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BLACK HOLES IN THE EARLY UNIVERSE 
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SUMMARY 

The existence of galaxies today implies that the early Universe must have 
been inhomogeneous. Some regions might have got so compressed that they 
underwent gravitational collapse to produce black holes. Once formed, black 
holes in the early Universe would grow by accreting nearby matter. A first 
estimate suggests that they might grow at the same rate as the Universe during 
the radiation era and be of the order of 1015 to 1017 solar masses now. The 
observational evidence however is against the existence of such giant black 
holes. This motivates a more detailed study of the rate of accretion which 
shows that black holes will not in fact substantially increase their original 
mass by accretion. There could thus be primordial black holes around now 
with masses from io~5 g upwards. 

I.INTRODUCTION 

Black holes are normally thought of as being produced by the collapse of stars 
or possibly galactic nucleii. However, one would also expect there to be a certain 
number of black holes with masses from io~~5 g upwards which were formed in 
the early stages of the Universe (Hawking 1971). This is because the existence of 
galaxies implies that there must have been departures from homogeneity and 
isotropy at all times in the history of the Universe. These could have been very 
large in the early stages and even if they were small on average there would be 
occasional regions in which they were large. One would therefore expect at least 
a few regions to become sufficiently compressed for gravitational attraction to 
overcome pressure forces and the velocity of expansion and cause collapse to a 
black hole. We shall refer to such black holes as primordial. 

A region in the early Universe of radius R has a potential energy of self-gravita- 
tion 

Í2 ~ -^5 

and kinetic energy of expansion 

T - ilR*& 

where ¡jl is the energy density and units are such that G = c = 1. In a& = o 
Friedmann universe the sum of these energies is zero. Thus 

In the radiation epoch, when most of the particles are relativistic, the pressure 
p is and /x is proportional to R~A. Thus 

¡JL ~ R oc £1/2. 

In the very early stages (¿<io“4s) it is possible that the number of different 
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species of particles present may increase very sharply (Hagedorn 1970). This 
could mean that most of the particles were non-relativistic and that p was of the 
order logIn this case 

[x ~ R oc i2/3. 

If the density in a region is somewhat higher than average or the rate of expansion 
somewhat lower, the gravitational forces may be able to halt the expansion by over- 
coming both the kinetic energy of expansion and the pressure forces. To overcome 
the pressure forces requires that the gravitational energy, — ii, should be greater 
than the internal energy U. When^ = |/x, U ~ and so a necessary condition 
for collapse is [jlR2> ~ 1. When p ~ /¿o log/¿//¿o, U ~ /¿o^3 log/¿/¿to- Thus a 
necessary condition for collapse is 

¡xR^> ~ ^ log 
H'O 

(The constant ¿to is about 1014 g cm-3.) These inequalities place a lower limit on 
the size of a region that can undergo gravitational collapse. This limit is just the 
Jean’s length for the epoch in question. A region that is about to collapse has also 
an upper limit to its size at the moment at which it begins to contract. To see how 
this arises, consider a spacelike hypersurface orthogonal to the matter flow which 
crosses the region at the moment when the rate of expansion is zero. The 
i?00 —= SttT00 constraint equation implies that the 3-geometry of this 
hypersurface has positive curvature of order /x in the region where the rate of 
expansion is zero. If this positive curvature extended over a sufficiently large region, 
the spacelike hypersurface would close up on itself to form a disconnected compact 
3-space of radius about ju,-1/2. In this case the region would form a separate closed 
universe which was completely disconnected from our Universe. Such a situation 
would not correspond to a black hole formed by collapse of matter in our Universe. 
This shows that for black hole formation ¿cJR2< ~ 1. Together with the previous 
conditions this implies that at the moment of recollapse ¿ti?2 ~ 1 for the case 

p = ^¡x and fxol¡X log fx/fxo< fxR2 < ~ 1 for the case p ~ /¿o log ¿t//xo- One can 
interpret these conditions in the following way. The energy density ¿t is of order 
t~2 in both cases. Thus ¿ti?2 ~ 1 implies R oc t. This shows that, in the p = ifx 
case, the size of the region at the moment of recollapse must be of order of that of 
the particle horizon, the distance light could have travelled since the beginning of 
the Universe. In thei><^¿t case, it could be much smaller. 

The condition that the region should be within its Schwarzchild radius is that 
the mass (^¿ti?3) should be greater than the radius i?, i.e. ¡xR2> 1. Thus in the 

p = \(x case the region would be within a (future-directed) trapped surface and so 
would be a black hole at about the time when it began to recollapse. On the other 
hand in the p^ix case, a region smaller than the particle horizon which begun to 
recollapse would have to contract quite a lot before it became a black hole. In fact 
random turbulent motions might prevent it from ever collapsing sufficiently. 

The earliest time at which one can hope to apply classical general relativity is 
the Planck time \/Ghlcö ~ io-43 s. A black hole formed at this time would have 
an initial mass of about io-5 g and radius io~33 cm. A black hole formed at the 
time of Helium formation when the temperature was io9 K would have a mass of 
about io7 solar masses. 

After the formation of a black hole in the early Universe one would expect 
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401 No. a, 1974 Black holes in the early Universe 

it to grow by accreting some of the nearby matter. The first estimate of the rate of 
accretion was made by Zeldovich & Novikov (1967). They considered the accretion 
as a quasi-stationary process. In this case the velocity of the matter crossing the 
horizon (rg = 2 M) will be of order the velocity of light (unity). Thus the rate of 
accretion 

dM 

dt 
/xrg

2 ~ /xM2 

where /x is the density of the background Friedmann universe. But fx ~ t~2. Thus 

where Mo is the initial mass of the black hole and ¿o is the time of formation. If 
Mq were small compared to to, i.e. if the black hole was small compared to the 
particle horizon at the time of formation, then M-Mq remains small and so there 
would not be much accretion. On the other hand if Mo were of the same order as 

to (which, as was shown above, is likely to be the case in the^> = |/x era), then the 
Zeldovich-Novikov argument indicates that M ~ t. In other words, the accretion 
would cause the black hole to grow at the same rate as the particle horizon. If this 
growth continued up to the present time, the black hole would be of the order of 
the Hubble radius and we would have fallen into it or be just about to. This would 
not be in accordance with observations which indicate that the Universe is homo- 
geneous on a large scale. On the other hand, one might suppose that black holes 
would grow at the same rate as the particle horizon only during the p = ^¡x era 
when the radiation pressure would drive matter into the black hole. If this were 
the case, the black holes would grow to a mass of 1015 to 1017 solar masses, the 
mass within the particle horizon at the time when radiation ceased to dominate 
matter. The obvious place to look for such giant black holes would be in clusters 

of galaxies where they might provide the missing mass necessary to bind the cluster 
gravitationally. The observational evidence is that the missing mass of the Virgo 
Cluster is not in the form of black holes of masses greater than about 1010 solar 
masses (Van den Bergh 1969).* Also one would expect that the existence of such 
very large black holes at the time of decoupling would produce appreciable fluctua- 
tions in the microwave background on small angular scales whereas none have been 
observed (Boynton & Partridge 1973). 

It seems therefore either that there were no black holes formed in the early 
Universe or that, contrary to what is indicated by the Zeldovich-Novikov argument, 
they did not grow at the same rate as the particle horizon. As mentioned before, it is 
difficult to believe with any theory of random perturbations that there would not 
have been at least a few black holes formed. It therefore seems worthwhile to 
examine more closely the Zeldovich-Novikov argument. The assumption of quasi- 
stationary accretion, on which this is based, is probably a reasonable approximation 
when the black hole is small compared to the particle horizon. Thus the conclusion 

* Van den Bergh concluded from the lack of observed tidal distortion of galaxies that 
the missing mass could not be in the form of compact objects in the mass range 1010 to 1013 

solar masses. However, one can remove the upper limit on this range because the lower 
number of higher mass objects would be balanced by the fact that each object could induce 
tidal distortion in a larger volume of space. 
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that such a black hole would not grow very much is probably valid. However, the 
assumption breaks down in the critical case of a black hole whose size is of the 
same order as the particle horizon because the expansion of the Universe has to be 
taken into account. 

In this paper we shall investigate the crucial question of whether a black hole 
can grow at the same rate as the Universe. Such a situation would be described 
by a similarity solution, that is, one in which all lengths increase at the same rate. 
If the Zeldovich-Novikov argument were correct, one would expect a black hole 
formed in the early Universe to approach such a solution asymptotically as time 
proceeds. For simplicity we shall consider only the case of spherical symmetry. 
One would expect departures from spherical symmetry such as turbulence and 
vorticity to decrease the rate of accretion. If therefore this rate is insufficient in the 
spherical case to make a black hole grow at the same rate as the particle horizon, 
it would also be insufficient in the more realistic non-spherical case. 

To determine the evolution of a black hole in a cosmological model, one has to 
specify the initial conditions on some spacelike hypersurface near the initial 
singularity. In the p = o case (which is a good approximation to the case) 
these initial conditions determine the evolution in a very direct manner: each 
spherical shell of matter moves on a geodesic in the gravitational field of the mass 
interior to it and its total energy E per unit mass is constant. If E>o the shell 
expands indefinitely and if £ < o the shell will reach a maximum radius and collapse 
into the black hole. In the k = o Friedmann model i? = o for all shells. If one 
introduced a black hole of mass Am into such a model but left the density and the 
velocities of expansion unchanged on the spacelike hypersurface, E would be of 
the form — Atn/R where R is the radial coordinate which measures the area of 
spherical shells. Such a choice of initial conditions would cause the black hole to 
grow indefinitely and each spherical shell of matter would eventually fall into it. 
Succeeding shells of matter would however take longer and longer to fall into the 
black hole which would not grow as fast as the particle horizon. The maximum 
radius obtained by these shells would be much larger than the size of the black hole. 
Small departures from spherical symmetry such as rotation would grow large 
during the collapse of the shell from its maximum radius and could prevent it 
from falling into the black hole. One might therefore expect that a black hole would 
not grow very much after it had been left some way behind by the particle horizon. 

In Section 4 we shall show that in the^> = o case the energy E has to be negative 
and constant in order to have a similarity solution, that is, in order to have the black 
hole growing at the same rate as the particle horizon. However, because of the 
existence of particle horizons, regions on the initial spacelike hypersurface at large 
spatial distances from the black hole will not have any causal communication with 
the region that collapsed to produce the hole. One would therefore expect that the 

existence of a black hole at the origin would affect the initial conditions in these 
regions only through the Coulomb field of the initial mass A/w. As mentioned 
above this gives E = — AmIR and not E constant as would be required for a 
similarity solution. It seems therefore that black holes formed by local inhomo- 
geneity in the ^ < /z era will not grow very much by accretion. 

One might expect black holes formed in the jp = era to grow rather faster 
because radiation pressure would drive matter into the holes. As in the p = o 
case one would not expect the existence of the hole to affect the initial conditions 
in regions to which no signal could yet have propagated from the region which 
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underwent collapse. However, one could imagine a situation in which one had a 
decompression wave expanding into an exactly Friedmann universe. Matter behind 
the wavefront would be accelerated inwards by the pressure gradient and could 
fall into the black hole. The question is whether the pressure gradients in the 
decompression wave could cause a sufficient flow of matter into the black hole to 
make the black hole grow at the same rate as the particle horizon. We shall show in 
fact that they cannot: there are no similarity solutions containing a black hole which 
are exactly Friedmann outside some expanding wave-front. As in the p = o case, 
there are similarity solutions containing a black hole which are only asymptotically 
and not exactly Friedmann at large distances. Like thej> = o case, these solutions 
require that the initial energy E of matter at large spacial distances from the black 
hole should be a negative constant and not merely — Am/jR as would be expected 
if the initial conditions were altered only by the introduction of the Coulomb field 
of a black hole at the origin. Also in the p = similarity solutions the pressure 
gradients are directed outwards and so are hindering rather than helping matter to 
fall into the hole. In other words in order to get the black hole to grow at the same 
rate as the particle horizon, the initial conditions have to be such that the matter is 
really thrown into the hole. One would not expect the existence of a black hole 
produced by local fluctuations to cause the initial conditions to be arranged in this 
way. Therefore as in the p = o case one would not expect a black hole to grow as 
fast as the particle horizon. After it has fallen some way behind the particle horizon, 
the Zeldovich-Novikov argument suggests that it will probably not grow very 
much further. The main conclusion of this paper is therefore that black holes 
formed in the early Universe would not grow very much by accretion and so could 
be around today with any mass from io~5 g upwards. 

From the measurement of the deceleration parameter (Sandage 1961), one can 
place an upper limit of about io-28gcm-3 on the present average mass density 
in black holes. On the other hand the present average density of observed luminous 
matter is only about io~31 g cm-3. Thus it is possible that most of the mass of the 

Universe at the present time is in the form of black holes. However, as one goes to 
earlier times, the mass density of black holes will increase as (1 + Z)3 where Z is 
the redshift, while the density of the microwave background will increase as 
(1+ Z)4. This means that at early times the mass in black holes was only a small 
fraction of the total mass of the Universe. In other words only a small fraction of 
the Universe can have undergone gravitational collapse at early times. This argu- 
ment, which was first given by Zeldovich & Novikov (1967), places an upper limit 
on the degree of turbulence and inhomogeneity in the early Universe. Another 
upper limit on the inhomogeneity of the early Universe may be placed by an argu- 
ment of Zeldovich & Sunyaev (1969) that the dissipation of a significant amount 
of turbulent energy at times later than about 109 Í28 s (where Q is the present 
average density of matter not in black holes in units of io-29 g cm-3) would cause 
distortions in the blackbody spectrum of the microwave background contrary to 
observation. This indicates that most of any primordial turbulence must have been 
damped out by this time and so one would not expect any primordial black holes 
bigger than about io14 Q8 solar masses. Further information about the very early 
Universe would be known if it were possible experimentally either to detect the 
black holes of very low mass or to place better upper limits on their number 
density. This might be possible if such very small black holes carry an electric 
charge (Hawking & Gibbons 1974, to be published). 
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The plan of this paper is as follows. In Section 2 we extend the definition of 
black holes from asymptotically flat space-times to cosmological models, in particu- 
lar to asymptotically Friedmann models. The form of the metric and field equations 
for spherically symmetric similarity solutions are given in Section 3. In Section 4 
we discuss black holes in asymptotically Friedmann solutions with p = o. We 
show that in order to cause a black hole to expand at the same rate as the Universe, 
the initial conditions have to be altered by more than would be accounted for 
simply by the Coulomb field of the black hole. Similar results are obtained for the 

p = case in Section 5. 

2. BLACK HOLES IN COSMOLOGY 

In studying black holes one normally neglects the curvature of the Universe 
and treats the black hole as being in an asymptotically flat space-time. The black 
hole can then be defined as the region of space-time from which it is not possible 
to escape to future null infinity */+ (Hawking 1973). The boundary of the black 
hole, the event horizon, is formed by the wave-front which just fails to reach infinity. 
Assuming that there are no naked singularities, i.e. that the space is strongly 
future asymptotically predictable, one can show that the area of a two-dimensional 
section of the event horizon never decreases with time. Given a time coordinate t 
which defines a suitable family of spacelike surfaces at constant time, one can define 
the apparent horizon as the outer boundary of the region containing trapped surfaces 
lying in a surface of constant time. One can show that the event horizon always 
lies outside or coincides with the apparent horizon. 

Asymptotically flat space-time is a very good approximation when dealing with 
black holes formed from stellar collapse since these will be very small compared to 
the radius of the Universe. However, it is clearly not appropriate when considering 
black holes in the early Universe since these may be of the order of the particle 
horizon at their time of formation. One would therefore like to define black holes 
in spaces which are not asymptotically flat but which asymptotically approach 
some cosmological model such as a Friedmann solution. This can be done provided 
that there is some infinity so that one can define the region of space-time from 
which one cannot escape to infinity. In order to define infinity we shall use the 
future causal boundary of space-time defined by Geroch-Kronheimer-Penrose 
(1972). Points of this boundary are represented by future-directed time-like curves 
which have no endpoint in the space-time manifold, two such curves defining the 
same boundary point if they have the same past. This boundary includes both 
points at infinity and points at finite distance which are singularities. We shall say 
that a subset «/ of the boundary is at infinity if every null geodesic reaching it 
(i.e. having the same past as a point of ./) has infinite affine length. One can then 
define the event horizon as the boundary of the past of a suitably chosen >. As in 
the asymptotically flat case one wants to exclude the possibility of singularities 
which are naked, i.e. visible from Jr. This can be done by extending the definition 
of strong asymptotic predictability to the cosmological case : one requires that there 
exist a spacelike surface S from which one can predict events at points near S and 
on the event horizon to the future of S. With this assumption one can prove that, 
as in the asymptotically flat case, the event horizon must lie outside the apparent 
horizon and its area cannot decrease with time. 

In the k = o and — 1 Friedmann models there is a future null infinity which is 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

4M
N

RA
S.

16
8.
 .

39
9C

 

405 No. 2, 1974 Black holes in the early Universe 

similar in many ways to that of asymptotically flat space (Penrose 1964; Hawking 
& Ellis 1973). One can therefore define black holes in spaces which are asymptotic 
to & = o or — i Friedmann models. In the k = +1 model on the other hand there 

is no infinity as the space is closed and the model recollapses to a singularity within 
a finite time. One cannot, strictly speaking, define a black hole in such as space: in a 
certain sense every point is inside a black hole since nothing can escape and every- 
thing is doomed to annihilation in the singularity. However, there is a big difference 
between possible annihilation in about 2x io10yr and annihilation in 1 s or less 
which is likely to occur if one fell into a black hole in the early Universe. Thus to a 
very good approximation in discussing such a situation one can neglect the eventual 
collapse of the Universe and treat it was being asymptotically a & = o Friedmann 
model : the difference between a k = o and a k = ±1 model would be less than 
one part in 1015 i s after the big bang. 

3. SPHERICALLY SYMMETRIC SIMILARITY SOLUTIONS 

In the early Universe the mean free path of particles such as photons will in 
most epochs be considerably smaller than the particle horizon. Thus the energy- 
momentum tensor will have the form of a perfect fluid: 

Tfiv — PS/iv (3**) 

where is the unit flow vector of the matter. We shall consider two cases: ^ 
and p = o (which will be a good approximation to the very early epoch when 
/)<^/x). In a spherically symmetric solution one can introduce a time coordinate t 
such that the surfaces of constant t are orthogonal to the flow lines and comoving 
coordinates (r, 0, </>) which are constant along each flow line. In these coordinates 
the metric takes the form 

ds* = t2v dt2 — e2A dr2 — R2{d62 + sin2 6 d<f>2). (3.2) 

The conservation equations T>;j, = o give two first integrals 

ev =/(0> R2 = h(r) for p — o (3-3) 

^1/4 ev _ ^3/4 eA = hfyj for p — ip (j .4) 

where f(t) and h(r) are arbitrary functions of integration which can be given any 
value by appropriate coordinate transformations. The Einstein equations 

R^v - \Rg^ = SttTV«' (3.5) 

have one other first integral: 

w = iR(i + t~2v Rt
2- e_2A Rr

2) (3.6) 

where 
mr = ^7TfxR2Rr (3.7) 

and 
mt = —^7rpR2Rt. (3*8) 

From the equation (3.7) 

l¿R*dR. (3.9) 

Thus one can interpret m{r, t) as the mass within the comoving radius r at the time 
t. From equation (3.8) it follows that this is independent of time in the cast p = o 
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and it decreases during expansion because of the work done by the pressure in the 
case^> = J/x. The quantity m(r, t) also governs the existence of trapped surfaces. 
Suppose that a flash of light is emitted from a 2-surface of constant r and t. As 
time proceeds there will be an ingoing andan outgoing wavefront from this 2-surface 
which will be formed by future-directed ingoing and outgoing null geodesics 
orthogonal to the 2-surface. The convergences, p\ and po, of these families of null 
geodesics will be 

Pi= -R-\çrvRt-z-xRr) 

po= -R-i(e-vRt + t-*Rr). ' 

Thus 

2m 

R 
i + R2pipo. (3 • ii) 

Trapped surfaces occur when the convergence of the outgoing family of null 
geodesics is positive. Thus at the apparent horizon of the black hole, the outer 
boundary of the trapped surfaces, 

zm 
(a-1*) 

Condition (3.12) would also hold when p\ = o. We shall call this the cosmological 

apparent horizon. It is related to the existence of the big bang singularity in the 
past (Hawking & Ellis 1973). 

A solution of the Einstein equations is said to be a similarity solution if it 
admits a homothetic Killing vector, i.e. a vector field Ç such that 

££v'> ji, (3 • *3) 

In other words, as one moves along the orbits of the vector field Ç, all lengths 
increase at the same rate. Such a solution corresponds to the classical notion of a 
similarity solution and it is what one requires if one wants a black hole expanding 
at the same rate as the Universe. Cahill & Taub (1971) have investigated spherically 
symmetric similarity solutions in which the homothetic Killing vector is not parallel 
to the fluid flow vector. They show that by suitable coordinate transformations such 
solutions can be put in a form in which all dimensionless quantities such as vy À, 
Rjr, p,R2 are functions only of the dimensionless variable z = r/t. The Einstein 
field equations in the case p = will be satisfied if 

,§+‘$+(á"!)(3‘s+4‘$) = 0 (3-I4) 

154 + 2*4* (3F2- l) S* = 4*2 

where a dot indicates differentiation with respect to f) = log z, S = R/r and 
r

4 _ 21 pur2. In terms of these quantities 

tv = \^zx 

e~A = S'2#-3 (3*I7) 

and 
V = tx~v z = a/zx2S~2. 
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The quantities S, x and V are functions only of .er. V represents the velocity, 
relative to the flow lines of the matter, of the surfaces of constant £r. These surfaces, 
which have the equation r = z0t (zq = a constant), represent a family of spheres 
expanding through the matter. When F < 1, the surfaces are timelike, when F = 1, 
they are null and when F > 1, they are space like. 

The quantity M = m/R is also a function only of z. One can derive two expres- 
sions for it in terms of x, z, and S. The equality of these two expressions is a first 
integral of equations (3.14) and (3.15): 

zM 
zSU 

K) 

zM= x + 2^2_^(5,
+ á,)2. 

.r 

(s-w) 

(3-20) 

Similarity solutions with^ = ^ will be considered further in Section 5. Solutions 
with p = o will be considered in the next section. 

4. THE P = O CASE 

In a spherically symmetric solution with p = o the quantity m(r, t), which 
represents the mass within comoving radius r, is independent of t. The absence of 
pressure gradients means that each spherical shell of matter follows a geodesic 
path in the gravitational field of the mass m(r) interior to it. The Einstein equations 
therefore admit an additional integral: 

The first term on the right can be interpreted as the kinetic energy per unit mass 
of the shell of matter of comoving radius r, and the second term as the potential 
energy per unit mass. Thus E(r) represents the total energy per unit mass of the 

shell. If E>o, the shell will start from a point of zero area (R = o) and expand 
indefinitely (R 00). If £< o, the shell will start from a point (R = o), expand to 
some maximum value of R and recollapse to a point. Explicitly, 

V 2ER2 + 2mR zm 

zE (zEf'2 

(f)2/3 (2»*)l/3 (i-#0(r))2/3 

sinh-1 J 
ER 

m 

V 2ER2 + 2tnR 

2E 
+ 

2m 
2£)3/2 

Sin-1 y 
-ER 

m 

{E > o) 

(E = o) (4.2) 

{E < o). 

Equation (4.2) completely determines the evolution of a solution in terms of the 
functions m{r)y E{r) and ¿o(r). From equations (3.7) and (3.6) 

dm IdRX-1 

W - Sr I* Sr) <V3) 

e»=(f)(, + 2£W)^. (4.4) 

The k = o Friedmann solution is obtained with to(r) = o, E(r) = o and m(r) any 
positive monotonically increasing function of r which tends to infinity with r. 
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By making a coordinate transformation of the form r' = f(r) one can arrange that 
m(r) = O3 where C is a constant. However, for later convenience, in this paper 

we shall choose the radial coordinate r such that m(r) — Cr. One obtains a solution 
representing a black hole in an asymptotically k = o Friedmann universe if 
t^r) = o and E is negative for small r and is bounded as r -> oo. If ^(r) is negative 

only for r less than some value ro, then only those shells with r < ro will fall into the 
black hole and so the black hole will only grow to the mass m(ro). On the other hand 
if E{r) is negative for all r, all the matter in the Universe will eventually fall into 
the black hole which will grow to an infinite size. Thus the amount of accretion by 
the black hole is completely determined by the function E{r) which has to be 
specified right at the beginning of the Universe, before the hole has even formed. 
There seems no reason why the initial conditions should be arranged in such a way 
as to make an infinite amount of matter fall into the hole. 

For the purpose of comparing with the /> = solutions considered in the 
next section, it is useful to study the p = o similarity solutions containing a black 
hole in an asymptotically Friedmann universe. As was stated in the previous section, 
in such a solution all dimensionless quantities are functions only of the dimensionless 
variable z = rjt. The quantity E{r) is dimensionless and so is the ratio m(r)lr. 
Since both of these are functions only of r they must be constant in a similarity 
solution. By a coordinate transformation m(r)lr can be put equal to i and from 
(4.1) one has the equation 

E 
-Hïï-ï 

(4-5) 

where S(z) = R/r. This can be integrated to give (with integration constant D) 

' VeS2 + S\/2E+i 2\/1 + zE 

VzE (zEf2 
sinh-i / ES 

y V i + 2jB 

0± - = / V2 53/2 
z ‘ 3 

'\/eS2 + S\ZzE+i z\/1 + zE 

VzE W fl=^FF2sm VvîtS 

(E > 0) 

(E = o) 

(E < o). 

(4.6) 

The k = o Friedmann solution is obtained with D = E = o. This gives 

dS 2 = dt2-2/3 Qr-4/3 dr2+r2i\d02+sin2 0 d<j>2)). (4.7) 

The coordinate transformation 

/(,) = (!)1/3 

puts this in the more usual form 

dS2 = dt2- tu\{dr')2+r'2(de2 + sin2 0 d<¡>2)). 

The solutions (4.6) with D = o but E o are asymptotically Friedmann. 
Those with E<o contain a black hole. To analyse the behaviour of these solutions 
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it is helpful to consider the quantities V = z and M = mIR which are functions 
only of z. In the Friedmann solution 

V = (i)1^ *i/3 

M= (1)1/3 *2/3. 

The surface * = 6 on which F = 1 is a null surface expanding from the origin 
r = o at the time t = o. It can be thought of as the ‘ creation light cone ’ of 
4 particle horizon ’ of an observer at the origin. The surface * = f on which 
M = J is time-like and represents the locus of points at which the past light cones 

of an observer at the origin are focused and made to start to reconverge by the 
matter in the Universe. We shall call this the ‘ cosmological apparent horizon \ 

In the solutions with D = o and E small and negative, V and M have the same 
asymptotic behaviour as in the Friedmann solution (Fig. 1). However, at small 
values of * they pass through a minimum and then increase again becoming infinite 

M 

Fig. i . Graphs of V and M against z for p = o similarity solutions showing the positions 
of the particle and the event horizons and the cosmological and black hole apparent horizons. 
The dotted curves indicate the Friedmann values. 

27 
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at some value z — Zco > o. There will be two values z i and ^2(^2 > ^1) at which 
V(z) = i. The outer surface z = z2 can be regarded as the particle horizon. For 

zi<z<z2 the surfaces of constant z are time-like. It would therefore be possible 
for an observer in a rocket to remain in the region ,?> #1 by accelerating outwards 
at a suitable rate. However, if he should cross the null surface sr = zi, the surfaces 
of constant z would become spacelike and so he would inevitably hit the singularity 
which occurs at z = Zoo- This shows that the surface £ = is the event horizon 
of the black hole. In a similar manner there will be two values 23 and 24(23 < 24) 
at which M(z) = £. The outer surface 2 = 24 can be regarded as the cosmological 

apparent horizon. The inner surface 2 = 23 will be the apparent horizon of the 
black hole. It will lie inside the event horizon. 

For E small and negative the size of the event horizon of the black hole is small 
compared to the particle horizon. As E is made more negative the minimum of V 
moves upwards and the value of 2oo moves to the right. At some critical value 

E = Eq the minimum value of F is 1 and the event and particle horizons coincide. 
For E<Eo the minimum of V is above x and so there will be no particle or event 
horizons. It can be shown that the minimum of M is always below | so there will 
still be cosmological and black hole apparent horizons. Because the surfaces of 
constant 2 are always spacelike, any observer will eventually fall into the black 
hole’s apparent horizon and hit the singularity. One can regard such a solution as 
representing a black hole which is expanding so fast that it envelopes the whole 
Universe. 

5. the p = 1/3^ CASE 

The Einstein equations for a spherically symmetric solution with p = 
form a hyperbolic system in two variables, r and t. The characteristic surfaces in 
this system move with the speed of sound, i/vs; there are no gravitational waves 
because of the spherical symmetry. In general this system of equations can be 
solved only on a computer. However, in the case of a similarity solution, these 
partial differential equations reduce to the set (3.14) and (3.15) of ordinary 
differential equations in the variable 0 = log (r/t). A particular solution of these 
equations is 

( X = 23/2^-—1/2 

[5 = 2x1/62-1/2. 

This gives the metric 

ds2 = 8 dP-z^z-i dr2-211/3rt(de* +sin* 6d<f>Z). (5.2) 

One can put this in a more familiar form by making the coordinate transformation 

Î = 23/2t, f = 213/1V/2 

which gives 

ds2 = dî2 - î{dr2+Í2{d02 + sin2 O dp2). 

This is the k = o Friedmann solution with p = 
We shall be interested in similarity solutions which are asymptotically 

Friedmann, i.e. in which x and 5 approach the form (5.1) asymptotically at large 2. 
It is therefore convenient to introduce new variables ^ and B defined by 

( x — eA 

[ 5 = 211/62-1/2 eB. 
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In these variables equations (3.14), (3.15), (3.18), (3.19), (3.20) become 

B = A+^AÊ-lÉ-iÈ* (5.4) 

=25-Ke-^-i) (5-5) 

F = 4-17V* e2^"2* (5.6) 

2M = 2-4/3#(i +4-0) e2^-4^ (5*7) 

zM= i+4e^-6^[r2(5-i)2-(S + i)2]. (5.8) 

Given the values of A, B and B, equations (5.7) and (5.8) determine the value of 
equation (5.6) determines Vy equation (5.4) determines Ë and, provided 

V # i/VSj equation (5.5) determines A. This means that at each point of the 
three-dimensional (A, B, Ê) space there is a little arrow pointing to the value of 
A, B and B at Q + Sfî. In other words equations (5.4)-(5.8) define a vector field 
on (A, B, Ê) space. Integral curves of this vector field are parametrized by £2 
(or equivalently z) and represent solutions to (5.4)-(5.8). There is thus a two- 
parameter family of spherically symmetric similarity solutions with p = 
The Friedmann k = o solution is represented by the degenerate integral curve 
consisting of the origin alone. 

In (Ay B, B) space a special role is played by the surface V = i/VS- This is 
given by 

5 = — i — J e-2^ + |Vi2 + 6 e-^ + e^^ + ó e6"4-6^. (5-9) 

On this surface equation (5.5) does not determine A, This means that there can 
be a number of different integral curves representing a number of different solutions 
passing through the same point. However, it is easy to see that these integral 
curves cannot be extended beyond the point where they intersect V = i/Vs 
unless g = o where g is defined to be the right-hand side of (5.5): 

£ee 2B-i(e-2^-i). (5 •I0) 

The two-surface £ = o in (^4, By Ê) space will intersect the two-surface V = 1/V3 
in a line Q. Any integral curve which intersects V = i/Vs other than at the line 
Q cannot be continued further. From each point q oí Q there will in general be two 
one-parameter families of integral curves, one with decreasing and one with 
increasing ,2. One can join any member of the first to any member of the second to 
obtain a similarity solution. This arbitrariness arises from the fact that the surface 
of constant z in the solution on which V = i/Vs represents a sphere expanding 
from the origin at the speed of sound. At this wavefront new information can be 
fed into the solution. 

The k = o Friedmann solution is given by ^4 = 5 = o for all z. The asymptotic 
form of similarity solutions which approach the Friedmann solution for large z 
can be found by linearizing equations (5.4) and (5.5) in Ay A and B and neglecting 
the (1/F)2 term: 

B = -%B+A (5.11) 

3^4 = 2Ô+A. (5-12) 

These equations have the solution 

A = — kz*1 + zk'z112, 

B = -ß-zkz-i + k'zV* 

(s-^) 

(s-h) 
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where k, k' and ß are constants. The relative spatial density gradient ^-1/(5p./ar) 
equals -^A/r. For an asymptotically Friedmann solution this goes to zero at large 
2 so k' must be zero. Using equations (5.7) and (5.8) one can relate k and ß by 

k _ 42/3(e2/J_e-4A) 
(S-ïS) 

The behaviour at large # of asymptotically Friedmann similarity solutions is thus 
determined by one parameter, k. The fact that B tends to a non-zero value (-/3) 
does not invalidate the linearization of equations (5.4) and (5.5) since B enters 
into these equations only through the factor (1/U2) which can be neglected to first 
order. 

In the k = o Friedmann solution V — The surface z = 42/3 on 
which V = i can be regarded as the particle horizon as in the p = o case. For a 
similarity solution to represent a black hole in an asymptotically Friedmann 
universe one requires that V has a similar zV2 behaviour at large z but that at 
smaller values of z it should have a minimum below 1. In such a solution V = 1 
at two values of z, zi and z¿ (a-) < Z2), which represent respectively the event 
horizon of the black hole and the particle horizon of the Universe. We shall now 
show that A and B have to be negative and A and B have to be positive for all z. 
This will imply that k must be positive and that the solution cannot be exactly 
Friedmann at large z. 

At zi, 

Ÿ = I + zA — zBko. 

It follows from (5.5) that ^(2:1)<o. Suppose that A(z1)<o. Then since A is 
continuous and zero at 2 = co it must have a local minimum in (21, 00). Let #3 
by the smallest value of z greater than at which A has a local minimum At z3 

either A = o or F = i/y3. In either case 

B(zs) = i(e~2A(za) — 1) > o 

because A(z3)<A(z1)<o. This shows also that B(z3)>B(zi). Hence B>o some- 
where in (#1, z3). But, since A o in (si, z^), 

B = A+4AB-IB-3Ê2>o only if B<o. 

Since B(z3) > o, there would then exist a point 24 in (21, ^3) where B = o and 
B>o. But at Z4, Ë — A<o. This establishes a contradiction which shows that the 
original assumption, A(zi) < o, was false. Thus Afa) ^ o. A similar argument shows 
that A o for z Za Z\ provided that A remains less than or equal to o. Suppose now 
that A>o for some z>zi and let z5 be the value of s at which A has its first 
positive local maximum (25 must exist since A -> o as ^- > oc). Then /Í ^o in 
[21, 25]. At z5, 

B = l(e~2A— i)<o. 

However, 5(2ri)>i+^í(2:i)>o. Therefore B has a maximum at some 

(si<#6<#5). Since Ê is continuous there will be some e>o such that | | <1 in 
[«e—e, sr6+e]. Then from equation (5.4) 

B>lA-%B-§\B\. (5.i6) 

One can integrate this to show that 

B{z6)-B{z6-e)>C{A{z6)-A{z3-e)) (5.17) 
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for some C>o. This shows that È(z§— e)^o. However, B(z§ — €)^o since z§ 
is the first local maximum of B for 1s

,> It follows from this that È would have to 
be o in [zq—€, zq\. By repeating the above steps one could show that Ê was o for 
all -s in the interval [si, zq]. This establishes a contradiction which shows that the 
assumption that A went positive was false. Thus A^o and o for all si. 

The above proof shows that the constant k which governs the asymptotic 
behaviour of A and jB as s goes to infinity must be greater than or equal to o. 
Suppose that k were o, i.e. that for large values of z the solution was exactly the 
Friedmann solution. By equations (5.4) and (5.5) the solutions for A and B are 
analytic functions of z except possibly where V = i/Vs* Thus A and B would be 
zero for ,0 42/3/3, the value at which V = i/Vs m tf16 Friedmann solution. When 
V = 1/V3 equation (5.5) does not determine A and so it is possible for A and B 
to be non-zero for £<42/3/3. Such a solution would correspond to a sound-wave 
expanding out from the origin into an exactly Friedmann universe. If A were 
negative for z just below 4/32/3, the sound-wave would be a decompression wave 
and the matter would be accelerated inwards by the pressure gradient. However, 
the argument above shows that no black hole solution can have A negative at any 
point. This shows that there can be no similarity solution containing a black hole 
which is exactly Friedmann at large values of z. 

The conclusion is therefore that in an asymptotically Friedmann solution 
containing a black hole the constant Ä must be positive. One can then use a similar 
argument as above to show that A and Ê must be positive everywhere and that 
A and B must be negative everywhere. The fact that A is positive implies that the 
pressure gradient is always directed outwards which means that pressure is 
hindering the accretion of matter into the black hole rather than helping it. 

One can evaluate the quantity E which represents the total energy per unit 
mass of matter in these models. Unlike the p = o case, this will not be an exact 
constant of the motion. However, it is zero in the Friedmann model and is 

E(z) = -18.2-Wke-W+0(z-i) 

in the asymptotically Friedmann similarity solutions. Thus in order to make the 
matter fall into the black hole fast enough to make the black hole grow at the same 
rate as the particle horizon one has to reduce its energy E at large spacelike separa- 
tions on an initial surface by more than the amount — ismjR which would arise 
from the Coulomb field of the initial mass Am of the black hole at the origin. If the 
black hole is formed by local fluctuations, there is no reason to believe that the 
initial energy of matter around it would be reduced in this way. We therefore 
conclude that the black hole will not grow as fast as the particle horizon. Once the 
particle horizon is bigger than the black hole, we would not expect the black hole 
to grow much more by the Zeldovich-Novikov argument. 

Even though they may not occur in nature, it is of some interest to examine the 
asymptotically Friedmann similarity solutions which do contain black holes. We 
have integrated numerically equations (5.4) and (5.5) using the boundary con- 
ditions 

A = -kz-1 (5.17) 

B = — ß — zkz-1 (5.18) 

appropriate to an asymptotically Friedmann universe at large z. For k large and 
positive the quantity V has z1/2 behaviour as # co as in the Friedmann solution. 
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At smaller values of z, V has a minimum above i and tends to infinity for some 
positive value of z (curve (a) in Fig. 2). In these solutions there are no particle or 
event horizons though there are black hole and cosmological apparent horizons. 
Any observer would inevitably fall through the apparent horizon and hit the 
singularity. These solutions, in which the whole Universe is inside the black hole, 
correspond to the p = o solutions with fairly negative E. As one makes k smaller 
there is a range of values for which the minimum of V occurs between 1 and i/V3 
(curve (b) in Fig. 2). These solutions have particle and event horizons and represent 

Fig. 2. Graph of V against z for p = similarity solutions. Curve (a) has a minimum 
above 1. There are no particle or event horizons and the whole Universe is inside the black 
hole. Curve (b) has a minimum between 1 and 1 / Vs • Particle and event horizons exist in 
this solution which represents a black hole expanding at the same rate as the Universe. 

black holes which grow at the same rate as the Universe. Because V is always 
greater than 1 / Vs these solutions are acausal in that no sound-wave can propagate 

outwards. As in the p = o case the black hole’s apparent horizon lies inside the 
event horizon. As k is further reduced, the minimum of V approaches i/VS- We 
can show that there is no solution with a minimum actually at i/VS- If the curve 
V(z) intersects i/y's, it seems probable that it cannot rise above i/Vs again and 
reach 1. If this is the case then all black hole similarity solutions are acausal in the 
sense mentioned above and unlike the p = o case, there is a minimum ratio between 
the size of the black hole and the size of the particle horizon. 
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