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This is the first of series of papers in which we investigate stability of the spherically symmetric
space-time with de Sitter center. Geometry, asymptotically Schwarzschild for large r and asymptot-
ically de Sitter as r → 0, describes a vacuum nonsingular black hole for m ≥ mcr and particle-like
self-gravitating structure for m < mcr where a critical value mcr depends on the scale of the sym-
metry restoration to de Sitter group in the origin. In this paper we address the question of stability
of a vacuum non-singular black hole with de Sitter center to external perturbations. We specify first
two types of geometries with and without changes of topology. Then we derive the general equations
for an arbitrary density profile and show that in the whole range of the mass parameter m objects
described by geometries with de Sitter center remain stable under axial perturbations. In the case
of the polar perturbations we find criteria of stability and study in detail the case of the density

profile ρ(r) = ρ0e
−r3/r2

0
rg where ρ0 is the density of de Sitter vacuum at the center, r0 =

√

3/κρ0
is de Sitter radius and rg is the Schwarzschild radius.

PACS numbers: 04.70.Bw, 04.20.Dw

I. INTRODUCTION

The idea of replacing of a Schwarzschild singularity
with de Sitter vacuum goes back to 1965 papers of
Sakharov [1] who considered p = −ρ as the equation of
state for superhigh density and of Gliner who interpreted
p = −ρ as corresponding to a vacuum and suggested that
it could be a final state in a gravitational collapse [2].
In 1968 Bardeen presented the spherically symmetric

metric of the same form as Schwarzschild and Reissner-
Nordström metric, describing a non-singular black hole
(BH) without specifying the behavior at the center [3].
The very important point was noted in [3] for the first
time: that the considered space-time exhibits the smooth
changes of topology.
Direct matching of Schwarzschild metric to de Sitter

metric within a short transitional space-like layer of the
Planckian depth [4–8] results in metrics typically with a
jump at the junction surface.
The situation with transition to de Sitter as r → 0,

has been analyzed in 1988 by Poisson and Israel who
found necessary to introduce a transitional layer of ”non-
inflationary material” of uncertain depth at the charac-
teristic scale (r20rg)

1/3 (r0 is de Sitter radius, and rg is
the Schwarzschild radius), where geometry can be self-
regulatory and describable semiclassically down a few
Planckian radii by the Einstein equations with a source
term representing vacuum polarization effects [9].
Generic properties of ”noninflationary material” have

been considered in 1990 in Ref. [10]. For a smooth de
Sitter-Schwarzschild transition a source term satisfies [10]

T tt = T rr ; T θθ = T φφ (1.1)

and the equation of state, following from T µν;µ = 0, is

pr = −ρ; p⊥ = −ρ− r

2
ρ′ (1.2)

Here κ = 8πG (we adopted c = 1 for simplicity),
ρ(r) = T tt is the energy density, pr(r) = −T rr is the ra-

dial pressure, and p⊥(r) = −T θθ = −T φφ is the tangential
pressure for anisotropic perfect fluid [11].
The stress-energy tensor with the algebraic structure

(1.1) has an infinite set of comoving reference frames and
is identified therefore as describing a spherically symmet-
ric vacuum [10], invariant under boosts in the radial di-
rection and defined by the symmetry of its stress-energy
tensor (for review [12–16]).
The exact analytical solution was found in 1990 for the

case of the density profile [10]

ρ(r) = ρ0e
−r3/r20rg ; r20 = 3/κρ0; rg = 2Gm (1.3)

which describes a vacuum asymptotically de Sitter as r →
0 in a simple semiclassical model for vacuum polarization
in the spherically symmetric gravitational field [17].
In 1991 Morgan has considered a black hole in a simple

model for quantum gravity with quantum effects repre-
sented by an upper cutoff on the curvature, and obtained
de Sitter-like past and future cores replacing singularities
[18]. In 1992 Strominger demonstrated the possibility of
natural, not ad hoc, arising of de Sitter core inside a black
hole in the model of two-dimensional dilaton gravity con-
formally coupled to N scalar fields [19].
In 1996 it was shown that in the course of Hawking

evaporation a vacuum nonsingular black hole evolves to-
wards a self-gravitating particle-like vacuum structure
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without horizons [17], kind of gravitational vacuum soli-
ton called G-lump [20]. The form of temperature-mass
diagram is generic for de Sitter-Schwarzschild black hole
[17] and dictated by the Schwarzschild asymptotic and
by the existence of two horizons - when decreasing dur-
ing evaporation mass reaches a certain critical value mcr

evaporation stops [17,21].
In 1997 in Ref. [22] it was shown that in a large class

of space-times that satisfy the Weak Energy Condition
(WEC), the existence of a regular black hole requires
topology change. Bardeen metric and the metric gener-
ated by the density profile (1.3) belong to this class.
In 2000 studying the quantum gravitational effects by

the effective average action with the running Newton
constant, and improving Schwarzschild black hole with
renormalization group, Bonnano and Reuter [23] have
constructed nonsingular black hole metric and confirmed
the results of [17] concerning the form of temperature-
mass diagram and the fundamental fact that evaporation
stops when the mass approaches the critical value mcr.
Also in 2000 the regular BH solution with a charged de

Sitter core has been considered by Kao [24] with using the
density profile (1.3) for distribution of a charged material.
In the same year 2000 regular magnetic black hole and

monopole solutions are found by Bronnikov [25] in Non-
linear Electrodynamics (NED) coupled to gravity with
the stress-energy tensor of the structure (1.1).
Existence of regular electrically charged structures in

nonlinear electrodynamics coupled to general relativity
was proved recently in Ref. [26], where it was shown
that in NED coupled to GR and satisfying WEC, reg-
ular charged structures must have de Sitter center.
In 2001 the non-singular quasi-black-hole model rep-

resenting a compact object without horizons, was con-
structed by Mazur andMottola [27] by extending the con-
cept of Bose-Einstein condensation to gravitational sys-
tems. An interior de Sitter condensate phase is matched
to an exterior Schwarzschild geometry of arbitrary mass
through a phase boundary of a small but finite thickness
with equation of state p = ρ.
In 2002 nonsingular BH solution was found by Nashed

[28] as a general solution of Möller tetrad theory of gravi-
tation by assuming the same specific form of the vacuum
stress-energy tensor as in Ref. [10] with the density pro-
file (1.3). Later it was extended to the case of teleparallel
theory of gravitation [29]. Stability condition of geodesic
motion in the field of vacuum nonsingular black hole de-
scribed by the regular analytic solution [10] with the den-
sity profile (1.3), has been considered in [30].
Model-independent analysis of the Einstein spheri-

cally symmetric minimally coupled equations has shown
[20,31] which geometry they can describe if certain gen-
eral requirements are satisfied: (a) regularity of density;
(b) finiteness of the ADM mass; (c) Dominant Energy
Condition (DEC) for Tµν . These conditions lead to exis-
tence of regular structures with de Sitter center including

regular black holes without topological changes. The ex-
ample of such a case is the exact analytic solution [26]
describing in certain mass range a regular charged black
hole with de Sitter center.
The condition (c) can be loosed to (c2): weak energy

condition for Tµν and regularity of pressures [31]. WEC
which is contained in DEC, in both cases is needed for
de Sitter asymptotic at the center.
The requirements (a)-(c) either (a)-(c2) define the fam-

ily of asymptotically flat solutions with the regular center
which includes the class of metrics asymptotically de Sit-
ter as r → 0. A source term connects de Sitter vacuum in
the origin with the Minkowskli vacuum at infinity. Space-
time symmetry changes smoothly from de Sitter group
at the center to the Poincare group at infinity through
the radial boosts in between, and the standard formula
for the ADM mass relates it to both de Sitter vacuum
trapped inside an object and smooth breaking of space-
time symmetry [20].
Cases (c)-(c2) differ by behavior of the curvature scalar

R. In the case (c) it is non-negative which evidences
the existence of regular black holes without topological
changes. So, the class of metrics with de Sitter cen-
ter includes two subclasses with and without topological
changes.
In this paper we specify conditions of existence of two

types of geometries with the de Sitter center and investi-
gate stability of configurations described by these geome-
tries, by studying perturbations in geometry via Einstein
equations linearized about the unperturbed space-time.
Results are valid for geometries of both types.
This paper is organized as follows. In Sect.2 we out-

line the conditions of existence and basic properties of
spherically symmetric geometries with de Sitter center.
In Sect. 3 we introduce the basic equations describing ax-
ially symmetric time-dependent perturbations of a spher-
ically symmetric system with de Sitter center. In Sect. 4
we prove stability of such a system to axial perturbations.
In Sect. 5 we analyze the case of polar perturbations and
derive criteria of stability to these perturbations. In Sect.
6 we apply the results to the case of the vacuum nonsin-
gular black hole with the density profile (1.3). Section 7
contains summary and discussion.

II. SPHERICALLY SYMMETRIC SPACE-TIME
WITH DE SITTER CENTER

A static spherically symmetric line element can be
written in the form [11]

ds2 = eµ(r)dt2 − eν(r)dr2 − r2dΩ2 (2.1)

where dΩ2 is the metric of a unit 2-sphere. Integration
of the Einstein equations gives

e−ν(r) = 1− 2GM(r)

r
; M(r) = 4π

∫ r

0

ρ(x)x2dx (2.2)
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whose asymptotic for large r is e−ν = 1 − 2Gm/r, with
the mass parameter

m = 4π

∫ ∞

0

ρ(r)r2dr (2.3)

Requirement of regularity of density, ρ0 = ρ(r → 0) <∞,
leads to behavior of mass function M(r) ∼ r3 as r → 0
and thus ν(0) = 0.
To outline the conditions of existence of spherically

symmetric space-time with de Sitter center, we need the
Oppenheimer equation [32]

T tt − T rr = pr + ρ =
1

κ

e−ν

r
(ν′ + µ′) (2.4)

The dominant energy condition T 00 ≥ |T ab| for each
a, b = 1, 2, 3, holds if and only if [33] ρ ≥ 0; ρ + pk ≥
0; ρ − pk ≥ 0; k = 1, 2, 3. It includes the weak energy
condition which implies ρ ≥ 0; ρ+pk ≥ 0. Together with
the condition of regularity of density, DEC (via pk ≤ ρ)
leads to µ′ + ν′ = 0 as r → 0 [20].
The same result can be achieved by requirement of

regularity of pressure (the subclass satisfying (a-c2)).
In the limit r → ∞ the condition of finiteness of the

mass (2.3) requires density profile ρ(r) to vanish at in-
finity quicker than r−3. In the case (c) the dominant
energy condition requires pressures to vanish as r → ∞.
Then µ′ = 0 and µ =const at infinity. Rescaling the
time coordinate allows one to put the standard bound-
ary condition µ → 0 as r → ∞ which ensures asymptotic
flatness needed to identify (2.3) as the ADM mass [34].
The same result can be achieved in the case (c2) by

postulating regularity of pressures including vanishing of
pr at infinity sufficient to get µ′ = 0 needed for asymp-
totic flatness.
The weak energy condition requires µ′ + ν′ ≥ 0. The

function µ+ν is growing from µ = µ(0) at r = 0 to µ = 0
at r → ∞, which gives µ(0) ≤ 0 [20].
The range of family parameter µ(0) includes µ(0) = 0.

In this case the function ν(r) + µ(r) is zero at r = 0 and
at r → ∞, its derivative is non-negative (by WEC via
ρ+ pk ≥ 0), it follows that ν(r) = −µ(r) everywhere.
A source term for this class of metrics corresponds to

anisotropic perfect fluid which satisfies the r−dependent
equation of state (1.2), and the weak energy condition
p⊥ + ρ ≥ 0 demands monotonic decreasing of a density
profile, ρ′ ≤ 0 [20].
Behavior at r → 0 is dictated by the WEC [20]. The

equation of state near the center becomes p = −ρ , which
gives de Sitter asymptotic as r → 0

ds2 =

(

1− r2

r20

)

dt2 − dr2
(

1− r2

r2
0

) − r2dΩ2 (2.5)

Tµν = ρ0gµν ; r20 =
3

Λ
; Λ = κρ0 (2.6)

where ρ0 = ρ(r → 0) and Λ is the cosmological constant
which appeared at the origin although was not present
in the basic equations.
Requirements (a-c) either (a-c2) lead thus to the exis-

tence of the class of metrics

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2 (2.7)

g(r) = 1− Rg(r)

r
; Rg(r) = 2GM(r); (2.8)

M(r) = 4π

∫ r

0

ρ(x)x2dx (2.9)

which are asymptotically de Sitter as r → 0, and asymp-
totically Schwarzschild at large r

ds2 =

(

1− rg
r

)

− dr2
(

1− rg
r

)−r2dΩ2; rg = 2Gm (2.10)

The weak energy condition defines the form of the metric
function g(r). In the region r > 0 it has only minimum
and the geometry can have not more than two horizons:
a black hole horizon r+ and an internal horizon R− [20].
The scalar curvature R, proportional to the trace of

stress-energy tensor T , is proportional to ρ − p⊥ for ge-
ometries satisfying (1.2), so that conditions (a-c) and (a-
c2) distinguish two types of geometries. In the case (a-
c) satisfying DEC requirement, scalar curvature remains
non-negative, since DEC requires ρ − pk ≥ 0. The sub-
class satisfying (a-c) does not exhibit changes of topology
by virtue of DEC and can be specified as DEC-subclass.
Dominant energy condition requires that each principal
pressure does not exceed the density which guarantees
that speed of sound can not exceed speed of light. In
nonlinear electrodynamics coupled to gravity, photons
do not follow null geodesics of background geometry but
propagate along null geodesics of an effective geometry
[35], and propagation of photons resembles propagation
inside a dielectric medium [36]. In the case of the regular
NED structure satisfying DEC [26], it allows one to avoid
problems with speed of sound exceeding speed of light.
In the case (a-c2) scalar curvature R(r) changes

sign somewhere and geometry experiences topological
changes. This subclass satisfying only weak energy con-
dition (needed in both cases for de Sitter behavior at the
center) can be specified as WEC-subclass.
The case of the density profile (1.3) belongs to WEC-

subclass satisfying (c2). The metric function and the
mass function are given by [10]

g(r) = 1− rg
r

(

1−e−r3/r20rg
)

; M(r) = m

(

1−e−r3/r20rg
)

(2.11)
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Dominant Energy Condition is not satisfied so that a
surface of zero scalar curvature exists at which R(r) = 0.
Zero curvature surface r = rs is shown in fig.1 together
with two horizons (a black hole event horizon r+ and
an internal horizon r−), and the characteristic surface of
any geometry with de Sitter center: a zero-gravity sur-
face r = rc beyond which the strong energy condition of
singularities theorems [33], is violated (zero-gravity sur-
face is defined by 2ρ+ rρ′ = 0 [17]).

FIG. 1. Characteristic surfaces of a spherically symmetric
space-time of WEC type with de Sitter center.

Two horizons come together at the value of a mass
parameter mcr, which puts a lower limit on a black hole
mass (see fig.2). For the case of a density profile (1.3)
the critical mass is given by [17]

mcr ≃ 0.3mPl

√

ρPl/ρ0 (2.12)

FIG. 2. Metric function g(r) for de Sitter-Schwarzschild
configurations. Mass m is normalized to mcr.

Temperature-mass diagram is shown in fig.3. Its form
does not depend on particular choice of a density pro-
file. Temperature drops to zero at m = mcr, while the
Schwarzschild asymptotic requires T+ → 0 as m → ∞.
As a result the temperature-mass diagram should have
a maximum between mcr and m → ∞ [17]. In a maxi-
mum, at m = mcr2, a specific heat is broken and changes
sign testifying to a second-order phase transition in the
course of Hawking evaporation [21].
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For m ≥ mcr de Sitter-Schwarzschild geometry de-
scribes the vacuum nonsingular black hole, and global
structure of space-time shown in fig.4 [17], contains an
infinite sequence of black and white holes whose future
and past singularities are replaced with regular cores RC
asymptotically de Sitter as r → 0 [17].
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III. BASIC EQUATIONS FOR PERTURBATIONS

The perturbations of a spherically symmetric system
are on essence time-dependent axially symmetric modes;
the reason is the absence of a preferred axes in a spheri-
cally symmetric background [37].
They are described by the line element [37]

ds2 = e2νdt2 − e2ψ(dφ − ωdt− q2dr − q3dθ)
2

−e2µ2(dr)2 − e2µ3(dθ)2, (3.1)

in which metric functions ν, ψ, µ2, µ3, ω, q2, q3 are func-
tions only of t, r, θ. They satisfy the Einstein equations

Gij = Rij −
1

2
gijR = −κTij, (3.2)

where the Ricci tensor is defined by Rij = gklRikjl .
Non-zero components of stress-energy tensor read

Ttt = e2νρ; Tφφ = e2ψpφ;

Trr = e2µ2pr; Tθθ = e2µ3pθ. (3.3)

where pr, pθ, pφ are the principal pressures.
We obtain the relevant perturbation equations by lin-

earizing the field equations around the spherically sym-
metric solution with de Sitter center. This solution con-
sidered as a special case of the line element (3.1) with

µ2 = −ν(r); ψ = ln(r sin(θ)); µ3 = ln(r), (3.4)

has the form (2.7) with

g(r) = e2ν(r) = 1 +
C1

r
− κ

r

∫

ρ(r)r2dr, (3.5)

The particular solution (3.5) is specified by the choice of
the constant C1 which we choose in such a way to have
unperturbed metric given by (2.8)-(2.9).

Our task is to investigate stability of the spherically
symmetric system with de Sitter center to external per-
turbations in general case of a regular density profile ρ(r).
The class of metrics with de Sitter center and a source

term of structure (1.1), is extended to the case of non-
zero cosmological constant (λ < Λ) at infinity [38] corre-
sponding to extension of the Einstein cosmological term
Λgik to an r−dependent second rank symmetric tensor

Λik = κTik (3.6)

with the algebraic structure (1.1), connecting smoothly
two de Sitter vacua with different values of a cosmolog-
ical constant [39]. In this approach a constant scalar Λ
associated with a vacuum density Λ = κρvac, becomes a
tensor component Λtt associated explicitly with a density

component of a perfect fluid tensor whose vacuum prop-
erties follow from its symmetry (1.1) and whose variabil-
ity follows from the Bianchi identities [39,20].
Here we investigate stability for the particular case

when λ = 0 and spherically-symmetric space-time with
de Sitter center is asymptotically flat.
Since an anisotropic fluid with the stress-energy ten-

sor of type (1.1) admits identifying it as a vacuum-like
medium associated with a time-evolving and spatially
inhomogeneous cosmological term [10,39,20,40], we can
write the Einstein equations in the form

Gik + Λik = 0 (3.7)

(for discussion of where to put cosmological term see
[41,20]). Then the quantities ρ, pk are treated as corre-
sponding (in one-to-one way) components of the variable
cosmological term Λtt = κρ,Λkk = −κpk [39].
Since we apply the approach of studying direct pertur-

bations of geometry via Einstein equations, we consider
behavior of small perturbations for both the metric ten-
sor and a stress-energy tensor associated with Λik.

A general perturbation of a background geometry will
result in ω, q2, q3 becoming small quantities of the first
order and the functions ν, µ2, µ3, ψ and ρ, pk experiencing
small increments δν, δµ2, δµ3, δψ and δρ, δpk.
The perturbations leading to non-vanishing values of

ω, q2 and q3 induce a dragging of the inertial frame and
impart a rotation, for this reason they are called axial
perturbations [37].
Perturbations which do impart no rotation are called

polar perturbations [37]. In the considered case they lead
to increments in ν, µ2, µ3, ψ and ρ, pk.
The equations governing the axial and the polar per-

turbations decouple.

Axial perturbations are governed by equations [37]

Rrφ = Rθφ = 0 (3.8)

The equations governing the polar perturbations read

−Rtr = (ψ + µ3),rt + ψ,r(ψ − µ2),t

+µ3,r(µ3 − µ2),t − ν,r(ψ + µ3),t = 0, (3.9)

−Rtθ = (ψ + µ2),θt + ψ,θ(ψ − µ3),t

+µ2,θ(µ2 − µ3),t − ν,θ(ψ + µ2),t = 0, (3.10)

−Rrθ = (ψ + ν),rθ + ψ,r(ψ − µ2),θ

+ν,r(ν − µ2),θ − µ3,r(ψ + ν),θ = 0, (3.11)
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Gtt = e−2µ2 [(ψ+µ3),rr+ψ,r(ψ−µ2+µ3),r+µ3,r(µ3−µ2),r]

+e−2µ3 [(ψ+µ2),θθ+ψ,θ(ψ+µ2−µ3),θ+µ2,θ(µ2−µ3),θ]

−e−2ν [ψ,t(µ2 + µ3),t + µ2,tµ3,t] = −κe2νρ, (3.12)

Gφφ = e−2µ2 [(ν+µ3),rr+ν,r(ν−µ2+µ3),r+µ3,r(µ3−µ2),r]

+e−2µ3 [(ν +µ2),θθ + ν,θ(ν +µ2 −µ3),θ +µ2,θ(µ2 −µ3),θ]

−e−2ν [(µ2 + µ3),tt + µ2,t(µ2 + µ3 − ν),t + µ3,t(µ3 − ν),t]

= κe2ψpφ, (3.13)

Grr = e−2µ2 [ψ,r(ν + µ3),r + ν,rµ3,r]

+e−2µ3 [(ψ + ν),θθ + ψ,θ(ψ + ν − µ3),θ + ν,θ(ν − µ3),θ]

−e−2ν [(ψ + µ3),tt + ψ,t(ψ + µ3 − ν),t + µ3,t(µ3 − ν),t]

= κe2µ2pr, (3.14)

Gθθ = e−2µ2 [(ψ+ν),rr+ψ,r(ψ+ν−µ2),r+ν,r(ν−µ2),r]

+e−2µ3 [ψ,θ(ν + µ2),θ + ν,θµ2,θ]− e−2ν[(ψ + µ2),tt

+ψ,t(ψ + µ2 − ν),t + µ2,t(µ2 − ν),t] = κe2µ3pθ. (3.15)

We perturb equations (3.8)-(3.15) up to the first order,
and in equations (3.12)-(3.15) we disturb both left and
right hand sides. As a result we obtain the linear system
of 7 partial differential equations for the polar perturba-
tions, and the linear system of 2 equations for the axial
perturbations.

IV. AXIAL PERTURBATIONS

Axial perturbations corresponds to appearing of
nonzero values ω, q2, q3 which vanish for unperturbed sys-
tem.
They are governed by the Einstein equations (3.8).

This gives 2 equations for 3 functions which read

e2ν(r)

r2 sin3 θ
[sin3 θ(q2,θ − q3,r)],θ = −(ω,r − q2,t),t (4.1)

e2ν(r)

r2
[r2e2ν(r)(q2,θ − q3,r)],r = (ω,θ − q3,t),t (4.2)

Now we take

ω(r, θ, t) = ω̃(r, θ)eiσt

and similarly for q2, q3; in what follows we retain the
same symbols for the amplitudes of the perturbations
which satisfy equations

e2ν(r)

r2 sin3 θ

[

sin3 θ(q2,θ − q3,r)

]

,θ

= −(iσω,r + σ2q2) (4.3)

e2ν(r)

r2

[

r2e2ν(r)(q2,θ − q3,r)

]

,r

= iσω,θ + σ2q3 (4.4)

Expressing ω,r from (4.3) and ω,θ from (4.4), differenti-
ating and equating ω,rθ = ω,θr we get one equation

r4
∂

∂r

(

e2ν

r2
∂Q

∂r

)

+sin3 θ
∂

∂θ

(

1

sin3 θ

∂Q

∂θ

)

+σ2r2e−2νQ = 0

(4.5)
Here

Q(r, θ) = e2νr2 sin3 θ(q2,θ − q3,r) (4.6)

For the Schwarzschild metric, eq.(4.5) coincides with the
analogous Chandrasekhar equation ( [37], Ch.4, eq.(18)).
Separating variables by Q(r, θ) = R(r)Θ(θ), we get

r2e2ν
d

dr

(

e2ν

r2
dR

dr

)

− λ
e2ν

r2
R+ σ2R = 0 (4.7)

d

dθ

(

1

sin3 θ

dΘ

dθ

)

+
λ

sin3 θ
Θ = 0 (4.8)

Solutions to (4.8) are Gegenbauer polynomials

Ql(θ) = C
−

3
2

l+2(θ) = (Pl,θθ − Pl,θctgθ) sin
2 θ (4.9)

which gives

λl = (l + 2)(l − 1); l = 2, 3, ... (4.10)

General solution can be written in the form

Q(r, θ) =

∞
∑

l=2

Rl(r)Θl(θ) (4.11)

Equation for Rl(r) reads

r2e2ν
d

dr

(

e2ν

r2
dRl
dr

)

− e2ν

r2
(l + 2)(l − 1)Rl + σ2

l Rl = 0

(4.12)
In ”tortoise” coordinate r∗ =

∫

dr/g(r), we get
Schrödinger equation for Zl(r∗) = r−1Rl(r∗)

(

d2

dr2∗
+ σ2

l

)

Zl = VlZl (4.13)
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where the potential is given by

Vl(r) =
e2ν

r2
(µ2 + 2e2ν − 2rν,re

2ν) (4.14)

with

µ2 = (l + 2)(l − 1) (4.15)

For the Schwarzschild geometry (4.14) coincides with
the Regge-Wheeler potential ( [37], Ch.4, eq.(28)).
With the asymptotic behavior of (4.14)

Vl →
l(l+ 1)

r2
as r → r∗ → ∞

Vl → const eg
′(r+)r∗ as r∗ → −∞ (4.16)

solutions of (4.13) have asymptotic e±iσr∗ as r∗ → ±∞
as in the case of the Schwarzschild geometry [37]. For
real σ they describe propagation of ingoing and outgoing
waves through one-dimensional potential barrier, so that
we have to look for solutions to (4.13), which satisfy the
boundary conditions [37]

Zl → e+iσlr∗ +Rl(σl)e
−iσlr∗ (r∗ → +∞)

Zl → Tl(σl)e
+iσlr∗ (r∗ → −∞) (4.17)

These boundary conditions tell us that each l component
of an incident wave of the unit amplitude coming from
infinity gives rise to a reflected wave of amplitude Rl(σl)
at infinity and a transmitted wave of amplitude Tl(σl) at
the horizon [37].
If such solutions exist only for real values of the time

parameter σl and form complete basic set, then any
smooth initial perturbation defined at the finite interval
of r∗ (with compact support), can be expanded on these
functions, and since dependence of perturbations from
time coordinate has the form exp(iσlt), this is followed
by stability of geometry in question.
In terms of the metric function g(r)

Vl(r) =
g(r)

r2
(µ2 + 2g − rg′) (4.18)

It is easily seen that Vl(r) is constrained by the function

Vl(r) ≥
3g

r2

(

1 + g +
1

3
κρr2

)

,

which is certainly positive and presents the value of the
potential for the mode l = 2.

We see that axial perturbations are governed by one-
dimensional wave equation (4.13) with a non-negative po-
tential. In terms of a one-dimensional Schrödinger equa-
tion, an unstable mode exists if a potential has a bound

state, which corresponds to the negative eigenvalue σ2
l .

In the case of non-negative potential the system obeys the
theorem [42] which guarantees the absence of negative
eigenvalues in the standard one-dimensional Schrödinger
equation with the non-negative potential. The absence of
negative eigenvalues in the spectrum of (4.13) guarantees
the absence of exponentially growing modes.
For the case when the potential is real, smooth and

short-range, standard theorems of quantum mechanics
guarantee that eigenfunctions of (4.13) form a complete
set and any square-integrable state function can be ex-
panded on them [37].

We have however to be careful about the behavior of
the solution to (4.13) in the extremal regime near the
double horizon r± which satisfies g(r±) = 0; g′(r±) = 0.
To study the extreme case we introduce dimensionless

variable x by normalizing the variable r to the character-
istic scale (r20rg)

1/3.
Then the equation for the function Rl reads

x2g2R′′

l +2x

(

xg′

2
− g

)

gR′

l+(σ2
l x

2−µ2g)Rl = 0 (4.19)

where σl = σl(r
2
0rg)

1/3. In what follows we retain the
notation σl keeping in mind that it is multiplied by
(r20rg)

1/3. (A multiplier is not essential since in studying
stability we are interested only in the sign of σ2

l .)
Near the double horizon x±, the metric function is

g(x) = g′′(x±)(x − x±)
2/2 + .... Introducing the vari-

able z = x− x± and the notation γ = g′′(x±)/2, we get
the limiting equation

z4Rl,zz + 2z3Rl,z +
σ2
l

γ2
Rl = 0 (4.20)

General solution to (4.20) (found by taking Rl =
wl/z),reads [44]

Rl(z) = C1lcos

(

κl
z

)

+ C2lsin

(

κl
z

)

(4.21)

(with κ2l = σ2
l /γ

2), and tells us that axial perturbations
are restricted near double horizon.
In case without horizons asymptotic behavior of the

potential at infinity and near zero is Vl = l(l + 1)/r2.
This is behavior of centrifugal part of radial Schrödinger
operator in the spherically symmetric case.

We see that potential for axial perturbations is smooth,
short-range and positive for all types of configurations de-
scribed by spherically symmetric geometry with de Sitter
center. We conclude that geometry with de Sitter center
is stable to axial perturbations.
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V. POLAR PERTURBATIONS

A. General equations

Linearizing the system (3.9)-(3.15) about the back-
ground geometry, we get the system describing polar per-
turbations
[

(δψ+δµ3),r−
(

ν,r−
1

r

)

(δψ+δµ3)−
2

r
δµ2

]

,t

= 0, (5.1)

[(δψ + δµ2),θ + ctg(θ)(δψ − δµ3)],t = 0, (5.2)

[δψ,θ + ctg(θ)(δψ − δµ3)],r + δν,rθ

+

(

ν,r −
1

r

)

δν,θ −
(

ν,r +
1

r

)

δµ2,θ = 0, (5.3)

−e2ν
[

(δψ + δµ3),rr +

(

ν,r +
3

r

)

(δψ + δµ3),r

−2

r
δµ2,r−2

(

2

r
ν,r+

1

r2

)

δµ2

]

− 1

r2
[δψ,θθ+ctg(θ)(2δψ−δµ3),θ

+2δµ3 + δµ2,θθ + ctg(θ)δµ2,θ] = κδρ, (5.4)

e2ν
[

(δν + δµ3),rr +

(

3ν,r +
1

r

)

δν,r + 2

(

ν,r +
1

r

)

δµ3,r

−
(

ν,r +
1

r

)

δµ2,r − 2

(

ν,rr + 2ν2,r +
2

r
ν,r

)

δµ2

]

+
1

r2
(δν + δµ2),θθ − e−2ν(δµ2 + δµ3),tt = κδpφ, (5.5)

e2ν
[

2

r
δν,r +

(

ν,r +
1

r

)

(δψ+ δµ3),r − 2

(

2

r
ν,r +

1

r2

)

δµ2

]

+
1

r2
[δψ,θθ+ctg(θ)(2δψ−δµ3),θ+2δµ3+δν,θθ+ctg(θ)δν,θ]

−e−2ν(δψ + δµ3),tt = κδpr, (5.6)

e2ν
[

(δν + δψ),rr +

(

3ν,r +
1

r

)

δν,r + 2

(

ν,r +
1

r

)

δψ,r

−
(

ν,r +
1

r

)

δµ2,r − 2

(

ν,rr + 2ν2,r +
2

r
ν,r

)

δµ2

]

+
1

r2
ctg(θ)(δν+δµ2),θ−e−2ν(δµ2+δψ),tt = κδpθ. (5.7)

The system (5.1)-(5.7) is the system of 7 linear par-
tial differential equations of the first order for 8 quanti-
ties: 4 small perturbations of metric tensor and 4 small
perturbations of stress-energy tensor (which is in consid-
ered case can be associated with a variable cosmological
term) whose unperturbed components are related by the
equation of state, in our case (1.2). To investigate this
system we should make an assumption concerning per-
turbation of pr valid for the case of small perturbations.
Since for the background geometry we have pr = −ρ, i.e.
pr = pr(ρ), we can assume (see, e.g., [43])

δpr =
dpr
dρ

δρ. (5.8)

which results in

δpr = −δρ. (5.9)

The possibility to connect perturbations δpr and δρ is
implied by our system which contains 7 equations for
8 functions. The relation (5.9) is valid only for small
perturbations, since only in this case the relation (5.8)
is valid. So, if we prove that the system is stable, i.e.
growing perturbation modes are absent, this will justify
the validity of (5.9).
Taking into account (5.4) and (5.6), the equation (5.9)

can be written in the form

e2ν
[

−(δψ + δµ3),rr −
2

r
(δψ + δµ3),r +

2

r
δν,r +

2

r
δµ2,r

]

+
1

r2

[

δν,θθ + ctg(θ)δν,θ − δµ2,θθ − ctg(θ)δµ2,θ

]

−e−2ν(δψ + δµ3),tt = 0. (5.10)

In this way we obtain the system of 7 equations for 7
unknown functions which splits into uniform system of
4 linear partial differential equations (5.1), (5.2), (5.3),
(5.10) for 4 small perturbations of the metric tensor,
δν(r, θ, t), δµ2(r, θ, t), δµ3(r, θ, t), δψ(r, θ, t); and 3 linear
algebraic equations (5.6), (5.5), (5.7), determining ex-
pressions for δpr, δpφ, δpθ through expressions for metric
perturbations.

The problem ultimately reduces to investigation of the
uniform linear system (5.1), (5.2), (5.3), (5.10).
Following Chandrasekhar [37] we assume the time de-

pendence eiσt which corresponds to the Fourier analysis
of perturbations. The variables r and θ are separated by
the Friedman substitutions [37].
As a result we present perturbations as series

δν(r, θ, t) =
+∞
∑

l=2

Nl(r)Pl(cosθ)e
iσlt, (5.11)
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δµ2(r, θ, t) =

+∞
∑

l=2

Ll(r)Pl(cosθ)e
iσlt, (5.12)

δµ3(r, θ, t) =

+∞
∑

l=2

[Tl(r)Pl(cosθ)

+Vl(r)Pl,θθ(cosθ)]e
iσlt, (5.13)

δψ(r, θ, t) =
+∞
∑

l=2

[Tl(r)Pl(cosθ)

+Vl(r)Pl,θ(cosθ)ctgθ]e
iσlt, (5.14)

δρ(r, θ, t) =

+∞
∑

l=2

Cl(r)Pl(cosθ)e
iσlt, (5.15)

δpr(r, θ, t) =

+∞
∑

l=2

Dl(r)Pl(cosθ)e
iσlt, (5.16)

δpφ(r, θ, t) =
+∞
∑

l=2

[El(r)Pl(cosθ)

+Hl(r)Pl,θθ(cosθ)]e
iσlt, (5.17)

δpθ(r, θ, t) =

+∞
∑

l=2

[El(r)Pl(cosθ)

+Hl(r)Pl,θ(cosθ)ctgθ]e
iσlt. (5.18)

Let us introduce the function Xl which will be useful
in our further reductions

Xl(r) = nVl(r), (5.19)

where

n =
l(l + 1)

2
− 1; l = 2, 3, ...; n = 2, 5, 9, ....

Using the properties of the Legendre polynomials

(sinθPl,θ),θ + l(l + 1)sinθPl(cosθ) = 0,

Pl,θθ + Pl,θctgθ = −l(l+ 1)Pl(cosθ),

we get from Eqs (5.1)-(5.3), (5.10) after some algebra,
the following relations between amplitudes

Tl(r) = Vl(r) − Ll(r);

(Xl(r)+Ll(r)),r−
(

ν,r−
1

r

)

(Xl(r)+Ll(r))+
1

r
Ll(r) = 0;

(Tl(r)−Vl(r)),r−
(

ν,r+
1

r

)

Ll(r)+Nl,r(r)+

(

ν,r−
1

r

)

Nl(r) = 0;

e2ν
[(

Xl(r)+Ll(r)

)

,r,r

+
1

r

(

Nl(r)+2Xl(r)+3Ll(r)

)

,r

]

− l(l+ 1)

2r2

(

Nl(r)−Ll(r)

)

− e−2νσ2
l

(

Xl(r) +Ll(r)

)

= 0

With using these relations we transform ultimately our
starting system to the system of 3 differential equations
in the normal form for the functions Nl(r), Ll(r), Xl(r)

Nl,r = (n+ 1)a1Nl + (ν,r + b1

−(n+ 1)a1 + σ2
l c1)Ll + (b1 + σ2

l c1)Xl, (5.20a)

Ll,r =

(

ν,r −
1

r
+ (n+ 1)a1

)

Nl +

(

−1

r
+ b1

−(n+ 1)a1 + σ2
l c1

)

Ll + (b1 + σ2
l c1))Xl, (5.20b)

Xl,r =

(

−ν,r +
1

r
− (n+ 1)a1

)

Nl

+

(

ν,r −
1

r
− b1 + (n+ 1)a1− σ2

l c1

)

Ll

+

(

ν,r −
1

r
− b1− σ2

l c1

)

Xl, (5.20c)

where

a1(r) =
e−2ν(r)

r
; b1(r) = −rν,rr−rν2,r; c1(r) = re−4ν(r),

(5.21)
and 4 equations which define amplitudes Dl(r), El(r),
Hl(r), and Cl(r) through solutions of (5.20)

Dl(r) =
2

κ

[

e2ν
[

1

r
Nl,r −

(

ν,r +
1

r

)

(Xl + Ll),r

−
(

2

r
ν,r +

1

r2

)

Ll

]

− 1

r2
[Xl − nLl + (n+ 1)Nl]

−σ2
l e

−2ν(Xl + Ll)

]

, (5.22)
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El(r) =
1

κ

[

e2ν
[(

Nl − Ll +
1

n
Xl

)

,rr

+

(

3ν,r +
1

r

)

Nl,r + 2

(

ν,r +
1

r

)(

1

n
Xl − Ll

)

,r

−
(

ν,r +
1

r

)

Ll,r − 2

(

ν,rr + 2ν2,r +
2

r
ν,r

)

Ll

]

+σ2
l e

−2ν 1

n
Xl

]

, (5.23)

Hl(r) =
1

nκ

[

e2ν
[

Xl,rr + 2

(

ν,r +
1

r

)

Xl,r

]

+
n

r2
(Nl + Ll) + σ2

l e
−2νXl

]

, (5.24)

Cl(r) = −Dl(r), (5.25)

Let us now introduce the dimensionless variables

x =
r

r1
; ρ→ ρ

ρ0
; where r31 = r20rg (5.26)

and the characteristic parameter

α =
rg
r1

(5.27)

In these notations the unperturbed solution (2.7) reads

ds2 = g(x)dt2 − dx2

g(x)
− x2dΩ2

g(x) = 1− αM(x)

x
; M(x) = 3

∫ x

0

ρ(q)q2dq (5.28)

In terms of g(x) our basic system (5.20) takes the form

Nl,x =
(n+ 1)

xg
Nl +

[

1

2

g′

g
+
x

4

(

g′

g

)2

− x

2

g′′

g

− (n+ 1)

xg
+ σ2

l

x

g2

]

Ll +

[

x

4

(

g′

g

)2

− x

2

g′′

g
+ σ2

l

x

g2

]

Xl

(5.29a)

Ll,x =

[

1

2

g′

g
− 1

x
+

(n+ 1)

xg

]

Nl+

[

− 1

x
+
x

4

(

g′

g

)2

− x

2

g′′

g

− (n+ 1)

xg
+ σ2

l

x

g2

]

Ll +

[

x

4

(

g′

g

)2

− x

2

g′′

g
+ σ2

l

x

g2

]

Xl,

(5.29b)

Xl,x =

[

−1

2

g′

g
+
1

x
− (n+ 1)

xg

]

Nl+

[

1

2

g′

g
− 1

x
−x
4

(

g′

g

)2

+
x

2

g′′

g

+
(n+ 1)

xg
−σ2

l

x

g2

]

Ll+

[

1

2

g′

g
− 1

x
−x
4

(

g′

g

)2

+
x

2

g′′

g
−σ2

l

x

g2

]

Xl.

(5.29c)
This system can be transformed to the equivalent form

xg2Nl,x = (n+ 1)gNl + g

(

x

2
g′ − (n+ 1)

)

Ll

+x2
(

1

4
(g′)2 − 1

2
gg′′ + σ2

l

)

X̃l (5.30a)

xgLl,x+

(

x

2
g′+ g

)

Ll = xgNl,x+

(

x

2
g′− g

)

Nl (5.30b)

xgX̃l,x = −gLl +
(

x

2
g′ − g

)

X̃l (5.30c)

where

X̃l = Xl + Ll, (5.31)

which can be compared with the analogous Chan-
drasekhar system ( [37], Ch.4, eqs. (46-47), (50)). Our
equations (5.30b)-(5.30c) coincide with Chandrasekhar
equations (46)-(47), while our equation (5.30a) coincides
with the Chandrasekhar equation (50) if and only if
ρ′ = 0 which is equivalent to (x2g′′/2− g + 1) = 0.
The basic system (5.30) can be directly applied to

study extreme black hole case. In the next subsection
we investigate first the case of a simple horizon to make
clear peculiarity of the case of the double horizon.

B. Extreme black hole case

Behavior near the simple horizon

In the neighborhood of a simple horizon x+ we have
g(x) = g′(x+)(x − x+) +

1
2g

′′(x+)(x − x+)
2 + .... To

study behavior in the limit x→ x+ +0 we introduce the
variable z = x − x+. In a small neighborhood of z = 0
limiting system for (5.30) reads

x+(g
′(x+))

2z2Nl,z = (n+ 1)g′(x+)zNl

+g′(x+)z

[

x+
2
g′(x+)−(n+1)

]

Ll+x
2
+

(

1

4
(g′(x+))

2+σ2
l

)

X̃l

(5.32)

z(Nl − Ll),z +
1

2
(Nl − Ll) = 0 (5.33)
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x+zX̃l,z = −zLl +
1

2
x+X̃l (5.34)

One immediately sees from (5.33) that the restricted
near z = 0 solutions should satisfy Nl(z) = Ll(z). Then
(5.32) and (5.34) form the system of two first-order equa-
tions for functions Nl, Ll

(g′(x+))
2z2Nl,z =

1

2
(g′(x+)

2zNl+x+

(

1

4
(g′(x+))

2+σ2
l

)

X̃l,

(5.35)

x+zX̃l,z = −zNl +
1

2
x+X̃l (5.36)

This system reduces to one second-order equation for X̃l

z2X̃l,zz − zX̃l,z +

(

1 +
σ2
l

(g′(x+))2

)

X̃l = 0 (5.37)

This is the Euler equation, and solutions of (5.32)-(5.34)
restricted near zero, have the form

X̃l(z) =

[

B1l cos

(

σl
g′(x+)

ln z

)

+B2l sin

(

σl
g′(x+)

ln z

)]

z,

(5.38)

Nl = Ll = −x+
[(

1

2
B1l +

σl
g′(x+)

B2l

)

cos

(

σl
g′(x+)

ln z

)

+

(

1

2
B2l −

σl
g′(x+)

B1l

)

sin

(

σl
g′(x+)

ln z

)]

, (5.39)

where B1l, B2l are arbitrary constants. As a result in the
small neighborhood of a simple horizon restricted solu-
tions exist for all real values of σl.

Behavior near the double horizon

The double horizon x± corresponds to the case α = αcr
in (5.28). For the case of the density profile (1.4)

αcr ≃ 1.456 (5.40)

In the small neighborhood of the point x = x±, the
metric function is written as

g(x) = γ(x− x±)
2 + ..., γ =

1

2
g′′(x±)

In the variable z = x− x±, in the small neighborhood of
z = 0 the limiting system for (5.30) reads

x±γ
2z4Nl,z = (n+ 1)γz2(Nl − Ll) + x2±σ

2
l X̃l, (5.41)

z(Nl − Ll),z + (Nl − Ll) = 0, (5.42)

x±zX̃l,z = −zLl + x±X̃l (5.43)

As follows from (5.42), for a restricted solution it should
be Nl = Ll. Then equations (5.41) and (5.43) form a
system of two first-order equations for Nl, Ll:

z4Nl,z = x±
σ2
l

γ2
X̃l, (5.44)

zX̃l,z = − z

x±
Nl + X̃l (5.45)

This system reduces to one second-order equation for Nl

z4Nl,zz + 3z3Nl,z +
σ2
l

γ2
Nl = 0 (5.46)

which differs essentially from the analogous equation
(5.37) for a simple horizon case. General solution to
(5.46) is [44]

Nl(z) =
1

z

[

C1lJ1

(

σl
γ

1

z

)

+ C2lY1

(

σl
γ

1

z

)]

, (5.47)

where C1l, C2l are arbitrary constants, J1, Y1 are Bessel
functions.
With taking into account asymptotic behavior of

Bessel functions for big values of argument, we find the
behavior of function Nl(z) for z → 0

Nl(z) =
1

z
1
2

[

C1l cos

(

σl
γ

1

z
− 3π

4

)

+ C2l sin

(

σl
γ

1

z
− 3π

4

)

(5.48)
We see that solutions to (5.46) are unbounded as z → 0

for all real values of the parameter σl.
From (5.44) we get

Xl(z) = − γz

(x±)σl

[

C1lJ0

(

σl
γ

1

z

)

+ C2lY0

(

σl
γ

1

z

)]

(5.49)
which gives in the limit z → 0

Xl(z) = − 1

(x±)

(

2

π

)
1
2
(

γz

σl

)
3
2
[

C1l cos

(

σl
γ

1

z
− π

4

)

+C2l sin

(

σl
γ

1

z
− π

4

)]

(5.50)

Analysis of our basic system (5.30) in small neighbor-
hood of double horizon x = x± shows that for all real
values of the parameter σl, there exist unbounded solu-
tions as x→ x±. Therefore the method of linear pertur-
bations, as well as the assumption (5.8), are not suitable
in this case, but the behavior of perturbations suggest
instability of the extreme configuration. It should be in-
vestigated separately, and we are currently working on
this [45].
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C. The reduction of the system to a one-dimensional
wave equation

Now our goal is to reduce the system (5.30) to a single
second-order equation. We introduce the new functions
z1l, z2l, z3l using the linear transformations

Nl =

[

1

x
z1l+

(

g′

2
− x

4g
(g′)2−σ2

l

x

g

)

z2l+z3l

]

g
1
2 , (5.51a)

Ll =

[(

−x
2
g′′ +

g′

2

)

z2l + z3l

]

g
1
2 , (5.51b)

Xl =

[(

(n+ 1)

x
− g

x
+
x

2
g′′

)

z2l − z3l

]

g
1
2 (5.51c)

The inverse transformation to (5.51) reads

z1l(x) =
x√
gb

[

b(x)Nl(x) +

(

(b(x) − n− 1)
x

2

g′

g
− xb′

−b(x)+σ2
l

x2

g(x)

)

Ll+

(

(b−n−1)
x2

2

g′

g
−xb,x+σ2

l

x2

g(x)

)

Xl

]

,

(5.52a)

z2l(x) = [Ll +Xl]
x√
gb(x)

, (5.52b)

z3l(x) =

[(

1

x
b(x) + b,x

)

Ll + b,xXl

]

x√
gb(x)

(5.52c)

where

b(x) = n+ 1 +
x

2
g′(x) − g(x) = n+

3α

2x

(

M(x)− x3ρ

)

(5.53)
The sum of (5.51b) and (5.51c) gives

Xl + Ll =

[

n+ 1

x
+

1

2
g′ − 1

x
g

]

g1/2z2l (5.54)

As a result we get the following system

z1l,x =

(

2

x
− g′

g

)

z1l −
(

1

2
x2g′′′ + xg′′ − g′

)

z2l

+

[

2 +
x2

b(x)

(

g′′

2
− (g′)2

4g
− σ2

l

1

g

)]

z3l, (5.55a)

z2l,x = − 1

b(x)
z3l, (5.55b)

z3l,x =
b(x)g−1

x2
z1l −

[

2

x
+

(xg′′ − g′)

2b(x)

]

z3l

+
1

x

(

x2

2
g′′′ + xg′′ − g′

)

z2l, (5.55c)

It is easily to prove that

1

2
x2g′′′ + xg′′ − g′ = −3α

2
(x3ρ′)′ = 3αx2p′⊥ (5.56)

so that in the case when the density profile satisfies the
condition

(x3ρ′)′ = 0, (5.57a)

the system (5.55) splits on the system of two equations
(5.55a), (5.55c) for z1l, z3l, and the equation (5.55b).
Condition (5.57a) is in turn equivalent to

p′⊥ = 0 (5.57b)

In the particular case (x3ρ′) = const = 0 this is
the necessary and sufficient condition for coinciding of
our system (5.30) with the Chandrasekhar system ( [37],
eqs.(46)-(47), (50) Ch.4).
Differentiating (5.55c), we come to the system which

includes one first-order equation, (5.55b), and one
second-order equation

z3l,xx + 2

(

g′

g
+

1

x

)

z3l,x + ql(x)z3l = rl(x)z2l, (5.58)

where

ql(x) = σ2
l

1

g2
− 2(n+ 1)

x2g
− 1

2

g′′

g
+

1

4

(

g′

g

)2

+
3

x

g′

g

− (xg′′ − g′)

b(x)

[

(xg′′ − g′)

2b(x)
− g′

g
+

1

x

]

+
xg′′′

2b(x)
+

3αx

b(x)
p′⊥

(5.59)

rl(x) = −3αp′⊥

[

(n+ 1)

g
− 3x

2

g′

g

+
x

2b(x)
(xg′′ − g′)

]

+
3α

x
(x2p′⊥)

′. (5.60)

It is easily to see that in the case when the condition
(5.57) is satisfied, two equations (5.55b) and (5.58) split.
Introducing the new function ω3l(x) by

z3l(x) =
1

xg
ω3l(x) (5.61)

we reduce the equation (5.58) to the form which does not
contain the first derivative:

ω3l,xx +

[

σ2
l

1

g2
− V1l(x)

]

ω3l = xgrlz2l, (5.62)
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where the potential V1l(x) is given by

V1l(x) =
l(l+ 1)

x2
1

g
+
3

2

g′′

g
− 1

x

g′

g
+
(xg′′ − g′)

b(x)

[

(xg′′ − g′)

2b(x)

−g
′

g
+

1

x

]

− 1

4

(

g′

g

)2

− xg′′′

2b(x)
− 1

xb(x)

[

1

2
x2g′′′+xg′′−g′

]

(5.63)
With taking into account (5.55b) and (5.61), equation
(5.62) can be rewritten as integro-differential equation of
the form

ω3l,xx +

[

g−2(x)σ2
l − V1l(x)

]

ω3l(x)

= −xg(x)rl(x)
∫

ω3l(x)

xg(x)b(x)
dx (5.64)

In this form (g−2(x) scales the spectral parameter σ2) the
equation (5.64) corresponds to the generalized spectral
problem with the non-local potential

−ω3l,xx + V1l(x)ω3l(x)− Tlω3l(x) = σ2
l

1

g2
ω3l(x), (5.65)

where

Tlu(x) = xg(x)rl(x)

x
∫

d

u(z)dz

zb(z)g(z)
(5.66)

is the integral Vol’terra operator. The lower limit is d =
x+ for a black hole case.
The condition (5.57) (which leads to rl = 0) is nec-

essary and sufficient condition to reduce (5.64) to the
Schrödinger equation with the local potential.
Introducing ”the tortoise coordinate” x∗(x) =

∫

dx/g(x) and the function w(x∗) by

w3l(x∗) = x
√

g(x)z3l(x∗) (5.67)

we reduce the system (5.58), (5.55b) to the form

w3l,x∗x∗
+ [σ2

l −Wl(x)]w3l(x∗) = xg
5
2 (x)rl(x)z2l(x∗)

(5.68)

z2l,x∗
= −g

1/2(x)

xb(x)
w3l(x∗), (5.69)

where

Wl(x) = g

[

l(l + 1)

x2
+ g′′ − 1

x
g′ +

g(xg′′ − g′)

b

(

xg′′ − g′

2b

−g
′

g
+

1

x

)

− xgg′′′

2b
− g

xb

(

1

2
x2g′′′ + xg′′ − g′

)]

(5.70)

In the limit x → x+ the integral term in (5.66) tends to
zero, on essence due to z2l → 0. Indeed, when x → x+,
we get z2l ∼

√
x− x+ with using (5.52b) and taking into

account asymptotic behavior of (Ll + Xl) ∼ (x− x+)
which follows from (5.38).
The potential (5.70) vanishes as x∗ → +∞ as x−2,

while for x∗ → −∞, it vanishes exponentially. Therefore
solutions to (5.68) have asymptotic e±iσlx∗ as x∗ → ±∞,
so that we have to look for solutions satisfying boundary
conditions

wl → eiσlx∗ +R
(w)
l e−iσlx∗ as x∗ → ∞

wl → T
(w)
l eiσlx∗ as x∗ → −∞ (5.71)

In the particular case of validity of (5.57), rl(x) = 0,
p′
⊥

= 0, the system (5.68)-(5.69) splits and we get the
Schrödinger equation

−w3l,x∗x∗
+W0l(x)w3l(x∗) = σ2

l w3l(x∗)

with the potential

W0l(x) = g

[

l(l + 1)

x2
+ g′′ − 1

x
g′

+
g(xg′′ − g′)

b(x)

(

xg′′ − g′

2b(x)
− g′

g
+

2

x

)]

,

which for the Schwarzschild geometry coincides with the
potential in the Zerilli equation ( [37], Ch.4, eq.(63)).

We have reduced the basic system of three first-order
linear equations (5.29) to a single second-order equation
for the particular combination of these function, w3l(x∗).
In our case this is the Schrödinger equation (5.72) with
non-local potential. Its non-local part vanishes when the
condition (5.57) is satisfied. As in Schwarzschild case,
this empirically found reducibility (resulted from a se-
quence of mysterious cancellations), follows in fact from
the existence of some particular solution to the system
which we have to reduce [37].
In our case the condition (5.57) is the necessary and

sufficient condition for vanishing non-local part in (5.72)
and thus for reducing our system (5.29) to the standard
Schrödinger equation. Actually, the condition (5.57) is
also the necessary and sufficient condition for existence
of particular solution which guarantees such a reduction
(it is shown in detail in our paper [45] devoted to the case
satisfying (5.57)). If the condition (5.57) is satisfied, then
the particular solution reads

Np
l =

√
g

[

g”

2g
−
(

g′

2g

)2

− σ2
l

x

g
− b′(x)

]

Lpl = −√
gb′(x); Xp

l =
√
g

(

b(x)

x
+ b′(x)

)
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The linear transformation (5.51) is needed to reduce
the system of 3 linear equations to one equation, if the
particular solution to (5.29) exists. Remarkable luck in
our case is that this transformation works not only in
the case when (5.57) is satisfied (i.e. obtained second
order equation is the standard Schrödinger equation with
the local potential), but also in general case. This fact
allowed us to reduce our system (5.29) to the Schrödinger
equation (5.72) with the non-local potential.
We see that the problem of stability of the spherically

symmetric solution (2.7) to polar perturbations, reduces
to investigation of the spectral problem (5.68)-(5.69) with
the potential of the form (5.70) and with the boundary
conditions (5.71).
Equation (5.68), with taking into account (5.69), can

be written in the form corresponding to the spectral prob-
lem with a non-local potential

−w3l,x∗x∗
+Wl(x)w3l(x∗)− T̃lw3l(x∗) = σ2

l w3l(x∗),
(5.72)

where

T̃lu(x∗) = x(x∗)g
5
2 (x(x∗))rl(x(x∗))

x∗
∫

d∗

g
1
2 (x(z∗))u(z∗)dz∗
x(z∗)b(x(z∗))

,

(5.73)
is the integral Vol’terra operator.
Ultimately the case reduces to investigation of the

eigenvalue problem with integro-differential operator
(5.72), which is the Schrödinger equation with the non-
local potential.
The spectrum of eigenvalues contain all the values of

the parameter σ2
l , at which solutions exist which satisfy

the imposed boundary conditions.
If such solutions exist only for real values of the time

parameter σl and if, in addition, they form the complete
basic set of functions, then any smooth initial perturba-
tion on the finite interval of variable x∗ (with compact
measure) can be expanded on this basic set, and since
dependence of each particular mode on time is given by
exp(iσlt), it testifies for stability of geometry.
Indeed, a considered static configuration is stable if

there are no integrable modes with negative σ2
l . Appear-

ance of negative eigenvalues σ2
l would lead to existence

of exponentially growing modes of perturbations.
In the next subsection we study in detail the integro-

differential operator governing polar perturbations.

D. Schrödinger equation with non-local potential

A system governed by Schrödinger equation with a
non-local potential, obeys the following theorems:
i) If in the standard one-dimensional Schrödinger equa-

tion the potential is nonnegative, then negative eigenval-
ues are absent (see, e.g., [42]).

ii) The Weyl theorem [46] for self-conjugate operators:
The essential spectrum conserves under relatively com-

pact perturbations [47].
The essential spectrum is defined as follows: If we re-

move from the spectrum of self-conjugate operator all
isolated points which are eigenvalues of finite multiplic-
ity, then the remaining of the spectrum is the essential
spectrum.
Essential spectrum of non-perturbed (local) poten-

tial is continuous and represented by positive semi-axis
[0,∞), isolated points are absent in case when negative
values are excluded by non-negativity of the potential.
It follows that the essential spectrum of the problem

with the non-local potential (5.72) is the same as the
essential spectrum of the non-perturbed (local) poten-
tial. Essential spectrum of local potential is this total
spectrum, since isolated points are absent, i.e., essential
spectrum of the perturbed problem coincides with the
total spectrum of the non-perturbed problem.
Non-local part of a potential represents the perturba-

tion of the local potential. To not spoil an essential spec-
trum, this perturbation should be relatively compact.
So, our task now is to prove that non-local part repre-

sents a compact perturbation and to deduce criterion of
non-negativity of a local potential.
In our case non-local part (perturbation of a local po-

tential) is given by the integral Vol’terra operator (5.73).
Such an operator is totally continuous, if it has smooth
square integrable kernel.
Square integrability requires

∫ ∞

−∞

∫ ∞

−∞

K2(x∗, z∗)dx∗dz∗ <∞ (5.74)

The kernel of our Vol’terra operator (5.73) is

K(x∗, z∗) = x(x∗)g
5
2 (x(x∗))rl(x(x∗))

g
1
2 (x(z∗))

x(z∗)b(x(z∗))
.

(5.75)
Its smoothness is evident. The sufficient condition for
square integrability of the kernel K(x, y) is the condition
on behavior of K2 at infinity:

K2(x, y) <
1

x1+δ1
1

y1+δ2

where δ1, δ2 are arbitrarily small.
For K(x∗, z∗) given by (5.75), for z∗ → −∞, K2 van-

ishes as g(x(z∗)). When x∗ → −∞, then K2 vanishes
as g3(x(x∗)). The metric function g(x(x∗)) near hori-
zon behaves as g(x∗) ≃ g′(x∗)e

g′(x∗)x∗ , g′ is positive, so
that metric as a function of x∗ vanishes exponentially at
approaching the horizon.
When z∗ → ∞, then K2 vanishes as x−2(z∗). From

definition z∗ we see the main contribution at infinity
is z∗ ∼ x. When x∗ → ∞, K2 vanishes as x2(p′

⊥
)2.

The tangential pressure p⊥ for de Sitter-Schwarzschild
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geometry vanishes at infinity quicker than x−3, because
it is related with density by the equation of state p⊥ =
−ρ − xρ′/2, and density vanishes quicker than x−3 to
guarantee the finiteness of a mass. Hence in this limit
K2 vanishes quicker than x−6.
So, for a BH case the kernel is square integrable.
As a result the totally continuous operator (5.73) gives

a relatively compact perturbation to the local potential
in the integro-differential equation (5.72).

Criterion of non-negativity of local potential

Introducing the function p(x) = xg′′(x) − g′(x), we
write the potential (5.72) in the form

Wl(x) = g

[

1

2
g

(

p

b

)2

+
1

2b(x)
(g′)2+

2(n+ 1)

x2
− 1

bx
Il(x)

]

,

(5.76)
where

Il(x) = x2
(

1

2
g′g′′ + gg′′′

)

− (n+ 1− g)p(x) (5.77)

In (5.76) we should investigate the term Il. The rest is
positive, since b(x) ≥ n in a BH case.
Expressing g(x), its derivatives, p(x) and b(x) in terms

of mass function M(x), density ρ(x) and its derivatives,
we transform Il(x) to the form

Il(x) = α

[

−4α
M2

x3
+

9

2
αx4ρρ′ + 3(n− 1)x2ρ′

+
9

2
αxρ′M − 3nxρ− 3gx(x2ρ′′ + 2ρ) +

3(n+ 2)

x2
M

]

(5.77a)
For a BH case g(x) > 0 while the weak energy condition
gives ρ′ < 0. Then the sufficient condition for Wl ≥ 0 is
the condition on the equation of state

x2ρ′′(x) + 2ρ(x) ≥ 0, (5.78a)

which constraints the growth of the derivative of p⊥ + ρ

x(p⊥ + ρ)′ ≤ ρ+ (p⊥ + ρ) (5.78b)

This condition is actually satisfied also for the case with-
out horizons (then g(x) > 0 for all x).
When (5.78) is satisfied, then proof of non-negativity of

(5.76) reduces to proof of non-negativity of the function

φ(x) =
2(n+ 1)

x2
− 3α(n+ 2)M

x3b(x)
(5.79)

It is bounded from below as follows

φ(x) =
2

x2

[

n+ 1− 3αM(n+ 2)

2xb(x)

]

≥ 2

x2

[

n+1−3

2

(n+ 2)

n

αM

x

]

=
2

x2

[

n+1−3

2

(n+ 2)

n
(1−g)

]

>
2

x2

[

n− 1

2
− 3

n

]

≥ 2

x2
(n− 2) ≥ 0. (5.80)

As a result, we find the sufficient condition (5.78) for
non-negativity of the potential (5.70) in all range of ar-
gument for which g(x) > 0.
For the density profile (1.3) this condition is satisfied.
We can conclude that the essential spectrum of the

integro-differential operator (5.72) is the same as the es-
sential spectrum of its local potential. Now the key point
is to find the condition on a perturbation of a local po-
tential which guarantees the absence of isolated points in
the total spectrum (negative values of σ2

l ) of the integro-
differential operator (5.72).

Non-local contribution

Multiplying (5.68) by w∗

3l
∗ and integrating by parts

with taking into account asymptotic behavior of (5.60)
at infinity, we obtain the following relation

σ2
l

+∞
∫

−∞

|w3l(x∗)|2dx∗ + w3l,x∗
w∗

3l|∞−∞ =

+∞
∫

−∞

[|w3l,x∗
|2 +Wl(x)|w3l(x∗)|2 + ψl,xg(x)|z2l(x∗)|2]dx∗

(5.81)
where

ψl(x) =
x2

2
g2(x)b(x)rl(x) (5.82)

The Wronskian w3l,x∗
w∗

3l|+∞

−∞ of two independent solu-
tions w3l and w

∗
3l is constant (see [37], Par.27 Ch.4).

The contribution to the spectrum from the non-local
part of the potential is given by

N =

+∞
∫

x+

ψl,x(x)|z2l(x)|2dx (5.83)

If the condition of non-negativity of a local potential
Wl(x) is satisfied, then the requirement

N =

+∞
∫

x+

ψl,x(x)|z2l(x)|2dx ≥ 0 (5.84)

gives the sufficient condition for the absence of negative
eigenvalues σ2

l of the considered spectral problem.

∗We denote the complex conjugate by ∗ for convenience of
comparison with the classical results presented in [37].
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Fortunately, non-local contribution given by (5.83),
does not grow with the mode number n, since |z2l|2 is
constrained from above by the function proportional to
n−2. This constraint is valid for any density profile and
follows from (5.69) with taking into account that in a BH
case b(x) ≥ n.

In the case when the metric function g(x) satisfies the
condition (5.57), the sufficient condition (5.84) is triv-
ially satisfied (N = 0), and negative eigenvalues do not
appear in the spectrum. As a result spherically symmet-
ric metrics satisfying (5.57) and (5.78) are stable to polar
perturbations.

VI. THE CASE OF DENSITY PROFILE (1.3)

In the case of the density profile ρ(x) = e−x
3

the metric
function in (5.28) reads

g(x) = e2ν(x) = 1− α

x
(1 − e−x

3

) (6.1)

Potential (4.14) governing the axial perturbations is
depicted in Figs.5-6 for the density profile (1.3) and two
values of the characteristic parameter α (denoted in fig-
ures as a).
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FIG. 5. Axial potential (4.14) for m ≃ 2.8mcr.
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FIG. 6. Axial potential (4.14) for m ≃ 11.2mcr.

Potentials are smooth, short-range and positive for all
values of the characteristic parameter α. Therefore all
types of vacuum configurations with de Sitter center in-
cluding a vacuum nonsingular black hole, are stable to
axial perturbations.
The local potential governing polar perturbations

given by (5.70) is shown in figs.7-8 for the density profile
(1.3) and two values of parameter α (denoted in figures
as a).
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FIG. 7. Polar potential (5.70) for m ≃ 2.8mcrit.
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FIG. 8. Polar potential (5.70) for m ≃ 11.2mcrit.

Both axial and polar potentials for bigger values of α
become similar to those for the Schwarzschild case [37].
Polar local potentials are smooth short-range poten-

tials, so that integrals of them are finite over all the re-
gion of variable x.
The potential (5.70) for the density profile (1.3) satis-

fies the criterion of non-negativity (5.78), but the condi-
tion (5.57) is not satisfied, so that appearance of negative
eigenvalues σ2

l is in principle possible.

The question of existence of isolated points with neg-
ative values σ2

l in the total spectrum of the integro-
differential operator(5.72) requires the complicated nu-
merical analysis which is in progress. Preliminary results
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suggest that non-local contribution (5.83) does not lead
to negative values σ2

l for the masses m > mcr2.
This result looks natural. The second critical mass

valuemcr2 is distinguished for the unperturbed geometry.
The value mcr2 marks the point in the temperature-mass
diagram at which specific heat is broken and changes
its sign, so that a second order phase transition starts
when in the course of Hawking evaporation the mass ap-
proaches the value mcr2. For the density profile (1.3) it
is given by

mcr2 ≃ 0.38mPl

√

ρPl/ρ0 (6.2)

The extreme state of non-singular black hole (m = mcr),
can be unstable since some perturbations modes grow
unlimited at the double horizon for any density profile.
If the considered configuration would develop instability
before achieving the extreme state, the most appropriate
range gets beyond mcr2 where a phase transition starts.
The critical value mcr2 corresponds to the maximum

at the temperature-mass curve (see fig.3). It is calculated
from the condition dT/dm = 0. In the units normalized
to de Sitter radius r0 (which is the characteristic scale
related to de Sitter vacuum trapped in the origin)

y+ =
r+
r0

; s =
rg
r0

(6.3)

the temperature on a BH event horizon is given by [17]

T =
1

y+
− 3

y+

(

1− y+
s

)

(6.4)

The density profile and metric in these units read

ρ(y) = e−y
3/s; g(y) = 1− s

y

(

1− e−y
3/s

)

(6.5)

From dT/ds = 0 and g(y+) = 0, we get the critical value
s2 and the value y+ corresponding to m = mcr2.

s2 =≃ 2.226; y+ =≃ 2.166 (6.6)

For comparison, the critical values for the extreme case
mcr of the double horizon r± are [17]

scr ≃ 1.7576; y± ≃ 1.4957 (6.7)

VII. DISCUSSION

We present the conditions specifying two types of con-
figurations with de Sitter center, including black holes
with and without changes of topology.
We found that any configuration described by spheri-

cally symmetric geometry with de Sitter center is stable
to axial perturbations.
The problem of stability to polar perturbation reduces

to a one-dimensional Schrödinger equation with a non-
local potential given by the Vol’terra integral operator

with square integrable smooth kernel representing a com-
pact perturbation to the local potential.
We derived the criterion of non-negativity of the local

potential which defines the essential spectrum of integro-
differential operator governing polar perturbations in
general case.
We derived the criterion of vanishing of non-local part

of the potential which distinguishes the class of geome-
tries for which the problem of stability reduces to a stan-
dard one-dimensional Schrödinger equation. This class
of metrics has been studied in [45].
For the case when perturbations are described by the

Schrödinger equation with the non-local potential, we
found the sufficient condition for the absence of the neg-
ative eigenvalues in the spectrum which guarantees the
stability of investigated geometry.
For an extreme black hole, the method of small per-

turbations is not applicable due to existence of unlimited
perturbation modes at approaching the double horizon.
Asymptotic behavior of the basic system near double

horizon suggests instability of the extreme configuration.
The behavior in this regime is very special, unrestricted
solutions for perturbations exist for positive values of the
spectral parameter σ2

l . The limiting equation for pertur-
bations near double horizon is essentially different from
that for one-horizon case in which unrestricted solutions
do not appear for positive values σ2

l and which cannot
be smoothly continued to two-horizon case. The ques-
tion arises what is the place of the metric with m = mcr,
at the set of metrics whose stability we investigate as
one-parametric set of solutions to Einstein unperturbed
equations with a given density profile.
The critical value of the mass parameter mcr is cal-

culated from two transcendental equations: g(r±) =
0; g′(r±) = 0. This is the unique point for considered
metric function g(r) because it is the minimum of g(r)
and g(r) has the only one minimum [20]. Therefore the
transcendental system for (r±,mcr) has the unique solu-
tion for each particular one-parametric set with a given
density profile.
The metric with double horizon represents an isolated

singular point at the set of metrics g(r) for each given
density profile. It resembles a fixed point attractor be-
havior which is currently the key point of our efforts [45].
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