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a b s t r a c t

Lovelock gravitation theory is a natural extension of the General Relativity to higher dimensions
with the inclusion of only second-order terms correspond to the Einstein–Gauss–Bonnet gravity. In
this paper, we find an exact Hayward black hole solution of D ≥ 5-dimensional spacetime for
Einstein–Gauss–Bonnet (EGB) gravity with negative cosmological constant (Λ) minimally coupled
to non-linear electrodynamics for a specific Lagrangian density, namely, EGB-AdS black holes, with
additional parameter e because of magnetic charge. Interestingly, it turns out that for each value of
GB parameter (α), there exist a critical eE such that for e < eE describe non-extremal black holes with
Cauchy (r−) and Event horizons (r+), while for e = eE corresponds to an extremal regular black hole
with degenerate horizons (r+ = r− = rE ). Owing to the magnetically charged corrected black hole,
the thermodynamic quantities have also been modified, but the entropy does not satisfy the usual
area law. A divergence of the specific heat at r+ = rc , where the temperature attains maximum value
and the Hawking–Page transition is achievable with the stable (unstable) branch for rt1 ≤ r+ < rc
(rc < r+ ≤ rt2). Thus, we found Hayward EGB-AdS black holes which do not evaporate completely,
but lead to stable double-horizon black hole remnants with vanishing temperature and positive heat
capacity.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The classical Einstein’s gravity is the most reliable theory
hich predicts the existence of singularities inside black holes,
nd they are connected with the infinite growth of the cur-
ature invariant. This is a well-known problem of the classical
instein’s theory of gravity, e.g., the black hole solutions, such as
chwarzschild and Reisner–Nordstrom, have curvature singular-
ty at the center, which means spacetime fails to exist, signaling a
reakdown of the physics laws at that point. However, there is a
elief that these singularities are an artifact of General Relativity
GR) and do not exist in Nature. Thus, for these laws of physics
o exist, singularities must be substituted by some other objects
n a more suitable theory or the GR should be modified. While
e were deprived of definite quantum gravity, which is expected
o resolve singularity problem [1] and understand the interior
f the black hole, and thus, attention was shifted to regular
odels (See, e.g., [2] for a review). The concept of a regular or
ingularity model started with the seminal Bardeen’s paper [3],
ho proposed the first regular black hole which is solution of GR
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when coupled to nonlinear electrodynamics (NED) [4], yielding
alteration to classical black holes, but near the center, they behave
like a de Sitter spacetime. Subsequently, there has been intense
activity for regular black holes that are exact solutions of the GR
minimally coupled to NED [5–10].

A simple model of a regular (or non-singular) black hole was
proposed by Hayward [11] which describes an isolated spheri-
cally symmetric regular spacetime given by the metric

ds2 = −G(r)dt2 +
1

G(r)
dr2 + r2(dθ2 + sin2θdφ2), (1)

with

G(r) = 1 −
2Mr2

r2 + 2l2M
.

he Hayward black hole [11] can be derived using the following
articular Lagrangian density [12,13]

(F) =
6
se2

(2e2F)3/2(
1 + (2e2F)3/4

)2 , (2)

where s > 0 is a constant, e is magnetic charge, M is a mass and
F is FµνFµν/4. Here for convenience we write e3 = 2l2M . The
axwell field tensor reads

= 2δθ δφ
µν [µ ν]e(r) sin θ. (3)
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It turns out that the magnetic field strength Fθ φ = e sin θ , then
F become

F =
e2

2r4
, (4)

here the magnetic charge e is defined as
∫
F/4π = e. The

ayward solution (1) describes the spherically symmetric regular
pacetime and mass M is the only parameter beside fundamental
, which determines the scale. At large distance r → ∞, it gives
chwarzschild solution, while near origin (r → 0), it has de Sitter
orm. Obviously, for M > 3

√
3l/4, the Hayward metric has the

auchy (r−) and the event horizon (r+), corresponding to non-
xtremal black holes, while for M∗ = 3

√
3l/4, F (r) has double

oot r∗ =
√
3l, corresponding to extremal Hayward black hole.

he Hayward metric is simple for the analysis due to this scaling
ehavior [14]. It is also a simple exact model of general relativity
inimally coupled to nonlinear electrodynamics (where charge e

is related to M via e3 = 2Ml2) and hence was given significant
ttention [13,15].
It may be worth noting that the NED theories appear as low

nergy effective limits in some models of string/M-theory [16].
urther, the Einstein–Gauss–Bonnet (EGB) gravity been explored
o a large extent due to its appearance in strings theories at low
nergies [17]. The EGB gravities are notably different from the
eneral higher-curvature theories because of the field equations
nvolving not more than second derivatives of the metric and
hereby these are free from several problems that normally affect
eneral higher derivative gravity theories. Also, such a theory
ay be used in the context of the AdS/CFT correspondence to

nvestigate the effects of higher-curvature terms and allow us to
xplore several conceptual issues of black holes in-depth. Indeed,
he general static spherically symmetric solution in EGB theory
as discovered by Boulware and Deser [18] to show that the
nly stable solution has a Schwarzschild-type spacetime structure
nd the central singularity is still unpreventable which is true to
he charged black holes [19]. The higher-curvature corrections to
instein–Hilbert action make strong predictions about nature, the
ost important ones are the existence of higher dimensions [17].
urther, it is seen that within the framework of AdS/CFT corre-
pondence, higher-derivative corrections to gravitational action
n AdS space could lead to a modification in the dynamics of
trongly coupled dual theory. This led to considerable activities
n higher dimensions which are also motivated by the super-
tring and field theories. The black holes with higher derivative
urvature in Anti-de Sitter (AdS) spaces have been considered in
ecent years, e.g., static AdS black hole solutions in EGB grav-
ty with several interesting features [20–22]. Motivated by the
bove arguments in the context of AdS/CFT, we find Hayward-like
egular black hole metrics for D-dimensional EGB gravity in AdS
pacetimes, namely, Hayward EGB-AdS black holes. The metrics
epend on the mass (M), coupling constant (α) and a charge
arameter (e) coming from NED that measures the potential devi-
tion from the Boulware–Deser black hole which is encompassed
s a special case (e = 0). We also find exact expressions for the
hermodynamical quantities associated with Hayward EGB-AdS
lack holes to find a stable black remnant and also perform a
hermodynamic stability analysis.

. Black hole solution in Einstein-Gauss–Bonnet gravity AdS
pacetimes

Perhaps, one of the natural tools to investigate AdS/CFT is to
xamine higher curvature gravity AdS black holes and discuss
heir thermodynamics. Here we are interested in the Einstein–
auss–Bonnet theory that is a generalization of general relativity
ith its action involving higher curvature corrections [23]. To
egin with, we consider the D-dimensional action for EGB theory
inimally coupled to nonlinear electrodynamics [24]

G =
1

2κ2
D

∫
M

dDx
√

−g
[
R + α(R2

− 4RµνRµν + Rµνγ δRµνγ δ)

−2Λ+ L(F )
]
, (5)

here, the negative cosmological constant Λ = −(D − 1)(D −

)/2l2, κD =
√
8πGD with D-dimensional gravitational constant

GD and α is the Gauss–Bonnet coupling coefficient with dimen-
sion (length)2. In the heterotic string theory, α is positive, hence
we keep the discussion restricted to the case α ≥ 0 [18]. In D ≥ 5
dimensions, the Gauss–Bonnet term gives non-trivial modifica-
tion to the dynamics of gravity. By varying the action with respect
to the metric gµν , we get the following Einstein–Gauss–Bonnet
equations of motion

GE
µν + αHµν +Λgµν = Tµν ≡ 2

[
∂L(F )
∂F

FµρFρν − gµνL(F )
]
, (6)

and the tensor Fµν obeys the dynamic equation

∇µ

(
∂L(F )
∂F

Fµν

)
= 0 (7)

and the Bianchi identities

∇µ

(
∗Fµν

)
= 0, (8)

where ∗ denotes the Hodge dual. Gµν and Hµν , respectively,
read [25]

Gµν = Rµν −
1
2
gµνR,

Hµν = 2
(
−RµσκτRκτσν − 2RµρνσRρσ − 2RµσRσν + RRµν

)
−

1
2
LGBgµν, (9)

where Gµν is the Einstein tensor, Hµν is the Lanczos tensor and
Tµν is energy–momentum tensor. Here, we are interested in D-
dimensional static spherically symmetric solutions in the theory
described by the action (5) with the metric ansatz [26]

ds2 = −f (r)dt2 +
1

f (r)
dr2 + r2γ̃ij dxi dxj, (10)

here γ̃ij is the metric of a (D-2)-dimensional constant curvature
pace k = 1, 0, or −1 and f (r) is the metric function to be
etermined, but we shall restrict to k = 1.
The Maxwell field tensor in D ≥ 5 reads [27]

µν = 2δθD−3
[µ δ

θD−2
ν]

e(r)D−3

rD−4 sin θD−3

⎡⎣D−4∏
j=1

sin2 θj

⎤⎦ , (11)

with F as

F =
e2(D − 3)
2r2(D − 2)

(12)

rom Eq. (7), one can see that dF = 0, using that we get

e′(r)2δθD−3
[µ δ

θD−2
ν]

e(r)D−3

rD−4 sin θD−3

⎡⎣D−4∏
j=1

sin2 θj

⎤⎦
× dθ ∧ dφ ∧ . . . ∧ dψ(D−2) = 0. (13)

This leads to e(r) = e = constant. Interestingly, influence of the
ther component of Fµν is negligible compared to Fθφ [28]. In

order to get regular black holes, we modify the Lagrangian density
to D-dimensional spacetimes as [29]

L(F ) =
(D − 1)(2e2F )

D−1
D−2

√ D−1 with s =
eD−3

′
. (14)
2se2(1 + ( 2eF ) D−2 ) (D − 2)µ
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Fig. 1. The horizons of Hayward EGB-AdS black holes in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of e with e = 0 corresponds to
EGB-AdS black holes.
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Substituting Eq. (12) in Eq. (14), one obtains

L(F ) =
(D − 1)(D − 2)µ′eD−1

2(rD−1 + eD−1)2
(15)

The Gauss–Bonnet gravity square term in the action (5) is the
only contribution for which action is free from ghosts [30]. Using
metric (10), we obtain the (r, r) field equation is given by

(D − 2)
[(

r3 − 2α̃r (f (r)− 1)
)
f ′ (r)+ (D − 3) r2 (f (r)− 1)

D − 5) α̃ (f (r)− 1)2
]

+Λ =
(D − 1)(D − 2)µ′eD−1

(rD−1 + eD−1)2
, (16)

where a prime (′) denotes a derivative with respect to r and α̃ =

D − 3) (D − 4) α. Eq. (16) admits the following solution

± (r) = 1+
r2

2α̃

(
1 ±

√
1 +

4α̃µ′

rD−1 + eD−1 −
4α̃
l2

)
, D ≥ 5

(17)

here the mass term µ′ is a constant of integration and is related
o the mass M of the black hole via

′
=

16πM
(D − 2)VD−2

, VD−2 =
2π (D−1)/2

Γ (D − 1)/2
, (18)

here VD−2 is the volume of the (D−2)-dimensional unit sphere.
he (±) sign in front of square root in (17) corresponds to two
ifferent branches of the solution [26]. It seen that the (17) satisfy
ll field equations. The well known Boulware–Deser solution [18]
s encompassed as a special case in the absence of NED (e = 0).
he negative branch of (17), in general relativity limit α → 0,
eads

−(r) ≈ 1 −
µ′r2

rD−1 + eD−1 +
r2

l2
, (19)

which is D-dimensional Hayward AdS solution [14]. Further, if we
switch off the charge (e = 0) the solution simplifies to

f−(r) ≈ 1 −
µ′

rD−3 +
r2

l2
. (20)

Hence, the negative branch leads to a D-dimensional
Schwarzschild–Tangherlini AdS black holes [31]. Thus, the neg-
ative branch of the solution (17) leads to all correct solutions in
general relativity limits, and henceforth we shall restrict to only
the negative branch of the solution, f (r) ≡ f−(r). For definiteness,
henceforth, the solution (17) will be called Hayward EGB-AdS
black holes. The Hayward EGB-AdS black hole, when (µ′

= 0),
reduces to

f (r) = 1 +
r2

l2eff
with

1
l2eff

=
1
2α̃

(1 −

√
1 −

4α̃
l2

) (21)

nd also near the origin it behaves like de Sitter as

(r) = 1 +
r2

l2eff
with

1
l2eff

=
1
2α̃

(1 −

√
1 +

4µ′α̃

eD−1 −
4α̃
l2

). (22)

ote that the AdS curvature radius l2 is related to cosmological
onstant Λ and l2 > 0 for Λ < 0.
The behavior of invariants like, Ricci scalar (R), Ricci square

R = RabRab) and Kretschmann scalar (K = RabcdRabcd) is useful
o address the singularity. These invariants for Hayward EGB-AdS
lack hole solution, respectively, read as given below

lim
→0

R =
D(D − 1)

2α̃

[
−1 +

(
1 +

4µ′α̃

eD−1 −
4α̃
l2

)1/2
]
,

lim
→0

R =
D(D − 1)2

2α̃2

[
1 +

2µ′α̃

eD−1 −
2α̃
l2

−

(
1 +

4µ′α̃

eD−1 −
4α̃
l2

)1/2
]
,

lim
r→0

K =
D(D − 1)
α̃2

[
1 +

2µ′α̃

eD−1 −
2α̃
l2

−

(
1 +

4µ′α̃

eD−1 −
4α̃
l2

)1/2
]
. (23)

rom the expression of invariants (23), we conclude that all of
hese invariants are finite and regular everywhere including at
he origin (r = 0) and the Hayward EGB-AdS spacetime is regular
everywhere. Thus, we have seen that EGB coupled to NED with
L(F ) defined in (14) leads to exact Hayward-like regular solution
n D-dimensional AdS spacetimes.

We shall now discuss the horizon structure of Hayward EGB-
AdS black holes. The metric (10) is singular at f (r) = 0, signaling
he existence of horizons. Thus, the radii of the horizons are the
eros of

D−3
+ α̃rD−5

+
rD−1

l2
− µ′

− eD−1(
1
l2

+
1
r2

+
α̃

r4
) = 0. (24)

ne can recover, in the absence of NED, the results [22]

D−3
+ α̃rD−5

+
rD−1

l2
− µ′

= 0, (25)

hich further reduces to the results obtained in [32] when l2 →

or (Λ → 0). The horizon for EGB-AdS (D = 5) black holes [22],
s given by

2
+

=
l2

2

[
−1 +

√
1 +

4(M − α̃)
l2

]
(26)

e notice that there exists an extremal value of charge e = eE
such that for e < eE , the black holes have two horizon radii r±
(cf. Fig. 1) with Cauchy horizon (r−) and the event horizon (r+).
For e = eE , the horizons degenerate to re = r±, the horizon radius
of extremal black hole, and, if charge e > eE , then no black hole
will exist. The Cauchy and event horizon radii are summarized
in Table 1, for different values of e and α in various dimensions.
From Table 1, one can notice radius of Cauchy horizon increases,
whereas the event horizon radius decreases when we increase the
value of e and α. These radii show the same trend as we go to the
higher dimensions.

3. Black hole thermodynamics

It was first shown by Wheeler [33,34] that any system consists
of a black hole violates the non-decreasing entropy law, which
makes it necessary to assign temperature and entropy to a black
hole. Particularly, the thermodynamics of AdS black holes has
been of great interest to the astrophysicists since the pioneering
work by Hawking and Page, which suggested the existence of
a phase transition in AdS black holes [35]. Having found the
solution (17), we can turn our attention to the thermodynamics
of black holes. The mass of the black holes, in terms of horizon
radius r+, are determined by using f (r+) = 0, which reads

M+ =
(D − 2)VD−2 rD−3

+

16π

[
(1 +

α̃

r2+
+

r2
+

l2
)(1 +

eD−1

rD−1
+

)
]
. (27)

his shows that the mass term has been corrected due to GB term,
ED and cosmological constant. In the limit e = 0, we get

EGB−AdS
+

=
(D − 2)VD−2 rD−3

+

16π

[
1 +

α̃

r2+
+

r2
+

l2

]
. (28)

and one recovers the results of EGB-AdS black holes [22,26,27,36].
Further reduces to mass of the Gauss–Bonnet black holes [26,27]
when 1/l2 = 0

MEGB
+

=
(D − 2)VD−2 rD−3

+

[
1 +

α̃
2

]
. (29)
16π r+
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Table 1
Cauchy horizon radius (r−), the event horizon radius (r+) and δ = r+ − r− for different values of charge e.
Dimensions α = 0.1 α = 0.2

e r− r+ δ e r− r+ δ

D = 5 0.2 0.1460 0.8894 0.7434 0.2 0.1873 0.7797 0.5924
0.3 0.2286 0.8836 0.6550 0.3 0.2962 0.7672 0.4710
eE = 0.577 0.6821 0.6821 0 eE = 0.452 0.6051 0.6051 0

D = 6 0.2 0.1207 0.8014 0.6807 0.2 0.1477 0.6256 0.4779
0.3 0.2059 0.7989 0.5930 0.3 0.2604 0.6157 0.3553
eE = 0.57 0.6821 0.6821 0 eE = 0.414 0.5041 0.5041 0

D = 7 0.2 0.0940 0.7518 0.6578 0.2 0.1123 0.6012 0.4889
0.3 0.1747 0.7507 0.5760 0.3 0.2115 0.5973 0.3858
eE = 0.576 0.6187 0.6187 0 eE = 0.448 0.4941 0.4941 0

D = 8 0.2 0.0711 0.7328 0.6617 0.2 0.0846 0.6113 0.5267
0.3 0.1452 0.7325 0.5873 0.3 0.1732 0.6100 0.4368
eE = 0.597 0.6087 0.6087 0 eE = 0.492 0.5055 0.5055 0
o

w
[
i

h

d

w
b

S

For the case α → 0, 1/l2 = 0, we get the mass for D-dimensional
Hayward black holes

MH
+

=
(D − 2)VD−2 rD−3

+

16π

[
1 +

eD−1

rD−1
+

]
, (30)

hich further reduces to the mass of well known Schwarzschild–
angherlini black holes [26,37,38], when we choose e = 0 in
30). The temperature of the black hole horizon is related by the
eriodicity in the imaginary time of the metric. The Hawking
emperature of the black hole as in the GR case is simply T =

/2π [22,32], where κ is the surface gravity defined by

2
= −

1
2
∇µξν∇

µξ ν, (31)

where, ξµ is a Killing vector. For static spherically symmetric case
the Killing vector ξµ, takes the form ξµ = ∂

µ
t . Thus, the Hawking

temperature of the Hayward EGB-AdS black holes reads

T+ =
(D − 3)
4πr+

⎡⎣ r2
+

+
(D−5)
(D−3) α̃ −

2
(D−3)

eD−1

rD−1
+

(r2
+

+ 2α̃) +
(D−1)
(D−3)l2

r4
+

(r2+ + 2α̃)(1 +
eD−1

rD−1
+

)

⎤⎦ .
(32)

ote that charge e and cosmological constant 1/l2 in Eq. (32)
odifies the Gauss–Bonnet black hole [39] temperature. In Fig. 2,
e have plotted the Hawking temperature as a function of hori-
on radius r+ when D = 5, 6, 7 and 8. From Fig. 2 and Table 2
e noticed that the peaks of Hawking temperature decrease and
hift toward the right as the value of magnetic charge (e) grows
or a given value of the Gauss–Bonnet coupling parameter (α)
nd cosmological constant (1/l2). It is also noteworthy that the
emperature for EGB-AdS black holes diverges in D > 5 spacetime
imensions. Fig. 3 is showing that the temperature of Hayward
lack holes remains finite, but on the other hand, it diverges for
he Schwarzschild–Tangherlini black holes. When, e = 0, Eq. (32)
implifies to [22,26,36,40]

EGB−AdS
+

=
(D − 3)
4πr+

[
r2
+

+
(D−5)
(D−3) α̃ +

(D−1)
(D−3)l2

r4
+

r2+ + 2α̃

]
, (33)

and taking the limit e = 1/l2 = 0, we recover the EGB black
holes [26,27,32] temperature which reads

T EGB
+

=
(D − 3)
4πr

[
r2
+

+
(D−5)
(D−3) α̃

2

]
(34)
+ r+ + 2α̃
Table 2
The maximum Hawking temperature TMax

+
at critical radius rTc for different values

f charge e and different dimension D = 5, 6, 7 and 8.
Dimensions α = 0.1 α = 0.2

e rTc TMax
+

e rTc TMax
+

D = 5 0.2 0.6839 0.1216 0.2 0.8964 0.0868
0.3 0.7927 0.1146 0.3 0.9715 0.0847
0.577 1.1681 0.0890 0.452 1.1429 0.0787

D = 6 0.2 0.4644 0.1434 0.2 0.4239 0.1149
0.3 0.7237 0.1333 0.3 0.7046 0.0998
0.57 1.1432 0.1153 0.414 0.9888 0.0940

D = 7 0.2 0.3368 0.2370 0.2 0.3319 0.2222
0.3 0.5220 0.1813 0.3 0.5068 0.1604
0.576 1.0450 0.1378 0.448 0.7829 0.1242

D = 8 0.2 0.3023 0.3658 0.2 0.3007 0.3563
0.3 0.4592 0.2594 0.3 0.4540 0.2454
0.597 0.9541 0.1657 0.492 0.7581 0.1721

and when α = 1/l2 = 0, it takes the form of Hayward black holes
temperature in D-dimensions

TH
+

=
(D − 3)
4πr+

⎡⎣1 −
2

(D−3)
eD−1

rD−1
+

1 +
eD−1

rD−1
+

⎤⎦ , (35)

hich further reduces to Schwarzschild–Tangherlini black holes
26,27,37] temperature, T+ = (D− 3)/4πr+, when we take e = 0
n (35).

To find the entropy associated with Hayward EGB-AdS black
oles, we use the first law of thermodynamics [22,26,27]

M+ = T+dS+ +Φde, (36)

Now, substituting Eqs. (27) and (32) in Eq. (36) and integrating
ith constant e, we obtained the entropy of Hayward EGB-AdS
lack holes

+ =
VD−2rD−2

+

4

[
1 + 2

(D − 2)
(D − 4)

α̃

r2+
− (D − 2)

eD−1

rD−1
+

(
1 +

2
3
α̃

r2+

)]
.

(37)

The terms in the parenthesis modify the entropy, and area law is
not obeyed [41]. Since α̃ > 0, the entropy of both Hayward EGB-
AdS and EGB-AdS (e = 0) black holes increase in all dimensions
D (Fig. 4). The entropy of Hayward EGB-AdS black holes is inde-
pendent of 1/l2, so the expression of entropy for both, EGB and
EGB-AdS black holes is same, which can be obtained by switching
off charge (e = 0) off as

SEGB
+

=
VD−2rD−2

+

[
1 + 2

(D − 2) α̃
2

]
, (38)
4 (D − 4) r+
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Fig. 2. Hayward EGB-AdS black holes temperature T+ vs. horizon radius r+ in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of e with
e = 0 corresponds to EGB-AdS black holes.
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Fig. 3. Hayward black holes temperature T+ vs. horizon radius r+ in various dimensions D = 5, 6, 7, and 8 for different values of e with e = 0 corresponds to
chwarzschild–Tangherlini black holes.
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hich is exactly obtained previously [22,26,27,32,36]. Further, in
he limit α = 0, it reduces to the entropy of D-dimensional
ayward black holes

H
+

=
VD−2rD−2

+

4

[
1 − (D − 2)

eD−1

rD−1
+

]
. (39)

or the limiting case, e = α = 0 and 1/l2 = 0, we get the entropy
or Schwarzschild–Tangherlini black holes [26,27], as S = A/4,
here A = VD−2rD−2

+ is the area of horizon in D-dimensions and
hereby area law is restored.

The thermodynamic stability of a black hole is performed by
nalyzing the behavior of its specific heat [26,27]. The specific
eat of a black hole is defined by

+ =
∂M+

∂T+

=

(
∂M+

∂r+

)(
∂r+
∂T+

)
. (40)

Using Eqs. (40), (27), and (32), we get the heat capacity of
Hayward EGB-AdS black holes

C+ =
(D − 2)(D − 3)VD−2

β
rD−4
+

[
(1 +

eD−1

rD−1
+

)2(r2
+

+ 2α̃)2

× (r2
+

+
D − 5
D − 3

α̃ −
2

D − 3
eD−1

rD−1
+

(r2
+

+ 2α̃)

+
D − 1

(D − 3)l2
r4
+
)
]
, (41)

with

β = 4
[
2(r2

+
+ 2α̃)2(

eD−1

D−1 )
2
+

(
(D2

− 3D + 6)r4
+

+
D(D − 1)

2 r6
+
r+ l
+

(
(3D2

− 7D + 20)r2
+

+
2(D − 1)(D − 2)

l2
r4
+

)
α̃

+2(D2
− 3D + 10)α̃2

) eD−1

rD−1
+

+ (
D − 1
l2

r2
+

− D + 3)r4
+

+

(
6(D − 1)

l2
r4
+

− (D − 9)r2
+

)
α̃

−2(D − 5)α̃2
]

he behavior of specific heat of Hayward EGB-AdS and Hayward
lack holes, respectively, has been depicted in Figs. 5–7. The re-
ions with C+ > 0(< 0), are the regions in which the black holes
re thermodynamically stable (unstable). From Fig. 5, the specific
eat C+ of Hayward EGB-AdS black holes diverges at a critical

horizon radius say rc , confirming the existence of the second
order phase transition [35]. The Hayward EGB-AdS black holes in
the regions rt1 < r+ < rc and r+ > rt2 are thermodynamically
table, whereas the black holes are thermodynamically unstable
hen r+ > rt1 and rc < r+ < rt2, but, Hayward black holes
re thermodynamically stable only in the region rt ≤ r+ ≤ rc1
nd unstable in the regions r+ < rt and r+ > rc1 (cf. Fig. 7).
t is important to note that there exists multiple transition for
ayward EGB-AdS black holes (Figs. 5 and 6). Here, we can also
otice that the value of critical radius rc increases we increase
ith the value of either e or α. On the other hand, value of

c decreases with D. The regions of thermodynamical stability
re summarized in Table 3, out of which two are representing
hermodynamically stable black holes and remaining two regions
re representing thermodynamically unstable black holes. In the
bsence of magnetic charge (e), we reduce to the expression for
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Fig. 4. Hayward EGB-AdS black holes entropy S+ vs. horizon radius r+ in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of e with e = 0
corresponds to EGB-AdS black holes.
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Fig. 5. Hayward EGB-AdS black holes specific heat C+ vs. horizon radius r+ (left(0 ≤ r+ ≤ 1.8 and right (r+ ≥ 1.8)) in various dimensions D = 5, 6, 7, and 8 (top
to bottom) for different values of e.
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Fig. 6. Hayward EGB-AdS black holes specific heat C+ vs. horizon radius r+ (left(0 ≤ r+ ≤ 1.6 and right (r+ ≥ 1.6)) in various dimensions D = 5, 6, 7, and 8 (top
to bottom) for different values of e.
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Table 3
The state and stability of Hayward EGB-AdS black holes with horizon radius
r+ .
Region State Stability

r+ < rt1 Very small Unstable
rt1 < r+ < rc

+
Small Stable

rc
+
< r+ < rt2 Intermediate Unstable

r+ > rt2 Large Stable

heat capacity of EGB-AdS black holes, which reads [26,27]

CEGB−AdS
+

=
(D − 2)(D − 3)VD−2

β1
rD−4
+

[
(r2

+
+ 2α̃)2(r2

+
+

D − 5
D − 3

α̃

+
D − 1

(D − 3)l2
r4
+
)
]
, (42)

with

β1 = 4
[(

D − 1
l2

r2
+

− D + 3
)
r4
+

+

(
6(D − 1)

l2
r4
+

− (D − 9)r2
+

)
α̃

−2(D − 5)α̃2
]

ote that the magnetic charge factor (e) and cosmological con-
tant (1/l2) in Eq. (41) modify the Gauss–Bonnet black hole spe-
ific heat [39], and taking the limit (e = 0, 1/l2 = 0), we recover
t. The Gauss–Bonnet black holes specific heat reads [26,27],

EGB
+

=
(D − 2)(D − 3)VD−2

β2
rD−4
+

[
(r2

+
+ 2α̃)2r2

+

+
D − 5
D − 3

(r2
+

+ 2α̃)2α̃
]
, (43)
with

β2 = 4
[
(−D + 3)r4

+
− (D − 9)r2

+
α̃ − 2(D − 5)α̃2

]
In the limit (α → 0, 1/l2 = 0), we recover D-dimensional
Hayward black holes specific heat as given below

CH
+

=
(D − 2)(D − 3)VD−2

β3
rD
+

[
(1 +

eD−1

rD−1
+

)2(1 −
2

D − 3
eD−1

rD−1
+

)
]
,

(44)

ith

3 = 4
[
2(

eD−1

rD−1
+

)2 + (D2
− 3D + 6)r2

+

eD−1

rD−1
+

− (D − 3)r2
+

]
.

he behavior is depicted in Fig. 7, which also shows the phase
ransition confirming the instability of Schwarzschild–Tangherlini
lack holes [26]. For (α → 0, 1/l2 = 0) and magnetic charge
e = 0), we get the specific heat for Schwarzschild–Tangherlini
lack holes [26,27]

ST
+

= −
(D − 2)VD−2

4
rD−2
+

. (45)

We have discussed the condition for the local thermodynami-
cal stability, which is related to the sign of heat capacity. Now,
we are going to examine the global stability of black hole via
Gibb’s free energy, the reason for this is that even if the black
hole is thermodynamically stable, it could be globally unstable or
vice-versa. The Gibb’s free energy of black hole can be defined
as [36,42]

F = M − T S (46)
+ + + +
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Fig. 8. Hayward EGB-AdS black holes Gibb’s free energy F+ vs. horizon radius (r+) in the dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of e
with e = 0 corresponds to EGB-AdS black holes.
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Schwarzchild–Tangherlini black holes.
B

F

Substituting Eqs. (27) and (32) in Eq. (46), we get the expression
for free energy of Hayward EGB-AdS black holes, which reads

F+ =
VD−2rD−5

+

16π (D − 4)(r2+ + 2α̃)

[
(D − 4)r4

+
(1 −

r2
+

l2
) −

6(D − 2)α̃r4
+

l2

+(D − 8)α̃r2
+

+ 2(D − 2)α̃2
+ +A

eD−1

rD−1
+

− B(
eD−1

rD−1
+

)2
]

(47)

here

=
1
3

[
(D − 2)(D − 4)(3r2

+
+ 2α̃)

(
(D − 3)r2

+
+ (D − 5)α̃

)
+6(r2

+
+ 2α̃)

(
(D − 1)(D − 4)r2

+
+ (D − 2)2α̃

+(D − 2)(D − 4)
r4
+

l2

) ]
B =

1
3

[
2(D − 2)(D − 4)(3r4

+
+ 8r2

+
α̃ + 4α̃2)

]
(48)

he sign of Gibb’s free energy tells about the global stability of
he black holes [22]. We know that negative free energy (F+ <

) signifies the global stability of the black holes, whereas the
ositivity of the free energy (F+ > 0) confirms that the black
oles are globally unstable [22]. The plot for free energy with
horizon radius (r+) in various dimensions has been shown in
ig. 8. From Fig. 8, it is important to note that the black holes with
ery small and large horizon radius r+ are globally stable, but the
ntermediate black holes are globally unstable. But, on the other
and, Hayward black holes are globally stable only for very small
horizon radius r+ and Schwarzschild–Tangherlini black holes are
globally unstable (see Fig. 9). The behavior of Gibb’s free energy of
EGB-AdS black in various dimensions, for different values of α̃/l2,
has been shown in Fig. 7, which is confirming that only the large
EGB-AdS black holes are globally stable [22]. By making magnetic
charge e = 0 in Eq. (52), one recovers the free energy for EGB-AdS
black holes [22,36]

F EGB−AdS
+

=
VD−2rD−5

+

16π (D − 4)(r2+ + 2α̃)

[
(D − 4)r4

+
(1 −

r2
+

l2
) −

6(D − 2)α̃r4
+

l2

+(D − 8)α̃r2
+

+ 2(D − 2)α̃2
+

]
(49)

which reduces to the free energy of EGB black holes [27], for
1/l2 = 0

F EGB
+

=
VD−2rD−5

+

16π (D − 4)(r2+ + 2α̃)

[
(D−4)r4

+
+(D−8)r2

+
α̃+2(D−2)α̃2

]
(50)

y keeping α → 0, 1/l2 = 0, we obtain the expression for free
energy of D-dimensional Hayward black holes

H
+

=
VD−2rD−5

+

16π (D − 4)

[
(D − 4)r2

+
+ (D − 4)(D2

− 3D + 4)
eD−1

rD−3
+

−2(D − 2)(D − 4)(
eD−1

D−2 )
2
]

(51)

r+
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hich further goes to the free energy of Schwarzschild
Tangherlini black holes, in the limit e = 0

ST
+

=
VD−2rD−3

+

16π
(52)

The localized late stage of black hole undergoing the Hawking
evaporation is termed as black hole remnant. The study of the
black hole remnant becomes important given that it can be a
candidate that can be used as the source for dark matter [43]. By
using the relation, f ′(r)|r=rE= 0, one can calculate the remnant
ize or the degenerate horizon radius (r± = rE) of extremal
ayward EGB-AdS black holes. We analyze the emitted feature of
ayward EGB-AdS black holes via the plots of the metric function
17) vs. radius in Fig. 11. The numerical results of black hole
emnant mass µ′ and remnant radius rE has been tabulated in
ables 4 and 5. It is important to note that there exists a lower
ound on mass, µ′

0, such that, µ′
= (<) µ′

0 corresponds to
xtremal (no) black hole.

. Concluding remarks

We consider, in arbitrary D-dimensions, quadratic corrections
o Einstein–Hilbert action described by the Gauss–Bonnet term
oupled to nonlinear electrodynamics and find the Hayward-
harged black hole solutions with anti-de Sitter (AdS) asymp-
otics, of interest in the context AdS/CFT. Thus, we have presented
xact D-dimensional Hayward-like black holes in Einstein–Gauss–
onnet gravity with a negative cosmological constant, thereby
generalizing Boulware–Deser black holes which are included as
a special case (e = 0, l2 → ∞). The Hayward-EGB-AdS black
holes are characterized by analyzing horizons, which at most
could be two, viz. inner Cauchy and outer event horizons. In turn,
we have analyzed the horizon thermodynamical properties and
phase structure of these AdS black holes. Despite complicated
solutions, we obtain the exact expression for the thermodynam-
ical quantities like the black hole mass, Hawking temperature,
entropy and free energy at event horizon r+ and in turn, we
also analyze the thermodynamical stability of the black holes by
studying the specific heat. The entropy (37) of the black holes is
modified due to the magnetic charge e and the GB parameter α,
nd area law S = A/4 is no longer valid. The phase transition is

detectable by the divergence of the heat capacity (C+) at a critical
radius rc (changes with e, α, l2 and dimensions D), such that the
black hole is stable in the region viz: rt1 < r+ < rC and r+ > rt2
with positive heat capacity (C+ > 0), on the other hand the heat
apacity is negative (C+ < 0), when r+ < rt1 and rc < r+ < rt2,
ndicating the instability of black holes. Interestingly, the smaller
nd larger Hayward EGB-AdS black holes are stable with (F+ < 0)

(Fig. 8). In contrast only smaller Hayward and only larger EGB-
AdS black holes (r+ ≳ 5.6 in 5D) are globally stable with negative
free energy (Figs. 9 and 10). Finally, Hayward EGB-AdS black holes
do not completely evaporate, but halts into a stable remnant
with vanishing temperature, degenerate horizons and positive
heat capacity C+ > 0. The black hole remnant size and mass for
ifferent values of the black hole parameters are also given.
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Fig. 11. Hayward EGB-AdS black holes metric function f (r) vs. r in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of e.
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Table 4
The remnant radius (r0) and the remnant mass term (µ′

0) for different values of parameter (e) for
Gauss–Bonnet coupling parameter (α = 0.1).
Magnetic charge D = 5 D = 6 D = 7 D = 8

e r0 µ′

0 r0 µ′

0 r0 µ′

0 r0 µ′

0

0.1 0.181 0.253 0.133 0.102 0.115 0.023 0.106 0.004
0.2 0.307 0.346 0.255 0.220 0.230 0.094 0.215 0.032
0.3 0.418 0.471 0.376 0.368 0.337 0.223 0.315 0.112
0.4 0.508 0.629 0.479 0.558 0.337 0.420 0.421 0.275
0.5 0.610 0.821 0.589 0.797 0.540 0.708 0.515 0.559
Table 5
The remnant radius (r0) and the remnant mass term (µ′

0) for different values of parameter (e) for
Gauss–Bonnet coupling parameter (α = 0.2).
Magnetic charge D = 5 D = 6 D = 7 D = 8

e r0 µ′

0 r0 µ′

0 r0 µ′

0 r0 µ′

0

0.1 0.214 0.464 0.136 0.202 0.112 0.045 0.106 0.008
0.2 0.344 0.573 0.263 0.417 0.226 0.185 0.215 0.064
0.3 0.459 0.717 0.373 0.664 0.334 0.427 0.315 0.219
0.4 0.565 0.890 0.491 0.956 0.442 0.784 0.415 0.526
0.5 0.667 1.093 0.610 1.310 0.553 1.270 0.521 1.050
Finally, we recovered all results of EGB-AdS/EGB black holes
n the limits e = 0/e = Λ = 0 and that of the general relativity
hen α → 0. It would be interesting in this case to analyze the
ffective thermodynamics and also investigate these models in
he general Lovelock gravity.
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