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We derive the exact equations of motion (in Newtonian, F = ma, form) for test masses

in Schwarzschild and Gullstrand-Painlevé coordinates. These equations of motion are
simpler than the usual geodesic equations obtained from Christoffel tensors in that the

affine parameter is eliminated. The various terms can be compared against tests of grav-

ity. In force form, gravity can be interpreted as resulting from a flux of superluminal
particles (gravitons). We show that the first order relativistic correction to Newton’s

gravity results from a two graviton interaction.
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1. Gullstrand-Painlevé Coordinates

In general relativity, the Schwarzschild solution for a spherically symmetric (non
rotating) black hole has been known since 1915. The usual choice of coordinates is
the one Karl Schwarzschild used in its discovery, Schwarzschild coordinates, which
are characterized as keeping the metric diagonal, but have a coordinate singularity
at r = 2M :

(dτ)2 = (1− 2M/r) dt2 − dr2/(1− 2M/r)− r2(dθ2 + sin2(θ) dφ2), (1)

where we have chosen coordinates with G = c = 1. Note that if we multiply r and t
by M , the metric will end up with an overall multiple of M2 which we can cancel.
For convenience, we will do this both with the Schwarzschild and GP coordinates.
The reader can reinsert M by making the reverse substitution.

Gullstrand-Painlevé (GP) coordinates were discovered by Allvar Gullstranda 1

and Paul Painlevé 2 in 1921/1922:

dτ2 = (1− 2M/r)dt2 − 2
√

2M/r dt dr − dr2 − r2(dθ2 + sin2(θ) dφ2). (2)

∗This essay received an “honorable mention” in the 2009 Essay Competition of the Gravity Re-
search Foundation.
aGullstrand had a primary role in denying Einstein a Nobel prize for relativity.
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While the metric is not diagonal, the curvature is concentrated into the dt2 and
dr dt terms. The purely spatial terms of the metric, −dr2 − r2(dθ2 + sin2(θ) dφ2),
are identical to the spatial part of the natural metric for a flat (Minkowski) space.
This makes GP coordinates a natural choice for a model of the gravitational force
by an exchanged particle (which we will call the graviton).

A major step towards unifying general relativity with quantum mechanics was
made by Anthony Lasenby, Chris Doran, and Stephen Gull in 1993-1998 when they
invented “Gauge Theory Gravity” (GTG).3,4,5,6,7 In their theory, they rewrote the
tensor theory of general relativity into the language of Dirac’s gamma matrices 8,9

(also called, with various subtle shades of meaning, the “Spacetime Algebra”, “Ge-
ometric Algebra”, or “Clifford Algebra”). This enables calculations of interactions
of fermions with black holes. 10,11,12

The GTG differed from general relativity only in that it was built on a flat
(Minkowski) background space and consequently could not support topologically
interesting solutions to Einstein’s field equations. Those who might doubt the exis-
tence of science fiction topics such as wormholes would find the GTG a substantial
improvement over standard general relativity.

The application of GP coordinates to the GTG is not obvious from their papers;
a short explanation may be useful. The metric for a black hole in GTG, requires the
definition of four ancillary functions of radius, f1, f2, g1, and g2 and (see equation
(52) of Ref. 3 ) is:

dτ2 = (1−2M/r)dt2−2(f1g2−f2g1)dr dt−(f2
1−f2

2 )dr2−r2(dθ2+sin2(θ)dφ2). (3)

The four functions of radius define the directional derivatives with respect to r and
t. One has a choice of gauge for the radial direction that allows one to choose g2
arbitrarily, and from this compute f1, f2, and g1. One requires that f1 and g1 go
to one at infinity, while f2 and g2 approach zero. To obtain GP coordinates, one
would use the freedom in g2 to require that f2

1 − f2
2 = 1. This gives a metric whose

spatial portion is flat and therefore is GP. See Refs. 13 and 14 for generalizations
of GP to the Kerr metric.

2. The Force of Relativistic Gravity

When computing orbits in general relativity, the easiest and traditional method is
to use Christoffel tensors Γµνλ. This gives four differential equations in the affine
parameter q:

d2xµ

dq2
+ Γµνλ

dxν

dq

dxλ

dq
= 0, (4)

for µ = 0, 1, 2, and 3. For massive particles, the affine parameter q can be taken to
be the proper time but this fails in the massless case. Newtonian gravitation avoids
the use of q and so is able to get by with just three differential equations in t:

m
d2xj

dt2
+Gm

dΦ
dxj

= 0, (5)
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that is, m~a− ~F = 0.
To find the Newtonian equations of motion from the Schwarzschild metric, the

most direct way is to first note that geodesic paths extremize s =
∫
ds. So one can

write ds in terms of dx/dt, dy/dt, dz/dt and use the Euler-Lagrange equations to
vary

∫
ds. Following the Newtonian tradition, we will abbreviate dx/dt by ẋ and

similarly for ẍ, etc. The resultb for Schwarzschild coordinates is a few terms in r

and r − 2:

ẍ r4(r − 2) = 3xr2ṙ2 − x(r − 2)2 + 4yṙ(yẋ− xẏ) + 4zṙ(zẋ− xż) +
2r(r − 2)ẏ(yẋ− xẏ) + 2r(r − 2)ż(zẋ− xż), (6)

and similarly for ÿ and z̈. GP coordinates are simpler in that they need only powers
of r:

ẍr5 = −xr2 + 2xr − 2r2ẏ(xẏ − yẋ)− 2r2ż(xż − zẋ) + 3xr2ṙ2+√
2r(3r2ẋ− r3ẋ|~̇r|2 + 1.5r3ẋṙ2 + 2y(xẏ − yẋ) + 2z(xż − zẋ))

(7)

The easiest way to verify the above equations is to choose a set of random positions
and velocities, and compare the acceleration with that computed from the geodesic
equations. One finds that the above are exact, and that they work for massless as
well as massive test particles.

We can modify general relativity by making changes to the various terms in the
above. This gives us information on which terms have been fixed by experimentaal
tests. For example, the terms contribute to the small deflection of starlight (DoS)
and perihelion advance of Mercury (PoM) in proportion as follows:

GP term DoS PoM
−x/r3 +1/2 0
2x/r4 0 −1/3

−2ẏ(xẏ − yẋ)/r3 +1 +4/3
3xṙ2/r3 −1/2 0

3
√

2ẋ/r2.5 0 0
−
√

2ẋ|~̇r|2/r1.5 0 0
1.5
√

2ẋṙ2/r1.5 0 0√
8y(xẏ − yẋ)/r4.5 0 0

Total: +1 +1

(8)

Only the first four terms contribute to the solar system tests of general relativity.
A characteristic of a spherically symmetric gravitational force is that it depends

only on the distance to the body r, and two velocities, the raidal velocity ṙ and the
velocity perpendicular ḣ. For the Schwarzschild coordinates, we find:

r̈ = (−1− 2ḣ2)/r2 + 3ṙ2/(r(r − 2)) + 2/r3,
ḧ = 2ṙḣ/r2 + 4ṙḣ/(r2(r − 2)).

(9)

bThe author used the symbolic computation software MAXIMA. A Java applet that

demonstrates various properties of relativistic gravity that uses these formulas is at

www.brannenworks.com/Gravity

http://www.brannenworks.com/Gravity/index.html
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The −1/r2 is the Newtonian part of the force. Other than the +2/r3, the remaining
terms are all of 2nd order in β =

√
ẋ2 + ẏ2.

For GP coordinates, grouping terms by their order in r we find:

r̈ = −
√

2ṙḣ2/r1.5 + (−1− 2ḣ2 + 3ṙ2)/r2 + 3
√

2ṙ/r2.5 + 2/r3,
ḧ = −

√
2ḣ3/r1.5 + 2ṙḣ/r2 +

√
2ḣ/r2.5 +

√
1/2ḣṙ2/r4.5.

(10)

For ṙ = ḣ = 0, Schwarzschild and Painleve coordinates give the same “static”
acceleration:

r̈ = −1/r2 + 2/r3,
ḧ = 0.

(11)

This acceleration differs from the Newtonian acceleration by the addition of the
+2/r3 term. In particular, the static acceleration is zero at the event horizon, is
negative inside the event horizon, and is everywhere identical for both GP and
Schwarzschild coordinates.

3. Gravitons in the Gravitostatic Limit

The classical electric force between charged bodies follows an exact 1/r2 law. This
can be attributed to the electric force being carried by an elementary particle (the
photon) that is massless and whose intensity naturally decreases according to the
area over which the photons are spread. In making these sorts of arguments, we
must recognize that we cannot assume that the velocity of the gravitons involved
is the same as the speed of light. In particular, in GP coordinates, a particle falling
through the event horizon exceeds the speed of light (that is, |ṙ| > 1).

Gravitons capable of producing such a force must also exceed the speed of light.
Such a theory would have gravity waves also travel faster than light. The experimen-
tal measurement of the speed of gravity is a subject much discussed in the physics
literature. The mainstream view is that the speed has not yet been measured.15

Consequently, our discussion, while speculative, is not yet eliminated by experi-
ment.

Let the number of gravitons passing through a sphere of radius r be N(r). From
Eq. (11), we have that

N(r) ∝ |4πr2(−1/r2 + 2/r3)| = 4π(1− 2/r). (12)

As the radius increases, N(r) increases until it approaches a constant corresponding
to Newtonian gravitation. We will use n for this constant so that N(r) = (1−2/r)n.
The number of gravitons per unit volume at a distance r from the gravitating body
is

ρ(r) = N(r)/(4πr2) = (1/r2 − 2/r3)n/(4π). (13)

For large r, this approaches n/(4πr2).
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The number of gravitons appearing at a radius of r is given by the derivative of
N(r):

N ′(r) = 2n/r2. (14)

Dividing this number by the surface area over which these gravitons appear, 4πr2,
gives the rate of change of gravitons per unit volume:

ρ′(r) = N ′(r)/(4πr2) = 2n/(4πr4). (15)

The number of gravitons appearing at the radius r, Eq. (15), is proportional to
1/r4. This is approximately proportional to the square of the graviton density at
that radius, Eq. (13). Consequently, we obtain that the graviton density increases
at a rate proportional to the square of the density of gravitons. In a perturbation
theory of gravitons, this term would arise by allowing two gravitons to interact to
create three (or more) all moving in the same direction. That is, in addition to
their emission from massive bodies, gravitons are emitted by stimulated emission
somewhat similar to the effect in lasers.
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