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Abstract

The structure of the Cauchy horizon of a charged rotating black hole is analyzed under the combined

effect of an ingoing and outgoing flux of gravitational waves. In particular, by means of an axisymmetric

realization of the Ori model, the growth of the mass parameter near the Cauchy horizon is studied in the

slow rotation approximation. It is shown that the mass-parameter inflates, while the angular momentum

per unit mass deflates, but initial deviations from spherical symmetry survive.
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Although it is now generally accepted that grav-
itational collapse results in the formation of a black
hole, the ultimate fate of the collapsing object within
the black hole is an open question. The presence
of an inner horizon, - the Cauchy horizon (CH) - a
lightlike surface behind which the predictability of
the field equations breaks down, turns out to be a
formidable obstacle to constructing an unambiguous
picture of the complete analytical extension of the
geometry. This fundamental issue is encoded in the
peculiar character of the CH.

As noted first by Penrose [1], ingoing pencils of
radiation experience a diverging blueshift as they ap-
proach the generators of the CH. This kind of non-
scalar singularity, known as a “whimper” [2], is unsta-
ble to perturbations. Then a stronger, scalar singu-
larity can develop when the backreaction of the fields
on the metric is taken into account. If the additional
effect of an outgoing flux is considered, spherical mod-
els of the crossflow region [3] show that the effective
mass parameter m(u, v) exponentially inflates at late
advanced times, as the CH is approached. In par-
ticular the Weyl curvature invariant Ψ2 diverges, in-
dicating that a scalar singularity occurs. But this
divergence is still “mild”, since the mass function is
an integrable function of the Kruskalized advanced
coordinate, and in suitable coordinates the metric co-
efficients stay finite at the CH.

How general are these models in describing the
evolution of the interior at late advanced times, if the
restriction of spherical symmetry is removed? Gen-
eral arguments based on the constancy of the surface
gravity over a stationary horizon [3] indicate that the
growth of the mass parameter should appear uniform
on small angular scales. One suspects in particular
that in a generic axisymmetric collapse the “effective
Kerr parameter” (the angular momentum per unit
mass a = J/m ) becomes negligible if the total angu-
lar momentum of the inflalling radiation is bounded
during the collape [5]. The asymptotic structure of
the spacetime close to the CH should look like an axi-
ally symmetric geometry with an enormously inflated
mass term. Examples of axisymmetric mass-inflation
solutions have been discussed in 2+1 models [6], how-
ever the resulting Kretschmann invariant is found to
be finite at the singularity unlike the spherically sym-
metric model in 3 + 1 dimensions. A more realistic
analysis of the instability of the CH for a class of Kerr-
Newman spacetime has been proposed in [7], and in
the framework of the 2 + 2 approach in [8]. In this
latter analysis the resulting asymptotic configuration
seems not to be that of a Petrov type D spacetime.

A possible insight into the question lies in the
nature of the mass-inflation phenomenon. The out-

going flux is a catalyzer which causes the genera-
tors to contract without a direct interaction with the
infinitely blueshifted infalling lightlike contribution.
The rate of contraction is fully determined by Price’s
power law damping of the radiative tail ∼ 1/v(p−1),
p ≥ 11. Hence one can argue that deviations from
the purely spherical geometry of the CH should be
reflected in deviation from spherical symmetry in the
mass-inflated sector, since the contraction will not be
uniform in a non-spherical model. The leading con-
tribution to the mass function should then be domi-
nated by a very large mass term with a small angular
dependence. We shall here present an explicit mass-
inflation solution in the case of a rotating charged
hole that exhibits this behavior. Our model, although
approximate, should capture the qualitative features
of the geometry of the CH in a non-stationary, rotat-
ing black hole.

The crossflow region, near the CH, is described
by an outgoing lightlike shell - simulating the outgo-
ing flux - embedded in a continuous flow of infalling
gravitational waves, see Fig.1 . This axisymmetric
realization of the Ori [9] model is derived in the slow
rotation approximation when a = J

m is small com-
pared to the radius of the CH r0

ǫ ≡ a2

r2
0

≪ 1 (1)

In particular, as background geometry we consider
the non-stationary Vaidya type generalization of the
Kerr metric discussed in [10]. We extend that
model to the charged case in order to retain a finite
(nonzero) radius for the inner horizon even when a is
small. In the {r, ϑ, ϕ, v} Eddington-Kerr coordinate
system the metric reads

ds2 = −
(

1 − 2m (v) r − e2

Σ

)

dv2 + 2drdv

+Σdϑ2 − 2asin2ϑdϕdr + R2sin2ϑdϕ2

−2a(2m (v) r − e2)sin2ϑ

Σ
dvdϕ (2)

where

R2 =
(r2 + a2)2 − ∆a2sin2ϑ

Σ
,

Σ = r2 + a2cos2ϑ,

∆ = r2 + a2 + e2 − 2m(v)r (3)

As in the spherical Vaidya model, the mass parameter
m(v) is a function of the advanced coordinate v. Its
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functional dependence near the CH, located at v =
+∞, is assumed to be of the form

m = m0 + δm(v), δm(v) = − A

vp−1
(4)

to reproduce the power law decay of the gravitational
waves. Although in a realistic setting the mass func-
tion has probably an angular dependence as well, the
assumption (4) is physically reasonable since we work
in the slow rotation approximation, and (4) is the
only relevant contribution. In the following anal-
ysis it is convenient to introduce the null complex
tetrad {lµ, nν , mµ, m̄µ}, with −lµnµ = mµm̄µ = 1
and lµ is the repeated principal null direction associ-
ated with the infalling field - r decreases with time
along v = const. -

lµ = −∂µv + asin2ϑ∂µϕ

nµ = − 1

Σ
(
∆

2
∂µv − Σ∂µr − asin2ϑ

∆

2
∂µϕ)

mµ = − ρ̄√
2
(iasinϑ∂µv + Σ∂µϑ

−i
(

r2 + a2
)

sinϑ∂µϕ) (5)

where ρ = −(r − iacosϑ)−1. The total energy mo-
mentum tensor can be expressed as

Tµν = 2φ22lµlν − 4φ12l(µm̄ν) − 4φ̄12l(µmν)

+4φ11(l(µnν) + m(µm̄ν)) (6)

where φ22, φ12, φ11 are the only non-vanishing tetrad
components of the trace free part of the Ricci tensor
Sµν = Rµν − 1/4gµνR, (= Rµν in our case),

φ22 = r(2ṁ(v) − a2sin2ϑm̈(v))/4Σ2

φ11 = e2/2Σ2,

φ12 = −iasinϑṁ(v)ρ/2
√

2Σ (7)

The radiation field consists of a pure null part and a
residual term. In particular φ11 represents the contri-
bution of a static source field generated by a charge of
strength e. Unlike the stationary case, there is only
one repeated principal null direction: the spacetime
is algebraically special of Petrov type II and the only
non-zero Weyl invariants are

Ψ2 = −m(v)ρ3 − e2ρρ̄3

Ψ3 =
−iṁ(v)ρasinϑ

2
√

2Σ
− iṁ(v)ρ2rasinϑ√

2Σ

Ψ4 =
m̈(v)ρ2ra2sin2ϑ√

2Σ
+

ṁ(v)ρ3ra2sin2ϑ√
2Σ

(8)

Let us now consider the equation of motion r =
r(v, ϑ) of an axisymmetric generic outgoing null hy-
persurface. Close to CH, where the functional depen-
dence of the mass function on the advanced coordi-
nate is given by (4), it reads

−2δm(v)r

r2 + a2
− 2κ0(r − r0) − 2∂vr

+
a2sin2ϑ

r2 + a2
(∂vr)2 +

(∂ϑr)2

r2 + a2
= 0 (9)

where κ0 is the surface of gravity of the inner hori-
zon located at r = r0. To first order in the effective
rotation parameter ǫ, the solution of has to be of the
form

r − r0 = f(v) + ǫg(v, ϑ) + O(ǫ2) (10)

and (9) is equivalent to the following system of partial
differential equations for the zeroth and first order
terms respectively

κ0f + fv = −δm(v)

r

κ0g + gv − 1

2
sin2ϑf2

v =
δm(v)

r
(11)

The boundary conditions

lim
v→∞

f(v) = g(v, ϑ) = 0 (12)

determine the following asymptotic form for the so-
lution as v → ∞:

r − r0 = f(v)

(

1 − ǫ

(

sin2ϑ(p − 1)

2κ0v
+ O(ǫ/v2)

))

(13)
where

f(v) =
A

κ0r0
v−(p−1)(1 +

p − 1

κ0v
+ . . .) (14)

This shows that the angular dependence is suppressed
by a factor 1/v to first order in ǫ as we approach the
CH.

Now we consider this hypersurface to be the lo-
cus of a lightlike shell embedded in this background.
The spacetime is then divided in two regions M+,and
M−, see Fig.1, separated by the outgoing shell S
whose equation of motion is of the form (13) near the
CH. We assume that the “past” side of the shell is
described by the radiating Kerr-Newman metric (2).
In general nothing can be said about the future side
of S. However, it is reasonable to think that in the
slow rotation regime the production of gravitational
waves can be neglected and the structure of the re-
sulting “glued” manifold is still Kerr-like at least close
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to CH. Thus as “trial” metric we assume that the
spacetime in the future sector of the shell can be rep-
resented with a line element of the type (2) where
the coefficients functions r+, a+, m+ depend on the
coordinates in M−.

C

E

H

S
M+

M -

Fig. 1. A spacetime diagram of the equato-

rial plane of the axisymmetric black hole inte-

rior showing the ingoing flow of gravitational

waves being crossed by an outgoing lightlike

shell infalling in the Cauchy horizon.

In particular let {v±,r±,ϑ±} be the local coordinates
of S in M±, a± the value of the angular momen-
tum per unit mass, and m± the mass functions in
both the sides of the shell. The stress-energy tensor
in M+ contains the contribution in (6) and residuals
terms arising from the fact that a+ is not stricly con-
stant. Those terms can be shown to be much smaller
than the leading, optical geometric contribution in
(6) close to CH. We shall explicitly check the validity
of this approximation at the end of the computation.

In this model the presence of the outgoing light-
like shell simply serves to start the contraction of the
generators of the CH. Thus we consider a pressure-
less shell so that the soldering of the two geometries
is affinely conciliable [11]. We remark that since the
analysis in [12, 13] shows that for spherical symme-
try the CH survives the focusing effect of the outgoing
flux, it is reasonable to think that this would be the
case even if the hole is slowly rotating. In order to
isolate the divergent contribution in the mass func-
tion in M+ we define m+ = m̄ + M(v+) where, by
definition 2m̄r̄ = r̄2 + ā2 + e2 and r̄, ā are the values
of r+ and a+ at the CH. As before, the solution of

(9) in M+ is of the form

r+ − r0+ = f+(v+) +
a2
+

r2
g+(v+, ϑ+) (15)

Therefore equation (15) decouples as a system of the
type (11). In particular if M(v+) ≫ r0 near the CH,
at the leading order in the mass term it reduces to

∂f+

∂v+
≃ −M+

r0+
,

∂g+

∂v+
≃ sin2ϑ+

M2(v+)

r2
0+

(16)

The only geometric condition that has to be satis-
fied along S, the common boundary of the two space-
times, is that the two intrinsic degenerate metrics co-
incide. This implies that the area A of the two in-
trinsic metrics has to be continuous across the shell,

[A] = 0 (17)

where [A] = A+−A−. In a perturbative expansion in
a±, this condition decouples into two distinct continu-
ity requirements for the zeroth and first order terms.
The spherically symmetric contribution simply states
the continuity of the r coordinate across S, not a pri-

ori guaranteed from (17). Thus r+ = r− = r and we
set r0+ = r0− = r0 at the CH. We use r as a param-
eter (necessarily affine for a pressureless shell) along
the generators of S By using eq. (13) in M− one
finds that along the shell the area of any v− = const.
hypersurface reads

A− = 4πr2
0(1 + ǫ) + O(1/vp), v− → +∞ (18)

where only linear term in ǫ have been retained in the
degenerate metric. Similarly in M+, close to the CH
and up to linear terms to a2

+, one has

A+ = 4π

(

r2
0 + a2

+

(

1 +
2M(v+)

3r0

))

(19)

In particular, if M(v+)/r0 ≫ 1, equation (17) reads

a2
+M+ ≃ 3ǫr3

0/2, v− → +∞ (20)

This latter equation contains the essential physics.
As observed in the beginning, it explicitly shows that
the effective Kerr parameter a+ becomes increasingly
small as the mass function grows. We stress, however,
that the asymptotic geometry close to the CH is not
spherically symmetric because the a2

+M+ and a+M+

terms in the metric are not negligible. The depen-
dence of v+ and ϑ+ on the advanced coordinates in
the past sector of the shell can be determined from
the expression for the null generators on both sides of
S (the dependence of ϕ+ on ϕ− is trivial since these
coordinate define the same Killing vector). From the
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chain rule and the continuity of the r function one
has

∂vf− = ∂vf+

[

∂v+

∂v−

](0)

ǫ∂vg− = ∂vf+

[

∂v+

∂v−

](1)

+
a2
+

r2
0

∂vg+

[

∂v+

∂v−

](0)

ǫ∂ϑg− = ∂vf+

[

∂v+

∂ϑ−

](1)

+
a2
+

r2
0

∂ϑg+ (21)

where only first order terms in the jacobian determi-
nant have been retained. To relate the dynamics of
the two spacetime one has to add the condition for
matching of normal stresses across the shell

[T µνsµsν ] = 0 (22)

where sµ are generators of S. Equation (22) is a
second order ordinary differential equation for M+.
The dependence of {v+, ϑ+} on the local coordinates
in M− is implicitly defined from (21), and from the
equations of motion of S in the two spacetimes. The
explicit solution of (22) is not available. However in
the slow rotation approximation any scalar product
between the generators sµ and the tetrad vector must
be written as a sum of a function of only the advanced
coordinated plus ǫ times a function of both advanced
and angular coordinates, and (22) reduces to

[φ22lµlνsµsν ] = 0 (23)

where the scalar products have to be calculated from
the spherically symmetric contribution. Therefore it
is important to stress that in this approximation only
the optical, physically meaningful, part of the energy
momentum tensor is relevant. This equation con-
tains the coupling between the angular momentum
and mass function, through the a+M̈+ term. By us-
ing (21) in (23) and by expressing a+ with the help
of eq. (20), after some simplifications one explicitly
finds

[

d2M+

dv2
−

+
1

M+

(

dM+

dv−

)2
]

3ǫr0sin
2ϑ

4∂vf−
− dM+

dv−

= −κ0

(

1 − p
4 + κ0r03ǫsin2ϑ

4κ0v−

)

M+ (24)

note that ϑ− = ϑ+ in this approximation. Hence we
write

M+ = m+ + δm+ (25)

and we have from (24)

m+ =
1

vp
−

eκ0v
− , v− → +∞. (26)

This has the Israel-Poisson behavior, and

δm+ ∼ cǫsin2ϑeκ0v
− (27)

where c is a constant. This shows the effective mass
parameter exponentially inflates with a residual an-
gular dependence

M+ ∼ eκ0v
−(1 + cǫsin2ϑ) (28)

to first order in ǫ, that does not effect the exponen-
tially divergent prefactor [3]. From the equations (21)
one finds

[

∂v+

∂v−

](0)

∼ e−κ0v
− ,

[

∂v+

∂v−

](1)

∼ ǫsin2ϑ−e−κ0v
−

[

∂v+

∂ϑ−

](1)

∼ ǫκ−1
0 sin2ϑe−κ0v

− (29)

We see that the radial coordinate tends to a finite
limit behind the shell. Indeed, from eq. (16), we have

f(v+) ∼ 1

lnp |v+|
, v+ → 0

a2
+g(v+, ϑ+) ∼ r2

0sin
2ϑ+

lnp |v+|
, v+ → 0 (30)

thus,
lim

v+→0
r(v+) = r0 (31)

The geometry in the mass-inflated sector is asymp-
totically dominated by the large mass term, and the
metric, to a good approximation, explicitly reads

ds2
+ ≈ 2m+

r
(1 + cǫsin2ϑ)dv2

+ + 2drdv+ + r2dϑ2

+r2(1 + 3ǫsin2ϑ)sin2ϑdϕ2

−4
√

3ǫm+r/2sin2ϑdv+dϕ (32)

The following “mild” twist of the ϕ coordinate (since
m+ is an integrable function of the advanced coordi-
nate v+)

dϕ = dΦ +
2
√

3ǫm+r0/2

r2
0

dv+ (33)

brings the metric in the final form

ds2
+ ≈ 2m+

r
(1 + cǫsin2ϑ)dv2

+ + 2drdv+

+r2dϑ2 + r2(1 + 3ǫsin2ϑ)sin2ϑdΦ2 (34)

to linear terms in ǫ. This result is interesting, we
believe, because it explicitly shows that deviations
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from spherical symmetry at the Cauchy horizon are
reflected in the mass-inflated sector, in accordance
with the remarks at the beginning. This phenomenon
should be characteristic of the dynamics of a space-
time with a non-spherical CH. It is important to check
the consistency of the approximations that have been
done. In fact had we started with the line element
(34), with m+ = v−1

+ ln−p|v+| we would find

A+ = 4πr2
0(1 + ǫ) = A− + O(1/vp) (35)

for the continuity of the intrinsic area across the shell.
Also, it is straightforward to verify that the stress-
energy tensor computed from (34) close to CH sat-
isfies the matching condition for the normal stresses,
equation (22)

[T µνsµsν ] = O(ǫ2). (36)

The Komar invariant quantity associated with the ro-
tational Killing vecor field ξµ is not conserved since
matter is flowing into the system. It is indeed diver-
gent in our model, but with a much slower rate

1

8π

∮

ξµ;νdσµν ∼ √
m+ (37)

where the integral is taken over the two dimensional
boundary of any v− = const. hypersurface, with
v− → +∞. It is however hard to judge, from the
analysis here presented, whether one can expect this
latter result to occur in a more general framework
than that of our model. In particular at the present
we do not see any deeper physical argument to ex-
plain it.

As in the sperically symmetric models, at the CH
a strong, scalar singularity develops, whose character
can be read off from the Weyl curvature invariants in
(8). One finds that to the future of the shell, they
are all divergent:

Ψ2 ∼ 1

v+ lnp |v+|
, Ψ3 ∼ 1

v+

√

|v+| lnp/2 |v+|

Ψ4 ∼ 1

v2
+

√

|v+| lnp/2 |v+|
(38)

Although Ψ3 and Ψ4 are tetrad-dependent, the diver-
gence of the boost-invariant quantity Ψ2 has the same
“mild” trait as in the spherically symmetric case.

Finally, we remark that these results have been
derived in the slow rotation approximation and it
would be interesting to see how this scenario would
evolve in the more general case of arbitrary spin.
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