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It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence

for the extra dimensions of string theory. We discuss the observational consequences of these axions on

astrophysical black holes through the Penrose superradiance process. When an axion Compton wave-

length is comparable to the size of a black hole, the axion binds to the black hole ‘‘nucleus’’ forming a

gravitational atom in the sky. The occupation number of superradiant atomic levels, fed by the energy and

angular momentum of the black hole, grows exponentially. The black hole spins down and an axion Bose-

Einstein condensate cloud forms around it. When the attractive axion self-interactions become stronger

than the gravitational binding energy, the axion cloud collapses, a phenomenon known in condensed

matter physics as ‘‘bosenova’’. The existence of axions is first diagnosed by gaps in the mass vs spin plot

of astrophysical black holes. For young black holes the allowed values of spin are quantized, giving rise to

‘‘Regge trajectories’’ inside the gap region. The axion cloud can also be observed directly either through

precision mapping of the near-horizon geometry or through gravitational waves coming from the

bosenova explosion, as well as axion transitions and annihilations in the gravitational atom. Our estimates

suggest that these signals are detectable in upcoming experiments, such as Advanced LIGO, AGIS, and

LISA. Current black hole spin measurements imply an upper bound on the QCD axion decay constant of

2� 1017 GeV, while Advanced LIGO can detect signals from a QCD axion cloud with a decay constant

as low as the GUT scale. We finally discuss the possibility of observing the �-rays associated with the

bosenova explosion and, perhaps, the radio waves from axion-to-photon conversion for the QCD axion.
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I. INTRODUCTION AND SUMMARY

Black holes are among the most fascinating systems in
astrophysics, and the most mysterious objects in quantum
gravity and string theory, for a long time serving as prin-
cipal ‘‘theoretical laboratories’’ for exploring nonperturba-
tive gravitational dynamics. The purpose of this paper is to
initiate a detailed study of the exciting possibility [1] that
astrophysical black holes may serve as actual laboratories
for the discovery of new elementary particles.

There are several reasons why we believe this possibility
is realistic. On a purely phenomenological side, black hole
observations are routine practice in present day astronomy
(see, e.g., [2] for a review). About 40 stellar mass black
holes in X-ray binaries in the Milky Way and neighboring
galaxies have been identified with masses in the range
�5� 20M�. Supermassive black holes with masses
�105 � 1010M� have been found in centers of many gal-
axies including the Milky Way and believed to be hosted
by nearly all of the galaxies. Also, the first intermediate
mass (� 100� 105M�) candidates have been identified.

Following the evolution of binary systems or measuring
the velocity dispersion of stars rotating around galactic
centers allows to determine black hole masses. Most
crucially for what follows, recent advances in X-ray
astronomy and in numerical magnetohydrodynamical

simulations of the accreting gas in the Kerr metric open
the possibility for a detailed exploration of the near-
horizon region and, as a consequence, for high precision
measurements of black hole spins [3,4]. First estimates for
the angular momentum of several black holes have already
been delivered [5], often suggesting high values for the
spin, although at the moment different techniques some-
times give rise to conflicting results [6].
In the future, apart from improvements of traditional

astronomical techniques for observing the near-horizon
environment and its better theoretical modeling, a unique
probe of the black hole geometry will be provided by low
frequency gravitational waves observatories, such as LISA
[7] or AGIS, a gravitational wave detector based on atom
interferometric techniques [8,9]. For the purpose of testing
the near-horizon geometry the most promising candidates
are the so-called extreme mass ratio inspirals—stellar mass
compact objects captured by supermassive black hole in
the galactic center (see, e.g., [10]). LISA and AGIS are
expected to detect about a hundred of such events per year.
Each such measurement allows not only to determine the
black hole spin and mass with an exquisite accuracy,
10�3 � 10�5, depending on the details of a particular
event, but also to check whether higher-order metric mo-
ments, up to 6� 7, agree with their values for the Kerr
geometry.
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This ongoing observational progress indicates that we
are witnessing the dawn of precision black hole physics.
Undoubtedly, black hole observations will be of great value
for astrophysics, however it is natural to inquire whether
these data may be useful for beyond the standard model
physics as well, given that it will provide a rare test of
nonlinear gravity. However, possibly contrary to naive
expectation, it turns out quite challenging to find modified
gravity theories which would predict deviations from gen-
eral relativity near astrophysical black holes and would not
contradict current gravity tests. One candidate class of
modified theories of gravity affecting black hole dynamics
are models of Higgs phases of gravity, where black hole
no-hair theorems can be violated [11].

In this paper we explore a less exotic possibility to test
fundamental physics with precision black hole observa-
tions. It is related to the famous Penrose process, a mecha-
nism to extract energy and angular momentum from
rotating black holes [12,13]. As reviewed in detail below,
this process, known as superradiance, when applied to
waves rather than particles [14–16], gives rise to a spin-
down instability of a rotating black hole [17–20], if a
massive boson with a Compton wavelength of order the
black hole gravitational radius is present in nature. As we
will see, this instability turns rotating astrophysical black
holes into sensitive detectors of bosons with masses in
the range �� 10�9 � 10�21 eV. Before focusing on the
observational consequences of the superradiant instability,
let us review why it is natural to expect ultralight bosons
in the theory that transform astrophysical black holes in
probes of fundamental physics.

A natural situation giving rise to a particle of a small,
but nonvanishing mass is when this particle is a (pseudo)
Goldstone boson of a spontaneously broken global sym-
metry, which is also explicitly broken by nonperturbative
effects. Probably the best motivated candidate for such
a particle is the QCD axion �a—a pseudoscalar particle
coupled to the QCD instanton number density via

S� ¼ 1

32�2fa

Z
d4x�a�

���	 TrG��G�	: (1)

Note that at the classical level S� is invariant under the
Peccei-Quinn (PQ) symmetry �a ! �a þ const, so that
the QCD axion is indeed a (pseudo)Goldstone boson with
fa being the scale of spontaneous symmetry breaking.
This symmetry is explicitly broken by the QCD instanton
effects that generate the axion potential giving rise to a
solution for the strong CP problem—the primary motiva-
tion for the QCD axion. As a result the QCD axion acquires
a mass equal to

�a � 6� 10�10 eV

�
1016 GeV

fa

�
: (2)

The Compton wavelength of the QCD axion with a high
symmetry breaking scale fa * 1016 GeV matches the size
of stellar mass black holes and, consequently, can affect
their dynamics, suggesting that this part of the parameter
space for the QCD axion can be explored through black
hole observations.
There are several reasons why this conclusion is very

important. First, nongravitational interactions of the QCD
axion with the rest of the standard model particles are very
suppressed at these high values of fa. As a result this part
of the parameter space can not be easily probed by any
other means, either laboratory or astrophysical. Second, in
many ‘‘generic’’ string constructions, i.e., in compactifica-
tions where the extra-dimensional manifold is neither
highly anisotropic, nor strongly warped, the values of fa
are naturally around the grand unification scale MGUT ’
2� 1016 GeV [21]. Finally, as elaborated in more detail in
Sec. V, finding the QCD axion with fa �MGUT would
indicate that the baryon-to-dark matter ratio varies on
length scales longer than the observed part of the
Universe and its local value is determined by anthropic
reasoning. Discovery of the QCD axion in this regime
would be further evidence for environmental selection al-
ready suggested by the cosmological constant problem,
and by the string landscape.
There is an even stronger and more direct link between

the QCD axion and the landscape of string vacua, a link that
gives rise to the expectation of a plenitude of light axionlike
particles, an axiverse [1]—this same link also suggests the
existence of many massless vectors, whose massive super-
partners may be discovered at the LHC [22]. In string
constructions, an axion usually arises as a Kaluza-Klein
(KK) zero mode of a higher-dimensional antisymmetric
form field. Such zero modes have a purely topological
origin: they are labeled by noncontractable cycles in the
extra-dimensional manifold. Noncontractable cycles allow
for nontrivial gauge field configurations with a vanishing
field strength, the so-called Wilson lines. These configura-
tions do not carry energy and correspond to zero KKmodes
at the perturbative level. They only acquire a mass due to
nonperturbative effects.
Interestingly, the very same ingredients that give rise

to the string axiverse, higher-dimensional form fields and
nontrivial cycles in the compactification manifold allowing
also to turn on gauge fluxes, also give rise to the string
landscape of 10500 or so vacua. In order to allow for the
tuning of the cosmological constant at the �10�120 level,
as required by observations, the compactification manifold
should contain of order few hundred cycles, given that the
total amount of flux quanta for a cycle is typically limited
by a number around ten in order to stay in a perturbative
regime. Consequently, one may expect hundreds of axion-
like particles in a given string compactification. However, a
plenitude of cycles does not yet guarantee the presence of a
plenitude of axions. There is a number of effects in string
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theory that could produce a large axion mass, such as
branes wrapping the cycles, and fluxes. One can roughly
estimate the number of light axions as being determined by
the number of cycles without fluxes—presumably, around
one tenth of the total number of cycles. Still this leaves us
with the expectation of several tens of axionlike particles.

The discovery of a plenitude of particles in our vacuum
with similar properties but different masses supports the
idea of a plenitude of vacua, as both the axiverse and the
multiverse are dynamical consequences of the same fun-
damental ingredients.

The masses of string axions are exponentially sensitive
to the sizes of the corresponding cycles, so one expects
them to be homogeneously distributed on the logarithmic
scale. However, given that the QCD �-parameter is con-
strained to be less than 10�10, nonperturbative string cor-
rections to the QCD axion potential should be at least 10
orders of magnitude suppressed as compared to the QCD
generated potential. It is then natural to expect many of the
axions to be much lighter than the QCD axion; these are
the axions whose mass is dominated only by these small
nonperturbative string effects.

The implicit, and very plausible assumption behind this
line of reasoning is that there is no anthropic reason for the
existence and properties of the QCD axion. Consequently,
these properties should follow from the dynamics of the
compactification manifold, rather than being a result of
fine-tuning, and the QCD axion should be a typical repre-
sentative among other axionlike fields. A priori we expect
tens (or even hundreds) of light axions, it would be really
surprising if the QCD axion turned out to be the single one.

These arguments motivate us to look not only for the
QCD axion, but for axions in the entire mass range ��
10�9 � 10�21 eV, where they can affect stellar or galactic
astrophysical black holes through superradiance. Let us
summarize now the major features of superradiance and
its principal observational consequences.

Superradiance [14–16] is the phenomenon of wave
amplification during scattering off a rotating black hole
which takes place whenever the wave frequency ! and
the magnetic quantum number m satisfy the superradiance
condition

0<!<mwþ; (3)

where wþ is the angular velocity of the black hole horizon
defined as

wþ ¼ 1

2rg

a=rg

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=rgÞ2

q (4)

with rg being the gravitational radius of the black hole

and 0< a< rg is the spin-to-mass ratio. Superradiant

amplification may lead to an instability under certain

circumstances. One example, admittedly not a very prac-
tical one, is the ‘‘black hole bomb’’ by Press and Teukolsky
[23,24]: a rotating black hole surrounded by a spherical
mirror. A single photon introduced in the system, or
created by quantum fluctuations, with quantum numbers
satisfying the superradiance condition (3) gives rise to an
exponentially growing number of photons inside the mirror
through a chain of consequent amplifications at the black
hole horizon and reflections from the mirror.
Remarkably, nature provides such a mirror in the pres-

ence of a massive boson [17–20]. Massive bosons, in our
case axions, have bound Keplerian levels in the gravita-
tional field of a black hole. This allows for a black hole to
release its spin by populating levels satisfying the condi-
tion (3), see Fig. 1. This creates an axionic Bose-Einstein
condensate (BEC) cloud rotating around the black hole.
The process is only efficient if the Compton wavelength of
an axion is comparable to the black hole size. As a result,
the energy spectrum of superradiant levels is quantized and
very close to the spectrum of a hydrogen atom. The super-
radiant axion cloud loses its energy and momentum by
gravitational wave emission associated with axion transi-
tions between different ‘‘atomic’’ levels, and with axion
annihilations to gravitons. Another important loss mecha-
nism is related to nonlinearities in the axion potential and
results in the emission of axions. Finally, the whole system
may be fueled by energy and spin inflow from the matter
accreting onto the black hole.
In Fig. 2 we show the region of black hole mass and

axion mass parameter space that is affected by superra-
diance. The dark area outlines the region where a super-
radiant cloud has enough time to be built up during the
lifetime of the Universe for a maximally spinning black
hole. The lighter region shows the part of the parameter
space where the superradiant spin-down rate is faster than
the spin-up rate due to Eddington accretion, so that
Eddington accreting black holes in this mass range lose
their spin as the cloud develops.

FIG. 1 (color online). Axionic Black Hole Atom: The spinning
black hole ‘‘feeds’’ superradiant states forming an axion Bose-
Einstein condensate. The resulting bosonic atom will emit grav-
itons through axion transitions between levels and annihilations
and will emit axions as a consequence of self-interactions in the
axion field.

EXPLORING THE STRING AXIVERSE WITH PRECISION . . . PHYSICAL REVIEW D 83, 044026 (2011)

044026-3



There are three major classes of observational signatures
associated with the axion cloud that we are going to discuss
in the current paper:

(i) Gaps in the black hole ‘‘Regge plot’’ (spin vs mass
plane)—the absence of rapidly rotating black holes
when their gravitation radius matches the Compton
wavelength of an axion.

(ii) Direct gravitational wave signals from the rotating
axion cloud. For the QCD axion this signal falls into
the sensitivity band of the Advanced LIGO
interferometer.

(iii) Modification of the near-horizon metric due to the
presence of the axion cloud.

The main goal of this paper is to evaluate the observability
of these classes of signatures in near future experiments.
Detailed quantitative predictions for gravitational wave
emission rates and waveforms, as well as the change of
the templates for the near-horizon metric is likely to re-
quire numerical work. The reason is that the axion BEC
cloud is a rich and complicated dynamical system with
many processes that need to be taken into account in order
to have an accurate description of its behavior at cosmo-
logical time scales. One important process that poses a
challenge for an analytical treatment is the effect of axion
self-interactions on superradiance. Here we limit ourself to
a qualitative, semianalytical discussion of the major physi-
cal processes involved. Our analysis indicates that depend-
ing on the relation between the axion mass and the black
hole size all three classes of signatures can be observable
for different systems. This provides strong motivation for
further numerical analysis of axionic superradiance.

Let us briefly summarize our main results. In Fig. 3 we
show the black hole Regge plot for two different axion
masses. The upper plot corresponds to an axion mass of

�a ¼ 3� 10�11 eV, which is the mass of the QCD axion
for fa ¼ 2 � 1017 GeV, and the lower illustrates the effect
of a lighter axion with �a ¼ 10�17 eV. Black holes in the
shadowed region are not affected by superradiance during
the age of the Universe. Sufficiently old black holes are
expected to be found in this region. In the plot correspond-
ing to the QCD axion we also present existing spin mea-
surements; this data suggest an upper bound on the QCD
axion decay constant of 2� 1017 GeV.
Note that the uncolored gap regions exhibit internal

structure (dashed lines), reflecting the quantized behavior
of the gravitational black hole atom. Black holes may stay
on these lines, the ‘‘Regge trajectories’’, for cosmological
time scales. In order to understand this behavior, we should
note that there is a number of different superradiant bound
states labeled by different angular quantum number l. The
instability time scale rapidly drops down as the orbital
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FIG. 2 (color online). The part of the black hole and axion
parameter space potentially affected by superradiance. For axion
and black hole masses in the colored region the time required to
create a substantial axion cloud is shorter than the age of the
Universe. For masses in a light colored region the superradiance
rate is faster than the Eddington accretion rate.
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FIG. 3 (color online). The regions in the black hole Regge
plane affected by superradiance for the QCD axion with
m ¼ 3� 10�11 eV (the upper panel) and for a lighter axion
with m ¼ 10�17 eV. The data points correspond to spin mea-
surements obtained by fitting the thermal continuum X-ray
spectra [5]. Old black holes are expected to be found in the
shaded region, where they are not affected by superradiance.
Young black holes may be found also on the dashed colored lines
inside the gap. Different colors correspond to superradiant levels
with different orbital quantum numbers l.
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quantum number l increases. Therefore, the spin-down
process of the black hole is initially driven by the level
with the minimum value of l for which the superradiance
condition (3) is satisfied, and stops when enough spin has
been extracted, so that the superradiance instability rate
goes to zero—the superradiance condition is now satu-
rated. At this point the black hole finds itself on one of
the dashed lines of the Regge plot.

Next, we should expect that the black hole spin-down
proceeds with the growth of the level with the next-to-
largest superradiance rate, i.e., the lþ 1 level. However,
further spin-down is damped when the black hole reaches
one of the Regge trajectories as a consequence of axion
self-interactions. The axions bound to the level that is no
longer superradiating serve as an axially asymmetric per-
turbation to the system that mixes superradiant with non-
superradiant levels and shuts off the black hole spin-down
process. This is similar to introducing a nonspherical de-
fect on the mirror in the Press-Teukolsky black hole bomb:
photons reflected from the mirror exit the superradiant
region (3) and are now absorbed by the black hole, turning
the instability off. As a result of these axion nonlinearities,
black holes stay on the Regge trajectories until various
axion loss processes, or a violent accretion event, dissipate
the cloud down to a small enough size, such that nonline-
arities no longer inhibit the instability. Then the black hole
rapidly jumps to the next Regge trajectory by populating
the level with a larger orbital quantum number.

Axion nonlinearities trigger yet another dramatic effect
during transitions between Regge trajectories. Namely,
attractive axion self-interactions result in a catastrophic
instability of the axion cloud and its subsequent collapse.
The analogous effect has been observed in laboratory BEC
systems with attractive self-interactions and is known
under the name ‘‘bosenova’’ [25]. We find that, depending
on the parameters, transitions between Regge trajectories
proceed through a series of tens to hundreds of bosenova
events. These events produce gravitational waves, and, in
the case of the QCD axion, gamma- and X-rays that may be
detectable on the Earth.

The black hole may also emit gravitational waves at the
observable level due to axion transitions between different
levels and annihilations to gravitons. Accurate prediction
of the strength and duration of the signal requires a more
detailed analysis of the dynamics; in the current paper we
limit ourselves to qualitative estimates which imply that
this signal is detectable. It is especially exciting that the
gravitational wave signal from the QCD axion cloud
around stellar mass black holes falls into the Advanced
LIGO frequency band and turns it into a particle discovery
machine. In Fig. 4 we present the estimated signal strength
as a function of the axion and black hole masses for a
source at a 20 Mpc distance from the Earth. We choose a
coherent integration time for the signal of 104 second,
when drawing the sensitivity curves.

The paper is organized as follows. We start with explain-
ing the basics of superradiance in Sec. II. We argue that
the nonrelativistic approximation is accurate for describing
superradiant levels for most of the parameter space, and
adequate at least qualitatively at all values of the parame-
ters. We present semianalytical results for the superradiant
rates, that are accurate over a large part of the parameter
space and enough for our purposes.
In Sec. III we discuss the processes that determine the

dynamics of the superradiant cloud—gravitational wave
emission and axion nonlinearities. We provide approxi-
mate expressions for the relevant transition rates, and for
characteristic time scales and masses of the superradiant
cloud when different processes, such as bosenova collapse,
happen.
In Sec. IV we combine all of the above ingredients and

discuss how the superradiant instability develops and what
are the associated observational signatures. We discuss in
detail the black hole spin-down and of the Regge trajecto-
ries. We then estimate the gravitational wave signals during
transitions between Regge trajectories and briefly com-
ment on prospects for directly detecting the axionic cloud
around supermassive black holes during extreme mass
ratio inspirals.
We also focus on the potential reach for the QCD axion,

and some possible QCD axion specific signatures related to
its direct coupling to standard model fields. A particularly
intriguing effect of the QCD axion is that the effective
value of the QCD �-parameter may become of order one
inside the cloud. This possibly destabilizes nuclei in the
accretion disk and results in �-ray signals and exotic X-ray
lines from the nuclear decay products in the black hole
vicinity. We finally entertain the possibility of radio waves
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FIG. 4 (color online). The contour plot of constant gravita-
tional wave signal from axion transitions between the 6g and the
5g levels for a black hole located at 20 Mpc away from the Earth.
The projected sensitivity curves of Advanced LIGO [49] and
Einstein Telescope [50] assume 104 seconds of a coherent in-
tegration time.
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from axion-to-photon conversion in the near-horizon
magnetic field.

Section Velaborates on an issue which is aside from the
main line of the paper, but still a very important part of
the theoretical motivations for string axions in the mass
range probed by the black hole superradiance. Namely, all
these axions are ‘‘anthropic’’—their initial misalignment
angle needs to be tuned to an atypically small value in the
observed part of the Universe. It has been known for a long
time [26], that this is not a problem for a single QCD axion,
and here we discuss what changes if several anthropic
axions are present. We conclude in Sec. VI.

II. SPECTROSCOPY OF SUPERRADIANCE

In this section we review the spectroscopy of super-
radiant levels around a rotating black hole. Throughout
the paper we are using the Boyer-Lindquist coordinates
for the spinning black hole metric [27]

ds2 ¼ �ð1� 2rgr

�
Þdt2 � 4rgarsin

2�

�
dtd�þ �

�
dr2

þ �d�2 þ ðr2 þ a2Þ2 � a2�sin2�

�
sin2�d�2;

� ¼ r2 þ a2cos2�;

� ¼ ðr� rþÞðr� r�Þr� ¼ rg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g � a2

q
;

a ¼ J

M
;

rg ¼ GNM;

(5)

where M and J are black hole’s mass and spin, respec-
tively. The physical horizon corresponds to the larger root
of �, which is r ¼ rþ.

One of the most fundamental equations for the under-
standing of superradiance is condition (3), so let us review
how it arises, following [27]. Interestingly, one has to know
remarkably little about the Kerr geometry to derive (3).
The first fact one needs is that the black hole metric in the
Boyer-Lindquist coordinates is invariant under time trans-
lations, or more formally it possesses the Killing vector
H �@� ¼ @t. Second, it possesses another Killing vector

related to rotational invariance, J �@� ¼ @’ and the linear

combination

G ¼ H þ wþJ ;

is normal to the horizon and null there. In the above
equation wþ is given by (4).

Now, let us consider an incoming wave of a scalar field
of the form

� ¼ e�i!tþim’fðr; �Þ þ H:c::

The conserved energy flux of this field is given by

P� ¼ �T��H � ¼ �@��@t�þ 1

2
g�tL;

where T�� andL are the energy-momentum tensor and the

Lagrangian density for �, respectively. For a space-time
region between two constant time slices, conservation of
the current P� implies that the time-averaged energy flux

at the infinity is equal to the time-averaged energy flux
through the black hole horizon. The latter is equal to

hP�G�i ¼ �hð@t�þ!þ@��Þ@t�i ¼ !ð!�m!þÞjfj2;
(6)

where the g�� term in the energy-momentum tensor

dropped out because vectors G and H are perpendicular
at the horizon. We see that the energy flux is negative in the
superradiant frequency range indicating that the wave gets
amplified in this regime. The argument changes a bit when
the frequency ! corresponds to the discrete spectrum so
that the energy flux at the infinity necessarily vanishes. In
this case the only way to reconcile the flux (6) at the
horizon with the energy conservation is for the frequency
! to acquire an imaginary part, so that the time-averaged
energies on the two constant time slices are not equal any
longer. For the real part of the frequency in the superradiant
interval (3) the imaginary part should be positive indicating
the presence of an instability.
One important consequence of the instability condition

(3) is that the superradiant levels are always in a (quasi)
nonrelativistic Keplerian regime. Indeed, in this regime the
real part of the frequency follows the hydrogen spectrum

! �n � �a

�
1� 
2

2 �n2

�
; (7)

where �n ¼ nþ lþ 1 is the principal quantum number, l is
the orbital moment and 
 ¼ �arg. For such a level the

velocity of the particle is

v� 


�n
: (8)

On the other hand, if we approximate the frequency in the
superradiance condition (3) by the axion mass, !n � �a,
the condition translates into a bound


 & mwþ ¼ m

2

a

rþ
; (9)

where we made use of the expression (4) for wþ. We see
now that the velocity for superradiant states may be at most
moderately relativistic,

v &
1

2

m

�n

a

rþ
<

1

2
; (10)

where the bound is saturated at the upper boundary of the
superradiant range (3) for extremal black holes a ¼ rþ, at
n ¼ 0 and large l ¼ m 	 1.
In principle, this argument does not exclude the presence

of a family of nonhydrogenic unstable bound states, how-
ever numerical results of [28] confirm that all superradiant
states are hydrogenic.
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We can also estimate the size of the axion cloud as

rc � �n2


2
rg; (11)

which is always significantly larger than the black hole
gravitational radius, as a consequence of (3).

These estimates provide the following physical picture
of the superradiant axion cloud. The cloud is composed of
a wave packet of the axion field rotating on a Keplerian
orbit around the black hole. This axion wave packet always
has a tail that goes into the near-horizon ergosphere region
and gets amplified there leading to the exponential growth
of the number of axions in the packet.

Given the complexity of the Kerr metric it is not surpris-
ing that a precise analytical expression for superradiant
rates is unavailable (partial numerical results can be found
in [28]). However, the above physical picture gives rise to
two useful analytical approximations for the superradiant
rates. Before introducing them let us recall that the massive
Klein-Gordon equation in the Kerr background allows
separation of variables [29] with the following simple
ansatz for the scalar field

� ¼ e�i!tþim’Yð�ÞRðrÞ þ H:c::

The equation for Yð�Þ is the standard equation for the flat
space spherical harmonics plus an extra term that can be
neglected if ð
=lÞ2 
 1. As before, the superradiant con-
dition (3) implies that ð
=lÞ2 < 1=4, so we will always
use this approximation (one can check its accuracy using
known numerical results for oblate spheroidal harmonics,
see e.g. [30]). Then the equation for the radial function R
takes the form

�@rð�@rRÞ þ ð!2ðr2 þ a2Þ2 � 4argrm!þ a2m2

� �ð�2
ar

2 þ a2!2 þ lðlþ 1ÞÞR
¼ 0: (12)

At the horizon, a nonsingular solution of this equation
satisfies [23]

R ¼ const � e�ið!�mwþÞr� as r ! rþ; (13)

where r� is the ‘‘tortoise’’ coordinate defined through

dr� ¼ ðr2 þ a2Þ��1dr: (14)

A. Nonrelativistic approximation �=l 
 1

This approximation [18,20], that initially was applied
for superradiant scattering rather than the calculation of the
instability rate [16], makes use of the separation of scales
between the size of the cloud and the black hole horizon
following from relations (9) and (11). The radial equation
is now solved in two different regimes: the near and far
horizon regions. In the region far from the black hole
horizon, r 	 rg, neglecting terms suppressed by ð
=lÞ2,

the solution takes the same form as the radial wave func-
tion of the Schroedinger equation with an 1=r potential,

RfarðrÞ ¼ ð2krÞle�krUðlþ 1� 
2

rgk
; 2ðlþ 1Þ; 2krÞ; (15)

where U is the confluent hypergeometric function of the
second kind, and k is the axion momentum,

k2 ¼ �2
a �!2: (16)

In the ordinary Schroedinger equation with an 1=r poten-
tial the spectrum of frequencies ! is determined by requir-
ing the regularity of R at the origin. Instead, in the black
hole case one has to impose the regularity of the field at the
horizon—the incoming wave boundary condition (13).
One way to do this is to solve the radial Eq. (12) in the
near-horizon regime. After dropping terms of order 
=l
the solution in the near-horizon region, 0< r� rþ 

ðl=
Þ2rg, that satisfies the boundary condition (13) takes

the form

RnearðrÞ ¼
�
r� rþ
r� r�

��iP

2F1ð�l; lþ 1; 1þ 2iP;
r� r�
rþ � r�

Þ;
(17)

where

P ¼ 2rþ
!�mwþ
rþ � r�

and 2F1 is the Gauss’s hypergeometric function. At

=l 
 1 the ranges of validity for the two approximate
solutions (15) and (17) have an overlap, so the approach in
[18,20] was to match the lowest terms of the Taylor ex-
pansion for Rfar at small r with the asymptotic behavior of
(17) at large r, with the following result for the imaginary
part of the frequency,

�lmn ¼ 2�
4lþ4rþðmwþ ��aÞClmn; (18)

where

Clmn ¼ 24lþ2ð2lþ nþ 1Þ!
ðlþ nþ 1Þ2lþ4n!

�
l!

ð2lÞ!ð2lþ 1Þ!
�
2

�Yl
j¼1

�
j2
�
1� a2

r2g

�
þ 4r2þðmwþ ��aÞ2

�
:

Note that the real part is well approximated by the hydro-
gen spectrum (7). These approximate formulas exhibit
many of the features of the full answer. In particular, the
sign of �lmn is determined by the sign of (mwþ ��a), in
agreement with (3) within the accuracy of the nonrelativ-
istic approximation used to derive (18). Also, in the regime
of applicability of (18), 
=l 
 1, widths �lmn drop expo-
nentially as l increases. This implies that for a given value
of 
 the fastest superradiant level is the one with a smallest
possible l, i.e., the l ¼ m level withm chosen in such a way
that the superradiance condition (3) is satisfied.
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It will be important in what follows that as l grows the
radial quantum number n for the fastest superradiant level
grows as well. For instance, using (18) we find that for
l ¼ m ¼ 4 the instability rate for the n ¼ 1 level is faster
than for the n ¼ 0 level,

�440

�441

� 0:9: (19)

The result (18) is often referred to as the ‘‘low mass’’ or
small 
 approximation. However, as the above derivation
shows, the approximate solutions (15) and (17) hold and
have an overlapping regime of validity at large 
 as well,
as long as 
=l 
 1. It is true, though, that (18) may be
quite inaccurate close to the superradiance boundary

 & wþ, both due to the inaccuracy of the approximate
solutions and because the overlap interval where both of
the solutions hold shrinks.

To have better control of the precision and to improve on
the latter deficiency of (18) we adopt the following semi-
analytic procedure, which is similar to that in [31]. Instead
of matching the leading terms in the asymptotic expansions
of (15) and (17) we numerically matched these functions
and their first derivatives at a point r� within the overlap
region. To find the optimal value for r� we calculated the
relative residuals after plugging Rfar and Rnear in the origi-
nal radial Eq. (12). We pick r� as the point where the two
residuals are equal. We present our semianalytical results
for the instability rates in Fig. 5 (solid lines) together with
the instability rates given by (18) (dashed lines). Different
lines correspond to different l ¼ m levels, and we picked
the radial quantum number n to maximize the superra-
diance level in each case (the dependence on n is very
mild).

These results were obtained for a near-extremal black
hole with a=rg ¼ 0:999. The instability rate decreases very

slowly with spin for small 
, and the main effect of
reducing the spin is that the instability shuts down earlier,
at 
m ¼ mwþðaÞ for the different l ¼ m levels, as follows
from the superradiant condition (3). To illustrate this in
Fig. 6 we present the superradiance rates for l ¼ 1 level for
several values of a=rg.

We see that (18) perfectly agrees with our semianalytic
results at sufficiently small 
=l, but they quickly start
being different indicating that the procedure of matching
the leading terms of the asymptotic expansions that results
in (18) is not very accurate. Of course, our semianalytic
results are also not good enough for precision calculations
close to the superradiant boundary, 
�mwþ, however,
they agree quite well with numerical calculations in [28]
(at least for l ¼ 1, 2, 3 presented in [28]) and with
the WKB results presented in the next subsection. In
particular, the superradiance rate of [28] is maximum,
� � 1:5� 10�7r�1

g , at 
 � 0:42 in a good agreement

with our results. As we will see, many of the observational
consequences of superradiance are not very sensitive to
the exact values of the superradiance rates at 
�mwþ, so
this level of precision is enough for our purposes.

B. WKB approximation � 	 1

Another useful approximation for the superradiant rates
[19], complementary to the slow velocity expansion above,
is the WKB method that can be applied at 
 	 1. We will
closely follow the methodology of [19], however, our
results disagree with [19] by an important factor of two
in the expression for the tunneling exponent. Most likely,
this factor was accidentally missed in [19] (this discrep-
ancy was also pointed out in [32] without any derivation).
In this approach, the tail of the wave function that

propagates in the ergo-region, where superradiant amplifi-
cation takes place, is calculated using the WKB approxi-
mation. This is just a classic tunneling calculation. Indeed,
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FIG. 5 (color online). Superradiance rates obtained using our
semianalytic method (solid lines), nonrelativistic approximation
(dashed lines) and WKB approximation (dotted line) for a near-
extremal black hole, a=rg ¼ 0:999. Different colors correspond

to superradiant levels with different values of the angular quan-
tum number l.
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FIG. 6 (color online). Superradiance rates obtained using our
semianalytic method (solid lines) for different values of the
black hole spin.
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after switching to the tortoise coordinate (14) and introduc-

ing� ¼ ðr2 þ a2Þ1=2R the radial Eq. (12) takes the form of
the Schrödinger equation

d2�

dr2�
� V� ¼ 0 (20)

with the potential

V ¼ �!2 þ 4rgram!� a2m2

ðr2 þ a2Þ2

þ �

r2 þ a2

�
�2

a þ lðlþ 1Þ þ k2a2

r2 þ a2

þ 3r2 � 4rgrþ a2

ðr2 þ a2Þ2 � 3�r2

ðr2 þ a2Þ3
�
: (21)

We include the ð�!2Þ term in the definition of the poten-
tial, because even if wewere to separate it, there would be a
residual dependence on!. We present the qualitative shape
of the potential V for a typical choice of parameters in
Fig. 7. One can clearly see the potential well where the
bound Keplerian orbits are localized and a barrier separat-
ing this region from the near-horizon region where super-
radiant amplification takes place.

Consequently, the axion wave function at the horizon
r ¼ rþ (corresponding to r� ¼ �1) is suppressed relative
to the wave function in the vicinity of the Keplerian orbit
by a tunneling exponent,

jRðrþÞj ’ jRðrcÞje�I;

where the tunneling integral I is

I ¼
Z r�ðr2Þ

r�ðr1Þ
dr�

ffiffiffiffi
V

p ¼
Z r2

r1

dr

ffiffiffiffi
V

p ðr2 þ a2Þ
�

; (22)

with r1;2 being the boundaries of the classically forbidden

region. We will only follow the leading exponential depen-
dence on e�I and do not aim at calculating the normaliza-
tion prefactor in front of the exponent.

To relate the tunneling exponent with the rate of super-
radiance instability let us consider again the energy flow
Eq. (6). Integrating it over the horizon we obtain

dE
dt

¼ !ðmwþ �!Þ
Z
horizon

jYð�ÞRðrþÞj2; (23)

where E is the energy in the axion cloud. The energy is
maximum in the Keplerian region, so that in the limit
where we only keep track of the dependence on the ex-
ponent e�I we can write

E / jRðrcÞj2 ’ e2IjRðrþÞj2;
and, consequently, to rewrite (23) as

dE
dt

¼ const � ðmwþ �!Þe�2IE: (24)

In other words, the WKB approximation for the super-
radiance rate gives1

� ¼ �ðmwþ �!Þe�2I; (25)

where the normalization prefactor is determined mainly by
the spread of the wave function in the classically allowed
region. We will limit ourself by calculating the exponential
part �. We leave the technical details for the Appendix, and
present only the final result here. Namely, the final answer
for the tunneling integral in the extremal Kerr geometry
takes the form

I ¼ �

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ð
� 1Þp �
; (26)

which translates in the following superradiant rate,

�WKB � 10�7r�1
g e�2�
ð2� ffiffi

2
p Þ � 10�7r�1

g e�3:7
; (27)

where we took the large 
 limit in (26) and chose the
prefactor to match the low 
 results of Sec. II B (this value
also agrees with that of [19,32]). As we already said, the
exponent in (27) is larger than that in [19] by a factor of two.
As explained in the Appendix, the rate (27) provides an
upper envelope for superradiance rates at different l in the
large 
 limit. We have presented (27) by a dotted line in
Fig. 5; it agrees reasonably well with the previous
=l 
 1
results.

III. DYNAMICS OF SUPERRADIANCE

Let us turn now to discussing the dynamical consequen-
ces of the superradiant instability. One important property
of the rates calculated in Sec. II is that the time scale for the
development of the instability is quite slow compared to
the natural dynamical scale rg close to the black hole

horizon, ��1
sr > 107rg. Consequently, in many cases non-

linear effects, both gravitational, and due to axion self-
interactions, become important in the regime where the
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Exponential
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Po
te
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ia
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r * Black Hole Horizon
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at r~1/µ

FIG. 7 (color online). The shape of the radial Schroedinger
potential for the eigenvalue problem in the rotating black hole
background. Superradiant modes are localized in a potential well
region created by the mass ‘‘mirror’’ from the spatial infinity on
the right, and by the centrifugal barrier from the ergo-region and
horizon on the left. 1Note, that at this stage we still agree with [19].
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system is still in the quasilinear regime, so that nonlineari-
ties can be treated perturbatively. Then the dynamics of the
axion cloud can be described by the following set of kinetic
equations for the occupation numbers Ni for different
levels,

dNi

dt
¼ �ijNj þ �ijkNjNk þ . . . : (28)

This equation gets simplified in the quasilinear regime
where we can truncate the expansion in the right-hand
side of (28), by keeping just a finite number of terms.
Note that for simplicity, we drop Ni-independent terms in
the right-hand side of (28); those terms correspond to
spontaneous emission.

To avoid confusion, let us clarify the following.
Throughout this paper we often use quantum terminology
(occupation numbers, transition between levels, etc.) to
describe the axionic cloud. This appears to be perfectly
appropriate given that the size of the cloud is comparable to
the Compton wavelength of the axion. On the other hand,
occupation numbers for all dynamically relevant levels will
always be exponentially large in what follows, �1070, so
that all the dynamics can be accurately described by a
classical field theory. Of course, there is no contradiction
here and both descriptions are correct. The very fact that we
can use classical field theory to describe the dynamics of
axion particles in the cloud reflects its quantum mechanical
origin. For instance, in the classical field description instead
of using occupation numbers Ni one can Fourier decom-
pose classical field into harmonics with different frequen-
cies and follow the (squared) amplitudes for different
harmonics. Given numerous analogies with atomic physics
we find the quantum language useful in many cases, but will
also use the classical one, when more convenient.

Coming back to the kinetic Eqs. (28), at the linear level,
the right-hand side of (28) is determined by the super-
radiant rates presented in Sec. II. Namely,

�ij ¼ �ij�i; (29)

where �i is the imaginary part of the frequency for the ith
level—positive for levels satisfying (3) and negative other-
wise. There could be other model dependent sources of
linear terms in (28). For instance, if an axion has an
electromagnetic coupling

C


4�fa
�����	F��F�	; (30)

where C is an order one constant (for the QCD axion
C ¼ 4=3 in 4d grand unified theories), then in the presence
of a magnetic field axions will convert into photons with a
rate [1]

�� 7� 10�11 yr�1

�
1016 GeV

fa

�
2
�

�a

6� 10�10 eV

�

�
�

B

4� 108 G

�
2
;

(31)

where the reference values for the parameters are chosen
to be those for the QCD axion, and the choice of a refer-
ence magnetic field is motivated by the estimate (Eq. (75)
of [33])

B� 4� 108G

�
M

M�

��1=2
(32)

for the largest magnetic field the accretion disc can support
near the horizon of a black hole of mass M. It is evident
from (31) that axion-photon conversion is too slow to be
relevant for the dynamics of superradiance.
To describe the development of the superradiant insta-

bility one needs to supplement (28) with equations for the
time evolution of the black hole mass M and spin J. These
depend on the environment of each individual black hole,
but, in general, accretion in the absence of mergers or other
violent events has a characteristic time scale whose lower
bound is set by the Eddington time �E

�E � T

4�GNmp

� 4� 108 yr: (33)

The value of �E shows that the superradiant instability
time, even though much shorter than the black hole infall
time, is much faster than the evolution time scale for
astrophysical black holes. As a result, for most of the
discussion that follows we will ignore accretion, unless
stated otherwise. For example, in Sec. IVE, we discuss a
particular accretion model.
Let us describe now the leading nonlinear processes,

which should be included in (28) to describe the develop-
ment of the superradiant instability. The two sources of
nonlinearities are gravitational interactions of axions and
nonlinearities in the axion potential itself.

A. Gravity wave emission

The axion cloud may lose its energy and angular mo-
mentum by emitting gravitational waves. There are two
major processes giving rise to graviton emission. The first
is analogous to photon emission from atoms—this is just
the transition of axions from one level to another. The
major difference in the present case is that the transition
rates between populated levels get enhanced by their oc-
cupation numbers.
The other process of graviton emission is less familiar.

Unlike electrons in the atom, axions do not carry any
conserved charge. Consequently, they can emit gravita-
tional waves also through processes that do not conserve
the axion number. In particular, one-graviton annihilation
of two axions is possible at the same order of perturbation
theory as the transition between different levels, i.e., the
corresponding amplitude is proportional to M�1

Pl . Of

course, this process is kinematically forbidden in flat
space, where only two-graviton annihilation (with ampli-
tude proportional to M�2

Pl ) is compatible with energy

and momentum conservation. However, the black hole
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gravitational field breaks translational invariance, so that
one-graviton annihilation is allowed for axions in the
presence of a black hole. The closest analogue of this
process in atomic physics is the one-photon annihilation
of a positron with an atomic electron [34].

This annihilation process is quite unconventional, be-
cause the graviton momentum is determined by the axion
mass kg � 2�a and is parametrically larger than the mo-

mentum of axions in the cloud ka � ð
=lÞ�a. In other
words, unlike for conventional astrophysical sources of
gravitational waves, the wavelength of an emitted radiation
is not parametrically longer than the size of the source
(even though the cloud is nonrelativistic), and the standard
quadrupole approximation does not apply.

1. General formalism

The calculation of the gravitational wave flux due to
both kind of processes is further complicated by the fact
that the system is bound by gravity, and the axion cloud is
not that far from the black hole horizon, where the gravi-
tational field is nonlinear. However, these complications
can be safely ignored for order of magnitude estimates,
which are enough for our purposes. To perform the esti-
mates it is convenient to switch to the classical field theory
description. Let us write the axion field of the cloud in the
form

� ¼ X
!

e�i!t�ð!;’; r; �Þ þ H:c:; (34)

where the frequencies ! ran over different bound levels in
the black hole geometry. The related expansion of the
scalar energy-momentum tensor takes the form

T�� ¼ X
!0
e�i!0t���ð!0; ’; r; �Þ þ H:c:: (35)

To estimate the gravitational wave flux from the axion
cloud we use the flat space formula [35] for the gravita-
tional wave power,

dP

sin�d�d’
¼ GN!

2

�
�TT�ij ð!; kÞ�TTij ð!; kÞ; (36)

where

�ijð!; kÞ �
Z

d3x�ijð!;xÞe�ikx (37)

where x denotes the flat space Descartes coordinates,
jkj ¼ !, and the TT superscript stands for the projector
on the transverse-traceless part,

�TTij � ðPii0Pjj0 � 1

2
PijPi0j0 Þ�TTi0j0 ;

where

Pij ¼ �ij �
kikj

k2
:

In this classical language the graviton emission due to
axion transitions between levels correspond to terms in
the harmonic expansion (35) of the energy-momentum
tensor of the form

e�ið!�!0Þt�ð!Þ��ð!0Þ þ H:c:;

where, for simplicity, we dropped all the derivatives ap-
pearing in the expression for T��. On the other hand, the

annihilation processes correspond to terms of the form

e�ið!þ!0Þt�ð!Þ�ð!0Þ þ H:c:

To calculate the gravitational wave power, one needs to
solve for the scalar field harmonics �ð!Þ in the black hole
background and plug them into (36). This is similar to
calculating the trajectory of a compact stellar mass object
falling into a galactic mass black hole in the probe particle
approximation, and using this trajectory as a source in the
linearized Einstein equations to solve for the hij compo-

nents of the metric, that determine the flux of gravitational
waves. In principle, the latter step should be done in the
curved geometry—the flat space approximation is just an
estimate both for the overall rate and for the frequency
profile of the gravitational wave signal. For instance, for
the annihilation signal from a single populated level with
the frequency ! the flat space expression (36) predicts the
monochromatic gravitational wave line of frequency 2!,
while taking into account deviations from the flat space
would induce the broadening of the line due to gravita-
tional redshift.
However, given the separation of scales between the size

of the axion cloud and the black hole size, we expect that
by using the flat space expression (36) we are making at
most order one mistake in the overall rate, which is accu-
rate enough for our purposes. For the same reason, the
spectral distortions should be rather small. It is likely that
one still needs to calculate more accurately the spectral
shape of the signal (the waveform) to be able to observe it
with gravitational wave detectors. This is a technically
involved calculation, which is beyond the scope of the
current paper. Note that in [36], where gravitational wave-
forms in the Kerr metric are calculated, the flat space
approximation gives quite accurate results.
The other approximation we adopt to evaluate (36) is

rather than solving for the eigenfunction �ð!;’; r; �Þ in
the full Kerr background we will just use the Newtonian
approximation for the metric. Again, this is justified be-
cause the cloud is mainly localized relatively far from the
black hole horizon. In this approximation the eigenfunc-
tions �ð!;’; r; �Þ are the familiar wave functions for the
electron states in a hydrogen atom, and the evaluation of
(36) becomes straightforward. Let us present here some
representative results of this calculation that we will use
later in Sec. IV.
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2. Axion transitions between levels in a black hole atom

Let us start with the more familiar case of graviton
emission due to axion transitions between levels. As we
will see in Sec. IV an important source of potentially
observable gravitational radiation is related to axion tran-
sitions between levels with equal angular quantum num-
bers l and m, but with different radial quantum numbers n.
This process will be relevant for sufficiently high l, such
that the fastest superradiant level has n > 0. For instance,
as we saw in Sec. II B, for l ¼ m ¼ 4 level the n ¼ 1
superradiant level is faster than n ¼ 0, Eq. (19). For the
transition between these two levels (36) gives

dP

sin�d�d’
ð6g! 5gÞ�N1N0

22334105GN

12

1122�r4g
sin4�þ . . .

� 3�10�10N1N0

GN

12

r4g
sin4�; (38)

where N1 and N0 are the occupation numbers for the two
levels and dots stand for higher-order terms in the small 

expansion (we checked that they can be neglected in the
superradiant regime 
 & 2).

For transitions between levels the wavelength of an
emitted graviton is much longer than the size of the system,
so the conventional quadrupole formula for a graviton
emission should also be a good approximation. As a
cross-check of our calculation let us compare result (38)
with the quadrupole formula. For the transition rate be-
tween two levels the latter gives [35]

dN1

dt

��������quadr
¼ N1N0

2GN�!
5

5
IijIij; (39)

where �! is the frequency splitting, which in our case is
equal to

�! ¼ �a

2

2

�
1

25
� 1

36

�
; (40)

and Iij is the transition mass quadrupole moment. For the

estimate we take

IijIij ��2
ar

4
c;

where the size of the cloud rc is estimated by (11).
Altogether, this gives

dN1

dt

��������quadr
ð6g ! 5gÞ � 8� 10�7N1N0

GN

9

r3g
: (41)

On the other hand, from (38) we get

dN1

dt
ð6g ! 5gÞ ¼

R
angles dP

�w
� 3� 10�7N1N0

GN

9

r3g

(42)

in a perfect agreement with (41).

Proceeding as above it is straightforward to calculate
other transition rates. For instance, for transitions from the
fastest (n ¼ 0) l ¼ 2 superradiant level to the fastest (also
n ¼ 0) l ¼ 1 superradiant level one gets (for simplicity, we
present only the total power integrated over directions)

Pð3d ! 2pÞ � N1N0

5717� 28GN

14

3551173r4g

� 4� 10�7N1N0

GN

14

r4g
: (43)

This rate is suppressed by a higher power of 
, because
the quadrupole transition between these two levels is
forbidden.

3. Axion annihilations

We see that for estimating the transition rates one can
use the standard multipole formula. As we said, this is no
longer the case for annihilations, where the wavelength of
an emitted graviton is shorter than the size of the cloud. In
this case the suppression for the emission rate is related to
the decoupling of high momentum modes—the Fourier
transform in (37) involves convolution of the slowly vary-
ing energy-momentum tensor of the axion cloud with a
rapidly oscillating exponent. A direct calculation gives the
following result for the annihilation rate at the 2p level, the
fastest superradiant level,

dP

sin�d�d’
ð2� 2p ! gravitonÞ

� N2 9�GN

18

226r4g
ð35þ 28 cos2�þ cos4�Þ; (44)

where we again expanded the full answer at small 
 and N
is the occupation number. Note that, unlike for transitions,
the corrections from higher-order terms in 
 change the
answer for the annihilation rate by a factor of order one
close to the upper boundary of the superradiant regime (3)
(
� 1=2), however this level of precision is enough for
our estimates. We see that the suppression for the annihi-
lation rate at small 
 is much stronger than for transitions.
For higher l levels the suppression at small 
 becomes

even stronger, because the multipole number of the emitted
graviton grows with l. For instance, the annihilation rate
for the 3d level scales as 
20. Still, given that the power of

 is already very high even for the p-level annihilation and
the suppression in the annihilation rate is determined by
how nonrelativistic axions in the cloud are, one may expect
the annihilation rates for different levels to be comparable
at equal values of the axion velocity, or, equivalently, at
equal values of 
=l. To illustrate that this is indeed the
case, we present in Fig. 8 the annihilation rates for the first
three superradiant levels, l ¼ 1, 2, 3, in units of rg for a

cloud mass of 10�4Mblack hole as a function of 
=l. We see
that they indeed agree within an order of magnitude.
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B. Axion nonlinearities

Let us turn now to another important source of nonlinear
terms in (28)—self-interactions of the axion field itself. As
we discussed, the superradiant cloud is always close to be
nonrelativistic, so let us first discuss the self-interaction
effects in the nonrelativistic approximation. In the non-
relativistic limit, the axion field takes the form

� ¼ 1ffiffiffiffiffiffiffiffiffi
2�a

p ðe�i�atc þ ei�atc �Þ; (45)

where the characteristic scales for space and time varia-
tions of the function c are much longer than��1

a . Then we
plug the ansatz (45) in the axion action and drop all rapidly
oscillating terms. As the result we obtain the following
effective action for c ,

Snr ¼
Z

d4x

�
ic �@tc � 1

2�a

@ic @ic
�

��a�c �c þ 1

16f2a
ðc �c Þ2

�
; (46)

where � is the Newtonian gravitational potential of the
black hole, and we kept only the leading nonlinear term
from the axion potential. If we also drop the quartic self-
interaction term in (46), then the equation following from
(46) is the conventional Schroedinger equation in the ex-
ternal gravitational field. As before, the superradiant insta-
bility can be thought of as coming from an unconventional
boundary condition at the origin. With the quartic term
taken into account, the axion action (46) leads to the non-
linear Gross-Pitaevskii equation, well-known in condensed
matter physics to describe the dynamics of an interacting
BEC (see, e.g., [37] for an introduction). The sign of the
interaction term in (46) corresponds to an attractive inter-
action between axions. The black hole gravitational poten-
tial plays the role of the BEC trap.

Note, that as compared to gravity, axion self-interactions
give rise to higher-order nonlinearities (quartic, rather than
cubic), however, they are suppressed by the scale fa, which
can be significantly lower than MPl.
Let us describe the major consequences of these non-

linearities. We postpone the systematic discussion of how
superradiant instability develops till the next Sec. IV, but it
is intuitively clear that typically the axion field in the cloud
is dominated by a single harmonic in the expansion (34)—
the one corresponding to the fastest available superradiant
level. This is especially natural to expect at small and
moderately large values of 
, when superradiant levels
are very sparse. So let us first consider how nonlinearities
affect a cloud composed of a single superradiant level.

1. bosenova

As the number of axions in the cloud increases, the
attractive force between axions becomes more and more
important and at some point the shape of the cloud changes
significantly as compared to the one corresponding to the
unperturbed hydrogen wave functions. We can estimate
when this happens by equating the potential energy of
axions in the cloud to the self-interaction energy,




r
� c �c

8f2a
: (47)

By integrating (47) over the volume we obtain that self-
interaction effects become important in determining the
shape of the cloud when

N * 16�
f2ar
2
c � 16�

l4


3
f2ar

2
g;

whereN is the number of axions. Here we made use of (11)
for the size of the cloud, and set �n� l. It is more conve-
nient to write this bound as a condition on the mass Ma of
the axion cloud,

Ma

MBH

* 2
l4


2

f2a
M2

Pl

: (48)

We see that for typical values of the parameters we are
interested in, fa �MGUT, nonlinearities start playing an
important role in determining the shape of the cloud quite
early—when the cloud constitutes only 10�4 � 10�3 of the
black hole mass, and even earlier if the axion scale fa is
significantly below the GUT scale.
As the cloud grows and its size is close to saturating (48),

the shape of the cloud is deformed and is no longer deter-
mined by the hydrogen wave functions. However, a much
more dramatic effect happens as the size of the cloud keeps
growing. The effect was experimentally observed in
trapped BEC’s with attractive interactions and is known
under the name ‘‘bosenova’’. Above some critical mass of
the cloud the gradient energy of the axion field (‘‘quantum
pressure’’) cannot compete with the attractive force due to
self-interactions and the cloud collapses. Indeed, it follows
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FIG. 8 (color online). Total annihilation rates in units of r�1
g

for Mcloud

MBH
¼ 10�4 as a function of 
=l for the superradiant levels

with l ¼ 1, 2, 3.
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from (46) that the energy of the static cloud has the follow-
ing parametric dependence on its size r,

VðRÞ ’ N
lðlþ 1Þ þ 1

2�ar
2

� N



r
þ N2

32�f2ar
3
: (49)

At small N this energy has a minimum corresponding to a
(meta)stable cloud, however, at largeN the last term in (49)
dominates over the repulsion due to the quantum pressure
term, and the cloud collapses.

2. Shutdown of superradiance due to level mixing

Yet another important consequence of nonlinearities is
that they may stop further development of superradiance.
To see how, let us first consider the Press-Teukolsky ‘‘black
hole bomb’’—a rotating black hole surrounded by a spheri-
cal mirror. As we discussed in the Introduction, this system
provides the simplest example of a superradiant instabil-
ity—a single photon introduced inside the mirror and
satisfying the superradiance condition (3) bounces be-
tween the mirror and the horizon and gets amplified in
the ergo-region. Now imagine that the mirror has a defect
and does not possess a perfect rotational symmetry around
the axis of black hole rotation. Then, when scattering off
the mirror, some of the photons satisfying the superradiant
condition (3) change their quantum numbers. As a result
they may exit the superradiant regime and be absorbed at
the horizon. If the defect is substantial enough this may
dump the superradiant instability.

Coming back to axion superradiance, as a consequence
of self-interactions the axion cloud itself acts as a defect
and may dump the further development of the instability
when it becomes large enough. To analyze this at a more
quantitative level, let us write the axion wave function in
the form

c ¼ c 0 þ �c ;

where c 0 / e�ið!0t�m0’Þ is the field of the axions populat-
ing the most occupied level, and �c is a perturbation. We
assume that the time scale for the growth of the cloud is
much longer than the oscillation period for c and consider
the dynamics at scales short compared to the instability
time—under these assumptions!0 can be taken real. Then
the linearized equation for the perturbation �c has the
following form,

i@t�c ¼ � @2i �c

2�a

þ�a��c

� 1

8f2a
ð2c �

0c 0�c þ c 2
0�c

�Þ: (50)

The interesting feature of this equation is that it mixes c
and c �; this property is typical for BEC perturbations and
gives rise to the notion of Bogoliubov’s quasiparticles.
Namely, the solution to (50) mixes positive and negative
frequency components,

�c ¼ e�ið!0t�m0’Þðuðr; �Þe�ið�!t��m’Þ

� v�ðr; �Þeið�!t��m’ÞÞ: (51)

In the next section wewill be interested in a situation, when
the unperturbed cloud has parameters very close to the
boundary of the superradiant region, !0 ¼ m0wþ and the
perturbation �c corresponds to the fastest available super-
radiant level, which is l ¼ m ¼ m0 þ 1. This same reason-
ing applies for the levels with m higher than m0 þ 1. The
first term in (51) would give rise to such a perturbation,
however, we see that as a result of the interaction with the
background BEC, the perturbation has also an admixture of
the nonsuperradiant m ¼ m0 � 1 modes. Of such modes
the one with the fastest damping rate also has l ¼ m0 � 1,
and as far as we can tell, there is no reason that would
forbid an order one overlap of the function v with the
l ¼ m ¼ m0 � 1 mode.
To see whether the perturbation (51) is superradiant or

dumped, let us proceed as we did before in the derivation of
the time-averaged energy flux through the black hole hori-
zon, (6). The axion field has now three different harmonics
with frequencies !0, !0 � �!. However, only the latter
two contribute to the flux, because the first one saturates
the superradiance condition (and all cross-terms vanish as a
result of time-averaging). As a result, the flux takes the
following form

hP�G�i ¼ !1ð!1 � ðm0 þ 1ÞwþÞjuhj2
þ!2ð!2 � ðm0 � 1ÞwþÞjvhj2; (52)

where !1;2 ¼ �a þ!0 � �!, and uh and vh are the val-

ues of the functions u and v at the black hole horizon. For
our choice of parameters, the u term in (52) gives rise to the
energy flux from the black hole, while the v term gives rise
to the flux into the black hole. To deduce the direction of
the net energy flux, let us recall that derivation of the WKB
formula (25) implies, that the functions uh, vh at the
horizon are related to their values uc, vc at the location
of the cloud as

juhj2
jvhj2

�
���������1

�2

��������jucj2
jvcj2

;

where �1 and �2 are superradiance and dumping rates for
the two levels. In turn, the ratio uc=vc is determined by the
relative strength of the nonholomorphic in �c term in the
perturbed Gross-Pitayevskii Eq. (50)

vc

uc
� c 2

0

8f2a�a�
� N

8
f2ar
2
c

:

Combining these two relations together, we obtain that the
perturbation �c is superradiant if the number of axions in
the cloud is smaller than

N &

���������1

�2

��������1=2

16�
f2ar
2
c:
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As in (48) it is convenient to rewrite this condition as a
bound on the fractional mass of the axion cloud,

Ma

MBH

&

���������1

�2

��������1=2

2
l4


2

f2a
M2

Pl

: (53)

To estimate the ratio of rates in (53) we can use (18). In
Fig. 9 we plot the result for the first few values of m0 as a
function of a=rg. We see, that for a broad range of a=rg this

ratio changes between �10�12 and �10�9. Note that for
a=rg close to one the nonrelativistic approximation is not

accurate for the l ¼ m0 � 1 level. Comparing with the
numerical results of [28] for m0 ¼ 1, 2 suggests that the
ratio j�1=�2j is actually close to 10�9 at a=rg close to one,

rather than to 10�8 as shown in Fig. 9.
By comparing (53) and (48), we conclude that a large

occupation number for one of the superradiant levels may
indeed strongly inhibit the development of superradiance
for other levels even in the regime when nonlinearities are
still irrelevant for the shape of the cloud.

Importantly, this does not happen for the most occupied
level itself—this corresponds to considering�w ¼ �m ¼ 0
in (51). The derivation of the horizon flux (6) did not assume
that the field is linear, so that as soon as the field is well

approximated by a single exponent c 0 / e�ið!0t�m0’Þ the
superradiance will continue even in the nonlinear regime.

It is important for this argument that the ansatz c 0 /
e�ið!0t�m0’Þ is a consistent solution of the Gross-Pitaevskii
equation at the nonlinear level. This is no longer true if
one considers the full scalar equation including all relativ-
istic corrections—the higher harmonics get generated.
However, we do not expect those to change the conclusion.
As shown in Sec. III A, relativistic processes are strongly
suppressed for superradiant levels. Still, this point deserves
further study.

Note, that the effects discussed so far—deformation
of the shape of the cloud and shutdown of superradiance

due to level mixing—in principle could be caused by
gravitational backreaction of the cloud as well. We did
not discuss them in Sec. III A, because the shape deforma-
tion is always small as soon as Ma 
 MBH, and the level
mixing is absent in the nonrelativistic limit when the
density of axions 	a � �ac

�c does not depend on the
azimuthal angle ’, as the cloud is dominated by a single
level. Consequently, these gravitational effects are likely to
be always subdominant with respect to those caused by
axion self-interactions.
Conversely, axion self-interactions may cause effects

similar to those discussed in Sec. III A, annihilations and
elastic scatterings of axions. The leading annihilation pro-
cess is annihilation of three axions from the cloud into one
axion in the continuum. Given that the outgoing axion has
energy of order 3�a, in the leading approximation it can be
considered as massless, and the calculation of the emission
rate can be done similar to the graviton case. The analogue
of (36) for three axion annihilation in the massless ap-
proximation reads

dP

sin�d�d’
¼ 2!2jjð!; kÞj2; (54)

where

jð!; kÞ � 1

4�

�2
a

6f2a

Z
d3x�3ð!;xÞe�ikx:

Then a straightforward calculation gives the following re-
sult for the annihilation of three axions from the l ¼ m ¼ 1
level into a single unbound axion,

dP

sin�d�d’
ð3�1p! continuumÞ

�N3 210
23

310f4a�
3r6gð4þ
2Þ10 sin

6�: (55)

To compare the efficiency of this process to the one-
graviton annihilation (44), let us integrate over the angles
in both cases to calculate the total emitted power and take
the ratio. We get

Pð3� 1p ! continuumÞ
Pð2� 1p ! gravitonÞ � 10�2
4 Ma

MBH

M4
Pl

f4a
; (56)

so that self-interactions dominatewhen the size of the cloud
is not too small, however, as the cloud decreases, the two
axion annihilation into gravitons takes over. For instance, it
will typically be more important when the cloud size ap-
proaches the value in (53).
Just as in the case of graviton emission one may look for

the processes that conserve axion number and as a result
may be less suppressed by powers of the small axion
velocity in the cloud. An obvious candidate process is an
elastic two-to-two scattering of axions. However, it appears
likely that such processes are not important. The reason is
that for the two-to-two scattering to be unsuppressed, three
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FIG. 9 (color online). Ratios of the superradiance rate for the
(lþ 1) level to the absorption rate for (l� 1) level if the l level
has a vanishing imaginary part for l ¼ 1, 2, 3.
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of the participating axions should correspond to highly
occupied levels. As we will discuss in Sec. IV, typically
at any given moment of time only few of the levels are
significantly occupied, and usually there is one which
dominates the cloud. Then the most likely candidate for
the scattering process is a scattering when two axions from
the most populated level scatter, and one goes down to
another highly populated level, while the remaining axion
flies out in the continuum. For this scattering to be com-
patible with the energy conservation one needs

2

�n21
<

1

�n22
;

where n1 and n2 are the principal quantum numbers of the
high- and low-lying levels, respectively. The discussion of
the superradiance development in the next section implies
that the situation where two levels satisfying this condition
simultaneously have large occupation numbers is hardly
possible.

Note that throughout most of the discussion of axion
self-interactions and gravitational wave emission we
treated axions in the cloud as free particles with hydrogen
wave functions, while strictly speaking the elementary
excitations of the axion BEC are Bogoliubov quasiparticles
(51). The free particle approximation is accurate when the
mass of the cloud is small, so that the effects of self-
interactions are weak, but may be misleading when the
mass of the cloud is close to saturating the bound (48).
Unfortunately, it is hard to improve on this approximation
without going into numerical simulations of the cloud,
which are beyond the scope of our paper. We proceed
under assumption that the free particle approximation is
a reliable guide for an order of magnitude estimates at the
masses close to saturating the bound (48) as well. The level
mixing phenomenon described above provides an impor-
tant example of a situation, when the free particle approxi-
mation is not adequate even at very small masses of the
cloud. There is a clear physical reason why this happens—
some of the levels have damping rates orders of magnitude
faster than the population rates for the relevant superra-
diant levels, so even a tiny level mixing qualitatively
changes the dynamics. Fortunately, this effect is straight-
forward to take into account perturbatively, as we did.

To summarize, this discussion implies that self-
interaction effects cause a strong influence on the
phenomenology of superradiance. The proper taking into
account of these effects is one of the major challenges for
obtaining an accurate quantitative description of superra-
diance development. The estimates presented here are far
from being a complete accurate treatment and it appears
likely that numerical simulations are required to really
solve the problem. It is worth mentioning that level mixing
can also be caused by the accretion disk of the black hole
or a massive object orbiting the black hole but we have
already shown in [1] that these can be safely ignored.

We proceed nowwith estimating the possible observational
signals of superradiance.

IV. OBSERVATIONAL SIGNATURES

Now that we are well equipped with the details of how
superradiance works, let us put them together and develop
an intuition about the way superradiance develops in real-
istic environments and about the observational signatures
we may expect from this process under various circum-
stances. The full treatment of the set of kinetic equations
describing superradiance (28), (70), and (72) appears to be
quite challenging, given that a large number of competing
processes with drastically varying time scales is involved.
Our strategy will be to start with a highly idealized situ-
ation including a minimal number of dynamical ingre-
dients and then keep adding more processes to get closer
to a realistic description. We already presented the list of
possible observational signatures of superradiance in the
Introduction. Clearly, following the above strategy the very
first signature to discuss is the absence of rapidly rotating
black holes of size matching the axion Compton wave-
length—the black hole spin-down is the most direct con-
sequence of superradiance.

A. Black hole Regge trajectories

To get a rough idea of the bound on the axion mass
that could come from black hole spin measurements, we
present in Fig. 2 regions in the black hole mass vs axion
mass plane where the superradiance time scale for a maxi-
mally rotating black hole is shorter than the age of the
Universe and the Eddington accretion time. We used the
superradiance rates of Sec. II to produce this plot. For
superradiance to have a non-negligible effect on the black
hole spin the process should last for many e foldings for the
produced axions to carry away a noticeable fraction of the
black hole spin. To estimate the required number of e
foldings, note that, approximately,

MBH

�a
¼ MBHrg



� 1076

�
MBH

M�

�
2

(57)

of axions need to be produced for their total mass (spin) to
be of order the black hole mass (spin). This requires �102

e-foldings of superradiance; we took this factor into ac-
count in Fig. 2, by presenting the region where the age of
the Universe (or Eddington accretion) time is longer than
hundred superradiance times. We see from the plot that, as
the black hole mass grows, the size of the interval in axion
mass which the black hole can in principle probe shrinks,
because the superradiance time gets longer.
This plot is useful as a zeroth order estimate, but cannot

be used to deduce limits on axions from data on existing
black holes, since the black holes being observed do not all
have spins close to the maximum. Instead, we need to
know the regions in the black hole ‘‘Regge’’ plot, the
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spin vs mass plane for black holes, where we do not expect
to find black holes if an axion with a certain mass exists, as
shown in Fig. 3. The intricate structure of these plots is a
manifestation of level quantization in the superradiant
gravitational atom, and their underlying physics is ex-
plained in what follows.

To start with, let us ignore accretion and consider a black
hole that starts off as maximally rotating. This approxima-
tion should be physically relevant for stellar mass black
holes produced as a result of a fast catastrophic event, such
as the supernovae explosion. Deviations from spherical and
axial symmetry are believed to be crucial for supernovae
explosions, so there should be a lot of angular momentum
available when the black hole forms, and one may expect
high initial values for the black hole spin—as soon as the
supernovae core gets rid of all the angular momentum
above the extremal value it collapses and forms a rapidly
rotating black hole. This expectation seems to be supported
by observations—for instance, the high value of the spin-
to-mass ratio a

rg
� 0:92þ0:05

�0:07 deduced [38] for the black

hole primary in the extragalactic X-ray binary LMC X-1
is hard to reconcile with the young age (� 5� 106 yr) of
the system, if the spin were not natal.

For concreteness, we assume that the parameter 
 for
the black hole is small, 
 & 1=2, so initially the fastest
superradiant level is the 2p level with l ¼ m ¼ 1. Then,
initially one can ignore all the levels apart from the 2p
superradiant level. It is straightforward to generalize all the
discussion below to smaller initial values of the black hole
spin and larger values of 
. The black hole will start to lose
its spin rapidly by populating this level. The time scale for
this process can be really fast—from Sec. II we know that
the superradiance rate can be as fast as 107r�1

g , which

corresponds to 102 seconds for a two solar mass black
hole. However, there is a critical value of the black hole
spin a1ð
Þ=rg, at which the superradiant condition (3)

ceases to hold for the l ¼ m ¼ 1 level, so the width of
this level becomes zero and the spin-down process
terminates.

Let us for a moment consider the case where the axion
self-interactions are absent, as if we were dealing with
a free massive field rather than a (pseudo)Nambu-
Goldstone boson. Then at this point superradiance would
continue by populating the second superradiant level l ¼
m ¼ 2 (3d) at a much longer time scale. Note, however,
that for many e-foldings of superradiance the black hole
spin would remain approximately constant and equal to
a1ð
Þ=rg. Indeed, if the spin would significantly drop

below this value the frequency of the 2p level would
acquire a negative imaginary part, so that the black hole
would start absorbing axions from the 2p level and spin-
ning up back with a rate much faster than the population
rate for the 3d level. Instead, the spin stays practically
constant close to a1ð
Þ=rg as the black hole populates the

3d level while being slowly fed by axions from the 2p

level. When the occupation number for the latter level

N2p drops below �3d

j�2pjN3d the spin-up rate due to 2p

level cannot compete with the spin-down rate due to 2d
level and the black hole spin further drops down till the
value a2ð
Þ=rg, where the superradiance rate for the 3d

level turns zero and the story repeats this time involving
the l ¼ m ¼ 3 (4f) level.
Of course, from Sec. III we know that this story cannot

be an accurate description of what actually happens—
nonlinearities related to the axion self-interactions and
due to gravity cannot be neglected in a realistic description
of superradiance. However, the above simplified example
correctly captures the major important feature—during the
spin-down black hole spin tends to evolve rapidly till it
reaches the line aið
Þ=rg in the Regge plane where one of

the superradiant levels changes the sign (‘‘Regge trajec-
tory’’), where it can get stuck for a quite long period of
time. In fact, as we will see momentarily, nonlinear effects
make this behavior even more pronounced.
Indeed, as we discussed in Sec. III B, even relatively

small amount of axions populating one superradiant level
may shut down the instability for the next level. For
instance, in the above example, when the black hole
reaches the first Regge trajectory a1ð
Þ=rg the 3d level

does not start being populated until a large enough number
of axions dissipate from the 2p level, so that its mass drops
below the bound in (53).
We discussed two processes that reduce the number of

axions in the superradiant cloud, annihilations into grav-
itons and annihilations into unbound axions due to self-
interactions. The latter process is more efficient at large
occupation numbers. However, the annihilation rate drops
down as the number of axions decreases and, when the
cloud mass approaches the bound (53), the graviton anni-
hilation, which involves only two axions, wins, as seen
from (56). The total duration of the annihilation period
before superradiance restarts, is dominated by the latest
stages of the process. We can estimate the duration of this
period by using the annihilation rates calculated in
Sec. III A. The occupation number of axions dissipating
from the cloud through annihilations into gravitons satis-
fies the following equation

dN

dt
ð2� axion ! gravitonÞ � ��annN

2; (58)

where the coefficient �ann can be deduced by integrating
the annihilation rates, such as (44), over the angles. By
solving (58) we obtain that the occupation number evolves
in time as

NðtÞ ¼ Nð0Þ
1þ �annNð0Þt �

1

�annt
; (59)

where at the last step we took the late time asymptotics. By
using (53) we find that the annihilation time needed to
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clean the system before superradiance can continue to
populate the next level is

t� 
2�a

2l4MBH�ann

M2
Pl

f2a

���������2

�1

��������1=2

� �ð
Þ
�
MBH

2M�

��
M2

Pl

f2a

�
104

�����������2

�1

��������
�
10�10

�
1=2

; (60)

where the last step is merely the definition of the normal-
ized annihilation time �ð
Þ. In Fig. 10 we present �ð
Þ for
the first three levels. We see that for stellar mass black
holes, depending on the parameters, there is enough time
for annihilations to complete on one or two Regge
trajectories.

The above discussion gives rise to the following picture
of the black hole evolution under the influence of super-
radiance. An initially fast rotating black hole rapidly loses
its spin and approaches the closest Regge trajectory
aið
Þ=rg. Then, for a long time the black hole stays at

this trajectory while axions in the cloud keep annihilating.
When the cloud mass drops below the critical value (53)
the superradiance becomes operative again and the
black hole rapidly travels to the next Regge trajectory.
Consequently, in the region of the Regge plane affected
by superradiance masses and spins of observed black holes
should follow quantized trajectories.

During transitions between Regge trajectories another
nonlinear process discussed in Sec. III B—Bosenova—be-
comes important. As the cloud mass during the transition
grows above (48) the cloud becomes unstable as a result of
the attractive axion self-interactions and collapses. The
detailed analysis of this process requires numerical simu-
lations, which are beyond our goals in this paper. However,
the most likely outcome seems to be that order one fraction
of the cloud gets absorbed by the black hole and order one
becomes relativistic and escapes at the time scale set by the

size of the black hole. Condition (3) implies that to com-
plete the transition to the next Regge trajectory a black hole
needs to release up to a few percent of its mass into axions.
Consequently, each transition proceeds through a sequence
of tens to hundreds of bosenova explosions for fa �MGUT.
As discussed later, these explosions may give rise to the
observable gravitational wave signal for supermassive
black holes and perhaps to the gamma ray signal for the
QCD axion.
It is straightforward now to add accretion into this

picture, at least at the qualitative level. Under the influence
of accretion, the black hole mass and spin will still stay on
the Regge trajectory, since the superradiance rate for the
corresponding level is much faster than the accretion rate
away from the trajectory. Indeed, if accretion brings the
black hole above the Regge trajectory, the level acquires
positive imaginary part and spins the black hole down back
onto the trajectory. Conversely, if as a result of accretion
the black hole deviates below the Regge trajectory, the
imaginary part becomes negative and the black hole starts
absorbing axions from the cloud to return on the trajectory.
Note that accretion may affect the black hole transition

rate between different trajectories if its rate is faster or
comparable to the annihilation rate. If it consistently
pushes black hole above the trajectory, new axions will
be coming to the cloud compensating the effect of annihi-
lations. Conversely, by pushing the black hole below the
trajectory, accretion may accelerate the dissipation of the
cloud.
Of course the above discussion only applies if accretion

is slow compared to superradiance in the vicinity of the
Regge trajectory. We illustrated all of the above in Fig. 3.
Here, lines of different colors correspond to different lev-
els. Parts of these lines where the spin increases with the
mass are boundaries of the superradiant region, where 
 ¼
mwþða=rgÞ for the corresponding values of m. These are

the Regge trajectories aið
Þ=rg discussed above. For each

trajectory the superradiance time grows at small 
, and at
some point becomes longer than the age of the Universe.
Then, instead of showing the line where the width of the
level is zero, we show the curve where the superradiance
time is equal to the age of the Universe. These are the parts
of the lines in Fig. 3, where the spin is a decreasing
function of the mass. Below the solid line the superra-
diance time is longer than the age of the Universe for all
unstable levels.
To finish the discussion of the Regge trajectories, note

that we started with considering an example of the black
hole spin-down, which can be relevant for stellar mass
black holes, but by now it is clear that also the evolution
of the galactic black hole will follow the same rule—as the
black hole enters in the region of the Regge plane affected
by superradiance it starts moving there along the Regge
trajectories, occasionally experiencing rapid transitions
between different Regge trajectories.
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FIG. 10 (color online). The time required for the axion cloud
around a 2M� black hole to dissipate such that the next
superradiant level can start being populated for clouds with
l ¼ 1, 2, 3, 4.
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B. Gravitational waves

An even more direct possibility to detect the presence of
an axion cloud around black holes is to observe the asso-
ciated gravitational wave signal. As we discussed in
Sec. III A there are two principal processes giving rise to
gravitational waves from the cloud—axion transitions be-
tween levels and axion annihilations. The bosenova col-
lapse may also give rise to a burst of gravitational waves.

Let us start with the transition signal. For transitions to
be efficient one needs large occupation numbers for two
different levels to be present simultaneously to get a Bose
enhancement of the signal. Combined with nonlinear ef-
fects discussed in Sec. III B this practically singles out the
type of transitions having chances to be observed and the
corresponding stages of the black hole evolution.2

Indeed, in Sec. III B we found that even a relatively
small amount of axions on the most populated level shuts
down the superradiance for levels with different magnetic
angular numbers as a result of level mixing. Consequently,
the only chance for two levels to grow together, and as a
result to acquire large occupation numbers simultaneously,
is when the levels have equal angular numbersm. This case
corresponds to setting �m ¼ 0 in (51); the mixing for such
levels does not change their magnetic number and does not
shut down the superradiance.

Furthermore, for two levels with equal magnetic num-
bers m but different orbital momenta l the superradiance
rate for the more energetic level (the one with a higher l) is
very much slower, so that by the moment the black hole
reaches the corresponding Regge trajectory by populating
the lower level, the occupation number for the higher level
is tiny, and there is no significant transition signal.

All this lead us to consider the transition between two
levels with different principal quantum numbers n, but
equal l and m as the most promising source of an observ-
able gravitational wave signal. It is natural to consider the
case, when the level with the larger principal number n has
the faster superradiance rate. As mentioned in Sec. II B, the
lowest lwhen such a situation takes place is l ¼ 4, so let us
pick this level as the simplest representative example. The
corresponding transition rate is given by (42). The ampli-
tude of the gravitational wave signal at the detector is
related to the total power emitted as

h ¼
�
4GP

r2!2

�
1=2

; (61)

where ! is the frequency of emitted gravitons and r is the
distance to the source. By making use of the rate (38) and
plugging in the transition frequency (40) we obtain

h� 10�22
2ð�1�0Þ1=2
�
10 Mpc

r

��
MBH

2M�

�
; (62)

where �1;0 are total masses of axions populating the n ¼ 1
and n ¼ 0 levels, in units of the black hole mass,

�1;0 ¼ Ma1;0

MBH

and the frequency of the signal � is determined by the
axion and black hole masses as

� � 100 Hz
3

�
2M�
MBH

�
: (63)

For annihilations one needs fewer conditions to be sat-
isfied to get a significant signal—the occupation number
for only one of the levels has to be large. As we discussed
in Sec. III A the annihilation rates for different levels are
rather similar at same values of 
=l, so let us consider the
l ¼ 1 level as a representative example. The annihilation
rate (44) gives rise to a gravitational wave signal of
strength equal to

h� 10�22
7�

�
10 Mpc

r

��
MBH

2M�

�
; (64)

where, as before, � is the fraction of the black hole mass
accumulated in the cloud. The frequency � for this signal is
given by

� � 30 kHz


�
2M�
MBH

�
: (65)

The numbers in (62) and (64) definitely appear interest-
ing both at high frequencies probed by Advanced LIGO
and corresponding to stellar mass black holes and when
scaled down to low LISA frequencies, corresponding to
supermassive galactic black holes. However, to judge the
chances to observe these signals we need to estimate the
fractional mass of the cloud, �, in (62) and (64), that will
determine the possible observational reach in terms of the
distance to the source.
To make these estimates note that, as we discussed, a

large fraction of its time the black hole spends on the
Regge trajectories with a relatively small axion cloud
around, down to �� 10�12�10, waiting for the cloud to
be dissipated so that the next level can start being popu-
lated triggering a relatively fast transition to the next Regge
trajectory. Transitions between different trajectories and
relatively short time intervals afterwards, when � can be
significantly larger, provide the most promising periods for
an observable gravitational wave signal. Every black hole
may experience several such transitions—one directly after
the black hole formation, another one or two after periods
of axion annihilations and possibly more triggered by
accretion or merger events.
From (3) we can estimate the total spin, and, as a

consequence, the mass extracted from the black hole

2In particular, transitions between superradiant and nonsuper-
radiant levels, chosen as an illustrative example in [1], are
actually never important because the transition rate is always
suppressed compared to the axion absorbtion rate for nonsuper-
radiant levels and they never have a chance to acquire a large
occupation number.
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during such transitions. The latter typically turns out to be
around a percent of the black hole mass. However, the main
limiting factor for the size of the cloud is the bosenova
instability that prevents the cloud mass to grow above
10�4 � 10�3 of the black hole mass. This is enough to
estimate the strength of the annihilation signal. In Fig. 11
we present the contour plot for the strength of the signal in
the black axion mass vs 
 plane from axion annihilations
in the l ¼ 1 level, assuming the size of the cloud � ¼ 10�4.
We pick 20 Mpc as the distance to the source (which is
the distance to the Virgo supercluster, containing about
2000 galaxies), and choose 106 seconds as a coherent
integration time for the signal. Note that existing
spin measurements (Fig. 3) suggest a lower bound of�a *
3 � 10�11 eV for axions matching the size of stellar mass
black holes (which would correspond to 
 * 0:9 for 2M�
black hole), pushing the annihilation signal for Advanced
LIGO into a range of somewhat uncomfortably large
frequencies.

Predicting the characteristic features of the transition
signal is more involved and requires a detailed quantitative
analysis of the dynamics, but some simple estimates can
still be done. Let us focus on the simplest case of the
6g ! 5g transition. To describe the evolution of the cloud
during the transition to the l ¼ 4 Regge trajectory, let us
truncate the system (27) by keeping only 6g and 5g levels
and ignore accretion. Then we obtain the following pair of
equations for the relative sizes of the 6g and 5g compo-
nents of the cloud,

d�0
dt

¼ �440�0 � �t�1�0
d�1
dt

¼ �441�1 þ �t�1�0;

(66)

where �440, �441 are the superradiance rates, and the tran-
sition coefficient �t is determined from (42) to be equal to

�t � 3� 10�7 

8

rg
:

We neglected the annihilation processes which are slow
compared to superradiance and transitions. As follows
from Fig. 5 the superradiance rates �440, �441 are of order
10�10r�1

g for 
� 1. Using the small 
 approximation (18)

as a guide, their ratio can be estimated as �440=�441 � 0:9.
Let us focus on the case of 
� 1. Then the dynamics

following from Eqs. (66) is quite simple. Both levels start
being populated but the lower one has a smaller super-
radiance rate, and as a consequence is less occupied. By the
time the occupation number of the 6g level reaches its
maximum, �1 � 10�4�3, the occupation of the lower 5g
level is given by

�0 � �1e
�0:1Ne;

where Ne the number of e-foldings of superradiance re-
quired to populate the 6g level. The number of e foldings
depends on the initial number of axions. As follows from
(56) it varies from Ne � 165 if initially the 5g level is not
occupied, down to Ne � 100 if we estimate the initial
occupation number to be determined by the dark matter
density. In fact, the initial axion number can be signifi-
cantly larger, if we consider a transition after a recent
bosenova event.
Even though �0 is exponentially sensitive to Ne this

uncertainty does not pose a big problem for estimating
the gravitational wave signal at its maximum. Indeed,
even if we set �0 ¼ �1, the transition terms in (66) are still
too small to compete with the superradiance up to
�1 � 10�4, so that this uncertainty does not affect the
dynamics. Also, to estimate the maximal possible signal
let us concentrate on the very last episode of spinning down
which is terminated because the black hole reaches the
l ¼ 4 Regge trajectory (and not by the bosenova event, as
happens for earlier episodes of spindown). At the end of
this episode superradiance shuts down and only the
transition terms in (66) are left. At this point the �0=�1
ratio is small, but it starts growing as a result of transitions.
The transition signal reaches its maximum when �0 �
�1 � 10�4 and then decreases because the occupation
fraction �1 for the 6g level drops down. The duration of
the signal at peak intensity is determined by the transition
rate and is of order

tð6g ! 5gÞ � 3� 106
rg


8�0
;

which is of order a day for a stellar mass black hole with

� 1 and �0 � 10�4.
In Fig. 12 we present the contour plot for the gravita-

tional wave amplitude as determined by (62) for different
axion masses and values of 
 (equivalently, for different
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FIG. 11 (color online). The contour plot of constant gravita-
tional wave signal from axion annihilations in the 2p level for a
black hole located at 20 Mpc away from the Earth. The projected
sensitivity curves assume 106 seconds of a coherent integration
time for LISA [51], AGIS, Advanced LIGO and Einstein
Telescope.
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black hole masses), assuming �1 ¼ �0 ¼ 10�4 and taking
20 Mpc as a distance to the source. We presented also the
sensitivity curves of various planned gravitational wave
detectors assuming the coherent integration time
104 seconds.

We see that future experiments will be sensitive to the
transition signal from the superradiant cloud over a large
range of axion and black hole masses. What is especially
exciting is that the Advanced LIGO detector which is
scheduled to start operating around 2014 will be probing
the heavy mass regime for axions, in particular, the QCD
axion. We will discuss the Advanced LIGO reach for the
QCD axion in more details in Sec. IVD.

Finally, as we already said, as a consequence of bose-
nova, every transition between Regge trajectories goes
through a series of 10–100 spin-down episodes interrupted
by silent intervals needed to build up the cloud. Depending
on the distance to the source one may see also gravitational
wave signal from the earlier episodes, although to study
this possibility requires a more detailed analysis of the
dynamics (in particular, accurate prediction of the
e-folding number Ne). If these signals can be observed,
then by measuring the frequency and the amplitude of
the signal as well as the duration of the active and silent
intervals one may hope to extract not only the mass of the
axion, but to estimate the scale fa as well.

Also the bosenova event by itself gives rise to a gravi-
tational wave burst. Assuming that the collapse of the
cloud happens on a time scale of order rg the power

emitted in gravitational waves during the bosenova event
can be estimated as

PBN �GN�
2M2

BHr
�2
g ;

which translates into the gravitational wave amplitude at
the Earth of order

h� �
rg
r
� 10�17

�
�

10�4

��
MBH

108M�

��
100 Mpc

r

�
;

with the frequency being of order r�1
g . This signal may be

observable for supermassive black holes.
To conclude, let us emphasize that in estimating the

signal strength we were using the free particle approxima-
tion for axions all the way up to �� 10�4, when the bound
(51) gets saturated and this approximation may be not
adequate, as we already discussed. This may be especially
important for the transition signal where one needs to
follow several levels simultaneously. Consequently, our
encouraging estimates here should be considered as a
strong motivation for a further careful numerical analysis
of the system, rather than as an accurate prediction for the
signal.

C. Direct observation of the cloud

Another potential observational consequence of super-
radiance is the presence of the cloud itself, which could be
directly detected by precision mapping of the near-horizon
black hole metric. Such a mapping will be made possible
by future low frequency gravitational wave detectors, such
as LISA or AGIS, during the last stages of the inspiral of a
compact object (black hole/neutron star/white dwarf) into
a supermassive black hole. With LISA sensitivities, it will
be possible to observe hundreds of such events per year for
different galaxies, and to trace up to �105 orbits in an
individual event. This will allow mass and spin determi-
nation with 10�5 accuracy, and about 6–7 higher multipole
moments of the metric can be measured with better than a
few percent precision.
In principle, it is straightforward to calculate the modi-

fication to the waveform of the inspiral signal due to the
presence of the axion cloud. In the regime when nonline-
arities can be neglected (and this is the only regime, where
the cloud can stay for a cosmologically long time) the
shape of the cloud is determined by the well-known wave
functions of the hydrogen atom. It is likely that the best
chances to observe the presence of the cloud are for black
holes with moderately small values of 
=l. Indeed, at
smaller values of 
 nonlinear effects and processes leading
to dissipation of axions from the cloud get suppressed
allowing for longer lifetimes and a larger cloud mass. On
the other hand, the size of the cloud grows at small 
 and
the total mass becomes smaller for the same value of the
spin (‘‘the ballerina effect’’), making it challenging to see
the effect of the cloud at too small values of 
. A dedicated
study is required to find the optimal value of 
 and to see
whether the effect is observable.
Another subtlety with using gravitational wave signal

from compact inspirals to detect the presence of the cloud
is that the nonspherical metric perturbation induced by an
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FIG. 12 (color online). The contour plot of constant gravita-
tional wave signal from axion transitions between the 6g and the
5g levels for a black hole located at 20 Mpc away from the Earth.
The projected sensitivity curves assume 104 seconds of a coher-
ent integration time.
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infalling compact object may be strong enough to cause a
mixing between superradiant and nonsuperradiant levels
and induce the disappearance of the cloud, similar to the
effect of axion self-interactions.

To summarize, directly probing the structure of the
cloud with extreme mass ratio inspirals is an interesting
possibility awaiting for a dedicated theoretical study to
decide on whether it is feasible. Another possibility worth
exploring are the effects of the cloud on the accretion disk
of stellar mass black holes. In this case, the cloud could
excite resonant modes of the accretion disk, the so-called
quasiperiodic oscillations.

D. The QCD axion and superradiance

The QCD axion is the best motivated of all axionlike
particles and by itself serves as one of the major motiva-
tions for the whole axiverse framework, so let us summa-
rize here what range of its parameter space will be probed
by ongoing and future black hole observations.

Unlike for other axions, the QCD axion mass �a and
decay constant fa are related to each other by (2).
Furthermore, nonperturbative string corrections to the
QCD axion potential take the form

Vstring ’ �4e�S cos�=fa;

where the energy scale� is either Planck or string scale (in
exceptional cases it might be suppressed by the SUSY
breaking scale, �4 �M2

PlFSUSY [21]) and the instanton

action S in explicit constructions is bounded from above as

S &
MPl

fa
: (67)

S is close to saturating the above bound if a compactifica-
tion manifold is neither too anisotropic nor strongly
warped. It was suggested [39] that the upper bound (67)
follows from very general properties of quantum gravity.
However, to the best of our knowledge, there is no specific
proposal for the exact numerical coefficient that should
appear in a conjectured sharp version of (67).

To solve the strong CP problem the instanton action
should be sufficiently large, S * 200. Combined with the
above arguments this suggests that the scale fa for the
QCD axion is unlikely to be significantly higher than
few� 1016 GeV or equivalently, that the QCD axion
mass is unlikely to be significantly lighter than 10�10 eV.
Also, from a bottom-up perspective, the values of fa close
to the grand unification scale, corresponding to masses
ma � 3� 10�10 eV, appear to be well-motivated.

1. Black hole spindown and Advanced LIGO

These arguments motivate thinking of the consequences
of superradiance in an axion mass range that is as heavy
as possible while still affecting black hole dynamics. Of
course, from a purely phenomenological approach any
limit on the QCD axion parameters in the high fa regime

are still extremely interesting. The current measurements
of black hole masses and spins, presented in Fig. 3, already
suggest an upper bound on the axion decay constant at the
level

fa & 2� 1017 GeV: (68)

For higher values of the decay constant, i.e. lighter axion
mass, the gap in the upper panel of Fig. 3 would shift
towards heavier black hole masses and would contain
rapidly spinning black holes inside. Of course, at the mo-
ment one should consider this bound as indicative. First,
the data points in Fig. 3 may be subject to significant
systematic uncertainties. For instance, the highest spin
black hole in Fig. 3 is GRS 1915þ 105, and the model
for the soft X-ray spectrum of this object suggests a much
smaller value of the spin a=rg � 0:56 [6], than the one

presented here (from [5]). Second, rapidly spinning black
holes in Fig. 3 may turn out to be young enough to stay in
the gap region—for instance, the age of the second fastest
spinning black hole in Fig. 3 (LMC X-1) is quite short—of
order 5� 106 years [38].
All these uncertainties will get rectified with more data

coming. Given that a black hole produced as a result of the
stellar collapse can be as light as �2M�, spin measure-
ments alone can potentially improve the bound (68) by a
factor of few. Still, the above theoretical arguments suggest
that it may be not enough to discover the QCD axion. A
plausible situation could be that the QCD axion is light
enough to affect the dynamics of the lightest stellar mass
black hole through superradiance, but is still too heavy to
produce a noticeable gap in the spectrum of rapidly rotat-
ing black holes. This makes it especially important to study
other consequences of superradiance that may allow to
discover the QCD axion in such a situation.
One exciting possibility to discover the QCD axion is

through observing of the gravitational wave signal from
superradiating black holes at Advanced LIGO, as dis-
cussed in Sec. IVB. Estimates presented there indicate
that Advanced LIGO may see the transition signal for the
QCD axion, although the annihilation signal will probably
have too large frequency to be observed at that experiment.
As we mentioned, details of the transition signal—such as
the strength of the signal at the maximum intensity—may
even provide an estimate for the decay constant, which
would be a further confirmation that the signal is related to
the QCD axion, rather than to some other axionlike parti-
cle. In Fig. 4 we zoomed in the high mass region of the plot
in Fig. 12 relevant for the QCD axion. This plot shows only
the estimated signal for the 6g ! 5g transitions. For heavy
axions the higher l levels are likely to be relevant; our
estimates show that the corresponding signal is very simi-
lar to the one in Fig. 4. Note that we pick 104 second as a
coherent integration time for this plot, so that the actual
reach can be even better for longer integration times. We
see that Advanced LIGO has the potential to probe the
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most interesting mass range for the QCD axion, and this is
even more true for the Einstein telescope.

Coming to other probes, unfortunately, it is impossible
to use gravitational waves to probe the shape of the QCD
axion cloud around stellar mass black holes as it could be
done for lighter axions affecting supermassive black holes.
However, it is interesting to study whether the QCD axion
cloud may resonantly excite certain characteristic pertur-
bations in the accretion disc that would signal about the
presence of the cloud.

2. Photon signals: radio waves, �- and X-rays

Finally, there could be QCD axion specific signatures
related to the direct coupling of the QCD axion to standard
model fields. First, there is a coupling (30) to photons. As
we already discussed this coupling converts axions from
the superradiant cloud into photon with the rate given by
(31). This conversion rate is too slow to affect the dynam-
ics of superradiance, but it may still provide an observable
signal on Earth. The photons in question are almost mono-
chromatic radio waves, and the production rate (31) trans-
lates in the following flux at Earth,

Fradio � 10�14 W

m2

�
1016 GeV

fa

�
2
�

�

10�4

��
B

108 Gauss

�
2

�
�
1 kpc

r

�
2
:

There are several challenges for this signal to be observ-
able, and they all arise because the frequency of the signal
is equal to the axion mass, and corresponds to radio waves
with wavelengths of order at least few hundred meters. The
first difficulty arises because these wavelengths cannot be
observed on the Earth’s surface, since the ionosphere is not
transparent for radio waves at these low frequencies.
However, this problem may be solved by using space- (or
Moon-) based radio telescopes. The major challenge, how-
ever, is that the electron density around a black hole should
be quite small, ne & 100 cm�3, for the signal to be able to
escape from the source. It is very hard to find a source
satisfying this property, given that one needs substantial
magnetic field in the vicinity of the cloud for efficient
axion-to-photon conversion. This possibility will be
studied in [40].

Probably a more promising possibility is related to the
coupling (1) of the QCD axion to the QCD instanton
number. To observe the consequences of this coupling
would be especially interesting given that the interaction
(1) is a genuine footprint of the QCD axion. An intriguing
possibility to achieve this is related to the following ob-
servation. As follows from the estimate (47) the axion field
in the cloud may reach values of order

�� 2



l
fa; (69)

i.e., the ratio �=fa becomes of order one. For the QCD
axion this ratio is nothing else as but the local value of the
CP violating �-parameter in the QCD. QCD properties are
rather different at large values of the �-parameter—for
instance, the pion mass is smaller by a factor of order 3
at � ¼ � as compared to the � � 0 vacuum, where we live
(see, e.g., [41] for a recent discussion). Given that (multi)
pion exchange is one of the dominant forces responsible
for the nuclear binding it is natural to expect that nuclear
binding energies change by order one in the regions with
�� 1.3

Consequently, it is natural to speculate that some of the
stable nuclei may become unstable towards disintegration,
and gamma- or beta-decay when they enter in the region of
the cloud as it approaches the maximum size. Even if (46)
somewhat overestimates the maximum � in the cloud, it
appears very probable that � becomes of order one at least
during the bosenova events. The characteristic time scale
for the latter is set by the black hole size and is of order
10�5 seconds. Consequently, it is only strong and electro-
magnetic nuclear instabilities that have enough time to be
important during the bosenova event.
Under the optimistic assumption that an order one frac-

tion of nuclei in the vicinity of the black hole horizon
decays and produces �-quanta with MeV energies let us
estimate the resulting flux of photons at the Earth from the
bosenova event. If the black hole accretes with an
Eddington limited rate, the total amount of matter within
a distance of order rg from the black hole horizon can be

estimated as MBHrg=�E � 1035 GeV� 10�22M�, where
�E is the Eddington time (32). This may give rise to the
emission of order 1035 photons with MeV energies on a
time scale of order 10�5 seconds. This is not very much—
for a black hole at 10 pc away one would obtain one photon
per 10 m2 at the Earth. However, there are several ways the
signal can be significantly stronger. First, the major limit-
ing factor in the above estimate is the amount of matter in
the vicinity of the black hole horizon. This amount may be
roughly 22 orders of magnitude larger immediately after
the supernova explosion. Of course, this is a violent event
providing lots of radiation by itself, and also immediately
after the explosion the metric perturbation due to the
surrounding matter is likely to be strong enough to damp
the superradiance. However after the environment cleans
up a bit this may give rise to a signal many orders of
magnitude stronger than in the Eddington regime.
Also the signal may last significantly longer if, as the

estimate (69) suggests, nuclei may get destabilized not
only during the bosenova collapse, but also when the cloud
is still stable. Another possibility for the signal to last
longer is for the bosenova to produce long-lived axion

3Note, that this effect was not taken into account in the
analysis of [41].
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clumps (such as ‘‘pulsons’’ of [42]) that would be able to
escape from the near-horizon region.

Finally, rather than directly detecting photons one may
look for spectral X-ray lines of exotic elements in the
vicinity of the black hole, that could have been formed as
a result of the nuclear disintegration triggered by the large
axion field.4

E. Accelerated growth of black holes

Yet another indirect consequence of superradiance is
that axions, if present, would accelerate the black hole
growth. As a toy illustrative example we pick the
Eddington saturated thin disc model (see [43] for a review
and references). In this model the black hole mass evolves
according to

dM

dt
¼ 1� �Mð �aÞ

�Mð �aÞ
M

�E
þ _Msr; (70)

where, the accreting gas is assumed to have zero metal-
licity, �E is given by (33), and �Mð �aÞ is the radiation
efficiency for the accrettion—the fraction of the incoming
energy that gets radiated away in the process of accretion.
It depends only on the dimensionless spin-to-mass ratio

�a � a

rg
;

and in Fig. 13 we have shown the coefficient ð1� �MÞ=�M
appearing in (70) as a function of �a. Finally, the _Msr term
accounts for superradiance, and is given by

_M sr ¼ ��a

X
i

�iNi þ . . . ; (71)

where the omitted terms are those related to nonlinear
effects.

The time evolution of the black hole spin in the thin disc
model is determined by the following equation

d �a

dt
¼ sð �aÞ

�Mð �aÞ�E þ _�asr; (72)

where the ratio s=�M as a function of �a is also shown in
Fig. 13. As before, the _�asr term describes the effects of
superradiance and is equal to

_�a sr ¼ ��a

M

X
i

ð
�1mi � 2 �aÞ�iNi: (73)

Figure 13 now makes the effect of superradiance evident:
the solid line there indicates that the mass of a slowly
rotating black hole accreting in the Eddington regime
grows almost an order of magnitude faster than the mass
of a rapidly rotating black hole.

The origin of this effect is easy to understand. For a
rapidly rotating Kerr black hole the size of the last stable
orbit is significantly smaller than for a Schwarzschild black

hole of the same mass. As a result the accreting plasma
radiates a larger fraction of its rest mass before falling into
a rotating black hole. In the Eddington saturated regime the
radiation pressure is the main limiting factor for the accre-
tion rate—hence, the accretion proceeds faster for a
Schwarzschild black hole, as the solid line in Fig. 13
shows.
The dashed line in Fig. 13 indicates that a black hole

accreting in the Eddington regime rapidly spins up and
keeps growing with a high value of spin. Instead, if a black
hole is affected by superradiance it follows the Regge
trajectory, where its spin can be significantly lower and,
as a consequence, the growth rate is much faster. Given that
even a single axion affects a large range of black hole
masses, superradiance may significantly affect the growth
history of supermassive black holes, as illustrated in
Fig. 14.
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FIG. 13 (color online). Kinetic coefficients determining the
black hole mass (solid line) and spin (dashed line) growth during
Eddington limited accretion.
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FIG. 14 (color online). The effect of an axion on the black hole
growth history for the simplest thin disc Eddington limited
accretion (lower curves) and for a more realistic model thin
disc model of Eddington accretion taking into account result of
magnetohydrodynamical simulations (details of both models can
be found in [44]).4We thank Steve Kahn for pointing this out.
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It is worth noting that quasars hosting �109M� black
holes were observed at as high redshifts as z ¼ 6:43, and
some authors think that these observations may present a
challenge for the conventional story of black hole growth
[44]. Of course, the actual dynamics describing black hole
evolution is likely to be significantly more complicated
with merger events playing a significant role (see, e.g., [45]
for a recent overview), and it is premature to decide
whether any new physics, such as axions, is needed to
explain the existing observations. However, it is likely
that with future X-ray and gravitational wave data as
well as with a progress in numerical simulations the evo-
lution history of supermassive black holes will be under-
stood much better, and new physics might eventually be
required, especially if quasars with significantly higher
redshifts are to be discovered. At any rate, even if a
conventional astrophysics is able to explain the data, it is
useful to keep in mind that axions, if present, are able to
significantly affect the story.

V. BOOKKEEPING OFANTHROPIC AXIONS

Before concluding, let us elaborate on one particularly
interesting feature of axions in the mass range relevant
for the present paper, �a * 10�21 eV and with a high
symmetry breaking scale, fa �MGUT. Namely, the axion
abundance relative to baryons is given by,5

�a

�b

’ 5�Pð�aÞ
�

�a

2:4� 10�19 eV

�
1=2

�
fa

2� 1016 GeV

�
4
;

(74)

where � is an order one coefficient different from unity if
an axion is heavy enough, so that the effective number of
degrees of freedom at the onset of its oscillations is differ-
ent from the current value; �a � �ðt ¼ 0Þ=fa is an initial
axion misalignment angle, and

Pð�aÞ � �2a (75)

for small �a (the shape of Pð�aÞ for general �a can be
found, e.g., in Fig. 4 of [1]). We see that axions with masses
significantly heavier than �10�19 eV would produce a
contribution to the dark matter density larger than the
observed value �cdm � 5�b, unless we happened to
have an atypically small initial misalignment angle �a.

As was realized long ago [26], this does not mean that
such axions are necessarily in conflict with the observed
value of � � �cdm=�b. Indeed, if inflation lasted suffi-
ciently long (and especially if there were a period of eternal
inflation in the past) an initial misalignment angle �a is a
dynamical parameter that varies in space on scales much
longer than the current size of the Universe, so there will

always exist regions with sufficiently small value of �a to
be in agreement with the observed value of � . Still, one
may wonder what is the probability for an observer in such
a Universe to find himself in a region with as small values
of � as we observe.
For a single QCD axion this question was addressed a

number of times in the past [46,47]. These treatments differ
in some details, however they agree that the observed value
of � does not appear to be anomalously small. Let us see
how this conclusion changes if there are more than one
axions with masses * 10�19 eV. Note that depending on
which of the parameters are allowed to vary the answer
may be more or less sensitive to the unknown details of the
statistics of string vacua and to the infamous ambiguities
with the probability measure in an eternally inflating
Universe.
We find the approach of [47]—to keep all the parameters

apart from �a fixed—the safest from this point of view.
In other words, we are restricting to comparing observers
with all microphysical parameters the same as ours, but the
inflationary dynamics automatically produce different ini-
tial values of �a for them. In the string landscape the axion
abundance is the last parameter that may vary, so this
approach is maximally close to the logic applied for pre-
dicting the results of a conventional lab experiment—we
fix all particles physics parameters to the known values and
see what the dynamics of the system gives us. The impor-
tant difference with a lab experiment is that now we cannot
ignore the selection effects—the formation of observers is
impossible in the regions where the dark matter-to-baryon
ratio � is either too big or too small. These so-called
anthropic boundaries were estimated in [46]. Namely, for
� & 2:5 perturbations at the scales close to our galaxy’s
cease to grow, while at � * 100 the density of baryons
becomes so small that the disc fragmentation instability
leading to star formation does not develop. The observed
value � � 5 appears to be somewhat too close to the lower
end of this interval.
Unfortunately, to quantify whether there is a real prob-

lem, we are still left with an ambiguity related to the choice
of the inflationary measure—the problem of comparing
numbers of observers measuring different values of � given
that these numbers are infinite in an infinite Universe for
any � in the anthropically allowed region. Following [47],
let us consider what happens with one particular choice—
the causal diamond measure of [48]. This choice amounts
to counting the number of observers in a single Hubble
patch of the late time de Sitter evolution. Another simpli-
fying assumption of [47] is that the number of observers
per baryon is approximately constant for 2:5< � < 100
and zero otherwise.
The nice feature of the axion setup is that the prior

probability distribution for � is known. Indeed, generaliz-
ing (74) to the case when more than one axion is present
we find

5For the QCD axion this formula gets modified due to the
temperature dependence of the axion mass. This is not important
for the discussion below.
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�ð�aÞ ¼
X
a

cð�aÞPð�aÞ: (76)

The initial values �a is getting set during inflation when the
axion backreaction on the cosmological expansion is neg-
ligible, so that the prior distributions for all �a are flat.
Then the probability to observe the dark matter-to-baryon
ratio smaller than the observed � ¼ 5 value is equal to

P ¼ N �1
Z
2:5<�ð�aÞ<5

Q
a
d�a

1þ �ð�aÞ ; (77)

where a factor ð1þ �ð�aÞÞ�1 is specific to the causal
diamond measure and appears because the total number
of baryons within a horizon at the transition to the de Sitter
regime is proportional to this factor. The normalization
factor N is equal to

Z
2:5<�ð�aÞ<100

Q
a
d�a

1þ �ð�aÞ : (78)

Expressions (77) and (78) are significantly simplified in the
limit when all anthropic axions are sufficiently heavy, so
that the approximation (75) is accurate. In this regime one
can get rid of the mass dependence in (76) by rescaling

�a ! cð�aÞ�1=2�a. As a result, after integration over an-
gular variables in the �a space, one obtains,

P ðnÞ¼
R
5
2:5

d�� ðn�2Þ=2
1þ�R

100
2:5

d�� ðn�2Þ=2
1þ�

¼0:3;0:16;0:06;0:02;0:006; . . . (79)

where n is the number of axions, and we presented the
numerical value of the probability for the first few values of
n. We see that the probability drops exponentially as the
number of axions in the anthropic window grows, however,
remains high enough for the first few values of n. Clearly,
this general trend—that at large number of axions the
probability distribution is peaked at the higher anthropic
boundary for � is generic and independent of the choice of
the measure. It is just a consequence of a geometrical

factor � ðn�2Þ=2 in the numerators of integrals in (79). For
instance, if we dropped the ð1þ �ð�aÞÞ�1 factor and just
used the prior probability distribution for � (restricted to
the anthropically allowed region), we would get 0.08, 0.03,
0.007, 0.001 for the first few probabilities. It is worth
pointing out that these probabilities are sensitive to the
position of the anthropic boundary at large � , which is not
the case in the presence of a single axion, as pointed out
in [47].

If a sufficiently large number of axions is to be discovered
in the anthropic region or, even if, for a single QCD axion,
it turns out that a significant fraction of cold dark matter
is composed of Weakly Interacting Massive Particle’s
(WIMP’s), these probabilities may start being problemati-
cally low. However, one should keep in mind that there are
lots of uncertainties in the above estimates. Apart from a

choice of the inflationary measure, the assumption that the
number of observers per baryon is constant over the whole
anthropic interval appears to be a vast oversimplification,
due to both astrophysical and astrobiological reasons. On
the astrophysical side it is far from clear that the number of
stars is proportional to the number of baryons in the whole
range 2:5< � < 100. Furthermore, the number of observ-
ers may not scale linearly with the number of stars both due
to astrophysical reasons, for example, due to close encoun-
ters, and due to astrobiological, if the early stages of the
evolution of life can be significantly accelerated by the
possibility of the transfer of organicmolecules (or primitive
forms of life) from one stellar system to another (given that
the closest known planetary system is just 10 light years
away this possibility is neither necessarily hypothetical
nor untestable).
To summarize, we see that at the current stage of affairs

there is no reason to be discouraged on the possibility of a
discovery of multiple anthropic axions with astrophysical
black holes observations. Conversely, if several anthropic
axions were to be discovered (or even a single one if
WIMPs constitute a significant fraction of dark matter)
this will provide us with serious motivation to scrutinize
how the number density of observers depends on the
baryon-to-dark matter ratio.

VI. CONCLUSIONS

We hope to have convinced the reader that black hole
superradiance for axions is an extremely rich phenomenon
that has good chances to be observed in near future mea-
surements of black hole properties. Ongoing black hole
spin measurements may trace gaps or Regge trajectories
in the spectrum of rapidly spinning black holes. Advanced
LIGO may observe gravitational wave signals from the
QCD axion cloud around stellar mass black holes as far
as the Virgo cluster for masses down to 10�10 eV which
correspond to an axion decay constant close to the grand
unification scale. In a more distant future, gravitational
waves may be observed for supermassive black holes at
lower frequencies by experiments such as LISA and AGIS.
The low frequency gravitational wave detectors may also
see the effect of the cloud on the waveforms during ex-
treme mass ratio inspirals. Finally, for the QCD axion the
superradiant cloud might also give rise to direct photon
signals.
In this paper our main goal has been to develop a general

intuition about superradiance development and its conse-
quences without going into an extensive numerical work.
Given the richness of the system it seems inevitable that
detailed numerical simulations will be required in the
future to obtain accurate quantitative predictions. This is
especially important for predicting the strength, duration
and precise waveform of gravitational wave signals from
superradiant clouds. Simulations are needed both for the
accurate prediction of superradiance rates, which to large
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extent has already been accomplished in [28], and most
importantly to get an accurate description of the
superradiant cloud including axion self-interactions. It is
worth stressing, however, that some of our result are very
robust. For instance, the black hole Regge trajectories of
Fig. 3 are mostly determined by the basic superradiance
condition (3) and do not depend on the above uncertainties
(apart from the left most declining segments of these
curves; however, in that region even larger uncertainties
are likely to come from variations in the accretion rate for
different black holes).

Of course, we expect also other qualitative results ob-
tained here to reproduce well the gross features of the
system, although given its richness more surprises are
possible. Most importantly, our results appear encouraging
for prospects to observe superradiance with future astro-
physical data, and this justifies further theoretical efforts
for better understanding of this fascinating process.
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APPENDIX: CALCULATING THE
TUNNELING EXPONENT (22)

In principle, it is straightforward to calculate the tunnel-
ing integral I numerically, however, let us also describe an
analytical method that works for near-extremal black
holes, a � rg and for the frequency! right at the boundary

of the superradiance region ! ¼ mwþ.
The latter condition has the following meaning. As we

see from Fig. 5, each of the superradiant levels has a
maximum rate close to the boundary of the superradiant
region. Of course, exactly at the boundary the width of the
level becomes zero. However, it is the prefactor in (25) that
turns zero at ! ¼ mwþ, while the exponent I just passes
smoothly through that point. Consequently, by calculating
I at ! ¼ mwþ we will find the upper envelope of the
family of superradiant rates for different levels. Related
to this, we will also set l ¼ m, because this corresponds to
the fastest superradiance rate at any 
. Finally, we also set
�a ¼ !, which given the above assumptions corresponds
to taking l ¼ 2
. This should be a good approximation
given that superradiant levels are close to be nonrelativis-
tic. Note that for the fastest level the radial number n also
grows with l, so that the upper bound (9) never gets
saturated. All these assumptions were also made in [19].

The simplification at ! ¼ mwþ is that the location of r1
is known, namely r1 ¼ rþ, for this choice of parameters.

This fact is straightforward to check explicitly using (21).
It is also easy to understand intuitively—the only way for
the tunneling rate (and, consequently, for the imaginary
part of an eigenfrequency !) to vanish is for the tunneling
to be ‘‘kinematically forbidden’’, and this is exactly what
happens if VðrþÞ ¼ 0. For all other values of ! the poten-
tial at the horizon is negative, VðrþÞ ¼ �ð!�mwþÞ2 and
the imaginary part is nonzero.
A further simplification happens at a ¼ rg—in this case

the second turning point coincides with the horizon, r2 ¼
rþ for l > 2. This implies that at ! ¼ mwþ one cannot set
a ¼ rg before performing the integral in (22). However,

this makes the integration simple. Indeed at ! ¼ mwþ we
can write

VðrÞ ¼ ðr� rþÞðr2 � rÞvðrÞ; (A1)

where in the limit a ! rg the function vðrÞ has a finite

nonvanishing limit in the whole interval ðrþ; r2Þ. Hence
at ! ¼ mwþ, we can write the integral (22) in the limit
a ! rg as

I¼vðrþÞ1=2ðr2þþa2Þ
Z r2

rþ
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�r

r�rþ

s
1

r�r�

��������a!rg

¼2�vðrgÞ1=2r2g
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2�r�
rþ�r�

s
�1

���������a!rg

: (A2)

Now, taking the second derivative of (A1) with respect to r
and setting a ¼ r ¼ rg we obtain

vðrgÞja¼rg ¼ � 1

2
@2rVðrgÞja¼rg ¼


ð
� 1Þ
2r4g

: (A3)

Similarly, taking the mixed second derivative of (78) with
respect to r and a we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g � a2

q
@ar2ja¼rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g � a2

q
@a

�
@rVðrgÞ
gðrgÞ þ rþ

���������a¼rg

¼ 3
þ 1

1� 

: (A4)
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FIG. 15 (color online). The tunneling exponent as a function of
the black hole spin.
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Equivalently, (A4) implies that at a � 1 one has

r2 ¼ rg þ 3
þ 1


� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g � a2

q
þOðr2g � a2Þ: (A5)

Finally, by plugging (A3) and (A5) into (79), we obtain the
following answer for the tunneling integral in the extremal
Kerr geometry

I ¼ �

�
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð
� 1Þ

p �
: (A6)

In principle, we can continue as above and work out
higher-order terms in the (1� a) expansion to arrive at the
approximate analytical WKB formulas for superradiant
rates in the near-extremal case. Instead, in Fig. 15 we
present the result of a numerical integration of (22) as a
function of the black hole spin.
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