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The semiclassical geometry of charged black holes is studied in the context of a two-dimensional
dilaton gravity model where effects due to pair-creation of charged particles can be included in a
systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we
find that gravitational collapse of charged matter results in a spacelike singularity that precludes
any extension of the spacetime geometry. At the classical level, a static solution describing an
eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding
semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that
of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged
particles. There is a maximally charged solution for a given black hole mass but the corresponding
geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black
hole formation.

PACS numbers: 04.60.Kz, 04.70.Dy, 97.60.Lf

I. INTRODUCTION

In a recent paper [1] we introduced a two-dimensional
model for the study of quantum effects in a charged black
hole spacetime. The main advantage of this model is that
the back-reaction on the geometry, due to the pair pro-
duction of charged particles, can be taken into account
in a systematic way. In the weakly coupled asymptotic
region the back-reaction amounts to a minor modifica-
tion of the classical theory but the effect on the interior
geometry of a charged black hole is more dramatic. The
timelike singularities and Cauchy horizons of a static clas-
sical charged black hole are replaced by a simpler causal
structure with a spacelike singularity inside a single hori-
zon. In other words, the Reissner-Nordström like Penrose
diagram of the classical geometry, shown in Figure 1, is
replaced at the semiclassical level by the Schwarzschild
type Penrose diagram, shown in Figure 2. This conclu-
sion is reached by a combination of analytic and numer-
ical calculations.

The back-reaction effect on dynamical black holes
formed in gravitational collapse of charged matter is
equally dramatic. In numerical simulations based on our
semiclassical equations a spacelike singularity forms in-
side a single apparent horizon, as was advocated in pio-
neering work of Novikov and Starobinsky [2]. This space-
like singularity replaces the relatively weak mass inflation
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singularity that develops at a null Cauchy horizon in the
classical theory [3, 4, 5, 6, 7].

In the present paper we carry out a more detailed study
of our two-dimensional model, elaborating on and go-
ing beyond the results reported in [1]. In Section II we
discuss classical black hole solutions of two-dimensional
dilaton gravity coupled to an abelian gauge field. Like
four-dimensional Reissner-Nordström black holes these
static geometries have timelike curvature singularities in-
side Cauchy horizons and the maximally extended space-
time contains multiple asymptotic regions [8, 9], as shown
in Figure 1.

In Section III we add charged matter to the model
in order to study dynamical solutions involving gravita-
tional collapse. Our choice of matter sector, i.e. charged
Dirac fermions, is particularly convenient for studying
semiclassical corrections to the geometry due to matter
quantum effects. Bosonization of the fermions has the
combined advantage of including the effect of fermion
pair-production at a semiclassical level and converting
the matter equations of motion into a scalar field equa-
tion, which is more amenable to analytic and numerical
study than the original fermion theory.

The resulting semiclassical equations are obtained in
Section IV and we study their static solutions in some
detail in Section V, paying attention both to the black
hole region, where we find a spacelike singularity, and to
the exterior region, where there is an outgoing flux of
charged particles due to pair-production in the electric
field of the black hole.

We also consider maximally charged solutions for a
given black hole mass and contrast their Schwarzschild
like geometry against that of extremal black holes in the

http://arXiv.org/abs/hep-th/0604041v2
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FIG. 1: The Penrose diagram of a classical 1 + 1-dimensional
charged black hole is the same as for a Reissner-Nordström
black hole in 3 + 1 dimensions. The thick lines represent the
timelike singularities and the dashed lines are the horizons.
The structure repeats itself in the vertical direction.

FIG. 2: The Penrose diagram for a semiclassical charged
black hole in 1+1 dimensions is the same as that of a 3+1-
dimensional Schwarzschild black hole.

classical theory.
In Section VI we turn to the study of gravitational col-

lapse in the semiclassical model. We describe a leap-frog
algorithm that is well adapted to problems of this kind
and present numerical results that show the formation of
a spacelike singularity inside a single apparent horizon.

Finally, we consider gravitational collapse in the limit
of vanishing black hole mass and observe a form of Chop-
tuik scaling [10].

II. CLASSICAL THEORY

Let us begin by describing classical black hole solutions
of 1+1-dimensional dilaton gravity coupled to an abelian
gauge field. The classical action is given by

Sdg =

∫

d2x
√−ge−2φ

[

R+ 4(∇φ)2 + 4λ2 − 1

4
F 2

]

.

(1)
The overall factor of e−2φ in front tells us that the
strength of both the gravitational coupling and the gauge
coupling is governed by the dilaton field.

This 1+1-dimensional theory can be obtained by

spherical reduction of 3+1-dimensional dilaton gravity
in the background of an extremal magnetically charged
black hole [11, 12, 13]. In what follows we are mostly in-
terested in the 1+1-dimensional theory in its own right as
a simplified model of gravity but the higher-dimensional
interpretation sheds light on some aspects of the physics.

The action (1) inherits a mass scale λ from the 3+1-
dimensional theory, which is proportional to the inverse
of the magnetic charge of the extremal dilaton black hole.
In the following we use units where λ = 1. The area of
the transverse two-sphere in the Einstein frame in 3+1
dimensions is proportional to ψ ≡ e−2φ, and hence we
refer to ψ as the area function.

In order to study the formation of charged black holes
in our 1+1-dimensional world, we have to add some form
of charged matter to the theory. The detailed form of
the matter action is not needed for this preliminary dis-
cussion and will be specified later on.

The classical equations of motion are

1

4
R+ ∇2φ− (∇φ)2 + 1 =

1

16
FµνF

µν , (2)

∇µ∇νφ+ gµν((∇φ)2 −∇2φ− 1) =

1

4
(FµλF

λ
ν − 1

4
gµνFλσF

λσ) +
e2φ

2
Tm

µν , (3)

∇ν(e−2φF νµ) = jµ, (4)

where jµ and Tm
µν are components of the matter current

and energy-momentum tensor, whose form depends on
the matter system in question. The vacuum equations,
with jµ = Tm

µν = 0, have a two-parameter family of static
solutions

φ = −x, (5)

ds2 = −a(x)dt2 +
1

a(x)
dx2, (6)

Ftx = Qe−2x, (7)

where

a(x) = 1 −Me−2x +
1

8
Q2e−4x. (8)

In this coordinate system the dilaton field depends lin-
early on the spatial coordinate. The metric approaches
the two-dimensional Minkowski metric and the coupling
strength eφ goes to zero in the asymptotic region x→ ∞.
The electromagnetic field Ftx also goes to zero asymptoti-
cally. Its 3+1-dimensional origins are reflected in the fact
that it goes as the inverse of the transverse area.

Horizons occur at zeroes of the metric function a(x).
Thus the nature of the solution in the interior region de-
pends on the constants M and Q, the mass and charge of
the geometry. Just as in the 3+1-dimensional Reissner-
Nordström solution, there are three cases to consider for
a given |Q| > 0:

• M > |Q|/
√

2: A charged black hole with two sepa-
rate horizons,
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• M = |Q|/
√

2: An extremal black hole where the
two horizons coincide,

• M < |Q|/
√

2: A naked singularity.

We will focus on black holes with M ≥ |Q|/
√

2. In this
case a(x) has two zeroes where the area function ψ takes
the values

ψ± =
1

2

(

M ±
√

M2 − 1

2
Q2

)

. (9)

This relation can equivalently be written

M = ψ+ + ψ−, (10)

Q2 = 8ψ+ψ−. (11)

The metric (6) is singular at ψ = ψ+ but, since the
spacetime curvature is finite there, this signals the break-
down of the linear dilaton coordinate system rather than
a problem with the geometry itself. It is straightforward
to find new coordinates which describe the solution in
the interior region where ψ < ψ+. A standard Kruskal-
like extension results in the Penrose diagram in Figure 1,
which is identical to that of a 3+1-dimensional Reissner-
Nordström black hole. We will not work out that ex-
tension here but rather use variables that turn out to be
convenient when we generalize our equations to include
semiclassical effects.

In two dimensions we can write Fµν = fεµν , where
f is a scalar field and εµν is an antisymmetric tensor,
related to the Levi-Civita tensor density by

εµν =
ǫµν

√−g . (12)

We work in conformal gauge

ds2 = e2ρ(−dt2 + dσ2) (13)

and look for static solutions with jµ = Tm
µν = 0. The

classical equations reduce to

φ′′ − 2ρ′φ′ = 0, (14)

φ′′ − ρ′′ +
1

2
f2e2ρ = 0, (15)

φ′ρ′ − φ′2 + (1 − 1

8
f2)e2ρ = 0, (16)

(fe−2φ)′ = 0, (17)

where prime denotes d
dσ . The Maxwell equation (17)

allows us to eliminate the gauge field in favor of the area
function,

f =
Q

ψ
, (18)

with the black hole charge Q appearing as an integration
constant. The electric field at the event horizon f |H ≡ f+
is given by

f+ =
Q

ψ+
=

√

8ψ−

ψ+
, (19)

where we have used Q2 = 8ψ+ψ−. Similarly, the electric
field at the inner horizon is

f− =
Q

ψ−

=

√

8ψ+

ψ−

. (20)

We note that the field at either horizon does not depend
on the two black hole parameters independently but only
on their ratio Q/M . Furthermore, the field at the inner

horizon is bounded from below, f− >
√

8, for all classical
black holes in this model.

Now introduce ξ = e2(ρ−φ) and define a new spatial
coordinate y via dy = ξdσ. The remaining classical equa-
tions take a particularly simple form when expressed in
terms of ψ and ξ,

ψ̈ = 0, (21)

ξ̈ =
8ψ+ψ−

ψ3
, (22)

ξ̇ψ̇ = 4(1 − ψ+ψ−

ψ2
), (23)

where the dot denotes d
dy . For a charged black hole these

equations are valid outside the outer horizon and inside
the inner horizon. In the region between the two horizons
the y coordinate is timelike and the left hand sides of
equations (21)-(23) change sign.

The solution for a charged black hole, shown in Fig-
ure 3a, is given by

ψ(y) = ψ+ + αy, (24)

ξ(y) =
4

α2

∣

∣

∣

∣

αy +
ψ+ψ−

ψ+ + αy
− ψ−

∣

∣

∣

∣

, (25)

where α > 0 sets the scale of the y coordinate and we
have placed the origin y = 0 at the outer horizon. The
absolute value sign accommodates the sign-flip in equa-
tions (21)-(23) in the region between the two horizons.
In the asymptotic region y → ∞ the conformal factor of
the metric approaches a constant value e2ρ → 4/α2 and
the spacetime curvature goes to zero. If we require the
metric to approach the standard Minkowski metric the
scale parameter is fixed at α = 2. It turns out to be con-
venient, however, to allow for general α in the classical
solution when comparing to semiclassical results.

The area function goes to zero at y = −ψ+/α. This
is a curvature singularity and the solution cannot be ex-
tended any further.

In the extremal limit we have ψ+ = ψ− = M/2 and
the above solution reduces to

ψ(y) =
M

2
+ αy, (26)

ξ(y) =
8y2

M + 2αy
. (27)

In this case there is a double horizon at y = 0 and a
curvature singularity at y = −M/2α. The electric field at
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(a) (b)

FIG. 3: (a) ψ and ξ plotted as a function of y for a classical
black hole solution. The two horizons are at the zeroes of ξ
and the curvature singularity is where ψ goes to zero. (b) In
the extremal limit ξ has a double zero at y = 0 and the two
horizons coincide.

the double horizon of an extremal black hole is fH =
√

8
for all values of M . The extremal solution is shown in
Figure 3(b).

In the limit of neutral black hole we instead have ψ+ =
M , ψ− = 0 and the classical solution takes the following
simple form,

ψ(y) = M + αy, ξ(y) =
4

α
|y|. (28)

In this case there is only one horizon and the curvature
singularity at y = −M/α is spacelike.

So far, we have only considered static classical solu-
tions. In order to study charged black hole formation
one would couple the dilaton gravity and gauge field to
some form of charged matter and look for solutions of
the classical equations of motion (2)–(4) with incoming
matter energy and current. As far as we know, no closed
form dynamical solutions to these equations exist. This
is perhaps not surprising given that the system is known
to exhibit intricate dynamical behavior, including a two-
dimensional version of mass inflation [14, 15, 16]. In the
following section we couple the theory to charged mat-
ter but we do not pursue the problem of classical gravi-
tational collapse. Instead we go on to include quantum
effects in the form of pair-production of charged particles
and then study the resulting semiclassical equations.

III. COUPLING TO CHARGED MATTER

In order to study the effect of Schwinger pair-
production we add matter in the form of a 1+1-

dimensional Dirac fermion Ψ =

(

ψL

ψR

)

to the theory,

Sm =

∫

d2x
√−g

[

iΨ̄γµ(Dµ + ieAµ)Ψ −mΨ̄Ψ
]

(29)

where e and m are the charge and mass of our ‘electrons’,
and Dµ = ∂µ + i

2Jabω
ab

µ denotes a covariant derivative

acting on 1+1-dimensional spinors. With this matter
sector, our model can be viewed as a generalization to
include gravitational effects in the ‘linear dilaton elec-
trodynamics’ developed in [17, 18, 19]. The current and
energy-momentum carried by the fermions are given by

jµ = eΨ̄γµΨ (30)

Tµν =
i

4
Ψ̄(γµDν + γνDµ)Ψ

− 1

2
gµν(iΨ̄γλ(Dλ + ieAλ)Ψ −mΨ̄Ψ) (31)

We could in principle look for dynamical solutions of the
combined fermion and dilaton gravity system that de-
scribe classical black hole formation by an incoming flux
of fermions. Our main interest is, however, in semiclassi-
cal geometries, with the back-reaction due to Schwinger
pair-creation taken into account and this requires a dif-
ferent approach.

The key to including pair-creation is provided by the
quantum equivalence between fermions and bosons in
1+1 dimensions. The massive Schwinger model, i.e.

quantum electrodynamics of a massive Dirac particle in
1+1 dimensions, is equivalent to a bosonic theory with
a Sine-Gordon interaction [20, 21]. In flat spacetime
the identification between the fermion field and com-
posite operators of a real boson field Z is well known
[20, 21]. This identification carries over to curved space-
time, with appropriate replacement of derivatives by co-
variant derivatives, as long as the gravitational field is
slowly varying on the microscopic length scale of the mat-
ter system. The description in terms of bosons will break
down in regions where the curvature gets large on micro-
scopic length scales, i.e. near curvature singularities, but
in such regions any classical or semiclassical description
will be inadequate anyway.

In terms of the bosonic field the matter current is given
by

jµ =
e√
π
εµν∇νZ, (32)

and the covariant effective action for the boson is

Sb =

∫

d2x
√−g

[

−1

2
(∇Z)2 − V (Z) − e√

4π
εµνFµνZ

]

,

(33)

where V (Z) = c em(1− cos(
√

4πZ)), with c a numerical
constant whose precise value does not affect our consid-
erations. In order to model real electrons our fermions
should have a large charge-to-mass ratio. In this case the
fermion system is highly quantum mechanical but, since
the fermion-boson equivalence in 1+1 dimensions is an
example of a strong/weak coupling duality, the boson
system is classical precisely when m≪ e. For simplicity,
we set m = 0 in most of what follows, but our numerical
results below include runs with m > 0.
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IV. SEMICLASSICAL EQUATIONS

We obtain the semiclassical geometry of a two-
dimensional black hole by solving the equations of motion
of the combined boson and dilaton gravity system, (1)
and (33). We consider both dynamical collapse solutions
and static solutions that describe eternal black holes. For
the dynamical solutions it is convenient to work in con-
formal gauge with null coordinates ds2 = −e2ρdσ+dσ−.
Writing Fµν = fεµν as before, the Maxwell equation (4),
including the bosonized matter current (32), becomes

∂±(e−2φf +
e√
π
Z) = 0. (34)

Once again the gauge field can be eliminated,

f =
1

ψ

(

− e√
π
Z + q

)

. (35)

By comparing to the classical result (18) we see that the
value of the bosonic field Z at a given spatial location de-
termines the amount of electric charge to the left of that
location, or ‘inside’ it from the 3+1-dimensional point of
view. There is also an integration constant q that repre-
sents a background charge located at the strong coupling
end of the one-dimensional space. In the following we will
set q = 0. This is natural when we consider gravitational
collapse of charged matter into an initial vacuum config-
uration. Furthermore, if we assume that the background
charge q is an integer multiple of the fundamental charge
e carried by our fermions, then it can be set to zero by a
symmetry of the semiclassical equations under a discrete
shift of Z by

√
π times an integer. For m = 0 the shift

symmetry becomes continuous and in that case an arbi-
trary background charge, and not just integer multiples
of e, can be absorbed by a shift of Z. For convenience
we adopt units in which e = 1 in the remainder of this
paper.

We now insert expression (35) for the gauge field, with
q = 0 and e = 1, into the remaining semiclassical equa-
tions. They are somewhat simplified if we introduce
θ = 2(ρ−φ) and work with the area function ψ instead of
the dilaton field itself. The resulting system of equations
is

− 4∂+∂−ψ =

(

4 − Z2

2πψ2

)

eθ − V (Z)eθ

ψ
, (36)

−4∂+∂−θ =
Z2eθ

πψ3
+
V (Z)eθ

ψ2
, (37)

−4∂+∂−Z =
Zeθ

πψ2
+
V ′(Z)eθ

ψ
, (38)

along with two constraints

∂2
±ψ − ∂±θ∂±ψ = −1

2
(∂±Z)2. (39)

Equations (36)–(39) can be solved numerically with
initial data that describes charged matter undergoing

gravitational collapse. In section VI we employ a finite
difference algorithm to study this process but let us first
consider the simpler problem of static solutions of the
semiclassical equations that describe eternal black holes.

V. STATIC BLACK HOLES

For static configurations of the semiclassical equations
(36)–(39) we require the fields to depend only on the
spatial variable σ = 1

2 (σ+−σ−). To study such solutions

we proceed as in the classical theory, writing ξ = eθ and
defining a new spatial coordinate via dy = ξdσ. Outside
the event horizon the semiclassical equations (36)–(37)
reduce to

ξψ̈ + ξ̇ψ̇ = 4 − Z2

2πψ2
− V (Z)

ψ
, (40)

ξ̈ =
Z2

πψ3
+
V (Z)

ψ2
, (41)

ξZ̈ + ξ̇Ż =
Z

πψ2
+
V ′(Z)

ψ
, (42)

where the dots once again denote derivatives with respect
to y. The constraints (39) become

ψ̈ +
1

2
(Ż)2 = 0. (43)

At first sight, it appears that we have four equations for
only three fields, but the equations are not independent.
Inserting (43) into (40) gives

−1

2
ξŻ2 + ξ̇ψ̇ = 4 − Z2

2πψ2
− V (Z)

ψ
, (44)

which is easily seen to be a first integral of equations
(41)–(43).

Inside the event horizon y becomes timelike which
means that the derivative terms in equations (40)–(42)
change sign in that region.

− ξψ̈ − ξ̇ψ̇ = 4 − Z2

2πψ2
− V (Z)

ψ
, (45)

−ξ̈ =
Z2

πψ3
+
V (Z)

ψ2
, (46)

−ξZ̈ − ξ̇Ż =
Z

πψ2
+
V ′(Z)

ψ
, (47)

The semiclassical equations are more complicated than
the classical ones and explicit analytic solutions are not
available. They can, however, be integrated numerically
to obtain information about the semiclassical geometry
of charged black holes.

A. Numerical black hole solutions

In order to find a numerical black hole solution which
is well behaved at the event horizon we start our integra-
tion at y = 0 and set ξ(0) = 0. Different black holes are
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Z

ξ

ψ

ξ

ψ

(a) (b)

FIG. 4: (a) ψ, ξ, and Z plotted as a function of y for a
semiclassical black hole. The inner horizon of the classical
solution is replaced by a singularity where ψ, ξ, and Z all
approach zero. (b) A corresponding plot for a classical black
hole solution, repeated from Figure 3 for comparison.

parametrised by the initial values Z(0) and ψ(0). Second
order equations also require initial values for first deriva-
tives of the fields. The choice of ξ̇(0) does not affect the
geometry but instead sets the scale of the spatial coordi-
nate y. The remaining two initial values are provided by
the equations themselves when we impose the condition
that the solution be regular at the event horizon [22]. By
setting ξ(0) = 0 in equations (40) and (42) for the ex-
terior solution (equations (45) and (47) for the interior

solution) while requiring that ψ̈ and Z̈ are finite at y = 0,
we obtain

ψ̇(0) =
1

|ξ̇(0)|

(

4 − Z(0)2

2πψ(0)2
− V (Z(0))

ψ(0)

)

, (48)

Ż(0) =
1

|ξ̇(0)|

(

Z(0)

πψ(0)2
+
V ′(Z(0))

ψ(0)

)

. (49)

The exterior solution is found by starting with these ini-
tial values at the black hole horizon at y = 0 for some
ξ̇(0) > 0 and integrating equations (40)-(42) numerically
towards y > 0. For the integration into the black hole
we instead use equations (45)-(47) and change the sign

of ξ̇(0).

Typical numerical results for massless matter are
shown in Figure 4a. We have also numerically integrated
the equations with a non-vanishing fermion mass m and
find the same qualitative behavior for small m. For large
values of m the bosonic theory is strongly coupled and
our semiclassical equations can no longer be trusted.

The scalar fields ψ and Z extend smoothly through
the horizon at y = 0, while ξ goes to zero there and ξ̇
changes sign, as in the classical theory. Away from the
horizon we see important departures from the classical
solution. We will discuss the exterior region below but
let us first consider the interior of the black hole where
the semiclassical solution is dramatically different from
the classical geometry.

−y0

Z

−y0

Z

(a) (b)

FIG. 5: Two cases in which the sign change of equation (52)
occurs. (a) The field Z has a local minimum at some y in the
interval −y0 < y < 0, or (b) the field Z goes through zero at
some y in the same interval.

B. Black hole region

In the classical black hole solution (24)–(25) the area
function ψ goes linearly to zero with negative y inside
the event horizon. The falloff of ψ is more rapid in the
corresponding semiclassical solution. This can be traced
to pair-creation of charged fermions in the black hole in-
terior, which causes the amplitude of the bosonized mat-
ter field to decrease as we go deeper into the black hole.
From the constraint equation (43) we see that ψ is a con-
cave function and any variation in Z serves to focus it
towards zero. The conformal factor of the metric is con-
tained in the ξ field. Inside the event horizon at y < 0
the left hand side of (41) changes sign and as a result the
ξ field is also concave in this region. Initially, ξ grows
away from zero at the horizon as we go towards negative
y but eventually it turns over and approaches zero again
at a finite negative value y = −y0.

This second zero of ξ does not correspond to a smooth
inner horizon, as can be seen from the following argu-
ment. Finiteness of ψ̈ and Z̈ at y = −y0 would require

ψ̇(−y0) = − 1

ξ̇(−y0)

(

4 − Z(−y0)2
2πψ(−y0)2

)

, (50)

Ż(−y0) = − 1

ξ̇(−y0)

(

Z(−y0)
πψ(−y0)2

)

, (51)

where we have set the fermion mass m to zero for sim-
plicity. Since ξ̇(−y0) > 0 as y → −y0 it follows from
equation (51) that

d

dy
log |Z| < 0, as y → −y0, (52)

while the same quantity is positive at y = 0. This sign
change can occur in one of two ways, shown in Figure 5.
Assuming Z(0) > 0 (a parallel argument can be given
for Z(0) < 0) we either have a local minimum of Z at
some y in the interval −y0 < y < 0, as in Figure 5a,
or Z goes through zero at some y in the same interval,
as in Figure 5b. A local minimum for Z is easily ruled
out. Inserting Ż = 0 into equation (47) with Z > 0 we

find that Z̈ < 0, which corresponds to a local maximum
rather than a minimum. The other possibility, i.e. Z go-
ing through zero, can be eliminated on physical grounds,
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because it would correspond to the charge inside a given
location changing sign. Screening due to pair production
will reduce the charge as one goes deeper into the black
hole but cannot change its sign. We cannot rule out that
non-linear effects in a strong coupling region close to a
curvature singularity could reverse the sign of Z, but the
above argument does rule out the possibility of having
an inner horizon with macroscopic area.

We conclude from this that the solution will not be
smooth as ξ → 0 inside the black hole and this is borne
out by our numerical calculations. We find that all the
fields ξ, ψ and Z are simultaneously driven to zero while
their derivatives become large. The Ricci scalar

R = −ξψ̈ − ξ̇ψ̇ + ξ̈ψ +
ξψ̇2

ψ2
, (53)

evaluated for the numerical solution, increases rapidly as
we approach the singular point. This indicates that the
classical inner horizon is replaced by a curvature singu-
larity at the semiclassical level. The numerical solution
breaks down before an actual singularity is reached, but
as far as the numerical evidence goes, it indicates that
the singularity is spacelike. In section VI we will present
numerical evidence that the singularity formed in dynam-
ical gravitational collapse in this model is also spacelike.

We have found a two-parameter family of singular scal-
ing solutions, which is a candidate for the final approach
to the singularity,

ψ(y) = A(y + y0)[− log(y + y0)]
a, (54)

ξ(y) =
4

πA2
[− log(y + y0)]

−2a, (55)

Z(y) = ±
√

8aA(y + y0)
1/2[− log(y + y0)]

(a−1)/2,(56)

Here y = −y0 is the coordinate location of the singularity,
which depends on the global coordinate scale set by ξ̇(0)
in equations (48) and (49). We emphasize that this sin-
gular solution is at best asymptotic to the true solutions
near the singularity, since it only equates the most singu-
lar terms in the semiclassical equations, leaving behind
terms that are sub-leading but nevertheless divergent.
The neglected sub-leading terms are only logarithmically
suppressed compared to the leading terms and this means
that we are unable to match our numerical solution onto
the proposed scaling solution. A successful match would
either involve following the numerical solution extremely
close to the singularity, far beyond presently attainable
numerical precision, or working out several subleading or-
ders in the scaling solution, which is beyond our analytic
perseverance. In the absence of successful matching we
can only tentatively claim that our scaling solution cor-
rectly describes the geometry near the singularity, but let
us nevertheless investigate some of its properties.

The Ricci scalar (53) is easily seen to diverge as y →
−y0 in the scaling solution (54)–(56) so the singular point
represents a true curvature singularity. The singularity
is in fact strong, in the sense that not only does the cur-
vature itself blow up there but also its integral along a

timelike geodesic approaching y = −y0. This indicates
that both the tidal force acting on an extended observer
and the integrated tidal force will diverge as the singu-
larity is approached.

The conformal factor of the metric, which is given
by the ratio ξ/ψ, diverges as y → −y0. A singularity
described by equations (54)–(56) is therefore spacelike
rather than null. The area function ψ goes to zero as the
singularity is approached in both the numerical solution
and our proposed scaling solution. This means that the
gravitational sector becomes infinitely strongly coupled
at the curvature singularity.

C. Exterior region

The spacelike singularity encountered in the black hole
interior is the most important feature of our semiclassical
solutions but it is useful to consider also the region far
away from the black hole. Understanding the asymptotic
behavior of the solutions provides a check on our formal-
ism. In this region the coupling strength eφ goes to zero
and the gravitational fields ψ and ξ should approach clas-
sical behavior. Both ψ and ξ grow linearly with y in the
classical solution (24)–(25). The corresponding semiclas-
sical fields also grow linearly at large y but have addi-
tional logarithmic terms. The static equations (40)–(43)
are solved to leading order at large y by

Z(y) = Z0 log(αy) + · · · (57)

ψ(y) = αy +
Z2

0

2
log(αy) + · · · (58)

ξ(y) =
4

α
y + ξ0 log(αy) + · · · (59)

where the · · · denote terms that are constant or vanish
in the limit.

As a result of the logarithmic growth of Z there is a
non-vanishing energy density in matter in the asymptotic
region and, via equation (32), a finite electric charge den-
sity also. The ADM total mass and total charge of these
black hole geometries are therefore infinite. At first sight,
one might expect that an infinite amount of matter en-
ergy will collapse the geometry, but the gravitational cou-
pling goes to zero in the asymptotic region so the matter
in fact decouples from the gravitational sector. In two
spacetime dimensions we can interpret a non-vanishing
asymptotic energy density of massless matter in a static
solution in terms of balanced incoming and outgoing en-
ergy fluxes carried by particles in the limit of zero mo-
mentum [23]. In our case, the elementary fermions carry
electric charge so there is also a balance between outgoing
and incoming electric flux.

The outgoing flux is due to pair-production in the elec-
tric field outside the event horizon of the black hole. Par-
ticles carrying charge of opposite sign to that of the black
hole are electrically attracted to the hole while same sign
charges are repelled. This leads to a net flow of charge
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FIG. 6: (a) The asymptotic energy density ε as a function
of the electric field at the horizon f(0). (b) The asymp-
totic energy density ε as a function of ψ(0) for four values
of f(0)/

√

8 = 0.2, 0.4, 0.6, 0.8.

and energy away from the black hole but since we are
considering static solutions this flow is balanced by an
equal influx from an external source at infinity. This is
reminiscent of the so-called quantum black hole solutions
of [22] and the interpretation is similar, except in that
case the outgoing energy flux at infinity is in the form of
Hawking radiation rather than charged particles formed
by pair-production.

The asymptotic matter energy density, measured with
respect to an asymptotically Minkowskian coordinate
frame, is given by

ε = lim
y→∞

1

2
ψξ

(

dZ

dy

)2

, (60)

which reduces to ε = 2Z2
0 for the semiclassical fields in

equations (57)–(59). The value of ε for a given semi-
classical black hole is easily obtained from the numerical
solution and the results are plotted in Figure 6. The data
clearly show that the energy density depends on the elec-
tric field at the black hole horizon but is independent of
the overall size of the black hole for a fixed electric field.
We are using equation (35) to define the electric field
strength at the horizon as [37]

f(0) =
Z(0)√
πψ(0)

. (61)

For massless fermions the exponential suppression of
Schwinger pair-production is absent and the pair pro-
duction rate per proper volume depends on the electric
field strength as a power law. In two spacetime dimen-
sions this dependence is linear but this is only part of
the story. Particles are created at every distance from
the black hole, although most of them come from near
the horizon where the electric field is strongest, and those
particles that carry the same sign charge as the black hole
are then accelerated out to infinity by the electric field.
These particles, along with a corresponding influx of en-
ergetic particles to maintain the static nature of the so-
lution, make up the asymptotic matter energy density ε.
The dots in Figure 6(a) are results from numerical inte-
grations while the solid line is given by a curve ε ∼ f(0)2.
The close fit shows that the energy density at infinity goes
like the electric field strength at the horizon squared.

D. Maximally charged black holes

At the classical level the extremal black hole of mass
M carries the maximum possible charge for a black hole
of that mass. Adding more charge, keeping the mass
fixed, results in a naked singularity instead of a black
hole. The geometry of an extremal black hole is qualita-
tively different from that of a non-extremal black hole in
the classical theory. The two horizons have merged into
a double horizon which is located at infinite proper dis-
tance from fiducial observers outside the black hole. This
picture is modified in the semiclassical theory with m = 0
where we find that there is again a maximum charge that
can by carried by a black hole of a given mass but the
corresponding geometry is not extremal.

The absence of extremal black holes is explained by the
screening effect of charged pairs produced in the elec-
tric field outside the black hole. Recall from equation
(43) that ψ is a concave function of y and in order for
the spacetime to be asymptotically flat ψ must remain a
growing function of y in the asymptotic region y → ∞.
If the charge-to-mass ratio of the semiclassical black hole
becomes too large the solution collapses to ψ = 0 at a
finite distance outside the horizon and the geometry is no
longer that of a black hole. This is most conveniently an-
alyzed in terms of the electric field at the black hole hori-
zon, f(0), which is bounded from above in the classical

limit by the field of an extremal black hole, f(0) ≤
√

8. A
close look at our numerical solutions reveals that ψ will
collapse far away from the black hole unless the electric
field at the horizon satisfies

f(0)√
8
< 1 − 1

8πψ(0)
+ O

(

1

ψ(0)2

)

, (62)

which is lower than the classical maximum. By looking
at equation (48) for m = 0 (and therefore V (Z) = 0) we

see that ψ̇(0) > 0 for all f(0) <
√

8 but if the electric



9

u
v

kin
k p

ro
file

vacuum

collapse
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field at the horizon is in the range

1 − 1

8πψ(0)
+ O

(

1

ψ(0)2

)

<
f(0)√

8
< 1 (63)

for large ψ(0), then ψ̇ changes sign at some y > 0 and
the solution collapses to ψ = 0.

The interior geometry of any semiclassical black hole,
for which the electric field at the horizon is below the
maximal value in equation (62), looks like the typical
solution in Figure 3(b). In particular there is no sign of
the double horizon of the classical extremal black hole
in Figure 4(b). We conclude that the energy density of
pair-created particles outside a two-dimensional charged
black hole will collapse the geometry before the extremal
limit is reached.

VI. DYNAMICAL COLLAPSE

In this section, we study the problem of dynamical
collapse of a charged matter distribution by solving the
semiclassical equations (36)–(39) numerically. It is the
internal structure of the resulting black hole that is of
prime interest to us. We must therefore choose our co-
ordinate system carefully (it should penetrate horizons)
and select a numerical method which avoids propagat-
ing information faster than true characteristic speed of
the equations. We employ a grid based on double-null
coordinates (u, v) and discretize the second-order equa-
tions of motion (36)–(38) using a variation of a leapfrog
algorithm.

The initial data for the null Cauchy problem is speci-
fied by providing the values of the functions ψ, θ, and Z
on a double-null wedge, as shown in Figure 7. Only one
of the three functions is physical and we have chosen this
to be the bosonized matter field Z. The area function ψ
can be fixed by a choice of null coordinate parametriza-
tion on the initial wedge and then the remaining function

hr

uplt

rtdn

1

2

FIG. 8: The numerical evolution scheme is a a staggered grid
leapfrog.

θ is determined by solving the constraint equation (39).
The physical initial condition is the initial incoming

charge distribution Z, which we take to be a smooth
kink profile

Z(0, v) =
Q

2

[

tanh
(

w tanπ
(

v−v1

v2−v1

− 1
2

)

)

+ 1
]

(64)

collapsing into a previously empty spacetime with
Z(u, 0) = 0, as illustrated by Figure 7. The kink in the
profile is localized between v1 and v2. It carries a total
charge Q and an energy density determined by its gradi-
ent squared, so the total mass scales roughly as Q2w.

The null coordinate choice is effectively given by a
choice of ψ profile on the initial wedge. As the vacuum
solution takes a particularly simple form in a gauge

ψ(u, v) = −(u− u0)(v − v0), θ(u, v) = 0, (65)

one is tempted to take ψ(u, 0) and ψ(0, v) as linear func-
tions of u and v respectively. However, in order to
cover the entire spacetime by a finite grid, we compact-
ify the v coordinate by taking, for example, ψ(0, v) =
ψ0 + α tan kv. Here v runs over the range [0, 1] and the
parameter k < π/2 provides a regulator for ψ as v → 1.
On the other hand, we leave ψ(u, 0) linear in u. With in-
coming matter we expect a curvature singularity to form
at ψ = 0 and since ψ(u, 0) has a zero at a finite advanced
time u = u0 there is no need to compactify the u coordi-
nate.

The remaining function θ is determined by fourth or-
der fixed step Runge-Kutta integration of the constraint
equation (39) on the initial slice u = 0. We also integrate
∂u and ∂uu derivatives, which are then used to jump-start
the two-dimensional evolution.

The numerical evolution scheme is a leapfrog algorithm
on a staggered grid, which is illustrated by Figure 8. The
values of functions at a given u are stored in an array,
and are propagated to the next time step u + ǫ using
the equations of motion, except for the leftmost values,
which are filled in using the vacuum initial conditions at
v = 0. The differential operators on the left hand sides
of equations (36)–(38) are discretized as

−∂u∂vX =
1

ǫ2
(Xlt +Xrt −Xdn −Xup), (66)
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which gives a second order accurate expression in the
center of the cell formed by Xlt, Xup, Xdn, and Xrt. This
is why the staggered grid was chosen – it provides the
values of the fields at the correct location for evaluation
of the right hand sides. One can think of the staggered
grid as a square grid rotated by forty five degrees. Then
the discretization (66) is readily recognized as the usual
leapfrog discretization of the wave operator −∂2

t + ∂2
x.

A. Numerical results

We now present results obtained from numerical evo-
lution using the above algorithm and initial data of the
type shown in Figure 7. The results are exhibited as
density plots of the various fields with shading intensity
giving the value of the field in question. To facilitate the
interpretation of the numerical data we indicate curva-
ture singularities in the plots by thick black curves and
apparent horizons by thin black curves. The local condi-
tion for a future trapped event is that the area function
be decreasing along both future null directions,

∂±ψ < 0. (67)

The apparent horizon is located at the boundary of such
a region, i.e. where ∂+ψ = 0 or ∂−ψ = 0 [24].

Figure 9(a) shows the charge distribution Z(u, v) in a
spacetime where matter in the form of massless fermions
undergoes gravitational collapse. Observe how Z → 0
deep inside the black hole, which can be attributed to
charge screening due to fermion pair production. One
can also see the (slow) discharge of a black hole by pair
production at the horizon. The shading scheme is ex-
aggerated to show this more clearly. For comparison,
Figure 9(b) shows the collapse resulting from the same
initial conditions, but for massive fermions. In this case,
the charge penetrates deeper into the black hole before
pair production can screen it efficiently. The geometry of
the spacetime is not substantially different for the mass-
less and massive cases and is only shown for the former.
Figure 9(c) depicts the dilaton field ψ(u, v), while Fig-
ure 9(d) shows the scalar curvature R(u, v) with com-
pressed shading to span a huge range. From these plots
one clearly sees the formation of a spacelike curvature
singularity in the black hole interior and there is no in-
dication of a null singularity or a Cauchy horizon.

The white stripe preceding the singularity in the cur-
vature plot in Figure 9(d) is a region of negative curva-
ture, which the plot program treats as missing data. This
oscillation in the spacetime curvature is also seen in Fig-
ure 10 which shows the curvature along a profile at fixed
retarded time, v =constant. The figure is a log-log plot
of |R| against ψ along the profile and the middle hump
is in the region of negative curvature.

B. Scaling behavior

Rather remarkable critical behavior occurs at the onset
of black hole formation in gravitational collapse in clas-
sical Einstein gravity coupled to a massless scalar field
[10]. A sufficiently weak ingoing s-wave pulse reflects
from the origin without creating a black hole but above
a certain critical threshold, as the amplitude of the pulse
is increased, a black hole will form. Near this threshold
the black hole mass obeys a scaling law,

logM = γ log δ +O(δ0), (68)

where δ parametrizes the distance from the threshold in
the initial data and γ ≈ 0.37 is a scaling exponent ob-
tained from numerical data [10].

We have looked for analogous scaling behavior in the
formation of charged black holes in our semiclassical
model. Figure 11 shows the area of the apparent horizon
that forms in gravitational collapse of charged matter as
a function of the amplitude of the incoming kink profile.
A close look at the numerical data indicates that there
is indeed a threshold for black hole formation, which we
find by bisection. The data also suggest that black hole
formation turns on at finite size, which is reminiscent of
the Type I critical behaviour found in gravitational col-
lapse of a Yang-Mills field in Einstein gravity [25]. For a
super-critical collapse, the size of the black hole can be
fitted by a power law

ψAH ∝ (Z0 − Z∗)
γZ , (69)

where Z0 is the amplitude of the initial kink, and the
scaling exponent is

γZ = 1.85 ± 0.01 . (70)

We have also considered a family of initial data where the
width parameter w of the kink profile in equation (64)
is varied rather than its height. We again find scaling
behavior,

ψAH ∝ (w − w∗)
γw , (71)

but with a different scaling exponent

γw = 0.71 ± 0.03 , (72)

so it appears that the scaling exponent is not universal.
We should note that the best-fitting offset values Z∗ and
w∗ are substantially less than the actual threshold values.

By equation (35) the bosonized matter field Z deter-
mines the amount of charge to the left of, or inside, a
given location. It is therefore straightforward to con-
sider the initial black hole charge, which we define as
the charge inside the apparent horizon when the black
hole forms, for initial data in the scaling regime. The
results, presented in Figure 12, show more complicated
behavior than that of the black hole area. The black hole
charge appears to show an overall power-law scaling, but
the sign of the charge starts oscillating and the power-
law exponent steepens as the threshold is approached. It
would be interesting to understand this behavior better.
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(a) Z(u, v), m = 0 (b) Z(u, v), m = 0.05

(c) ψ(u, v), m = 0 (d) R(u, v), m = 0

FIG. 9: Density plots of the charge distribution Z(u, v) for the collapse of massless (a) and massive (b) fermions. The density
plots of (c) dilaton ψ(u, v) and (d) scalar curvature R(u, v) are for collapse of massless fermions. The corresponding plots for
collapse of massive fermions are not substantially different, and are not provided here. The singularity is shown by a thick
black line, while the thin line indicates the apparent horizon. The white stripe just below the singularity in (d) is region of
negative curvature.

VII. DISCUSSION

We have studied the geometry of charged black holes
in the context of a 1+1-dimensional model of dilaton

gravity with charged matter in the form of bosonized
fermions. At the classical level, the model has static
black hole solutions with a global causal structure identi-
cal to the four-dimensional Reissner-Nordström solution.



12

 1

 10000

 1e+08

 1e+12

 1e+16

 0.001  0.01  0.1  1  10

|R
|

ψ

FIG. 10: Spacetime curvature along a constant v profile that
runs into the black hole singularity.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01  0.1  1

ψ
A

H

Z0

th
re

sh
ol

d

FIG. 11: Scaling behavior of the area of the apparent horizon.
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FIG. 12: The absolute value of ZAH, the bosonized matter
field at the apparent horizon, in the scaling regime. The sign
of ZAH changes between adjacent humps in the graph.

When the quantum effect of pair-production of charged
particles is taken into account the classical inner horizon
is replaced by a spacelike singularity and the global struc-
ture of the spacetime geometry is that of an electrically
neutral black hole.

This result is based on a combination of numerical and
analytic analysis of semiclassical equations of motion,
both static and dynamical. The static solutions are being
constantly fed by an external source to balance quantum
mechanical black hole evaporation and discharge. The
dynamical solutions, on the other hand, describe the col-
lapse of charged matter into vacuum.

The strong form of the cosmic censor conjecture [26]
forbids naked singularities to be visible to any physical

observers, including ones who travel inside charged black
holes. Our semiclassical results clearly support strong
cosmic censorship, while its validity for charged black
holes in classical gravity is a delicate issue [4, 7].

We believe our two-dimensional model captures some
of the essential physics of this problem while leaving out
many of the complications of the full higher-dimensional
quantum gravity problem. The model is certainly not
without fault, it has no propagating gravitons or photons
and the electric field of a black hole only depends on the
charge to mass ratio of the black hole, but as far as we
know there exists no systematic treatment of quantum
effects, including pair-production of charged particles, for
higher-dimensional black holes.

Our results can be improved on in a number of ways.
For example, we have not included gravitational quan-
tum effects in our two-dimensional model in this paper.
There exists an extensive literature on semiclassical two-
dimensional dilaton gravity, including the Hawking effect
and its back-reaction on the geometry of neutral black
holes. For reviews see [27, 28, 29, 30, 31]. We expect
that gravitational back-reaction to Hawking radiation
will not change our main conclusion that the singularity
formed in the gravitational collapse of charged matter
is spacelike. Subtleties involving boundary conditions in
the strong coupling region complicate the problem but
a preliminary numerical study of charged black hole for-
mation, with the combined effect of pair-production and
electrically neutral Hawking emission included, confirms
this expectation [32]. Quantum effects due to electrically
neutral matter in a charged black hole spacetime have
been considered by a number of authors, see for example
[33, 34, 35, 36]. However, pair-production is not consid-
ered in these papers.

One might also worry about the phenomenological rel-
evance of charged black holes in general. It is after all
very unlikely that black holes carrying macroscopic elec-
tric charge are found in Nature. Solutions that describe
such objects do, however, exist in the theories we use to
describe Nature and they provide an important testbed
for theoretical ideas. Furthermore, issues of Cauchy hori-
zons and non-trivial global topology of spacetime also
arise in the context of rotating black holes, which pre-
sumably are the generic black holes of astrophysics.
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