ rule of signs, this equation implicitly defines

two (or zero) non-intersecting surfaces r±(x). As ǫ → 1, r+
and r− become, respectively, the outer and inner ergosurfaces

of Kerr. Define a submanifold u′ ⊂ u such that

u′ ≡ [η0, η0 + ∆η] × v /
{

x : ǫ
(

r4
+ + A2z2

)

− Rsr
3
+ < 0

}

.

(76)

Then u′ has an additional boundary, which becomes the outer

ergosurface as ǫ → 1. We now establish that this addi-

tional boundary will not alter Friedmann’s equations. As dis-

cussed in Appendix A, the dynamically relevant contribution

to Friedmann’s acceleration equation from this boundary is

the second term in Equation (A4). This term continues to

vanish at zero order on u′ because of the RW model sym-

metries. As shown in Equation (51), an additional term also

appears in the conservation equation

∫

ǫ0(η)a4

{∫

∂u′
T k

0 (η, x) d2xk

}

dη. (77)

Since Kerr is a vacuum solution, however, T k
0
= 0 on ∂u′

and this term also vanishes.

Now that we have a suitable domain, we may write Equa-

tion (68) in the form of Equation (67):

h(1)
µν ≡

(

Rs

r

)

[

1 +
A2z2

r4

]−1

ℓµℓν (78)

h(n>1)
µν ≡ 0. (79)

In summary, we have established a domain u′ where the Kerr

solution can be accommodated under Assumptions 1 and 2.

This implies that the spatial averages appearing in Fried-

mann’s equation remain valid in the ultrarelativistic vicin-

ity of a Kerr BH. The domain u′ can be taken to include

all but the region enclosed by the outer ergosurface. Conse-

quently, for the domain we have constructed, a Kerr BH con-

tributes nothing to Friedmann’s equations. Local observers

in u′ will still perceive a Kerr BH with mass M and spin A

for r+ < r < v1/3 and η ∈ [η0, η0 + ∆η]. This is unsurprising,

because the cutting procedure we have performed is math-

ematical. Visser (2007) emphasizes that the inner horizon

and the enclosed inner ergoregion are extremely pathologi-

cal and should not be regarded as physically relevant. Our

result suggests that, additionally, the entire region below the

outer ergosurface should be replaced with a distinct interior

solution.

3.3. Cosmological Contribution of Interior Solutions:

Typical Astrophysical Sources

In this section, we show that the interior region of

Schwarzschild’s constant-density sphere satisfies Assump-

tions 1 and 2. The exterior region of Schwarzschild’s

constant-density sphere is an A = 0 Kerr solution (i.e.

Schwarzschild’s BH), which has already been treated. The

constant-density solution can be chosen to dominate the ac-

tual energy densities for many spherically symmetric, static,

sources. We will show that, for such objects with physical

radius R > 3GM, all energy densities and pressures in u will

influence a(η) according to Equation (44). This will establish

that localized pressures, interior to a large class of compact

and relativistic objects, contribute to the global Friedmann

average.

The Schwarzschild constant-density sphere on B3(0,R)

may be expressed as

ds2 = − exp(2Φ) dη2 + exp(2Λ) dr2 + r2dΩ2. (80)

The functionsΦ andΛ are defined in terms of the Schwarzschild

radius Rs and physical radius R of the object

exp (2Φ) ≡ 1

4















3

√

1 − Rs

R
−

√

1 − Rs

R

(

r

R

)2














2

(81)

exp (2Λ) ≡
[

1 −
(

r

R

)2 Rs

R

]−1

. (82)

We will show that there exists a natural ǫ such that the coef-

ficients of a Taylor expansion of Equation (80) take the form

of Equation (67).

Denote the Taylor expansion coefficients of
√

1 − x on 0 6

x < 1 by q j

√
1 − x = 1 − x

2
−
∞
∑

j=2

(2 j − 3)!

22( j−1) j!( j − 2)!
x j (83)

≡ q0 − q1x −
∞
∑

j=2

q jx
j. (84)

Furthermore, extend the notation to negative indices by

qk ≡ 0 k < 0. (85)

Then it can be shown that the expansion of Equation (81) in

Rs/R becomes

exp(2Φ) = 1−Rs

R

[

3

2
− 1

2

(

r

R

)2
]

− 3

2

∞
∑

n=2

(

Rs

R

)n
















∞
∑

j=0

q jqn− j

(

r

R

)2 j
















.

(86)

The terms in these infinite sums can be commuted and re-

arranged because
√

1 − x converges uniformly for |x| < 1.
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To guarantee that the coefficient of the linear term remains

bounded by 1 on r ∈ [0,R], we must have

ǫ >
3Rs

2R
. (87)

Since ǫ < 1, this becomes a restriction on the object’s physi-

cal radius

R > 3GM. (88)

Note that this is the radius of the innermost stable orbit for a

photon.5 Saturating this bound, we find

exp(2Φ) = 1−ǫ
[

1 − 1

3

(

r

R

)2
]

−
∞
∑

n=2

ǫn

















∞
∑

j=0

q jqn− j

(

2

3

)n−1 (

r

R

)2 j
















.

(89)

To bound the remaining coefficients of ǫn, note that for each

coefficient in n,

∞
∑

j=0

q jqn− j

(

2

3

)n−1 (

r

R

)2 j

<

∞
∑

j=0

q j

(

r

R

)2 j

=

√

1 −
(

r

R

)2

. (90)

The inequality follows because qn− j < 1 for all j. Since√
1 − x 6 1 for x ∈ [0, 1], each coefficient of ǫn for n > 2 is

bounded above by 1 on r ∈ [0,R]. This was to be shown. The

result for exp(2Λ) follows immediately from use of the bi-

nomial expansion, followed by substitution of Equation (87).

In Appendix B, we establish that the Schwarzschild constant-

density sphere also satisfies Assumption 2.

In summary, we have established that the Schwarzschild

constant-density sphere is of the form Equation (67). In

other words, all pressures interior to any astrophysical ob-

ject bounded by the Schwarzschild constant-density sphere

solution will contribute to the cosmological average in Equa-

tion (44).

3.4. Cosmological Contribution of Interior Solutions: Static

de-Sitter Sphere

In this section, we show that the interior of an isolated

de-Sitter sphere satisfies Assumptions 1 and 2. The exte-

rior region of such a sphere is an A = 0 Kerr solution

(i.e. Schwarzschild’s BH), which has already been treated.

The isolated de-Sitter sphere is the simplest model of a

GEneric Object of Dark Energy (GEODE). Such objects,

like the solution of Dymnikova (1992) or the gravastar of

Mazur & Mottola (2015), have been proposed as possible

BH replacements. Related, but dynamic, GEODEs called

5 Compare this with the requirement R > 9GM/4 for the existence of

static solutions, given by Wald (2010, §6.2) as the Buchdahl bound.

“vacuum bubbles,” have also been considered as inflationary

relics by Berezin et al. (1987). We will demonstrate shortly

that the strong negative pressure inside the de-Sitter sphere

will influence a(η) according to Equation (44). This will es-

tablish that a physically realistic GEODE could contribute to

the cosmological P = −ρ.
Consider a de-Sitter patch in static coordinates

ds2 = −
(

1 − r′2

R2
s

)

dη′2 +

(

1 − r′2

R2
s

)−1

dr′2 + r′2dΩ2. (91)

We have introduced primes on the η′ and r′ coordinates for

reasons that will become apparent. Denote these coordinates

by Ξ′. This patch admits a timelike Killing vector field for

r′ < Rs. This means that a sphere of Dark Energy with radius

R < Rs is static, regardless of the coordinate representation.

Again, expand in a series, then multiply and divide by ǫ:

gµν = ηµν(η
′, x′) + ǫ2

(

r′

Rsǫ

)2

δ0
µδ

0
ν +

∞
∑

n=1

ǫ2n

(

r′

Rsǫ

)2n

δ1
µδ

1
ν.

(92)

We see that
∣

∣

∣h
(n)
µν

∣

∣

∣ 6 1, and so Equation (92) satisfies Equa-

tion (67), provided that

r′ 6 Rsǫ. (93)

In other words, Equation (91) has a convergent representation

on B3(0,Rsǫ). Contrast this situation with the Schwarzschild

BH, which converges on v / B3(0,Rsǫ
−1). Because Einstein’s

equations hold everywhere on U, we know there exist co-

ordinates ζ, which cover r′ > Rsǫ. This means there exists

z > 0 such that

O
′ ≡ dom(Ξ′) ∩ dom(ζ) (94)

=
(

η′0, η
′
0 + ∆η

′
)

× (Rsǫ − z,Rsǫ) × S 2 (95)

is the overlap between the Ξ′ and ζ charts. We will continue

to use the Ξ′ chart on this region.

The relation between the Ξ coordinates of the exterior

Schwarzschild spacetime and the Ξ′ coordinates of the

de-Sitter sphere is determined by Mazur & Mottola (2015,

Eqns. (5.1–5.3)). They find that Ξ and ζ are the same, and

that Ξ′ satisfies

r′ = r (96)

dη′ = 2 dη. (97)

In other words, the spatial slices are unaltered, but time inte-

rior to the sphere runs twice as fast. This means that our static

approximation is only valid for ∆η/2. Apart from a reduction

in v to v/8, nothing changes with respect to the spatial-slice

integration. We may integrate Equation (97) to find

η′(η) = 2η +C, (98)
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where C is an integration constant. Note that we may choose

C ≡ −η0 so that

a
[

η′(η0)
]

= a(η0). (99)

This shows that the unit redefinition used to write Equa-

tion (67) remains consistent inside the sphere.

We now cut out the r > Rsǫ − z/2 region, leaving a bound-

ary at the cut radius. It again follows that Equation (A4) con-

tinues to vanish at zero order. The required conservation con-

dition in Equation (50) continues to hold because T
µ
ν ∝ δµν,

and so the contribution vanishes identically. Consider the do-

main u′′ ⊂ u

u′′ ≡
[

η0, η0 +
∆η

2

]

× v

8
/

{[

Rsǫ −
z

2
,

Rs

ǫ
+

z

2

]

× S 2
}

.

(100)

We have established that Equation (67) is satisfied every-

where on u′′ and that there are no additional boundary contri-

butions to Equation (44). Finally, static de-Sitter space satis-

fies Assumption 2 because its stress tensor is constant. By ad-

justing z and ǫ in Equation (100), we conclude that nearly all

of the de-Sitter region contributes P = −ρ to Equation (44).

4. COSMOLOGICAL ENERGY SHIFTS

Friedmann’s equation in §2 clarifies that local pressure

contributions, which do not vanish upon spatial averaging,

affect the scale factor a(t). In §3, we established that the

framework of §2 remains valid very near, and often within,

ultrarelativistic sources. In this section, we show how any

source that contributes to the cosmologically averaged pres-

sure must itself evolve cosmologically.

In the following, we will use the word “object” to refer

to bound systems like stars and clusters. How a particular

object responds to the scale factor is entirely dependent on

the object. To see this, consider a population of generic ob-

jects. Let P(η) denote the spatially averaged pressure over

the population. Let ρ(η) denote the spatially averaged energy

density over the population. Define the equation of state of

the contribution to be

w(η) ≡ P(η)

ρ(η)
. (101)

Conservation of stress-energy, given in Equation (54), de-

scribes the temporal evolution of these averaged quantities

−dρ

dη
− 1

a

da

dη
(3ρ + 3P) = 0. (102)

From the definition of w(η), we may write

−dρ

dη
− 3ρ

a

da

dη
(w + 1) = 0. (103)

Switching to the scale factor a as the independent variable

gives the separable differential equation

dρ

ρ
= −3[w(a) + 1] da

a
. (104)

Now suppose that w is constant. Then we may integrate

Equation (104) to find the standard result,

ρ(a) ∝ a−3[w+1]. (105)

For simplicity, suppose all of the objects have the same co-

moving energy E. The energy density can then be written in

terms of the physical number density N of the object popu-

lation

ρ(a) = EN . (106)

The number density dilutes with the expansion

N ∝ 1

a3
, (107)

because objects either comove or belong to structures that co-

move. Combining Equation (105) and Equation (107) gives

E ∝ a−3w. (108)

This result is again expected. For example, if the objects

are photons, w = 1/3 and so E ∝ 1/a, which is the photon

redshift.

Our result, however, applies to all objects. This conse-

quence follows from Assumptions 1 and 2, and the EH ac-

tion. When w(a) , 0, the averaged quantities ρ(η) and P(η)

evolve cosmologically. Thus, any material that contributes

non-vanishing pressure to Equation (44) and Equation (54)

must also evolve cosmologically. The evolution of E per-

sists when w(a) varies in time, as can be seen from Equa-

tion (104). For compact objects, the particular value of w

is strongly dependent on the non-gravitational fields Ψ that

define the material. The cosmological energy shift is com-

pletely unaffected by the spatial distribution of material in

the universe.

4.1. Observations

The cosmological evolution of local energies is a neces-

sary consequence of Assumptions 1 and 2, and the EH ac-

tion. The essential question is now observational: can this

effect be measured? Because this section is observational, it

is sometimes clearer to use redshift z as a time variable. We

thus convert Equation (108) to redshift

Ei ∝ (1 + z)3w, (109)

using that a = (1 + z)−1. Where appropriate, we use Planck

collaboration cosmological parameters from Aghanim et al.
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(2018): H0 = 67.4± 0.5 km Mpc−1 s−1, Ωb = (2.24± 0.01)×
10−2h−2 ≃ 0.05,ΩΛ ≡ 1−Ωm = 0.685±0.007. We now con-

sider specific model objects relevant for astrophysical obser-

vation, using fixed w approximations. We proceed in order

of increasingly relativistic w.

4.1.1. Stars

Consider a population of typical stars, at fixed (comov-

ing) coordinate positions. Each typical star will contribute

an extremely small positive pressure to the cosmological av-

erage. This follows because the pressure is everywhere posi-

tive within a star, and so an integral over the stellar pressure

cannot vanish. This is true even in simplified stellar models,

where fluid packets are radially static. Each packet’s contri-

bution to the pressure is non-zero because gravitational mo-

mentum flux is not included in Tµν. The equation of state w

for a typical star can be approximated from the ideal gas law,

wstar ∼
kT

mp

(110)

where k is Boltzmann’s constant, T is the temperature of the

star, and mp is the proton mass. To develop an upper bound,

set T ∼ 106 K, representative of core temperatures. Then

wstar ∼ 10−7. (111)

Thus, the energy (as perceived by RW observers) of Sun-like

stars cosmologically evolves as

Estar ∝ (1 + z)3×10−7

. (112)

How large is this effect? Suppose a star is produced at zi = 2

and observed at z f = 0. Define the fractional shift in energy

as

∆E

E
≡

E(z f ) − E(zi)

E(zi)
, (113)

then

∆Estar

Estar

=

(

1

1 + 2

)3×10−7

− 1 ≃ −10−7. (114)

This change occurs over 10 Gyr from zi = 2 to z f = 0. In

other words, it is dominated by other stellar processes and

is thus unobservable. This also establishes that the effect is

unobservable for any other material with w < wstar.

What is the reciprocal effect on the zero-order expansion?

Stars contribute ∼ 2Ωb/5 to Friedmann’s equation. The cu-

mulative adjustment to ρ(a) from a conservative first light of

zi = 40 to z f = 0 is then ∼ −10−8. The effect is unobservable.

4.1.2. Galaxy Clusters

Consider a population of clusters, at fixed (comoving) co-

ordinate positions. The velocity dispersion of clusters is

roughly bounded by σ ∼ 103 km s−1. This implies a

wcluster ∼ 10−5 by ideal gas arguments. Thus, the energy

(as perceived by RW observers) of clusters cosmologically

evolves as

Ecluster ∝ (1 + z)3×10−5

. (115)

How large is this effect? A typical length scale for a cluster is

∼ 1 Mpc, giving a light-crossing time of ∼ 3 Myr. In redshift,

this could be between zi = 1.001 and z f = 1. During this

time, the fractional shift in energy of the cluster is

∆Ecluster

Ecluster

=

(

1 + 1

1 + 1.001

)3×10−5

− 1 ≃ −10−8. (116)

For comparison, during a photon transit completing at z f = 2,

the cluster energy shifts less than 10−8. In other words, the

correction to any integrated Sachs-Wolfe effect through clus-

ters is unobservable. Similarly, corrections to gravitational

lensing are unobservable.

What is the reciprocal effect on the zero-order expansion?

The energy density in galaxy clusters is certainly bounded

above by Ωb. The cumulative adjustment to ρ(a) from a con-

servative first cluster of zi = 4 to z f = 0 is then ∼ −10−6. The

effect is unobservable at present and upcoming sensitivities.

4.1.3. GEneric Objects of Dark Energy (GEODEs)

As discussed in §3.4, GEODEs are explicit GR solutions,

which schematically resemble the static de-Sitter sphere. Be-

fore gravitational-wave observations of ultrarelativistic ob-

ject mergers, GEODEs were of theoretical interest because

they are often free of physical singularities and horizons.

In other words, they are regular solutions for gravitational-

collapse remnants, which resolve the BH Information Para-

dox.

Consider a population of GEODEs positioned at fixed (co-

moving) coordinate positions. Recall that the equation of

state of a de-Sitter sphere is

wdS = −1. (117)

This equation of state is appropriate if the GEODE edge

does not contribute significantly to the population-averaged

P. GEODE material is maximally relativistic: it saturates the

dominant energy condition. The material is also under ten-

sion, instead of under compression: the sign of w is inverted

from all previously considered cases. This leads to very use-

ful consequences.

The energy (as perceived by RW observers) of the

GEODEs cosmologically evolves as

EdS ∝ (1 + z)−3. (118)

Unlike the cases previously considered, this shift is signifi-

cant and acts to amplify the energy. In other words, GEODEs
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cosmologically blueshift. The effect is analogous to the pho-

ton redshift.

How large is this effect? Consider a 3M⊙ GEODE

formed from stellar gravitational collapse at z = 1.5, near

the peak in comoving star formation rate density (e.g.

Madau & Dickinson 2014). Its mass, observed in a binary

merger at z = 0.1, will be

EdS = 3M⊙

(

1 + 1.5

1 + 0.1

)3

= 35.2M⊙. (119)

This compares favorably with the masses observed by LIGO.

A thorough exploration of the observational signatures of a

remnant GEODE population, with respect to gravitational-

wave observatories, is given by Croker et al. (2019). They

find that the scenario is consistent with the LIGO GWTC-

1 observed mass function. The cosmological blueshift of a

GEODE can achieve the required masses with the standard

common envelope binary formation channel. It does not re-

quire low-metallicity regions or prohibitively large progeni-

tor stars.

What is the reciprocal effect on the zero-order expansion?

Suppose 1% of all stellar material collapsed to Population III

GEODEs, instead of traditional black holes,

Ωcollapse ∼ 2 × 10−4. (120)

For simplicity, assume that this happens at z ∼ 14: after the

Dark Ages but before reionization. The shift in energy of this

population, observed at the present day, gives rise to

ΩGEODE = Ωcollapse(1 + 14)3 (121)

= 0.675. (122)

Note that ρGEODE is essentially constant within Friedmann’s

equations. This follows because wdS = −1, so that Equa-

tion (105) gives no time evolution of the physical density.

In other words, the GEODEs dilute in number ∝ a−3 while

gaining in mass ∝ a3. The result is an apparent cosmological

constant, which compares favorably with the observedΩΛ.

A first exploration of the observational signatures of Pop-

ulation III GEODEs, with respect to cosmological observ-

ables, is given by Croker (2018). They find that such a sce-

nario is flexible enough to reproduce the observed late-time

accelerated expansion, resolving the coincidence problem.

4.2. Discussion

We have shown that non-relativistic material exhibits no

observable shift. For relativistic objects, however, the energy

shift can lead to measurable consequences. Neutron star (NS)

material is highly relativistic (e.g. Abbott et al. 2018), with

an object-averaged 0.05 . wNS . 0.1. Given that binary

pulsar dynamics are often measured to exquisite precision, it

may be possible to measure the cosmological shift in pulsar

systems.

Since the cosmological shift for positive wNS appears as an

energy loss, one can use a result of Damour & Taylor (1991,

Equation (4.1)) to estimate the shift in orbital period decay

∆Ṗb,cos = +6wNSHPb. (123)

Using Pb as reported by Weisberg et al. (2010, Table 3) for

the Hulse-Taylor binary pulsar, we find

∆Ṗb,cos = (2.7 ± 0.9) × 10−14, (124)

at the present day. How does this shift compare to cur-

rent measurements of the Hulse-Taylor system? From

Weisberg et al. (2010, Equation (5) and Table 3), the kine-

matically corrected orbital period decay is

Ṗb − ∆Ṗb,gal = (−2.396 ± 0.005) × 10−12. (125)

The shift in orbital period decay at the present, due to cosmo-

logical evolution of NS energies, would appear to be ∼ 1%.

The central value of Equation (125) agrees with the GR

radiative loss prediction to 0.2%. So a cosmological effect

of the estimated magnitude has not been observed. Since

Damour & Taylor (1991) assumed a flat spacetime, however,

it follows from Equation (67) that the metric is known only to

O(HPb). In other words, the estimated shift given by Equa-

tion (123) is dominated by the error introduced by working

under an asymptotically flat approximation within an RW

cosmology. An investigation of binary pulsar systems with

cosmologically evolving mass is the topic of future work.

The contribution to the cosmologically averaged quanti-

ties, and the necessary local evolution, is highly dependent

on the object model. An instructive example is given by

Dymnikova (1992). Dymnikova’s object contains a very

nearly Dark Energy interior, but a spatial average over her

object gives exactly P = 0. In her model, the “skin” acts like

a vacuum vessel: positive pressures in the skin maintain the

static character of the object. A population of Dymnikova’s

objects would behave as cosmological dust, and exhibit no

cosmological shift.

At present, no known GEODE solution strongly rotates.

As pointed out by J. D. Bjorken (2018, private discussion),

vacuum cannot rotate because it has no privileged directions.

Given clear evidence of Kerr exterior spacetimes, all of the

spin must reside in material outside of, but extremely near,

the de-Sitter core. GEODE solutions are often constructed

to have a Schwarzschild exterior spacetime and thus cannot

evolve cosmologically. Given the considerations of §3.1, and

the consequences in §4, it seems essential to have adiabat-

ically evolving object solutions that spatially asymptote to

an arbitrary RW geometry. The construction of a realistic

GEODE model is an open question that is beyond the scope

of this paper.
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5. CONCLUSION

In summary, we have derived the equations of motion

for Friedmann cosmology, paying particular attention to the

symmetry enforced by isotropy and homogeneity. Working

directly from the EH action maintains this symmetry, with

respect to the source terms for Friedmann’s equations. Our

main results, embodied in Equation (44), follow from only

two assumptions. We assume that the metric and Einstein

tensor have convergent series representations, in RW coor-

dinates. Contrary to some earlier literature, we find no

influence on the source to Friedmann’s equation from inho-

mogeneities in the spatial distribution of matter. Contrary

to other earlier literature, we find that every pressure source

contributes to Friedmann’s equations. Specifically, the spa-

tial average in Equation (44) includes the pressures interior

to compact objects. Evolution of the averaged quantities then

implies a local energy shift of a−3w in any material that con-

tributes to the averaged pressure. Here, a is the RW scale fac-

tor and w ≡ P/ρ is the equation of state determined from the

population-averaged pressure P and energy density ρ of the

objects. In non-relativistic material, the shift is too small to

observe. The shift can be observable in relativistic material,

if the equation of state exceeds w ∼ 0.01. This result takes on

particular significance when applied to Population III stellar-

collapse remnants with P = −ρ interiors. A population of

such stellar collapse remnants can shift in energy ∝ a3 while

diluting in number density ∝ 1/a3. The population-averaged

energy density is then effectively constant and readily pro-

duces the observed ΩΛ.
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APPENDIX

A. DETAILED DISCUSSION OF THE BOUNDARY TERM

By Stokes’ theorem, we may write B as

B ∝
∫

U
∂µ {ηµν [a∂νδa − δa∂νa]} d4x (A1)

=

∫

∂U
{ηµν [a∂νδa − δa∂νa]} d3xµ, (A2)

where we ignore the factor 3/8πG for clarity. The contribution along the boundary of U can be broken down into two parts.

An “end-cap” contribution from the future and past Cauchy surfaces (entire spatial 3-volumes at an instant of time) and a spatial

2-surface during the time interval considered

∂U =
[

V × {ηi, η f }
]

∪
[

∂V× [ηi, η f ]
]

. (A3)

The intersection of these sets is {ηi, η f } × ∂V, but it is two-dimensional and so it is a set of zero measure. In other words, the

integral in Equation (A2) is three-dimensional and the integrand must be non-infinite, so this portion of the boundary contributes

nothing. Thus, we may write

B ∝ −
∫

V

(

a∂0δa − δa∂0a

)

d3x

∣

∣

∣

∣

∣

∣

η f

ηi

+

∫ η f

ηi

∫

∂V
ηkν

(

a∂νδa − δa∂νa
)

d2xk dη.

(A4)

We have used Fubini’s theorem to write the integrals as iterated integrals, permissible because U is bounded and a is assumed

to be well-behaved. The second term in this sum vanishes identically. This follows immediately because a(η) and δa(η) are

functions of time alone (isotropy and homogeneity), so only temporal derivatives survive. This leaves only ηk0 terms, but these

all vanish. We now expand the Cauchy surface “end-cap” contribution

B ∝ V (a∂0δa − δa∂0a)
∣

∣

∣

η f

ηi
. (A5)

http://maxima.sourceforge.net
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Physically, the usual procedure is to constrain the variations δa(η) at the two endpoints. This leaves a single term

B ∝ Va (∂0δa)
∣

∣

∣

η f

ηi
. (A6)

Mathematically, if we take complete control over the variations δa(η), we may always write them as mollified by a C∞ bump on

some compact subset of (ηi, η f ). This guarantees control of all derivatives at the endpoints, and can be used to destroy this term.

If we do not assert this level of control, this final boundary term is just the York boundary term.

To see this, we follow Wald (2010, Equation (E.1.18)) where the varied term of the EH action, which gives rise to the York

term, is
∫

U
∇α

(

vβg
αβ

)

ǫ. (A7)

For our RW ansatz, we find for Wald (2010, Equation (E.1.16))

vα ≡ ∇βδgαβ − gγδ∇αδgγδ = −6a−2∂0(aδa)δ0
α (A8)

ǫ ≡ √−g d4x = a4 d4x. (A9)

By Stokes’ theorem, we have

∫

U
∇α

(

vβg
αβ

)

ǫ =

∫

∂U
vβnαg

αβe (A10)

where, for our RW ansatz, we find

nαnβg
αβ ≡ −δ0

αδ
0
β ‖nα‖2 a−2 ≡ −1 =⇒ ‖nα‖ = a (A11)

nαvβg
αβ = 6a−4δα0∂0(aδa)nα (A12)

e =
√

h d3x = a3 d3x. (A13)

Note that h is Wald’s notation for the induced metric on the hypersurface orthogonal to the timelike unit covector field nα. The

resulting boundary term is

∫

∂U
vβnαg

αβe = 6V∂0(aδa)
∣

∣

∣

η f

ηi
(A14)

= 6V (∂0aδa + a∂0δa)
∣

∣

∣

η f

ηi
(A15)

= 6Va(∂0δa)
∣

∣

∣

η f

ηi
, (A16)

where the final equality follows because δa vanishes at the temporal endpoints. This term is proportional to Equation (A6), which

was to be shown.

A term of this form remains because the gravitational Lagrangian, built from the Ricci scalar, contains second-order derivatives

of the field variables. The established procedure, given by Wald (2010, Equation (E.1.42)), is to just extend the EH action with

the negative of this term. Thus, this final boundary term vanishes by construction. The York term is often omitted from the action

when working classically, as it is non-dynamical.

B. THE EINSTEIN TENSOR OF THE CONSTANT-DENSITY SPHERE

In this section, we explicitly show that the Schwarzschild constant-density sphere of §3.3 satisfies Assumption 2 of §2. First,

note that the constant-density sphere is static and spherically symmetric. This implies that Gµν = 0 when µ , ν. By Einstein’s

equations, it suffices to consider Tµν to develop a bound on Gµν. First, we require a bound on the density of the sphere. From

Equation (87), the minimum physical radius R must satisfy

R >
3Rs

2
. (B17)

This implies a density

ρ <
1

9πGR2
s

. (B18)



16 Croker andWeiner

The distance scale for variations in the gravitational field is determined by Rs. This gives

G00 <
8

9
T00, (B19)

Because the density is constant, it can be scaled so that G00 satisfies Assumption 2.

We now develop the explicit bound on G
(n)

kk
. Our strategy will be to bound the coefficients in ǫ of the central pressure, where

r = 0. We will then demonstrate that all coefficients in ǫ for r > 0 are less than the coefficients at r = 0. From Schutz (2009,

Equation (10.52), ignore their typo)

P(r) = ρ

√

1 − 2ǫr2/3R2 −
√

1 − 2ǫ/3

3
√

1 − 2ǫ/3 −
√

1 − 2ǫr2/3R2
, (B20)

where we have substituted the equality in Equation (87). Note that P = 0 at r = R, so Assumption 2 is satisfied at the outer edge.

Now consider 0 6 r < R and define

x ≡
√

1 − 2ǫ/3 (B21)

y ≡
√

1 − 2ǫr2/3R2, (B22)

so that

P(r)

ρ
=

y − x

3x − y
(B23)

= −1 +
2

3

1

1 − y/3x
. (B24)

Note that y/3x < 1 on the interior of the object, so we may write the uniformly convergent series

P(r)

ρ
= −1 +

2

3

∞
∑

n=0

(

y

3x

)n

. (B25)

We now consider the expression on the rhs. Substitution of x and y gives

−1 +
2

3

∞
∑

n=0

[

1 − 2ǫ

3

(

r

R

)2
]n/2 [

1 − 2ǫ

3

]−n/2
1

3n
. (B26)

B.1. Central Pressure Coefficient Bound

Setting r = 0 gives

P(0)

ρ
= −1 +

2

3

∞
∑

n=0

[

1 − 2ǫ

3

]−n/2
1

3n
. (B27)

This expression satisfies the requirements for a uniformly convergent generalized binomial expansion:

−1 +
2

3

∞
∑

n=0

∞
∑

k=0

ǫk
(

n/2 + k − 1

n/2 − 1

) (

2

3

)k
1

3n
. (B28)

Since both sums are uniformly convergent, we commute terms:

−1 +
2

3

∞
∑

k=0

ǫk















∞
∑

n=0

(

n/2 + k − 1

n/2 − 1

) (

2

3

)k
1

3n















. (B29)

By definition of the binomial coefficients,

(

n/2 + k − 1

n/2 − 1

)

=
1

2kk!

k−1
∏

j=0

(n + 2 j) , (B30)
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we have that

−1 +

∞
∑

k=0

ǫk

















∞
∑

n=0

2

3(n+k+1)k!

k−1
∏

j=0

(n + 2 j)

















. (B31)

To demonstrate that G
(k)
ss (0) 6 1, we establish that ck, defined as

ck ≡
∞
∑

n=0

cn(k) ≡
∞
∑

n=0

2

3(n+k+1)k!

k−1
∏

j=0

(n + 2 j) , (B32)

monotonically decreases in k. First, note that all cn(k) are positive. We write the ratio of successive cn(k), at fixed n

cn(k + 1)

cn(k)
=

n + 2k

3(k + 1)
. (B33)

Note that the ratio is unity when n = k + 3. For terms with n < k + 3, individual cn(k) monotonically decrease in k by the ratio

test. We now partition off these terms:

ck ≡
k+1
∑

n=0

cn(k) +

∞
∑

n=k+2

2

3(n+k+1)k!

k−1
∏

j=0

(n + 2 j) . (B34)

We need not assert that the finite sum itself is monotonically decreasing in k. We are only bookkeeping individual terms in the

sum over n that monotonically decrease in k. As k increases, the number of such terms increases. It suffices to show that the

summed tail contribution is monotonically decreasing in k. Once this is established, then all contributions to ck monotonically

decrease in k. This will establish that the ck monotonically decrease in k.

We now proceed to show that the tail monotonically decreases in k. First, re-index the infinite series,

ck ≡
k+1
∑

n=0

cn(k) +

∞
∑

m=0

2

3(m+2k+3)k!

k−1
∏

j=0

(m + k + 2 + 2 j) , (B35)

and introduce notation for the coefficients of this infinite series

∞
∑

m=0

dm(k) ≡
∞
∑

m=0

2

3(m+2k+3)k!

k−1
∏

j=0

(m + k + 2 + 2 j) . (B36)

Expanding the above product gives

[m + (3k)][m + (3k − 2)] . . . [m + (3k − 2k − 2)], (B37)

where we have grouped each multiplicand as a binomial in m and terms decrementing k. Note that there are 2k grouped terms in

its full expansion. For dn(k) where m > 3k, 2kmk is then an upper bound on the product. The tail of this series contribution to

Equation (B35) is then

∞
∑

m=3k

dm(k) <

∞
∑

m=3k

2k+1mk

3(m+2k+3)k!
=

2k+1

3(2k+3)k!

∞
∑

m=3k

mk

3m
. (B38)

We bound the series with the integral

∞
∑

m=3k

mk

3m
<

∞
∑

m=0

mk

3m
<

1

(ln 3)k+1

∫ ∞

0

pke−p dp =
k!

(ln 3)k+1
, (B39)

and obtain

∞
∑

m=3k

2k+1mk

3(m+2k+3)k!
<

2k+1

3(2k+3)(ln 3)k+1
. (B40)
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This expression is also monotonically decreasing in k.

The head of the series in Equation (B36) contains terms dm(k), where m < 3k. We establish that these dm(k) monotonically

decrease in m. The ratio of successive terms in m is

dm+1(k)

dm(k)
=

1

3

k−1
∏

j=0

(

1 +
1

m + k + 2 + 2 j

)

. (B41)

Each term is largest when the denominator is smallest. This is achieved when j = m = 0, giving an upper bound for the product

dm+1(k)

dm(k)
6

1

3

(

1 +
1

k + 2

)k

<
e

3
< 1. (B42)

We conclude the terms monotonically decrease in m for fixed k. The multiplicands in the head dm(k) are largest when m = 0,

giving the following upper bound

3k−1
∑

m=0

dm(k) < 6k
(3k)!!

32k+3k!k!!
. (B43)

This expression is also monotonically decreasing in k.

We may (finally) write a monotonically decreasing bound for ck

ck <

k+1
∑

n=0

cn(k) +
2k+1

3(2k+3)(ln 3)k+1
+ 6k

(3k)!!

32k+3k!k!!
. (B44)

To show that all ck < 1, it now suffices to explicitly compute the k = 0 bound. Substitution of k = 0 into Equation (B44) gives

c0 <

[

c0(0) + c1(0) +
2

33 ln 3

]

<
26

27
< 1. (B45)

Because ck > 0 always, this completes the proof that
∣

∣

∣G
(k)
ss (0)

∣

∣

∣ 6 1 as required by Assumption 2.

As a check on our work, central coefficients can be explicitly computed through parametric differentiation with respect to ǫ of

Equation (B20)

ck = lim
ǫ→0

1

k!

∂k

∂ǫk
P(0). (B46)

For example, evaluation at k = 1 gives

c1 =
1

6
, (B47)

which agrees with Equation (B32) evaluated at k = 1. As an additional check, the bound has been verified numerically through

c60.

B.2. Peripheral Pressure Coefficient Bound

Now that we have established that the coefficients of the central pressure are bounded, we show that the coefficients for r > 0

remain bounded. This is done readily with series long division. We will show that each coefficient at r > 0 is decreased relative

to its value at r = 0 and that coefficients remain bounded below by zero.

To prepare for the algorithm, note that Equation (B20) can be written using uniformly convergent binomial expansions as

P(r)

ρ
− 1 =

















1 +

∞
∑

j=1

a jǫ
j

















/















1 +
1

2

∞
∑

k=1

akǫ
k

[

3 −
(

r

R

)2k
]















, (B48)

where the an are defined as

an ≡ (−1)n

(

2

3

)n (

1/2

n

)

. (B49)
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The long division algorithm states that, if

∞
∑

k=0

ckǫ
k ≡

∞
∑

j=0

a jǫ
j

/ ∞
∑

ℓ=0

bℓǫ
ℓ, (B50)

then

c0 =
a0

b0

(B51)

ck =
1

b0

















ak −
k−1
∑

j=0

c jbk− j

















(k > 1). (B52)

By inspection of Equation (B48), we see that

a0 = b0 = c0 = 1. (B53)

Now, note that

(

1/2

j

)

∝ (−1) j+1 ( j > 1). (B54)

By inspection of Equation (B48), we may now write

ck(r) = − |ak| +
1

2

k−1
∑

j=0

c j(r)
∣

∣

∣ak− j

∣

∣

∣

[

3 −
(

r

R

)2(k− j)
]

. (B55)

Pull off the first term of the sum and group the ak terms

ck(r) = |ak |
{

1

2
c0(r)

[

3 −
(

r

R

)2k
]

− 1

}

+
1

2

k−1
∑

j=1

c j(r)
∣

∣

∣ak− j

∣

∣

∣

[

3 −
(

r

R

)2(k− j)
]

.

(B56)

It is now clear that ck(r) > 0 =⇒ ck+1(r) > 0, provided that

1

2
c0(r)

[

3 −
(

r

R

)2k
]

> 1. (B57)

Using that c0 = 1, it follows that the all ck(r) are positive if

(

r

R

)2k

6 1, (B58)

which is always true interior to the sphere. By inspection of Equation (B56), we can now conclude that each ck(r) decreases

monotonically in r. Since we have already bounded the central coefficients, it follows that
∣

∣

∣G
(k)
ss (r)

∣

∣

∣ < 1 for all k within the

constant-density sphere, as was to be shown.
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