
ar
X

iv
:1

10
3.

61
40

v2
  [

gr
-q

c]
  9

 A
pr

 2
01

1

Prepared for submission to JCAP

Is there life inside black holes?
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Abstract. Inside the rotating or charged black holes there are bound periodic planetary
orbits, which not coming out nor terminated at the central singularity. The stable periodic
orbits inside black holes exist even for photons. We call these bound orbits by the orbits of
the third kind, following to Chandrasekhar classification for particle orbits in the black hole
gravitational field. It is shown that an existence domain for the third kind orbits is a rather
spacious, and so there is a place for life inside the supermassive black holes in the galactic
nuclei. The advanced civilizations of the third kind (according to Kardashev classification)
may inhabit the interiors of supermassive black holes, being invisible from the outside and
basking as in the light of the central singularity and the orbital photons.
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1 Introduction

A voyage inside the Black Hole (BH) event horizon may finished after a finite proper time
of the traveler not in the central singularity, but again outside the event horizon. However,
it would not be a returning to the native universe, but emerging in the other universe due
to the complicated internal BH geometry [1–4]. Is it possible live too long inside the BH
by avoiding both the downfall to the central singularity and escaping to the other universe?
The answer is positive, if a target BH is rotating, charged and massive enough for weakening
to the acceptable level of tidal forces and radiation of gravitational waves. After traversing
the BH event horizon at radius r = r+, a traveler will appear in the T -region [5], where
his radial coordinate r is becoming the temporal one and inevitably diminishing toward the
central singularity. The irresistible infall in the T -region will finish soon after traversing the
inner Cauchy horizon at r = r− < r+, which is nonzero for the rotating or charged BH. The
internal space-time domain 0 < r < r− between the central singularity and the inner BH
horizon is the R-region, where the stationary observers may exist, just as anywhere at the
planet Earth. This internal BH domain, hidden by two horizons from the whole external
universe, is indeed a suitable place for save inhabitation. The only is needed, is to put your
vehicle or your planet to a stable periodic orbit inside BH. Below we discuss some specific
properties of stable periodic orbits of planets and photons inside the rotating charged BH,
described by the Kerr-Newman metric.

2 Stable periodic orbits inside BH

Subramanyan Chandrasekhar [6] designated two general types of particle orbits in the BH
gravitational field: orbits of the first kind, which completely confined outside the BH event
horizon, and orbits of the second kind, which penetrate inside the BH. We propose here to
distinguish also the orbits of the third kind, which are completely bounded inside the BH, not
escaping outside and nor infalling into the central singularity. The bound orbits of the third
kind inside the inner BH horizon were found by Jǐŕı Bičák, Zdeněk Stuchĺık and Vladimı́r
Balek [7, 8] for charged particles around the rotating charged BHs (see also [9, 10]) and by
Eva Hackmann, Claus Lämmerzahl, Valeria Kagramanova and Jutta Kunz [11] for neutral
particles around rotating BHs (see also [12]). The bound orbits of the third kind are periodic
and stable by neglecting the gravitational and electromagnetic radiation.
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Geodesics equations for the neutral test particles and photons and equations of motion
for the charged particles in the Kerr-Newman metric were derived by B. Carter [13]. Ac-
cording to these equations the motion of test particle with a mass µ and electric charge ǫ in
the background gravitational field of the BH with a mass M , angular momentum J = Ma
and electric charge e is completely defined by three integrals of motion: the total particle
energy E, the azimuthal component of the angular momentum L and the Carter constant Q,
related with a total angular momentum of the particle. The Carter constant is zero, Q = 0,
or trajectories confined in the BH equatorial plane. In particular, a total angular momentum
of the particle is

√

Q+ L2 in the case of nonrotating BH.
An orbital trajectory of test planet is governed in the Boyer-Lindquist coordinates

(t, r, θ, ϕ) by equations of motion [13, 14]:

ρ2
dr

dλ
= ±

√

Vr, (2.1)

ρ2
dθ

dλ
= ±

√

Vθ, (2.2)

ρ2
dϕ

dλ
= L sin−2 θ + a(∆−1P − E), (2.3)

ρ2
dt

dλ
= a(L− aE sin2 θ) + (r2 + a2)∆−1P, (2.4)

where λ = τ/µ, τ — is a proper time of particle and

Vr = P 2 −∆[µ2r2 + (L− aE)2 +Q], (2.5)

Vθ = Q− cos2 θ[a2(µ2 − E2) + L2 sin−2 θ], (2.6)

P = E(r2 + a2) + ǫer − aL, (2.7)

ρ2 = r2 + a2 cos2 θ, (2.8)

∆ = r2 − 2r + a2 + e2. (2.9)

We will use mainly the normalized dimensionless variables and parameters: r ⇒ r/M , a ⇒
a/M , e ⇒ e/M , ǫ ⇒ ǫ/µ, E ⇒ E/µ, L ⇒ L/(Mµ), Q ⇒ Q/(M2µ2). The radius of BH event
horizon r = r+ and the radius of BH inner horizon r = r− are both the roots of equation
∆ = 0: r± = 1±

√
1− a2 − e2.

The effective potentials Vr and Vθ in (2.5) and (2.6) define the motion of particles in r-
and θ-directions [14]. In particular, for a circular orbit at some radius r, equations (2.5) and
(2.6) give the conditions:

Vr(r) = 0, V ′

r (r) ≡
dVr

dr
= 0. (2.10)

The circular orbits would be stable if V ′′
r < 0, i. e. in the minimum of the effective potential.

In the case of rotating BH (with a 6= 0), the particle on the orbit with r = const may
additionally moving in the latitudinal θ-direction. These nonequatorial orbits are called
the spherical ones [15]. The purely circular orbits will correspond to the particular case of
spherical orbits with parameter Q = 0, completely confined in the BH equatorial plane.

2.1 Circular orbits inside nonrotating charged BH

We consider at first the Reissner-Nordström case of nonrotating charged BH. From the joint
resolution of equations (2.10) we find two pairs of solutions, respectively, for the energy E
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Figure 1. The stable periodic orbit of planet with a mass µ and charge ǫ = −1.45µ entirely inside the
BH with a mass M and charge e = 0.999M . Orbit parameters: E = 1.5µ, L = 0.2Mµ, azimuthal and
radial periods (Tϕ, Tr) = (14.9M, 7.17M), the perigee and apogee radii (rp, ra) = (0.19M, 0.92M).

and angular momentum L of massive particle with charge ǫ on the circular orbit with radius
r:

E1,2 =
±∆D1 − eǫ(r2 − 4r + 3e2)

2r(r2 − 3r + 2e2)
, (2.11)

L2
1,2 =

r2

r2 − 3r + 2e2

[

r − e2 +
eǫ∆(eǫ±D1)

2(r2 − 3r + 2e2)

]

. (2.12)

where
D2

1 = e2(ǫ2 + 8) + 4r(r − 3). (2.13)

The stability condition V ′′
r (r,E,L) < 0 for circular orbits inside the inner horizon, 0 < r < r−,

is satisfied for the first pair of solution (E1, L1, ) in equations (2.11) and (2.12), if ǫ > µ, and
for the second pair (E2, L2, ), if ǫ < −µ. In figure 1 is an example of the stable periodic orbit
of charged particle inside the nonrotating BH, calculated from equations (2.1) and (2.3), by
using a general formalism for motion in the central field [16].
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2.2 Spherical orbits of neutral particles inside BH

In the Kerr-Newman case the stable circular orbits (and also the stable spherical ones) exist
inside the inner horizon not only for charged particles, but also for neutral ones (ǫ = 0) and
photons (µ = 0). From equations (2.10) we find the corresponding two pairs of solutions
for energy E and azimuthal impact parameter b = L/E of neutral massive particle on the
spherical orbit:

E2
1,2 =

∓2D2 + β1r
2 + a2[2(r − e2)∆− r2(r − 1)2]Q

r4[(r2 − 3r + 2e2)2 − 4a2(r − e2)]
, (2.14)

b1,2 =
±D2r − a2(r − e2){β2r + [a2 − r(r − e2)]Q}

a(r − e2){r[(∆ − a2)2 − a2(r − e2)] + a2(1− r)Q} ,

where
β1 = (r2 − 3r + 2e2)(r2 − 2r + e2)2 − a2(r − e2)[r(3r − 5) + 2e2],

β2 = e4 − a2(r − e2) + 2e2r(r − 2)− r2(3r − 4), (2.15)

D2
2 = [a(r − e2)∆]2[(r − e2)r4 − r2(r2 − 3r + 2e2)Q+ a2Q2].

It can be verified that stable spherical orbits are realized for the first pair of solution (E1, b1)
with 0 < Q < Qmax, where Qmax is a root of the marginal stability equation V ′′

r = 0. All
spherical orbits with Q < 0 are unstable (see also [15]). The analogous formulae for spherical
orbits of the charged particles in the Kerr-Newman case are very cumbersome, and we not
reproduce them here.

2.3 Spherical orbits of photons inside BH

The spherical photon orbit correspond to the ultrarelativistic limit for massive particle energy
on the spherical orbit, E → ∞. This limit is equivalent to the case µ = 0. Photon orbit
depends on two parameters, the azimuthal impact parameter b = L/E and the latitudinal
(tangential) impact parameter q = Q/E2. Equations (2.14) in the ultrarelativistic limit are
very simplified:

b1 =
a2(1 + r) + r(r2 − 3r + 2e2)]

a(1 − r)
, b2 =

a2 + r2

a
, (2.16)

q1 =
r2[4a2(r − e2)− (r2 − 3r + 2e2)2]

a2(1− r)2
, q2 = − r4

a2
. (2.17)

Here the first pair of impact parameters, (b1, q1), corresponds to the stable spherical photon
orbits, while the second pair, (b2, q2), to the unstable ones. The stability condition V ′′

r ≤ 0
for spherical photons with the first pair of impact parameters (b1, q1) is written in the form

a2 + e2 − r(r2 − 3r + 3) ≤ 0. (2.18)

From here we find the upper limit of impact parameter q1 > 0 for stable spherical photons:

q1 ≤
(

1− δ1/3

a

)2

[3− 4e2 − 2(3 − 2e2)δ1/3 + 3δ2/3], (2.19)
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Figure 2. The stable periodic equatorial photon orbit with the impact parameter b = 1.53 inside the
BH with a = 0.75 and e = 0.6. Orbit parameters: (Tr, Tϕ) = (2.7, 2.1), (rp, ra) = (0.33, 0.61). The
external circle is the inner horizon with r = r−. Note that the equatorial photon, starting at azimuth
angle ϕ = 0, is orbiting in opposite direction with respect to BH rotation.

where δ = 1 − a2 − e2. The maximal allowable value for q1 is reached for the extreme BH
with a =

√
1− e2 ≤ 1/2, e ≤

√
3/2:

q1,max = 4− a−2 ≤ 3. (2.20)

In figure 2 is shown an example of stable periodic equatorial photon orbit inside the slightly
charged but near extremely rotating BH. Respectively, see in figures 3 and 4 the examples of
stable periodic planet and photon orbits inside a slightly charged but near extremely rotating
BH with the canonical specific angular momentum alim = 0.09982 due to untwisting by a
thin accretion disk [17].
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Figure 3. Outer curve: the stable periodic orbit of planet with orbital parameters (E,L,Q) =
(0.568, 1.13, 0.13), periods (Tϕ, Tr, Tθ) = (1.63, 3.70, 1.17), apogee and perigee radii (rp, ra) =
(0.32, 0.59) and the maximum angle of latitude elevation relative to the equatorial plane θmax = 14.6◦

inside the BH with a = 0.9982 and e = 0.05. Inner curve: the stable periodic nonequatorial photon or-
bit with orbit parameters: (b, q) = (1.38, 0.03), (Tϕ, Tr, Tθ) = (2.95, 0.49, 0.33), (rp, ra) = (0.14, 0.29)
and θmax = 10.1◦ inside the same BH. The starting parts of orbits are thin, while the ending parts
are thick

2.4 Circular orbits of photons inside BH

The spherical orbits become circular in the particular case of Q = 0. A corresponding relation
for circular photon orbits follows in the relativistic limit from equation (2.14) or from (2.16)
and (2.17):

4a2(r − e2) = (r2 − 3r + 2e2)2. (2.21)

with two possible solutions for impact parameter

b1,2 =
aβ2 ± r2

√

(r − e2)∆2

(r2 − 2r + e2)2 − a2(r − e2)
, (2.22)

where ∆ and β2 are, respectively, from (2.9) and (2.15). In (2.22) the first solution q1 (with
a plus sign) corresponds to the stable orbit, whereas q2 corresponds to the unstable one. See
in figure 5 the 3D domain of existence for the stable circular photons inside BH. These orbits
exist at e2 ≤ r ≤ (4/3)e2, a 6= 0, 0 < e ≤

√
3/2 and 0 < b < 5/2.

3 Conclusions

Inside the inner Cauchy horizon of rotating charged BH there are the stable periodic orbits
of particles (planets) and photons. In the case of nonrotating charged BH the stable periodic
orbits exist only for particles with a large enough charge. All stable periodic planet and
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Figure 4. The stable periodic orbits of photon and planet (shown in figure 3) viewed from the
coordinate frame north pole. The naked central singularity is glowing in the center. The starting
parts of orbits are thin and the finishing parts are thick.

photon orbits inside the rotating and noncharged BH are nonequatorial. The advanced
civilizations may live safely inside the supermassive BHs in the galactic nuclei without being
visible from outside. The naked central singularity illuminates the orbiting planets and
provide the energy supply needed for living. An additional highlighting at night come from
the eternally circulating photons. It worth to mention also some troubles (or advantages?)
for living inside BH: the possible causality violation [13, 18, 19], and the growing energy
density in the very vicinity of Cauchy horizon [20–24].

– 7 –



[t]

Figure 5. 3D domain of existence (marked by the level curves r = const, a = const, e = const) for
the stable circular (equatorial) orbits of neutral particles inside the inner BH horizon (a filled part of
sphere). The rear filled surface corresponds to the ultrarelativistic limit or circular photon orbits. The
stable spherical (nonequatorial) orbits for massive particle exist at radii, limited by the rear surface
of circular photons and the inner horizon.
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