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Surface Tension and Negative Pressure Interior of a Non-Singular ‘Black Hole’

Pawel O. Mazur

Department of Physics and Astronomy

University of South Carolina

Columbia, SC 29208 USA∗

Emil Mottola

Theoretical Division, T-2

Los Alamos National Laboratory

Los Alamos, NM 87545 USA†

The constant density interior Schwarzschild solution for a static, spherically symmetric

collapsed star has a divergent pressure when its radius R ≤ 9
8Rs = 9

4GM . We show that this

divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted

surface tension on a spherical surface of radius R0 = 3R
√

1− 8
9
R
Rs

. For r < R0 the interior

Schwarzschild solution exhibits negative pressure. When R = Rs, the surface is localized at

the Schwarzschild radius itself, R0 = Rs, and the solution has constant negative pressure

p = −ρ̄ everywhere in the interior r < Rs, thereby describing a gravitational condensate star,

a fully collapsed non-singular state already inherent in and predicted by classical General

Relativity. The redshifted surface tension of the condensate star surface is given by τs =

∆κ/8πG, where ∆κ = κ+ − κ− = 2κ+ = 1/Rs is the difference of equal and opposite

surface gravities between the exterior and interior Schwarzschild solutions. The First Law,

dM = dEv +τs dA is recognized as a purely mechanical classical relation at zero temperature

and zero entropy, describing the volume energy and surface energy change respectively. Since

there is no event horizon, the Schwarzschild time t of such a non-singular gravitational

condensate star is a global time, fully consistent with unitary time evolution in quantum

theory. The p = −ρ̄ interior acts as a defocusing lens for light passing through the condensate,

leading to imaging characteristics distinguishable from a classical black hole. A further

observational test of gravitational condensate stars with a physical surface vs. black holes

is the discrete surface modes of oscillation which should be detectable by their gravitational

wave signatures.
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I. INTRODUCTION

The endpoint of complete gravitational collapse of a star whose mass exceeds some critical value

of order of a few solar masses is widely assumed to be a singular state called a ‘black hole.’ This

hypothesis rests upon the fact that continued gravitational collapse past nuclear densities cannot be

halted by any conventional equation of state for high density matter. If a trapped surface from which

light cannot escape is formed, and the energy density of the matter ρ plus the sum of the principal

pressures pi is positive

ρ+
3∑
i=1

pi ≥ 0 (1.1)

then the Einstein equations of classical General Relativity are sufficient to prove that gravitational

collapse must result in a singularity, and black hole formation is inevitable [1, 2].

The strong energy condition (1.1) holds for all known forms of matter or radiation, but for one

significant exception, viz. the cosmological vacuum dark energy believed to be responsible for the

accelerating expansion of the universe. The equation of state of vacuum dark energy is p = −ρ̄ < 0

with constant negative pressure, so that ρ+3p = −2ρ̄ < 0. Indeed, it is just this inequality that results

in the defocusing rather than the focusing of geodesics, which is the effective repulsive force presumed

to be causing the expansion of the universe to accelerate [3]. If such an equation of state, violating

(1.1) were to be realized within the central regions of a star undergoing gravitational collapse, then

the same effective repulsive force could prevent the formation of a black hole singularity.

Had cosmological dark energy and the accelerating expansion of the universe not been discovered

observationally, other considerations lead naturally to this same p = −ρ̄ < 0 equation of state. In

classical General Relativity it is the eq. of state of a (positive) cosmological term. In quantum theory

vacuum fluctuations lead generically to a non-zero cosmological term, resulting in this same eq. of

state [4]. The vacuum energy density with p = −ρ̄ due to gluon condensation appears in the bag model

for hadrons and is necessary to obtain agreement both with QCD sum rules and with experiment [6].

Other violations of (1.1) are predicted by quantum theory dependent upon external conditions such as

in the Casimir effect, now confirmed by a number of laboratory experiments [5]. It is only the extreme

feebleness of of the gravitational interaction that prevents the gravitational effects of these expected

violations of the strong energy condition from being directly observed in laboratory conditions.

Perhaps most persuasive of all, quantum theory applied to black hole spacetimes, as they are usually
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described, possessing an event horizon and an interior singularity, leads to a number of severe paradoxes

associated with the validity of unitary time evolution and the preservation of information apparently

‘lost’ by quantum matter falling into a black hole [7]. Certainly if macroscopic matter disappears into

a singularity of space and time all predictive power of present physical theories, whether quantum or

classical is lost as well. Causality and the classical singularity theorems assure us that this common

fate of both matter and otherwise successful theories such as the Standard Model is inevitable once the

event horizon is crossed, provided (1.1) holds everywhere within it. Avoiding this fate and removing

these difficulties consistently within quantum theory and General Relativity requires the abandonment

of (1.1), and as a result, some modification of both black hole interiors and/or horizons.

The singularity theorems illustrate the power of arguments and the broad conclusions that may

be drawn in Einstein’s theory based on simple general bounds or inequalities obeyed by the matter

stress-energy, such as (1.1), otherwise independently of its detailed composition or eq. of state. When

spherical symmetry is assumed, it is possible to prove an even more remarkable set of theorems

about the existence or non-existence of stable fully collapsed stars, relying on apparently even weaker

conditions on the matter stress-energy. Assuming only isotropic pressures (pi = p for all i = 1, 2, 3),

a positive energy density that is a non-increasing function of radius,
dρ

dr
≤ 0 , and matching the

interior of a star to the vacuum Schwarzschild solution exterior to it, it was shown by Buchdahl [8]

that the radius of the star must be greater than a certain finite value, R > 9
8Rs, with Rs = 2GM

the Schwarzschild radius, in order for the interior solution to possess everywhere finite pressure: cf.

Appendix A. Subsequently, it was shown that a rigorous lower bound on the central pressure can

be established under the same assumptions [9]. These theorems do not require the strong energy

condition (1.1). The existence of these bounds implies that something drastic must happen to the

interior of a collapsed star even when measurably (i.e. macroscopically) outside of its Schwarzschild

radius, before a trapped surface forms, at least under the assumptions of spherical symmetry, continuity

and monotonicity ρ′ ≤ 0, entirely within the domain of classical General Relativity.

Moreover, the Buchdahl and related bounds are established and saturated by comparison to the

Schwarzschild interior solution with ρ′ = 0, i.e. ρ = ρ̄ = constant [10, 11]. This constant density interior

Schwarzschild solution has a divergent central pressure when its radius first reaches the Buchdahl

bound R = 9
8Rs. The assumption of strictly constant density, presumed unphysical, together with

this pressure divergence of the interior Schwarzschild solution has usually been regarded as reasons

enough to exclude it from further consideration [12, 13]. As a result, the behavior of the solution for
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R ≤ 9
8Rs has been little studied or remarked upon in the literature [14]. However, the existence of the

Buchdahl and related bounds in which the constant density solution is the limiting case, makes the

study of the interior Schwarzschild solution relevant to and potentially quite instructive for the general

case and realistic application to any spherically symmetric fully collapsed self-gravitating mass.

When one does consider the constant density interior Schwarzschild solution for R < 9
8Rs, some

of its rather remarkable features quickly become apparent. First, the pressure divergence moves out

from the origin to a spherical surface of finite radius

R0 = 3R

√
1− 8

9

R

Rs
> 0 for R <

9

8
Rs =

9

4
GM (1.2)

and a new regular solution for 0 ≤ r < R0 opens up behind it, with negative pressure, violating

(1.1). Second, as the radius of the star approaches the Schwarzschild radius from above R→ R+
s , this

region of negative pressure moves outward from the origin and comes to encompass the entire interior,

since R0 → R−s from below. Third, most remarkably of all, in the above limit the entire interior

becomes one of constant negative pressure with precisely the p = −ρ̄ de Sitter dark energy equation of

state. Because of the Buchdahl bound and related theorems one can conclude that negative pressure

and the dark energy ‘quantum vacuum’ equation of state are already inherent in and predicted to

occur in classical General Relativity quite generally, under sufficiently severe conditions of spherically

symmetric gravitational compression, and prior to any formation of a trapped surface or event horizon.

The crucial feature of the pressure singularity at r = R0 of the interior Schwarzschild solution for

R < 9
8Rs is that the norm of the static Killing vector vanishes at the same point, touching zero in a

cusp-like behavior at r = R0, but otherwise remaining positive (cf. Figs. 4-5 and Figs. 7-8). In this

paper we show that the pressure singularity and cusp is in fact integrable through the Komar integral

formula for the total mass-energy of a stationary configuration [15, 16], and results in a distributional

δ-function in the transverse stress T θθ = T φφ ≡ p⊥ 6= T rr localized precisely at r = R0. Thus in

the limit R → R+
s , R0 → R−s the classical interior Schwarzschild solution describes a non-singular

gravitational condensate star with a physical surface and finite surface tension, proposed in [17, 18]

(see also [19]), in which the thickness of the thin shell quantum surface layer goes to zero.

The surface tension may be computed in terms of the discontinuity of equal magnitude and opposite

signed surface gravities κ± = −κ∓ at r = R0, and in fact, this example serves to generalize the

Israel junction conditions [20, 21] to a null boundary layer in an unambiguous way. In terms of

the (redshifted) surface tension and corresponding surface energy to be determined in Sec. IV the
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differential First Law of Black Hole Mechanics [22, 23] is straightforwardly modified and recognized

to be a purely mechanical classical relation between volume and surface contributions to the Komar

energy. There is no temperature or entropy whatsoever associated with the limiting gravitational

condensate star configuration, as both are identically zero. Moreover, since the Schwarzschild Killing

time extends throughout the interior and exterior Schwarzschild solution including for R0 = R = Rs,

and as there is neither a spacetime singularity nor an event horizon, quantum mechanical evolution of

fields in such a background static spacetime is clearly unitary.

The paper is organized as follows. In the next section we review the constant density interior

Schwarzschild solution and show how negative pressures appear when R < 9
8Rs, summarizing the main

results of the paper. The succeeding sections starting with Sec. III assemble the necessary formalism

to analyze the general stationary configuration of matter and gravity through the Komar mass-energy

integral, energy flux and surface gravity. In Sec. IV we apply the Komar formula to the interior

Schwarzschild solution and show that its pressure singularity is integrable, and corresponds precisely to

a positive transverse pressure p⊥−p > 0 and surface tension τs localized on the discontinuous pressure

surface. In Sec. V we show how the First Law of energy conservation applied to the Schwarzschild

interior solution may be recognized as a purely mechanical classical relation of volume and areal

surface energy, the latter determined by the surface tension, at strictly zero temperature and entropy.

In Sec. VI two properties of negative pressure gravitational condensate stars with a physical surface

that may permit them to be distinguished observationally from black holes are discussed, viz. the

defocusing of null rays passing through the interior leading to different optical imaging properties, and

the excitation of discrete frequency surface modes detectable by their gravitational wave signatures.

Sec. VII contains our Conclusions and a Discussion of extension of the simple model presented to

more general situations and its embedding in a more complete theory.

There are three Appendices. In Appendix A the Buchdahl and related bounds are summarized.

Appendix B contains the mathematical details of how the δ-function distribution in the transverse

pressure may be obtained by a careful regulation of the pressure singularity by a small parameter

ε in the limit ε → 0+, suggesting also how a physical regulator ε ∝
√
~ dependent upon quantum

corrections may enter in a more complete quantum theory. Finally in Appendix C the relationship

between the Israel junction conditions for a spacelike boundary surface as assumed in [18] and the limit

in which the boundary between the modified de Sitter interior and Schwarzschild exterior becomes

null is explained.
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II. INTERIOR SCHWARZSCHILD SOLUTION AND NEGATIVE PRESSURE

The general static, spherically symmetric line element in Schwarzschild coordinates is

ds2 = −f(r) dt2 +
dr2

h(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
(2.1)

in terms of two metric functions f(r) and h(r). The Schwarzschild time coordinate t is invariantly

defined by the existence of a Killing vector Kµ such that

∂

∂t
= Kµ ∂

∂xµ
, Kµ = δµt (2.2)

and the geometry is independent of t. From (2.1) and (2.2) we see that

−KµKµ = −gtt = f(r) (2.3)

is a scalar invariant. The radius r is similarly defined in an invariant geometric manner by the condition

that A = 4πr2 is the area of the spherical two-surface at fixed r and fixed t.

The form of the stress-energy tensor of a general static, spherically symmetric distribution of matter

may be expressed as the diagonal matrix

Tµν =


−ρ 0 0 0

0 p 0 0

0 0 p⊥ 0

0 0 0 p⊥

 (2.4)

in the Schwarzschild coordinates (t, r, θ, φ). The three functions ρ, p and p⊥ are the mass-energy

density, radial pressure, and tangential pressure respectively. Thus the general, spherically symmetric

static configuration of matter and geometry requires five functions of r in all.

These five functions are required to satisfy the Einstein eqs. of classical General Relativity, whose

independent information is contained in the two components,

−Gtt =
1

r2

d

dr
[r (1− h)] = −8πGT tt = 8πGρ (2.5a)

Grr =
h

rf

df

dr
+

1

r2
(h− 1) = 8πGT rr = 8πGp (2.5b)
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together with the covariant conservation eq.

∇µ Tµr =
dp

dr
+
ρ+ p

2f

df

dr
+

2 (p− p⊥)

r
= 0 (2.6)

which expresses the pressure balance of forces in static equilibrium. It is sometimes convenient to trade

the two metric functions f(r) and h(r) for the gravitational potential Φ(r) and the Schwarzschild or

Misner-Sharp mass [24] within a sphere of radius r, m(r), defined by

f = e2Φ , h = 1− 2Gm

r
(2.7)

respectively. From (2.5a)
dm

dr
= 4πr2ρ so that m(r) is obtained from this by direct integration

m(r) = 4π

∫ r

0
r2ρ(r) dr (2.8)

assuming m(0) = 0. The remaining Einstein eq. (2.5b) and (2.6) thereby become

h
dΦ

dr
=
Gm

r2
+ 4πGpr (2.9a)

dp

dr
+ (ρ+ p)

dΦ

dr
=

2(p⊥ − p)
r

(2.9b)

so that Φ(r) is the Newtonian gravitational potential in the non-relativistic limit where p, p⊥ � ρ and

Gm/r2 � 1, h ≈ 1 (in units in which c = 1).

For a star of total mass M and radius R, the metric functions f and h must match the exterior

Schwarzschild solution in vacuo

fext(r) = hext(r) = 1− 2GM

r
= 1− Rs

r
, Rs ≡ 2GM , r ≥ R (2.10)

where a possible multiplicative constant of integration in f(r) is fixed by the condition that the line

element (2.1) approach that of flat space Minkowski with the standard interval of time as r →∞. In

addition, for equilibrium the pressure must vanish at r = R. Thus we have the boundary conditions

p(R) = 0 , m(R) = M , f(R) = h(R) = 1− Rs
R

(2.11)

for the interior solution at the surface of the star.
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With these conditions the interior solution for r < R is still underdetermined, and additional

information about the matter stress tensor must be supplied. Most commonly, perfect isotropic fluid

behavior is assumed by setting p⊥ = p. Schwarzschild in his second paper [10] assumed in addition to

this perfect fluid behavior that the interior has constant density

ρ = ρ̄ ≡ 3M

4πR3
(2.12)

and these two additional conditions allow eqs. (2.5)-(2.6) to be solved in closed form. In that case eq.

(2.8) is integrated immediately to obtain

m(r) =
4π

3
ρ̄r3 =

M

R3
r3 , h(r) = 1−H2r2 , 0 ≤ r ≤ R (2.13)

where we have defined

H2 ≡ 8πG

3
ρ̄ =

2GM

R3
=
Rs
R3

. (2.14)

Then eliminating the gravitational potential function
dΦ

dr
from eqs. (2.9) gives

h
dp

dr
+

(ρ̄+ p)

2

(
H2r + 8πGpr

)
=

2(p⊥ − p)
r

= 0 (2.15)

where the last equality is valid if p⊥ = p. In view of (2.13), (2.15) may be written in the separable

form

dp

(p+ ρ̄)(8πGp+H2)
= − r dr

2 (1−H2r2)
(2.16)

whose solution is elementary. Integrating from the outer boundary at r = R where p(R) = 0 to r gives

p(r) + ρ̄

3p(r) + ρ̄
=

√
1−H2R2

√
1−H2r2

(2.17)

or solving for the pressure,

p(r) = ρ̄

[ √
1−H2r2 −

√
1−H2R2

3
√

1−H2R2 −
√

1−H2r2

]
(2.18)
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and we also have

p+ ρ̄ = 2 ρ̄

[ √
1−H2R2

3
√

1−H2R2 −
√

1−H2r2

]
(2.19)

for r ≤ R. Lastly the solution for f or Φ obeying the boundary condition (2.11) is easily found to be

f(r) = e2Φ =
1

4

[
3
√

1−H2R2 −
√

1−H2r2
]2
≥ 0 (2.20)

completing the constant density Schwarzschild interior solution matched to the vacuum Schwarzschild

exterior solution at r = R.

Several remarks about this solution bear emphasis. First, its importance is not due to any as-

sumption (at this point at least) that constant density ρ = ρ̄ represents a realistic eq. of state for

high density matter. Rather it represents an extreme situation which can be used as a bound and

an instructive model for the general spherically symmetric interior solution. Second, since the eqs.

for p(r) and f(r) are first order, with boundary conditions (2.11), there is no freedom to adjust the

first derivative f ′(R). However this first derivative is also continuous with the exterior Schwarzschild

solution (2.10), as long as the interior solution (2.18)-(2.20) remains everywhere regular. Third, the

solution is regular everywhere except for at most one r in the interior where the denominator in (2.18)

D ≡ 3
√

1−H2R2 −
√

1−H2r2 (2.21)

may vanish in the interval r ∈ [0, R]. Fourth, and most importantly, since f = 1
4D

2, if D = 0 the

pressure p(r) diverges at the same value as that at which f(r) vanishes. Otherwise f(r) > 0 and the

interior solution is regular everywhere else with no horizon.

The solution of D = 0 is given by r = R0 where

3
√

1−H2R2 =
√

1−H2R 2
0 or R0 = 3R

√
1− 8

9

R

Rs
(2.22)

which is pure imaginary if R > 9
8Rs. Hence in this case D > 0 and the solution (2.18) remains finite

everywhere on the real axis [0, R] in the interior of the star. The pressure (2.18) is everywhere positive

and monotonically decreasing outward from its maximum at r = 0, and f(r) remains strictly positive

everywhere in this case. The positive regular functions p(r) and f
1
2 (r) (called the redshift factor) are

plotted in Figs. 1 and 2 for several values of H2R2 = R/Rs >
9
8 = 1.125.
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FIG. 1. Pressure (in units of ρ̄) as a function of r (in units of R) of the interior Schwarzschild solution for various
values of the parameter R/Rs > 9/8 = 1.125. The upper plot shows p(r) for the values R/Rs = 2.50, 1.67, 1.25
(brown, orange, red curves) respectively. The lower plot shows p(r) for the values R/Rs = 1.250, 1.136, 1.126
(red, green, blue curves) respectively. Note the change of vertical scale in the latter plot (the red curves are
the same in each) and the rapid increase of the central pressure p(0) as R/Rs approaches the Buchdahl bound
1.125.

Now as R → 9
8 Rs from above, the zero of the denominator D (2.22) approaches the real axis at

R0 = 0 and a divergence of the central pressure p(0)→∞ appears with f(0)→ 0 at this same point.

Hence at the critical value R = 9
8Rs, the constant density solution (2.18) with p⊥ = p everywhere

finite strictly ceases to exist. We analyze this divergence of the pressure in the next several sections.

If nevertheless we consider (2.18)-(2.20) for Rs < R < 9
8Rs the zero of D at R0 given by (2.22) moves

outward from the origin to finite values of 0 < R0 < R. Then (2.18) shows that a new regular interior

solution opens up for 0 ≤ r < R0 where D < 0 and p(r) < 0, while f(r) is again positive.
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FIG. 2. The redshift factor f
1
2 as a function of r (in units of R) of the interior Schwarzschild solution for the

same values of the parameter R/Rs > 9/8 = 1.125 as in Figs. 1. The brown, orange, red, green and blue curves

are for the values R/Rs = 2.50, 1.67, 1.25, 1.136, 1.126 respectively. Note the approach of f
1
2 to zero at r = 0 as

R/Rs approaches the Buchdahl bound 1.125.

As the star is compressed further and its radius approaches the Schwarzschild radius R→ R+
s from

outside, (2.22) shows that the radius of the sphere where the pressure diverges and f(R0) = 0 moves

from the origin to the outer edge of the star, i.e. R0 → R−s , and in that limit the interior solution

with negative pressure comes to encompass the entire interior region 0 ≤ r < R, excluding only the

outer boundary at R = Rs. Finally, and most remarkably of all, since in this limit H2R2 = Rs/R→ 1

inspection of (2.18) shows that the entire interior solution then has constant negative pressure

p = −ρ̄ , for r < R = R0 = Rs = 2GM (2.23)

with

f(r) = 1
4 (1−H2r2) = 1

4 h(r) =
1

4

(
1− r2

R2
s

)
, H =

1

Rs
(2.24)

corresponding to a patch of pure de Sitter space in static coordinates, although one in which gtt is 1
4

its usual value, so that the passage of time in the interior is modified from what would be expected in

the usual static coordinates of de Sitter space. Typical profiles of the pressure p(r) and f
1
2 for values

of the radius in the range Rs < R < 9
8Rs and the approach to Rs are shown in Figs. 3 and 4.

The second metric function h(r) for the same values of the radius in the range Rs < R < 9
8Rs
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FIG. 3. Pressure (in units of ρ̄) as a function of r (in units of R) of the interior Schwarzschild solu-
tion for various values of the parameter R/Rs < 9/8 = 1.125. The upper plot shows p(r) for the val-
ues R/Rs = 1.124, 1.087, 1.053 (brown, orange, red curves), where the divergence in the pressure occurs at
R0/R = 0.106, 0.552, 0.761 respectively. The lower plot shows p(r) for the values R/Rs = 1.053, 1.010, 1.001
(red, green, blue curves), where the divergence in the pressure occurs at R0/R = 0.761, 0.959, 0.996 respectively.
For r < R0 the pressure is negative. Note the change of vertical scale in the plots (the red curves are the same
in each) and the approach of the negative interior pressure p → −ρ̄ as R approaches the Schwarzschild radius
Rs from above and R0 approaches Rs from below.

and the approach to Rs are shown in Fig. 5. When R = Rs = R0, the exterior region r > Rs is the

usual vacuum Schwarzschild solution (2.10) with an infinitely thin shell discontinuity and jump of the

pressure at r = Rs, where the horizons f = h = 0 of the interior de Sitter and exterior Schwarzschild

solutions coincide. Note that both f(r) and h(r) are non-analytic in r at R0, having a cusp there, and

being positive on either side of r = R0 → Rs, although r = Rs is a null surface, there is no interior

trapped surface, and no causal event horizon.
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r
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√f

FIG. 4. The redshift factor f
1
2 as a function of r (in units of R) of the interior Schwarzschild solution for the

same values of the parameter R/Rs < 9/8 = 1.125 as in Figs. 3. The brown, orange, red, green and blue curves

are for the values R/Rs = 1.124, 1.087, 1.053, 1.010, 1.001 respectively. Note the approach of the zero of f
1
2 at

R0 towards R from below as R approaches the Schwarzschild radius Rs from above.

0 1 2 3 4
r

0.2

0.4

0.6

0.8

1.0

h

FIG. 5. The metric function h as a function of r (in units of R) of the interior and exterior Schwarzschild
solution for the values of the parameter R/Rs = 2.500, 1.667, 1.250, 1.111, 1.000 (brown, orange, red, green and
blue curves) respectively. The minimum of h approaches zero at r = R, as R as R approaches the Schwarzschild
radius Rs from above. Note the cusp-like behavior in both this and the previous figure.

Because of the pressure divergence at R0 which first appears at the origin when R = 9
8Rs the interior

Schwarzschild negative pressure solution has been little studied or remarked upon in the literature [14].

We show in the next two sections by use of the covariant Komar mass-energy integral, containing in

its integration measure the redshift factor f
1
2 which vanishes at the same radius R0, that the pressure
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singularity is integrable, and requires relaxation of the p⊥ = p perfect fluid isotropy assumption.

When R < 9
8Rs the non-isotropic pressure p⊥ 6= p develops a δ-function distribution at r = R0 whose

coefficient corresponds to a non-zero surface tension, which is therefore inherent in the Schwarzschild

interior solution. Then the regular negative pressure solution for R ≤ 9
8Rs and r < R0 is recognized

as a perfectly viable solution, with a surface boundary layer separating the region of negative from

positive pressures. In the limit R → R+
s , R0 → R−s , it becomes a non-singular classical alternative

to a black hole for the fully collapsed state. In fact, in this limit the constant density solution found

by Schwarzschild nearly a century ago becomes essentially the gravitational condensate star solution

with a surface boundary layer at Rs, proposed in [17, 18].

III. MASS-ENERGY FLUX AND SURFACE GRAVITY

Properly interpreting the pressure singularity of the constant density interior Schwarzschild solution

requires some background and formalism which we provide in these next three sections, starting in

this section with the Komar mass-energy formula, energy flux and surface gravity.

In electrodynamics Maxwell’s eqs. ∇νFµν = 4πJµ together with Stokes’ theorem allows integration

of the anti-symmetric field strength tensor on a two-surface S with directed surface element dΣµν ,

∫
S
Fµν dΣµν =

∫
V
∇νFµν dΣµ = 4π

∫
V
Jµ dΣµ = 4π

∫
V
J0dV = 4πQ (3.1)

thereby expressing the flux integral of the field through the surface in terms of a volume integral for

the total conserved charge Q. Here dΣµ = δ0
µ dV is a spacelike three-volume element of flat space

with timelike normal.

In General Relativity the analogous covariant volume integral over the matter distribution which

yields the total mass-energy of an isolated stationary system in a general asymptotically flat spacetime

(not necessarily spherically symmetric) was given first by Tolman [15] and re-derived more geometri-

cally by Komar [16]. The latter derivation relies upon the fact that a stationary spacetime is invariantly

characterized as one admitting a timelike Killing vector field Kµ, satisfying the Killing equation

∇µKν +∇νKµ = 0 (3.2)

so that ∇µKν = ∇[µKν] is anti-symmetric in its indices. Thus just as Fµν in (3.1), this anti-symmetric
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tensor may be integrated over a two-surface and Stokes’ theorem applied to yield

∫
S
∇µKν dΣµν =

∫
V
∇ν∇µKν dΣµ =

∫
V
RµλK

λ dΣµ = 4πG

∫
V

(
2Tµλ − T δ

µ
λ

)
Kλ dΣµ (3.3)

where the commutator of two covariant derivatives in terms of the curvature tensor is used, together

with ∇νKν = 0, and the Einstein eqs. Rµλ = 4πG (2Tµλ − T δ
µ
λ) with T ≡ Tµµ.

It is natural to introduce the time coordinate t with respect to which the spacetime is stationary,

as in (2.2)-(2.3). If the integration in (3.3) is taken to be a spacelike hypersurface at constant x0 = t,

then in curved space

dΣµ = e0
µ dV (3.4)

where e0
µ is the vierbein in the orthonormal basis, gµνeaµe

b
ν = ηab =diag (−1, 1, 1, 1), and dV is the

three-volume element in the induced three-metric of the hypersurface. In these natural coordinates

suited to stationarity, the inverse vierbein E µ
0 = f−

1
2Kµ = uµ, where uµ is the four-velocity of a

particle at rest with respect to the time t and f ≡ −KµK
µ = −gtt is a spacetime scalar. Thus

e0
µ = −f−

1
2Kµ = −uµ = f

1
2 δtµ (3.5)

is the directed normal to the hypersurface and dΣµ = −uµdV = f
1
2 δtµdV . We note that these

formulae making explicit use of the vierbein frame field eaµ and its inverse E µ
a make sense strictly

speaking only if Kµ is timelike and f > 0, the f → 0 limit requiring special care.

If furthermore the spatial coordinates (x1, x2, x3) of the hypersurface at constant t are defined so

that the two-surface in (3.3) lies at constant x1, then the directed two-surface element may be written

dΣµν = e0
[µe

1
ν] dA (3.6)

with dA the area surface element of the induced two-metric of the surface. The (negative of the)

integrand of the surface integral in (3.3) is then

∇νKµ e0
[µe

1
ν] = ∇νKµ

(
−f−

1
2Kµ e

1
ν

)
= 1

2 e
1
νf
− 1

2∇νf = E ν
1 ∂νf

1
2 ≡ κf . (3.7)

This quantity is related to the proper four-acceleration of a particle at rest, namely
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aν ≡ duν

dτ
= uµ∇µuν =

1

f
Kµ∇µKν = − 1

f
Kµ∇νKµ =

1

2f
∇νf (3.8)

where Kν∇νf = ∂tf = 0 has been used. Multiplying (3.8) by the redshift factor f
1
2 converts the

acceleration with respect proper time τ to that with respect to the stationary coordinate time t.

Taking the projection of f
1
2aν lying within the spatial hypersurface in the direction normal to the

two-surface by contracting with e1
ν then gives (3.7). Thus κf is the four-acceleration of the worldline

of a particle at rest with respect to the time t projected onto the normal to the surface x1 = constant.

For a three-volume V enclosed by an outer and inner two-surface ∂V+ and ∂V− respectively, (3.3)

then becomes

1

4πG

∫
∂V+

κf dA =

∫
V

(
2Tµλ − T δ

µ
λ

)
Kλuµ dV +

1

4πG

∫
∂V−

κf dA (3.9)

after dividing by 4πG and rearranging. This shows that if the volume V contains no matter, the areal

surface integral of κf is independent of the surface ∂V chosen, and κf is proportional to the conserved

mass-energy flux through the surface, analogous to the electric flux normal to the surface of Gauss

Law (3.1) in electromagnetism. The coefficient 1/4πG has been fixed so that if the surface integral

over ∂V+ is taken outside the matter distribution, it evaluates to the total mass M in the case of an

asymptotically flat spacetime. Thus in the asymptotically flat case (3.9) becomes

M =

∫
V

(
2Tµλ − T δ

µ
λ

)
Kλuµ dV +

1

4πG

∫
∂V−

κf dA (3.10)

expressing the total mass-energy of the system M in terms of a three-volume integral of the matter

stress-energy, plus a possible surface flux contribution from the inner two-surface. The redshift factor

f
1
2 is then the gravitational redhsift relative to the asymptotically flat region where f = 1.

If the volume integral over V can be extended to a complete Cauchy surface without an inner

boundary, such as in the case of a (non-singular) star, then the last surface integral contribution at

∂V− in (3.10) is absent, and (3.10) gives the total mass of an arbitrary isolated stationary system in

asymptotically flat spacetime, in terms of a certain volume integral of its stress-energy components.

The relation (3.10) applied to vacuum solutions of the Einstein eqs. such as the Kerr rotating

black hole family of solutions, breaks down at the ergosphere boundary where f = 0 and it is no

longer possible for a particle to remain stationary. In order to extend (3.10) within the ergosphere

the usual route is to express Kµ = `µ − ΩHK̃
µ as a linear combination of the rotational Killing
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vector K̃µ∂µ = ∂/∂φ and another vector `µ which remains timelike outside the black hole horizon,

becoming null there. A modified surface gravity can be defined then with respect to this vector, with

its corresponding redshift factor (−`µ`µ)
1
2 remaining finite and well-defined down to the black hole

horizon, where it is becomes a constant, κH . The contribution
∫
S ∇

νK̃µdΣµν can be evaluated in

terms of the angular momentum JH of the black hole. In this way one obtains Smarr’s integral mass

formula [22, 23]

M =
κH

4πG
AH + 2 ΩHJH (3.11)

for a rotating black hole, with AH the area of the Kerr black hole horizon and ΩH its angular velocity

of rotation. The differential form of this relation [22, 23]

dM =
κH

8πG
dAH + ΩH dJH (3.12)

expresses the change of total energy of the system in terms of the change of angular momentum and

change of surface area of the horizon, and has been called the First Law of Black Hole Mechanics [23].

The differential form (3.12) suggests that the coefficient

(
∂M

∂AH

)
JH

=
κH

8πG
(3.13)

could perhaps be viewed as the surface tension of the classical black hole horizon [22]. Yet this in-

terpretation is problematic in black hole physics, since if globally extended within its event horizon

by analytic continuation, it is implicitly assumed that a black hole has no stress-energy whatsoever

localized on the horizon. Thus it is not clear to what surface energy or surface effect on the horizon

the ‘surface tension’ (3.13) could possibly be associated. We shall see that the identification of surface

gravity with surface tension (actually the difference of surface gravities between exterior and interior)

is possible only when the regular interior solution such as the constant density Schwarzschild inte-

rior solution is known, and when this solution differs fundamentally from that obtained by analytic

continuation of the exterior vacuum Schwarzschild solution.

By covariant differentiation of the Killing eq. (3.2), the integrand appearing in (3.10) may be

written also in the local form

− Kµ = 8πG
(
Tµν − 1

2 δ
µ
ν T
)
Kν (3.14)
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prior to any integration. For the general spherically symmetric static form of the metric (2.1) and

stress-energy tensor (2.4) this eq. takes the form

d

dr

[
r2

√
h

f

df

dr

]
= 8πG

√
f

h
r2
(
ρ+ p+ 2p⊥

)
(3.15)

in Schwarzschild coordinates (2.1). In terms of the surface gravity κf = κ of (3.7), (dropping the

subscript f henceforth)

κ(r) =
1

2

√
h

f

df

dr
(3.16)

so that (3.15) can be written in the form

1

G

d

dr

(
r2κ(r)

)
= 4π

√
f

h
r2
(
ρ+ p+ 2p⊥

)
(3.17)

justifying the interpretation of κ/G as a mass-energy flux, analogous to the electric flux in Gauss’

Law. Indeed since in the exterior vacuum Schwarzschild solution (2.10)

κext(r) =
GM

r2
(3.18)

the upper limit of the integration of (3.17) outside the matter distribution gives the total mass M .

IV. SURFACE ENERGY AND SURFACE TENSION

The local form (3.17) in the spherically symmetric case is the convenient starting point to analyze

the singular behavior of the pressure (2.18) of the constant density solution at r = R0. We treat

the case of general 0 ≤ R0 < R and consider the limit R → R+
s when R0 → R−s at the end. If one

substitutes the constant density interior Schwarzschild solution assuming p⊥(r) = p(r) given by (2.18)

and √
f = 1

2 |D| (4.1)

from (2.20) into the right side of (3.17) one finds
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4π

√
f

h
r2
(
ρ+ 3p

)
= 4π r2 ρ̄ sgn (D) , r 6= R0 (4.2)

so that the divergence at r = R0 apparently cancels, leaving only a sign function discontinuity

sgn (D) = sgn (r −R0) =

 −1, r < R0

+1, r > R0

(4.3)

at r = R0. The cancelation of the divergence in (4.2) indicates that the pressure singularity is

an integrable one with respect to the proper measure in the mass-energy integral (3.10) or (3.17).

However, since from (2.21) and (4.1), with p ∝ D−1, and f → 0, we are dealing with singular

distributions rather than smooth functions, and this conclusion is unreliable at the singular point

itself, potentially missing a local integrable distribution with support only at r = R0.

That such a δ-function is indeed present at r = R0 is verified by examining the left side of (3.17),

which is generally valid for all static, spherically symmetric spacetimes. Substituting the interior

solution (2.13), (2.20) into the quantity to be differentiated on the left side of (3.17) we obtain

r2

G
κ(r) =

r2

2G

√
h

f

df

dr
=

4π

3
ρ̄ r3 sgn (D) . (4.4)

The derivative d/dr then produces a δ-function contribution by differentiation of the sign function

discontinuity,

d

dr
sgn (D) =

dD

dr

d

dD
sgn (D) = 2

dD

dr
δ(D) = 2 δ(r −R0) (4.5)

since
(dD
dr

)
R0

=

∣∣∣∣dDdr
∣∣∣∣
R0

is an even function at r = R0. Thus the left side of (3.17) is in toto

1

G

d

dr

(
r2κ(r)

)
= 4π r2ρ̄ sgn(D) +

8π

3
R 3

0 ρ̄ δ(r −R0) (4.6)

with a well-defined local δ-function contribution having support only at r = R0 in addition to the

finite contribution given previously by (4.2). Comparing the general (3.17) with (4.2) and (4.6), the

δ-function distribution must be attributed to the difference

8π

√
f

h
r2 (p⊥ − p) =

8π

3
ρ̄ R 3

0 δ(r −R0) (4.7)

and hence the breakdown of the isotropic pressure assumption p⊥ = p at the singular radius r = R0.
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This interpretation of the δ-function contribution may be confirmed from the pressure balance eq.

(2.6) expressed in the form

r
d

dr

[
(p+ ρ̄)f

1
2
]

= 2 (p⊥ − p)f
1
2 (4.8)

for constant density ρ = ρ̄. Substituting the solution (2.18)-(2.20) in the left side of this relation gives

r
d

dr

[
ρ̄
√

1−H2R2 sgn (D)
]

= 2ρ̄ R0

√
1−H2R2 δ(r −R0) =

2

3
ρ̄ R0

√
1−H2R2

0 δ(r −R0) . (4.9)

Multiplying by 4πr2h−
1
2 , evaluated at r = R0 then yields (4.7) once again.

Thus the integrand of the right side of the Komar mass-energy (3.17) may be written in the form

4π

√
f

h
r2
[
ρ+ 3p+ 2 (p⊥ − p)

]
= 4π r2 ρ̄ sgn (D) +

8π

3
R 3

0 ρ̄ δ(r −R0) (4.10)

in agreement with (4.6). In Appendix B we show how the δ-function can be obtained also on the

right side of (3.15) of (3.17) by a careful regularization of the singularity at r = R0 and taking the

limit properly of removing the regulator. It is this δ-function contribution, totally integrable within

the Komar mass formula (3.17), but breaking the assumed isotropic perfect fluid condition p⊥ = p at

r = R0, and the fact that the radial pressure is a Principal Part distribution which is also integrable,

that allows the interior Schwarzschild solution to be interpreted in physical terms, despite failing to

satisfy the Buchdahl bound for R ≤ 9
8Rs.

From (4.6) or (4.10) we see that the δ-function contribution gives a surface energy contribution

Es =
8π

3
ρ̄ R 3

0 = 2M

(
R0

R

)3

(4.11)

to the total Komar mass-energy integral (3.10). This is attributable to the discontinuous change of

sign of the surface gravity (3.7) as R0 is approached from above and below, namely

κ± ≡ lim
r→R±0

κ(r) = ±4πG

3
ρ̄ R0 = ±GMR0

R3
(4.12)

so that the discontinuity in the surface gravities is

∆κ ≡ κ+ − κ− =
2GMR0

R3
=
RsR0

R3
(4.13)

which leads to a (redshifted) surface tension of the surface at r = R0 of
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τs =
Es
2A

=
Es

8πR2
0

=
MR0

4πR3
=

∆κ

8πG
. (4.14)

This is a physical surface tension associated with a genuine surface energy and positive integrable

transverse pressure contribution to the integral of the Komar mass formula (3.16).

The Komar mass formula may now be consistently applied to the interior and exterior Schwarzschild

solution throughout the domain 0 ≤ r <∞ on a complete Cauchy hypersurface. Since the integrand

of (3.17) is given by (4.6) or (4.10), the volume integral of (3.17) excluding r = R0 gives

Ev = −
∫ R−0

0
4πr2ρ̄ dr +

∫ R

R+
0

4πr2ρ̄ dr = M − 2M

(
R0

R

)3

(4.15)

while the δ-function at r = R0 gives the surface contribution (4.11) necessary for the total exterior

Schwarzschild mass M = Ev + Es to be obtained. Interestingly, the volume bulk contribution to the

Komar mass-energy in (4.6) or (4.10) agrees with the Misner-Sharp mass density 4πr2ρ̄ (2.8) only in

the outer portion R0 < r < R, where sgn (D) = 1, which is the entire interior region for R > 9
8Rs,

while for Rs < R < 9
8Rs and 0 ≤ r < R0 it has the opposite sign. In the latter case the surface energy

contribution (4.11) is necessary for consistency of the Komar mass formula with the total integrated

Schwarzschild mass M from the sum of (4.11) and (4.15).

V. CONDENSATE STAR LIMIT AND THE FIRST LAW

In the matching of interior to exterior Schwarzschild solutions the inner and outer surface gravities

κ± in (4.13) are equal in magnitude, differing only in sign. This is a result of the null surface at r = R0

being consistently embedded in a four-geometry, viewed from either side of the surface interface. Indeed

passing to the limit R→ R+
s and R0 → R−s , and defining the radial coordinate

ξ ≡


−Rs

(
1− r2

R2
s

)1
2

, r ≤ Rs

2Rs

(
1− Rs

r

)1
2

, r ≥ Rs

(5.1)

which vanishes at r = Rs, the full interior plus exterior Schwarzschild solution in the limiting case for

R = R0 = Rs can be written in the global Rindler-like form

ds2 = − ξ2

4R2
s

dt2 + q2(ξ) dξ2 + r2(ξ) dΩ2 (5.2)
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with

q(ξ) =


Rs
r

=

(
1− ξ2

R2
s

)− 1
2

, −Rs < ξ ≤ 0

r2

R2
s

=

(
1− ξ2

4R2
s

)−2

, 0 ≤ ξ < 2Rs

(5.3)

continuous at r = Rs, ξ = 0, and r(ξ) determined in each region by the inverse of (5.1). Since in this

form all metric functions are functions of ξ2, the metric and its first derivative are continuous (C1)

across the null surface at ξ = 0. In coordinates (5.2) the surface gravity κ = κf defined by (3.7) is

κ =
1

q

d

dξ

(
|ξ|

2Rs

)
=

1

2qRs
sgn (ξ) (5.4)

which because of the continuity of q → 1 in (5.3) as ξ → 0 is approached from either side, results in

κ± = ± 1

2Rs
(5.5)

as in (4.12) when R = R0 = Rs. The coordinates (5.2)-(5.3) are admissable in the sense of ref. [25]

For this C1 matching to the exterior Schwarzschild solution the 1
4 factor in the interior de Sit-

ter region (2.20) is essential, which also determines the surface gravities |κ+| = |κ−| to being equal

in magnitude. Thus the limiting case R → R+
s of the constant density interior Schwarzschild solu-

tion provides an explicit matching of a (modified) de Sitter interior to the Schwarzschild exterior,

compatible with general requirements of boundary layers in General Relativity [25, 26], evading the

longstanding presumption that such a matching at their mutual Killing horizons is not possible [21].

The precise formulation of the matching across a null surface according to the appropriate limit of

extrinsic curvature tensors is described in more detail in Appendix C.

In the limit R = R0 = Rs, (5.2)-(5.5) apply and the discontinuity of the surface gravities and (4.14)

give the surface tension of the membrane at the null surface r = Rs, ξ = 0

τs =
∆κ

8πG
≡ κ+ − κ−

8πG
=

1

8πGRs
=

1

16πG2M
(5.6)

exactly twice the ‘surface tension’ in Smarr’s formula for uncharged, non-rotating black holes (3.11).

That result takes into account only the outer Schwarzschild geometry κ+, while ∆κ = 2κ+ is the

actual surface tension of the transvese pressure term p⊥ and surface energy (4.11) associated with

the pressure jump from interior modified de Sitter to exterior Schwarzschild geometries. The formal
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FIG. 6. The constant negative pressure p = −ρ̄ as a function of r/Rs of the limiting form of interior Schwarzschild
gravitational condensate star solution for R = 1.000001Rs.
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FIG. 7. The redshift factor f
1
2 as a function of r (in units of R) of the full Schwarzschild gravitational condensate

star solution for R = Rs. Note the value of the redshift factor f
1
2 (0) = 0.5 at the center of the star.

analogy to a surface tension in Smarr’s black hole formula (3.11) is thus made precise as a mechanical

property of the physical surface or membrane at r = Rs. It is the discontinuity in surface gravities that

gives a true surface energy contribution (4.11) to the Komar mass-energy from the δ-function in p⊥

(4.7). Note also that τs given by (5.6) is small in magnitude for large M . The behavior of the interior

Schwarzschild solution in the limiting case with the p = −ρ̄ interior de Sitter solution (modified by

the 1
4 factor in f) as R→ R+

s from above and R0 → R−s from below is shown in Figs. 6-8.

In this (gravitational condensate star or gravastar) limit the volume contribution to the Komar

mass-energy (4.15) of the p = −ρ̄ interior is −M and the surface contribution is 2M so that

E = M = Ev + Es = −M + 2τsA = −M + 2M . (5.7)
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FIG. 8. The metric function h as a function of r/Rs of the gravitational condensate star solution for R = Rs.

The surface tension (4.14) is then localized in an infinitely thin shell at the Schwarzschild radius itself,

and the interior solution is a (modified) static patch of de Sitter space within its horizon, as proposed

in [18]. Eq. (5.7) expresses the integral form of the total mass-energy of a gravitational condensate

star as a volume contribution Ev from the p = −ρ̄ interior and a surface contribution Es from the

thin shell or membrane at r = Rs. It therefore takes the place of the Smarr formula (3.11) for a

non-rotating black hole. The differential form of (5.7) may also be derived by the methods of [23], by

which we find

δM = δEv + 2 τs δA+
2

8πG

(
δκ+ − δκ−

)
A+

(
−δM − A

4πG
δκ+

)
(5.8)

where in the last parentheses the (zero) variation of the Komar energy in the exterior Schwarzschild

region has been written as a surface integral as in [23], and (4.14) has been used. Thus the terms

involving the variations δκ+ cancel. However since

− 2

8πG
A δκ− = −4πR2

s

4πG
δ

(
− 1

2Rs

)
= − 1

2G
δRs = −δM = +δEv (5.9)

the term with the variation of δκ− adds with δEv, and we obtain the differential mass-energy formula

dM = dEv + τs dA (5.10)

for the energy conservation (First Law) of a non-rotating gravitational condensate star, in place of

(3.12) for a black hole. The form of (5.10) and the previous discussion of the redshifted surface tension

arising from the transverse pressure p⊥ in the Komar formula now fully justifies the identification of

the coefficient of δA in (5.10) as the surface tension of the physical surface located at r = Rs for the

full (interior + exterior) Schwarzshild solution in the limit R→ Rs.
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It bears emphasizing that the surface energy contribution Es in (4.11) and (5.7) does not arise from

any energy density Ttt at the surface, but purely from the transverse anisotropic pressure T θθ = T φφ =

p⊥ which contributes to the Komar energy (3.10). If the Misner-Sharp energy (2.8) is used in (5.7)

and (5.10) instead, then δM = ρ̄ δVs = −p δVs with δVs = 4πR 2
s δRs, which ascribes all of the energy

to the volume contribution of constant negative pressure within r < R. Gravitational energy cannot

be uniquely localized. Only the total energy of the system (matter plus gravitational) is well defined.

Thus whereas the Misner-Sharp mass m(r) and Komar integrand are quite different locally, their total

integrals give the same Schwarzschild mass and M = Ev +Es agree, as seen from the exterior region.

We close this section with several additional remarks.

• Since by the Gibbs relation

p+ ρ = s T + µn (5.11)

and µ = 0, no chemical potential corresponding to a conserved quantum number having entered

our classical considerations, the interior Schwarzschild-de Sitter solution with p+ρ = 0 is a zero

entropy density s = 0 and/or zero temperature macroscopic state, justifying its designation as

a condensate.

• The differential relation (5.10) expressing the conservation of mass-energy is purely a mechanical

relation, entirely within the domain of classical General Relativity, rather than a quantum or

thermodynamic relation. The area A is the geometrical area of the condensate star surface with

no implication of entropy. There is no entropy at all associated with a macroscopic condensate

at zero temperature, as (5.11) shows. The Planck length LPl =
√

~G/c3 or Planck mass

MPl =
√
~c/G or ~ have not entered our considerations at all up to this point.

• The matching of the metric interior to the exterior solution for R = Rs has the cusp-like

behavior shown in Figs. 7-8, which is non-analytic in the original Schwarzschild radial coordinate

r, invalidating the assumption of complex metric analyticity needed for deriving periodicity in

imaginary time t. Unlike in the analytically extended vacuum Schwarzschild solution, where

f(r) becomes negative and the Killing vector Kµ becomes spacelike in the interior r < Rs of the

black hole, in the negative pressure Schwarzschild-de Sitter interior solution with surface tension

(4.14) at R = Rs, complex analytic continuation is not possible, and there is no requirement of

any fixed periodicity in imaginary time. Thus despite its relation to acceleration, the surface

gravity κ carries no implication for temperature or thermal radiation, and its discontinuity is a

purely mechanical property, namely the surface tension of a physical boundary layer at r = Rs.
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• Non-analyticity at r = Rs is exactly the property suggested by the analogy of black hole horizons

to phase boundaries and quantum critical surfaces in condensed matter physics [19, 27]. Since

f(r) = 0 corresponds to the ‘freezing’ of local proper time at r = Rs, it suggests critical slowing

down characteristic of a phase transition. The vanishing of the effective speed of light c2
eff = f(r)

is analogous to the behavior of the sound speed determined by the low energy excitations at a

critical surface or phase boundary. This suggests in turn that gravitation and spacetime itself

are ‘emergent’ phenomena of a more fundamental microscopic many-body theory [27, 28].

• The positivity of c2
eff ≡ f(r) on either side of the phase boundary and its interpretation as the

effective speed of light squared, which must always be non-negative, brings to mind Einstein’s

original papers on the local Relativity Principle for static gravitational fields, which led him to

General Relativity from the Minkowski metric ds2 = −c2 dt2 +dx2 +dy2 +dz2, by allowing first

the time component −gtt = c2 and eventually all other components of the metric to be func-

tions of space (and in general also time) [29]. Thus it could be argued that the non-negativity of

c2
eff = f(r) in a static geometry, and first order differentiability of the metric in the Rindler-like

coordinates (5.2), is more faithful to Einstein’s original conception of the Equivalence Princi-

ple, realized by real continuous coordinate transformations, than is complex analytic extension

around a square root branch point that would allow c2
eff < 0. At the minimum, the matching

of the p = −ρ̄ Schwarzschild interior to exterior provides a consistent logical alternative to

analytic extension, entirely within the framework of classical General Relativity, provided only

that surface boundary layers on null boundaries are admitted.

• Finally, since Kµ remains timelike for a gravastar, t is a global time and unlike in the analytic

continuation hypothesis, the spacetime (5.2) is truly static. The t = const. hypersurface is a

Cauchy surface and is everywhere spacelike. This is exactly the property of a static spacetime

necessary to apply standard quantum theory, for the quantum vacuum to be defined as the

lowest energy state of a Hamiltonian bounded from below, and for the Schrödinger equation to

describe unitary time evolution, thus avoiding any possibility of an ‘information paradox.’

VI. DEFOCUSING OF NULL GEODESICS AND SURFACE OSCILLATIONS

Since the Schwarzschild time t is a global time, and f(r) does not change sign in the interior

Schwarzschild solution with R = R0 = Rs, there is no event horizon. The touching of zero of the cusp

at r = Rs in Fig. 7 will almost certainly be removed in a more complete theory, such as suggested
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by the ε regulator introduced in Appendix B. General semi-classical estimates lead one to expect that

ε2 ∼ L2
Pl/R

2
s ∝ ~, in which case f(r) would be very small in the vicinity of Rs but nonetheless strictly

positive everywhere. Even in the limiting case of ε → 0, where f(r) vanishes at r = Rs, light rays

with any finite positive radial momentum are still able in principle to pass from the interior outward

through the Schwarzschild sphere to the exterior region. Since this is very different from the behavior

of light rays trapped inevitably by a black ‘hole,’ the possibility arises of distinguishing a gravastar

from a black hole by optical imaging, e.g. by VLBI in the near infrared [30, 31].

The behavior of light rays in the full p = −ρ̄ interior plus exterior geometry can be studied by

means of the geodesic equation

− E2

f(r)
+

1

h(r)

(
dr

dλ

)2

+
L2

r2
+m2 = 0 (6.1)

for zero mass particles m2 = 0. The constants of the motion E and L, energy and angular momentum

respectively, are defined in terms of the canonical momenta pµ and the affine parameter λ along the

trajectory by

E ≡ −pt = f(r)
dt

dλ
(6.2a)

L2 ≡ p2
θ +

p2
φ

sin2 θ
= r4

[(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
]
. (6.2b)

Thus the null geodesic eq. may be written in the form

(
dr

dλ

)2

+ V(r) = 0 (6.3)

in terms of the effective radial potential

V(r) =
h(r)

r2
L2 − h(r)

f(r)
E2 (6.4)

which shows that only light rays with vanishing energy E = 0 can hover indefinitely at r = Rs.

Since angular momentum is conserved, the motion takes place in a plane, which without loss of

generality can be chosen to be the equatorial plane at θ = π
2 . Then pφ = L = r2 dφ

dλ , and by dividing

(6.3) by L2 for non-radial geodesics, and defining in the usual way the variable

u ≡ Rs
r

and b ≡ L

E
(6.5)
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the impact parameter, the equation for the null trajectory of a photon may be written as

(
du

dφ

)2

=

[
R2
s

b2
h

f
− u2 h

]
r = Rs

u

(6.6)

in plane polar coordinates. Substituting the interior solution (2.24) for R = R0 = Rs we obtain

(
du

dφ

)2

=
4R2

s

b2
+ 1− u2 , u > 1 (6.7)

whose general solution with
du

dφ
6= 0 is

u =

√
1 +

4R2
s

b2
cos(φ− φ0) , r < Rs , 1 ≤ u ≤

√
1 +

4R2
s

b2
(6.8)

in the (modified) de Sitter interior. The upper bound on u corresponds to the radius

rmin =
bRs√

b2 + 4R2
s

≤ Rs (6.9)

of closest approach to the origin in the interior, which is achieved at φ = φ0. At angles

φ± = φ0 ± sin−1

(
2Rs√

b2 + 4R2
s

)
(6.10)

the null ray enters and exits the interior region.

Likewise in the exterior Schwarzschild region one obtains from (6.6) the photon trajectory

(
du

dφ

)2

=
R2
s

b2
− u2 + u3 , r > Rs , 0 < u ≤ 1 (6.11)

which is solved by the Weierstrass elliptic function P(φ; g2, g3) in the form [28]

u = 1
3 + 4P(φ; g2, g3) (6.12)

in terms of the elliptic invariant parameters

g2 =
1

12
, g3 =

1

216
− R2

s

16 b2
(6.13)
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and we have set a possible second integration constant to zero by choice of the axis at which φ = 0.

ϑext

ϑint

1

FIG. 9. The refraction of a null
ray at the surface of a gravita-
tional condensate star. The an-
gles ϑext and ϑint are the an-
gles the null ray makes with
the normal to the surface in
the Schwarzschild exterior and
(modified) de Sitter interior re-
spectively. Since according to
(6.14) ϑext < ϑint, the p = −ρ̄
condensate interior behaves as
a medium with an index of re-
fraction less than unity.

The important feature of these null geodesics is that they can penetrate and re-emerge from the

surface at r = Rs. By evaluating (6.7) and (6.11) at the boundary u = 1 we see that tanϑ =
∣∣∣du
dφ

∣∣∣ so

that they are refracted there according to Snell’s Law

sinϑext

√
1 +

4R2
s

b2
= sinϑint

√
1 +

R2
s

b2
(6.14)

with ϑext and ϑint the angle the light ray makes with the normal to the surface at r = Rs in the

exterior and interior respectively. This is illustrated in Fig. 9.

Since ϑext ≤ ϑint with equality attained only for radial geodesics with b = 0 and ϑext = ϑint = 0,

the condensate interior acts as medium with index of refraction n < 1, or negative lens with respect

to the vacuum exterior. Hence light rays are defocused by passing through the interior as illustrated

in Fig. 10, and a gravitational condensate star will have optical imaging characteristics quite distinct

from a black hole which absorbs all light impinging on its horizon. The detailed imaging expected

clearly merits a full analysis and modeling in realistic astrophysical environments for comparison to

observations.

A second important qualitative difference between gravitational condensate stars and black holes is

the existence of surface dynamics. In the strictly classical approximation of the interior Schwarzschild

solution, the surface has zero thickness and additional information about the composition of the surface

is necessary to determine the normal modes of oscillation. This requires ideally a Lagrangian model

for the degrees of freedom of the surface, or at the least a phenomenological parameterization of the
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FIG. 10. The defocusing of null rays passing through the interior of a gravitational condensate star.

restoring and damping forces acting upon it. A phenomenological treatment of gravitational waves

due to inspiral was given in ref. [39]. A complete analysis of stability of gravitational condensate

stars awaits a full dynamical theory. A necessary building block of that more complete theory was

proposed in [32, 33], namely the effective action of the quantum conformal anomaly, which possesses

an additional scalar degree of freedom coupling strongly at the horizon or gravastar surface.

Even in the absence of a complete theory, it is clear on physical and dimensional grounds that the

natural frequency of oscillation of the surface modes must be set by the size of the condensate star

Rs, so that

ω ∼ c

Rs
= 101.5

(
M�
M

)
kHz (6.15)

is the relevant frequency scale. Because the surface is closed, and the surface oscillations will generally

have a non-zero quadrupole moment, they will generate gravitational waves at characteristic discrete

quasi-normal mode frequencies of the order of (6.15). This is quite a distinct gravitational wave sig-

nature from the the infalling, coalescence and chirp modes expected for black holes without a physical

surface [34]. Since the optimal frequency sensitivity of the Advanced LIGO-LSC gravitational wave

interferometers lie between approximately 50 Hz and 750 Hz, this corresponds to black hole/gravastar

masses in the range of 102M� to a few times 103M� [35].

Further observational tests for distinguishing gravastars with a surface from black holes are possible

in the case case of rotating gravastars, which have been considered in [36], and will be taken up in

more detail future work.
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VII. CONCLUSIONS AND OUTLOOK

The constant density interior Schwarzschild solution possesses some remarkable properties that

seem not to have been appreciated for nearly a century. Its importance lies not in that any ordinary

matter can be incompressible and exist at constant density under the extreme pressures of gravitational

collapse, but in the fact that it provides a simple extreme state that saturates the bounds applicable to

much more general, spherically symmetric configurations; and in the interesting physical insights and

limiting behaviors it provides. In particular, the Buchdahl bound R > 9
8Rs is based on a comparison

with the constant density interior Schwarzschild solution. Hence the behavior of the central pressure

in this solution is expected to be applicable to other equations of state, and to diverge in a similar way

when a spherically symmetric star with a more realistic eq. of state first contracts to an even larger

radius outside of its Schwarzschild radius.

By study of the constant density interior Schwarzschild solution we have shown that negative

pressure is produced in the center of a spherically symmetric star well before its Schwarzschild radius

is reached or a trapped surface is formed. Rather than being a reason to reject the solution forR ≤ 9
8Rs,

we have shown that the pressure divergence is integrable, according to the Komar mass-energy (3.10)

for a static, spherically symmetric star. A surface energy density localized at the radius (1.2) is

necessarily produced, with a finite redshifted surface tension given by (5.6) in terms of the discontinuity

of the surface gravities. The crucial observation is that the static Killing vector Kµ becomes null and

−KµKµ = f(r) vanishes at exactly the same radius as the pressure divergence. Since
√
f multiplies the

pressure in the Komar energy integral (3.10), the result is that an integrable δ-function of transverse

stress is generated at that radius. With this modification, the isotropy assumption p⊥ = p upon which

the Buchdahl bound is based is evaded, and the interior Schwarzschild solution becomes again a viable

model for the non-singular interior of a fully collapsed star, particularly in the limit R→ Rs.

As R → R+
s from above, the surface discontinuity moves out to the Schwarzschild radius itself,

R0 → R−s , and most remarkably the interior becomes one of uniformly constant negative pressure

p = −ρ̄. Thus the vacuum dark energy eq. of state emerges naturally from classical General Relativity

under enough spherical compression of matter, and prior to the formation of any trapped surface or

event horizon. This suggests that although the sequence of constant density configurations for R ≤ 9
8Rs

may not be physically realistic in detail, the limiting case of R = R0 = Rs may have much broader

applicability, indicating that a divergence in the central pressure or curvature singularity is avoided by

a phase transition to a negative pressure condensate and formation of a phase boundary between the
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positive and negative pressure regions. Since in the adiabatic limit, spherical gravitational collapse

may be conceived as passing through a sequence of slowly decreasing equilibrium states of fixed R, it

further suggests that the phase transition to p = −ρ̄ occurs first at the center of the star and moves

inside out, resulting in an explosive event that would expel prodigious amounts of energy and entropy.

The final quiescent state of complete gravitational collapse to Rs may be a gravitational condensate

star with a p = −ρ̄ modified de Sitter interior, with a finite surface tension, rather than a black hole.

Although a fully satisfactory description no doubt requires quantum theory, it is remarkable that

the possibility, or the prediction, of a phase transition to a negative pressure p = −ρ̄ equation of state

counteracting the attractive force of gravity and preventing a singularity in gravitational collapse exists

already in Einstein’s classical theory, independently of the detailed composition of the matter being

compressed. This may be less surprising if General Relativity is an effective low energy theory which is

a limiting case or ‘emergent’ from a more fundamental microscopic description that takes full account

of the quantum nature of both matter and spacetime [28].

From the perspective of the general theory of boundary layers and junction conditions in General

Relativity, the interior Schwarzschild solution provides an interesting, explicit example showing that

a second possibility for joining geometries at a null surface, distinct from the analytic continuation

assumption through a mathematical event horizon usually adopted, is both logically and physically

possible. Inspection of the line element of the global Schwarzschild solution in Rindler-like coordinates

(5.2)-(5.3) shows that the spacetime appears to be locally flat (except for the δ-fn.) and C1 differentiable

in the vicinity of the null surface at ξ = 0. The Killing norm
ξ2

4R2
s

≥ 0 does not change sign from

positive to negative as one passes through ξ = 0, and this has the consequence that there is a δ-

function in transverse stress and curvature localized at ξ = 0. This is very different from the analytic

continuation hypothesis through complexified (t, r) coordinates, in that Figs. 7-8 show that the metric

functions have a non-analytic cusp-like behavior at r = Rs.

The equality of surface gravity magnitudes |κ+| = |κ−| (5.5) realized by the explicit interior

Schwarzschild example shows that the matching of a static de Sitter interior (modified by the 1
4

in gtt) to the Schwarzschild vacuum exterior is possible, evading the long presumption that such a

matching would necessarily produce an unacceptable metric or curvature singularity [21]. Instead

there is a δ-function distributional transverse pressure in an infinitely thin surface layer, leading to a

finite surface tension and integrable finite surface energy, after accounting for the kinematical redshift

factor
√
−gtt =

√
f . The non-analytic behavior of the redshift factor, touching zero (classically) at
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r = R0, but otherwise everywhere positive, and the sudden change in the vacuum energy from zero

to ρ̄ > 0 across the boundary at r = Rs are both strongly suggestive of a quantum phase transition

and the behavior expected across a quantum critical surface, again pointing towards a more funda-

mental quantum many-body theory of gravitation [28], and in analogy with similar behaviors in more

familiar examples in condensed matter systems [27]. The eq. of state of constant p = −ρ̄ is exactly

that which should be expected for a quantum macroscopic state with zero entropy and temperature

from the Gibbs relation (5.11) with zero chemical potential, and hence of a coherent gravitational

Bose-Einstein condensate of an underlying many-body theory, described here in classical terms.

In [18] the factor multiplying the interior de Sitter time in static coordinates was treated as an

unknown constant C to be determined by the matching through a finite boundary layer. The present

treatment shows that in order to match properly to the interior de Sitter region, C = 1
4 is required in

the limit of an infinitely thin boundary layer at r = Rs. This results in the interior de Sitter time at

r = 0 running at half the rate of the asymptotic Schwarzschild time t at infinity.

The discontinuity of the surface gravities κ+ − κ− = 2κ+ across the boundary surface also allows

for a completely mechanical and classical interpretation of the mass-energy changes of a gravastar

expressed in the First Law (5.10). The surface area A in this relation does not acquire any interpreta-

tion in terms of entropy, and indeed no such interpretation is possible for a condensate interior which

has zero entropy. Likewise surface gravity acquires no interpretation in terms of temperature, and

indeed no such interpretation is possible given the non-analytic behavior of the metric functions at the

cusp. The final macroscopic quantum state attained by a spherical body collapsed to its Schwarzschild

radius, like that of a neutron star, is one of absolute zero temperature.

Since the exterior and interior metrics match through (5.2)-(5.3), the Schwarzschild real Killing

time coordinate t is a global time, and there is no requirement of periodicity in imaginary time which

would lead to a thermal field theory interpretation, or black hole radiance. The proper interpretation of

the discontinuity of surface gravities as surface tension in the extended Smarr formula (3.11) and First

Law (3.12), previously lacking, requires a well-behaved interior solution, and the correct matching

of the Schwarzschild exterior solution to the (modified) de Sitter interior across a null surface, as

described in Appendix C. Since the t = constant hypersurface is a Cauchy surface and everywhere

spacelike, standard quantum theory can be applied, the quantum vacuum is well defined as the lowest

energy state of a Hamiltonian bounded from below, and the Schrödinger equation describes unitary

time evolution, thus avoiding any possibility of an ‘information paradox.’
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In this paper we have made no attempt to provide a full theory of the phase transition to the p = −ρ̄

condensate or the surface boundary layer. Instead our aim has been to show how far one can go to

describe a gravitational condensate, negative pressure interior and surface tension of a fully collapsed

state completely within Einstein’s classical theory, and therefore consistently with the Equivalence

Principle, with c2
eff = f(r) ≥ 0 as Einstein himself first conceived it [29].

A more complete quantum treatment will contain as one important element the scalar degree(s) of

freedom identified in the effective theory of the quantum conformal anomaly [32, 33], which has been

shown to be macroscopically relevant, and allow the possibility for the vacuum energy (usually called

the cosmological ‘constant’) to change [32, 37, 38]. This will almost certainly lead to the infinitesimally

thin membrane of the classical Schwarzschild solution being replaced by a finite, but still very thin

surface layer, so that f(r) > 0 strictly. Elementary semi-classical estimates for the physical thickness

` of that quantum surface layer indicate that ` ∼
√
LPlRs [18, 33]. How this physical regulator,

dependent upon ~, might enter is already suggested by the mathematical procedure of regulating the

δ-fn. distribution in the transverse pressure, discussed in Appendix B with ε ∼ LPl/Rs.

Lastly, although difficult to distinguish observationally from black holes, gravitational condensate

stars do offer some promising possibilities for future astrophysical tests. We have suggested that

perhaps one of the cleanest tests follows from the defocusing characteristics of the a p = −ρ̄ interior,

which in principle can be penetrated by light rays, cf. Fig. 10. If instead of propagating by geometric

optics through the phase boundary at r = Rs light is scattered in a frequency dependent way, this

will also produce imaging and lensing characteristics quite different from a black hole. Secondly, the

existence of a physical surface implies the existence of surface normal modes of oscillation, which

as a discrete spectrum on the scale of the characteristic frequency (6.15) should be distinguishable

from the ringdown quasi-normal modes and chirp signals computed assuming there is no surface but

a mathematical event horizon instead. Clearly the quantitative details of these predictions require a

fuller theory and more complete treatment, which we defer to a future publication.

Only when the dynamics of the surface is fully specified can the stability and normal mode spectrum

of surface excitations be computed reliably. Likewise, only when the interactions of the surface layer

with ordinary Standard Model matter is fully specified can the question of whether the surface heats up

or simply absorbs the accreting matter and incorporates it into the condensate interior be addressed.

The coupling of surface to volume modes and the time scale for the damping of surface oscillations

are the important quantities needed to obtain quantitative answers to these questions.
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Appendix A: The Buchdahl and Related Bounds

A non-trivial bound on the ratio GM/R follows from the classical Einstein eqs. alone, and was

found by Buchdahl [8], with only the apparently mild assumptions of:

(i) Isotropic pressure: p⊥ = p

(ii) Monotonically non-increasing density profile:
dρ

dr
≤ 0

(iii) Continuity of the metric coefficient f(r) and its first derivative
df

dr
at r = R .

Under these assumptions, Buchdahl’s theorem is that [8, 12, 13]

R >
9

8
Rs =

9

4
GM (A1)

is the condition for an interior pressure p(r) <∞ which is everywhere finite and f(r) > 0 non-vanishing

in the interior r ∈ [0, R]. Conversely, if the three assumptions (i)-(iii) hold, and the star is compressed
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to a radius R ≤ 9
8Rs, then the isotropic pressure p must diverge somewhere in the star’s interior.

In fact, as R → 9
8Rs, this divergence appears first at the star’s center, since under the same three

assumptions (i)-(iii) one can also prove that the central pressure of the star is bounded from below [9]

p(0) ≥ ρ̄

[
1−

√
1−Rs/R

3
√

1−Rs/R− 1

]
(A2)

and the lower bound diverges when R = 9
8Rs. Moreover the same three assumptions (i)-(iii) are also

sufficient conditions to prove that the metric coefficient f(r) is bounded from above by [9]

f(r) ≤ 1

4

[
3
√

1−H2R2 −
√

1−H2r2
]2

(A3)

in terms of the mean density (2.12) with H2 defined in (2.14). These results show that as R → 9
8Rs

both the divergence of the central pressure p(0) and the freezing of time f(0) = 0 first occur together

quite generally at the center of the star, r = 0.

The inequalities are obtained from the second condition (ii) ρ′ ≤ 0 above, and are saturated by

the constant density profile ρ′ = 0, ρ(r) = ρ̄, eq. (2.12) for a star of total mass M and radius R.

Because of these inequalities established for the general spherically symmetric static solution obeying

conditions (i)-(iii), compared to the constant density Schwarzschild interior solution, the behavior of

that solution as the Buchdahl limit R→ 9
8Rs is approached is of fundamental interest.

The logical implication of the Buchdahl theorem is that either:

• The central pressure diverges and a true curvature singularity (black hole) is produced; or

• One of more of the assumptions (i)-(iii) of the theorem must be relaxed.

In particular, the way the Buchdahl bound (A1) is evaded by the constant density interior solution

through the relaxation of condition (i), first at the origin, is instructive and may be expected to be

quite generic. The study of the behavior of the interior Schwarzschild solution (2.18)-(2.20) for R→ Rs

points to the physical resolution, and explicit realization of the second possibility of a non-singular

interior with an integrable surface energy and surface tension, wherein condition (i) is relaxed.

Appendix B: Regulating the Singular Distribution at r = R0

The naive evaluation of the right side of (3.15) with the singular interior solution (2.18), (2.20)

gives (4.2), at least for r 6= R0. The evaluation of the left side (4.6) contains an additional local δ-
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function contribution. In the Appendix we show that if the singular distributional solution is regulated

properly, it also gives a δ-function contribution in the limit that the regulator is removed, in agreement

with (4.6). We treat the case R0 < R first and take the limit R→ R+
s , R0 → R−s at the end.

Let us define the dimensionless radial distance x from the singularity of (2.18) by

r = R0 (1 + x) . (B1)

We observe that for R0 < R the singularity in p(r) is a linear divergence in x→ 0 since the denominator

(2.21) can be expanded in Taylor series

D(r) = c1x (1 + c2 x+ . . . ) (B2)

with

c1 ≡ R0
dD

dr

∣∣∣∣
R0

=
H2R 2

0√
1−H2R 2

0

, c2 =
1

2(1−H2R 2
0 )

, etc. (B3)

Since the leading term in D−1 is a linear divergence at x = 0, which defines a distribution odd under

reflection x→ −x about the singular point, we regularize this divergence by the replacement

p+ρ̄ =
2ρ̄
√

1−H2R2

D
=

2ρ̄
√

1−H2R2

c1 x

(
1−c2 x+. . .

)
→ 2ρ̄

√
1−H2R2

c1

x

x2 + ε2

(
1−c2 x+. . .

)
(B4)

which is the definition of the odd, real Principal Part distribution, P
(

1

x

)
, that is itself integrable.

Likewise for the function Φ(r) whose leading singular behavior is even upon reflection x → −x

about the singular point, we make a similar regulated replacement

Φ =
1

2
ln

(
D2

4

)
→ 1

2
ln

{
c2

1

4

(
x2 + ε2

)(
1 + 2c2 x+ . . .

)}
=

1

2
ln
(
x2 + ε2

)
+ ln

(c1

2

)
+ c2 x+ . . . (B5)

f
1
2 = eΦ → c1

2

(
x2 + ε2

) 1
2
(
1 + c2 x+ . . .

)
. (B6)

Computing now the derivatives we find

dp

dr
=

2 ρ̄
√

1−H2R2

R0 c1

d

dx

{
x

x2 + ε2
(
1− c2 x+ . . .

)}
=

2 ρ̄
√

1−H2R2

R0 c1

[
1

x2 + ε2
− 2x2

(x2 + ε2)2
− 2 c2 ε

2 x

(x2 + ε2)2
+ . . .

]
(B7)

and
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(ρ̄+ p)
dΦ

dr
=

2 ρ̄
√

1−H2R2

R0 c1

(
1− c2 x+ . . .

)( x

x2 + ε2

)
d

dx

{
1

2
ln (x2 + ε2) + ln

(c1

2

)
+ c2 x+ . . .

}
=

2 ρ̄
√

1−H2R2

R0 c1

[
x2

(x2 + ε2)2
+

c2 ε
2 x

(x2 + ε2)2
+ . . .

]
(B8)

in the vicinity of the singular point r = R0. Summing these contributions and using (2.9b) gives

2 (p⊥ − p)
r

=
2ρ̄
√

1−H2R2

R0 c1

ε2

(x2 + ε2)2

(
1− c2 x+ . . .

)
(B9)

so that the leading potentially singular behavior in p⊥−p vanishes in the limit the regulator ε→ 0. This

explains why it is not seen if the unregulated expressions for p and Φ with ε = 0 are used uncritically

as in (4.2). In addition, since the unregulated functions satisfy p⊥ = p, the first subleading term

proportional to c2 in (B9) and all subsequent finite terms vanish in the limit ε→ 0 as well.

Now the combination that appears in the local form of the mass formula (3.15) is

8πr2

(
f

h

) 1
2 (
p⊥ − p

)
= 4πr3

(
f

h

) 1
2
[

2 (p⊥ − p)
r

]

= 4πR 2
0 ρ̄

[
1−H2R2

] 1
2 (1 + x)3[

1−H2R 2
0 (1 + x)2

] 1
2

ε2

(x2 + ε2)
3
2

(
1 + c2 x+ · · ·+

) (
1− c2 x+ . . .

)
= 4πR 2

0 ρ̄

√
1−H2R2√
1−H2R 2

0

ε2

(x2 + ε2)
3
2

[
1 +O(x)

]
=

4πR 2
0 ρ̄

3

ε2

(x2 + ε2)
3
2

[
1 +O(x)

]
(B10)

where (2.13), (2.22), (B1), (B6), and (B9) have been used. The essential point is that the leading

term in (B10) cannot be discarded since although the one parameter sequence of regulated functions

δε(x) ≡ 1

2

ε2

(x2 + ε2)
3
2

(B11)

satisfies

lim
ε→0

δε(x) = 0 for x 6= 0 , (B12)

and thus gives no contribution at any finite x in the limit, it also has the property that

δε(0) =
1

2ε
for any ε > 0 (B13)

which is just that needed to give rise to a δ-function distribution in the limit ε→ 0. Indeed since∫ ∞
−∞

dx δε(x) = 1 ∀ ε (B14)
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the sequence of δε as ε→ 0+ defines precisely a δ-distribution

lim
ε→0

δε(x) = δ(x) . (B15)

In view of this result (B10) becomes

8πr2

(
f

h

) 1
2 (
p⊥ − p

)
→ 8π

3
R 2

0 ρ̄ δ(x) =
8π

3
R 3

0 ρ̄ δ(r −R0) (B16)

in the limit ε→ 0, showing how a δ-fn. contribution and breaking the isotropic perfect fluid condition

localized on the singular surface at r = R0 arises on the right side of (3.17), in agreement with (4.6).

The Komar energy associated with this surface tension is the integral of (B16) or Es given in

(4.11). Since pf
1
2 is regular at r = R0, and the integration may be taken over an arbitrarily small

region surrounding r = R0, the δ-function contribution and the surface energy in (4.11) is attributable

entirely to the transverse pressure term p⊥, and therefore gives rise to a genuine surface tension.

One subtlety of this derivation is that the Taylor expansion of D in (B2) breaks down and c1 →∞

at the limiting point R0 = R = Rs, because D defined by (2.21) becomes a simple square root and

non-analytic in that limit. As a consequence, the metric factor f(r) = 1
4D

2 vanishes linearly in x at

r = Rs rather than quadratically as it does for all R0 < Rs. Nevertheless since c1 cancels from the

final combination (B10), the δ-function formula (B16) remains valid in the limit R → R+
s , R0 → R−.

It is interesting to note that in this limit, even the Principal Part prescription and regulator on the

radial pressure in (B4) become unnecessary, as p(r) contains no divergence, but only a step function

discontinuity at r = Rs, cf. Fig. 6.

We anticipate also that the formal regulator ε introduced in (B4) and (B6) will be replaced by the

dimensionless radial thickness ∆r/Rs of the shell with a small but finite proper width ` ∼
√
Rs∆r

where ∆r is expected to be of order LPl so that ε ∼ LPl
Rs
∼
√
~ in a more complete quantum treatment.

Appendix C: Junction Conditions and the Surface Tension of a Gravitational Condensate Star

The matching of four-geometries across a general three-dimensional hypersurface interface with

a δ-function distribution of energy density and pressure concentrated on the interfacial boundary

requires some care, particularly when the boundary becomes lightlike. In this Appendix we show how

the matching determined by interior Schwarzschild solution for R ≤ 9
8Rs, continuity of the metric at
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r = R0 and the Komar mass-energy may be understood in the context of the general formalism of [40]

and related to the present authors’ previous work on gravitational condensate stars [18].

In the case when the surface boundary is everywhere timelike, the normal to it n is spacelike and

may be normalized to unit length

n · n = nµgµνn
ν = +1 (C1)

If the hypersurface of interest is at fixed r in the Schwarzschild coordinates (2.1), this normal is

nµ = δµr
√
h(r) . (C2)

The mutually orthogonal basis vectors in the remaining three directions υ(a) have components

υµ(a) = δµa , a = t, θ, φ . (C3)

The extrinsic curvature tensor is then defined by

Kab ≡ −nµ υν(b)∇ν υ
µ
(a)

= −nµΓµab = −
√
hΓrab (C4)

with Γµαβ the Christoffel symbol evaluated in the full four-metric, which is required to be continuous

(C0) at r = R0. On the other hand the extrinisic curvature is allowed to be discontinuous at the

boundary, and its discontinuities

[Ka
b] ≡ Ka+

b −Ka+
b = 4πG

(
2Sab − δabScc

)
(C5)

determine the surface stress-energy as a δ-function distribution (Σ)T ab = Sab δ(r − R0) concentrated

on the surface [20]. Indices a, b, c = {t, θ, φ} are raised and lowered with respect to the induced

three-metric on Σ which, because of (C3) is simply the four-metric of (2.1) restricted to dr = 0.

Since from (C4)

Kt
t =

√
h

2f

df

dr
, Kθ

θ = Kφ
φ =

√
h

r
(C6)

we have the surface stress-energy components

− S̄tt ≡ η =
1

4πG

[√
h

r

]
(C7a)
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S̄θθ = Sφφ ≡ σ = − 1

8πG

{[√
h

2f

df

dr

]
+

[√
h

r

]}
(C7b)

with η and σ the surface energy density and surface tension in the rest frame of the surface at r = R0.

From the matching of interior to exterior Schwarzschild solutions or Fig. 5 it is clear that there is no

discontinuity in
√
h(r), which would give rise to a surface energy density η = −S̄tt. Instead there is a

rapid dropoff from constant ρ̄ to zero, which becomes a step function in the limit that the regulator

of Appendix B, ε→ 0 but there is no δ-function in the energy density ρ, and η = 0.

From the junction conditions (C6)-(C7) one sees that there is a breakdown of this formalism when

the surface becomes lightlike due to f → 0. Although the discontinuity in
√
h(r) may be assumed to

be small or identically zero so that the surface energy density η vanishes, the surface tension in the rest

frame of the surface σ diverges. This is clearly a simple kinematic effect of the redshift factor f
1
2 going

to zero on a null hypersurface, where an infinite boost would be required and no rest frame exists. In

the interior Schwarzschild solution this occurs at r = R0 where f = 0 for any value of 0 ≤ R0 ≤ Rs,

and in particular persists in the limit R0 → Rs, when h(R0) → 0 as well, and the surface coincides

with the Schwarzschild sphere at r = Rs.

Because of the apparent difficulty in joining a de Sitter interior to a Schwarzschild exterior at their

common null boundaries at H = 1/Rs, a maximally stiff surface layer of p = ρ fluid was assumed to

be interposed between the de Sitter interior and Schwarzschild exterior solutions in [18]. In that case

there are two separate timelike boundaries at r = r1 and r = r2 with r1 < r2 both very close to the

horizon, where the Isreal junction conditions (C6)-(C7) can be applied unmodified. Approached from

the de Sitter interior side the extrinsic curvature at r = r1 in [18] is

K t
t (r−1 ) =

√
h

2

d

dr
ln(1−H2r2)

∣∣
r=r−1

= − H2r1√
1−H2r2

1

→ − 1√
1−H2r2

1

1

Rs
(C8)

as Hr1 → 1. Since h(r1) = 1 − H2r2
1 is of order ε, with ∆r = r2 − r1 = εRs ∼ LPl this extrinsic

curvature component and its discontinuity at r1 is of order ε−
1
2 . This accounts for the ε−

1
2 dependence

of the surface tensions σ1 and σ2 at each of the two surface layers in [18]. However the surface gravity

κ(r) differs from K t
t (r) by a factor of

√
f(r) = 1

2

√
h(r) in the Schwarzschild interior solution (2.20),

so that

κ(r−1 ) =
√
f(r−1 ) K t

t (r−1 ) = − 1

2Rs
= κ− (C9)
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remains finite, in agreement with (4.12) at R0 = R = Rs. The factor of
√
f(r) is the Tolman redshift

factor transforming the local extrinsic curvature and surface tension in the surface rest frame to the

time global Killing time t of the static spacetime.

Likewise at the outer Schwarzschild boundary we have

K t
t (r+

2 ) =

√
h

2

d

dr
ln

(
1− Rs

r

) ∣∣∣∣
r=r+2

=
1

2
√

1−Rs/r+
2

1

Rs
(C10)

which is again of order ε−
1
2 . Multiplying by the exterior Schwarzschild solution redshift factor we

obtain the surface gravity

κ(r+
2 ) =

√
f(r+

2 ) K t
t (r+

2 ) = +
1

2Rs
= κ+ (C11)

which is again in agreement with (4.12) at R0 = R = Rs.

Since these surface gravities including the redshift factor
√
f(r) remain finite in the limit ε→ 0 as

the boundary surfaces approach each other at the common de Sitter-Schwarzschild horizon, one can

take the limits r−1 → Rs, r
+
2 → Rs, dispensing with the interposition of a surface layer of p = ρ fluid

entirely and define the surface tension by (4.14), thus obtaining (5.6). In [18] η ∝ ε
1
2 → 0 in agreement

with the results of this work. In this limit therefore one obtains from the interior Schwarzshild solution

a universal result for the (redshifted) surface tension of a gravitational condensate star, free of any

model dependent assumptions of the surface layer eq. of state or other properties or parameters.

This result may be connected with the general formalism of matching across null surface interfaces

described in [40] as follows. These authors define a modified or ‘oblique’ extrinsic curvature

Kab = −Nµ υ
ν
(b)∇ν υ

µ
(a) (C12)

where N is an oblique or transversal null vector satisfying

N ·N = 0 , n ·N = −1 (C13)

and the limit

n · n = ε→ 0 . (C14)

is taken. Thus the normal vector n is allowed to approach a null vector as well, in contrast to the
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uniform spacelike condition (C1). By a judicious choice of this normalization and the transversal

vector N and application of the junction conditions to Kab, it is possible to obtain well-defined finite

results for matching on null surfaces [40]. Indeed, if one one chooses (for example)

nµ =
√
hf δµr , n · n = f ∼ ε→ 0 (C15a)

Nµ =
1

f
δµt −

√
h

f
δµr (C15b)

satisfying (C13), one finds

Kab = −Nµ Γµab = −

√
h

f
Γrab = f−

1
2 Kab . (C16)

Note that together with (C6) this implies that any discontinuity of h(r) at the Killing horizon r = R0,

where f(r) = 0 would lead to a linear divergence in Kθθ = Kφφ. The constant density interior

Schwarzschild solution avoids this potential problem for any R0 ≤ Rs by the continuity of the metric

function h(r) and η = 0 at r = R0.

The modified or oblique extrinsic curvature (C16) has the tt component

Ktt = −1

2

√
h

f

df

dr
= −κ (C17)

which is discontinuous at r = R0, leading to the junction condition

SAB =
[κ]

8πG
δAB = τs δ

A
B , A,B = θ, φ (C18)

assuming no discontinuity in
√
h(r). In the conventions of [40] one finds then that

(Σ)TAB =

√
h

f
SAB δ(r −R0) , (Σ)TAB

√
f

h
= τs δ

A
B δ(r −R0) (C19)

is the distributional stress tensor density on the null surface with only transverse T θθ = T φφ components.

The last form of (C19) is precisely the term in the integrand in the Komar mass-energy (3.15) or (3.17)

giving a δ-function which is integrable with respect to r with the correct measure factor, and (C18)

corresponds exactly to the redshifted surface tension of the null surface (4.14) and (5.6), obtained by

application of the Komar integral formula to the interior Schwarzschild solution.
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In addition to the redshift factor f
1
2 defining the surface gravity and surface tension with respect

to the Killing time t rather than the proper time of the shell, note that τs and σ of (C7b) have opposite

signs. Whereas the usual surface tension of a bubble membrane supplies an inward force (corresponding

to a negative p⊥) resisting expansion of the enclosed volume with positive pressure, and in the usual

case the pressure gradient
dp

dr
is negative at the boundary, the positive τs and transverse pressure

p⊥ > 0 of the gravitational condensate surface produces an outward force, tending to expand the

surface area, and the pressure gradient
dp

dr
is positive at the boundary. Thus we have finally

η = 0 (C20a)

τs = −f
1
2σ (C20b)

for the relationship of the present work to ref. [18], with σ that obtained by the total discontinuity

across the full surface layer from Schwarzschild exterior (r+
2 ) to modified de Sitter interior (r−1 ). Using

(5.4) one may easily check that the same discontinuity (C18) and δ-function distributional transverse

stress tensor (C19) is obtained in the Rindler-like coordinates (5.2).

We remark finally that these results, although satisfactory, depend upon the choices (C15) which

are not unique given the conditions (C13) and (C14). The crucial condition (C15) satisfies is

n · n = f = −KµK
µ (C21)

which is the (negative) norm of the timelike Killing vector of stationarity on both sides of the singular

surface, normalized by referral to the asymptotic time at infinity. It is this normalized Killing field

that plays a privileged role in the Komar mass-energy and surface gravity

κ = −NµK
ν ∇νKµ = −Nµ Γµtt =

1

2

√
h

f

df

dr
. (C22)

Rescalings n → λn,N → λ−1N, ε → λ2ε, with |λ| 6= 1, which would be consistent with (C13)-(C14)

in the general formalism of [40] are thereby disallowed by the physical requirement of matching the

preferred asymptotic stationary Killing time t on both sides of the surface.
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