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ABSTRACT

Hyperspectral sensors provide a powerful tool for non
destructive analysis of rocks. While classification of spec
trally distinct materials can be performed by traditional meth
ods, identification of different rock types or grades com
posed of similar materials remains a challenge because spec
tra are in many cases similar. In this paper, we investi
gate the application of boosting algorithms to classify hy
perspectral data of ore rock samples into multiple discrete
categories. Two variants of boosting, GentleBoost and Log
itBoost, were implemented and compared with Support Vec
tor Machines as benchmark. Two pre-processing transfor
mations that may improve classification accuracy were in
vestigated: derivative analysis and smoothing, both calcu
lated by the Savitzky-Golay method. To assess the perfor
mance of the algorithms over noisy data, white Gaussian
noise was added at various levels to the data set. We present
experimental results using hyperspectral data collected from
rock samples from an iron ore mine.

1. INTRODUCTION

Characterizing surface geology from hyperspectral data can
be of enormous value for the mining industry. The accurate
assessment of lithology can be used during several phases of
the mining process, from exploration to processing and rec
onciliation. Despite the constraint that hyperspectral data
only provides information from the surface of rocks [1], it
can be useful in open pit mine operations where the rocks of
interest are exposed. It has the potential to provide fast as
sessment of the location and distribution of waste and ore on
the bench, resulting in more efficient mining and providing
a higher-value product.
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Hyperspectral sensors acquire data in hundreds of nar
row, contiguous bands and provide a powerful tool for non
destructive analysis of remote samples [2]. Spectral signa
ture analysis of hyperspectral data can be applied to classify
samples into categories and produce land cover maps [3].
Conventional land cover classification methods allow easy
distinction among different materials, e.g., bare soil, vege
tation and minerals. However, there are still challenges in
providing robust hyperspectral classification algorithms [4].
There are issues caused by the high dimensionality of hy
perspectral data and the correlation between spectral bands.
It is difficult and laborious to produce labeled samples for
ground-truth, which may lead to correlation between train
ing and validation data sets. There may also be significant
amount of noise in the data due to the narrow bandpasses
which are sampled, decreasing solar irradiance, particularly
towards longer wavelengths, sensor induced effects and er
rors in calibration. Therefore, robust material identifica
tion is still a significant challenge, especially when targets
present a high degree of spectral similarity [5].

In this paper, we investigate the performance of machine
learning techniques to classify hyperspectral data of ore
bearing samples into discrete rock categories. The hyper
spectral classification problem is characterized by having
multiple categories (rock types), high-dimensional features
(hyperspectral bands), and limited number of labelled sam
ples (ground-truth). Boosting is a machine learning tech
nique for supervised classification that has become very pop
ular due to its sound theoretical foundation, and also due to
many empirical studies showing that it tends to yield smaller
classification error rates and be more robust to overfitting
than competing methods, e.g., Neural Networks or Support
Vector Machines (SVMs) [6]. We propose to apply a ver
sion of Boosting called LogitBoost, which can efficiently
classify multiple categories directly. We present experimen
tal results comparing LogitBoost with two benchmark algo
rithms: another Boosting variant called GentleBoost and an
extension to SVMs called least squares-SVMs. The effect
on the classifiers' performance of pre-processing the data
using Savitzky-Golay smoothing and derivatives is also in-



vestigated. The algorithms were assessed using hyperspec
tral data sets of ore-bearing samples collected from an open
pit mine in Western Australia.
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2.1.2. LogitBoost

Finally, return predictions of the final ensemble

sign [F(x)] = sign [L::=1 fm(x)] . (1)
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2.1.3. Regression stumps

The prediction of the classifier is given by

F(x) == arg max F'{z}.
c

LogitBoost is a Boosting variant that can directly classify
multiple classes. Logitboost, similarly to GentleBoost, uses
stagewise optimization of the maximum likelihood through
adaptive Newton steps to fit additive logistic regression mod
els [10].

To solve the multi-class problem, the LogitBoost algo
rithm defines a symmetric multiple logistic transformation

e
Pc(x) == eexp (Fc(x)) , '"L..." Fc(x) == 0 ,

LC=1 exp (Fc(x)) c=1

where Pc is the probability of assigning class c among C
classes.

Let y~ == {-1, 1} be the indicator response vector. For
all classes c == 1, ... , C and training samples i == 1, ... , n,
we initialize the weighting coefficients W as Wic == lin, the
classification function as Fe(x) == 0, and the class probabil
ities as Pc (x) == 1IC. For a given number of weak learners
m == 1, ... , M, repeat:

a) repeat for all classes c == 1, ... , C :

i) compute working responses

v; - Pc(Xi)
Zic == ;

Pc(Xi) (1 - Pc(Xi))

ii) compute weights Wic == Pc(Xi) (1 - Pc(Xi)) ;
iii) fit the regression function I me by minimizing the

weighted least squares

L:~=1 (Wic(Zic - fmc(Xi)))2;

b) set fmc(x) f- C~ 1 (fmc(x) - ~ L~=l fmc(x)) ;

c) update Fc(x) f- Fc(x) + Imc(x);

d) update Pc(x) using Eq.( 2).

2. METHODOLOGY

The idea of Boosting is to train many "weak" learners on
various distributions (or set of weights) of the input data and
then combine the resulting classifiers into a single "commit
tee" [9]. A weak learner can be any classifier whose perfor
mance is guaranteed to be better than a random guess. There
are many different variants of boosting algorithms. In this
study, we investigate two versions called GentleBoost and
Logitboost [10].

2.1.1. GentleBoost

Let us consider that the hyperspectral data is given as a vec
tor Xi E ~d comprising d spectral bands. The training set is
composed of pairs ((Xl,Yl), ... , (xn,Yn)) ofnlabelledex
amples, where each sample i == {1, ... , n} can be assigned
to a label y. For the binary classification problem, the target
label set is defined as Yi E {-1, +1}. In the multi-class
case, each label is assigned an integer Yi E {1,2, ... , C}
with the number of classes C 2:: 3.

Given a binary classifier, there are several schemes for
coding the outputs to solve the multi-class problem [7]. The
two most widely used strategies are the one-versus-all and
the one-versus-one approaches [8]. The present study em
ploys the one-versus-all approach which learns a set of bi
nary classifiers {II, 12, ... ,[o), where the c-th class is as
signed to the positive class, while the others are assigned to
the negative class. The prediction of the set of classifiers is
given by majority voting Y; == arg maxc= I ,2,. ·· ,e {Ic(xi)}.
The one-versus-one approach did not perform as well on
this problem, probably due to the high number of classes in
relation to the small number of samples.

2.1. Boosting

GentleBoost is a "gentle" version of the popular AdaBoost
algorithm, which is more robust numerically and has shown
to outperform the latter in experiment tests [10]. Gentle
Boost is a binary classifier and can be extended to handle
multi-class problems using the one-versus-all scheme. Gen
tleBoost uses adaptive Newton steps to optimize the cost
function of the classifier following an iterative procedure.

Let us assume a set of weighting coefficients W initial
ized as ui; == 1In, for i == 1, ... , ti, and a classification
function F(x) == O. Let M be the number of weak learners.
Repeat for m == 1, ... , M:
a) fit the regression function 1m by minimizing the weighted

least squares
",n 2
L..."i=1 (Wi(Yi - Im(xi))) ;

b) update F(x) f- F(x) + Im(x);

As for the weak learners, the present study utilizes regres
sion stumps, which can be viewed as binary decision trees
with only one node. A regression stump learns an optimal



2.2. Support Vector Machines

f(x,¢,(),a,b) == a8[¢(x) > ()] +b, (4)

(9)

3. RESULTS

2.3. Savitzky-Golay Filtering and Derivatives

Empirical studies have shown that derivative analysis in
crease classification accuracy of Artificial Neural Networks
in some cases [15, 16]. However, due to increased amount
of noise at each higher derivative, a careful noise reduction
pre-processing step is required. A common approach to cal
culate spectrum derivatives is to first apply a smoothing fil
ter to reduce the noise and then perform the derivatives us
ing a finite differentiation scheme [17]. The Savitzky-Golay
filter, also known as least-squares smoothing filter, is a more
elaborate approach that fits polynomials and differentiates
them analytically [18]. Savitzky-Golay filters are attractive
for spectropy because they are effective at preserving the
relative widths and heights of spectral signatures in noisy
spectrometric data [19].

In the Savitzky-Golay method, a frame of data points
surrounding the current point (spectral band) is fit to a poly
nomial using local least-squares regression. The function
value of the current band is retained, while the function val
ues of the others in the frame are discarded. The simplified
least square convolution can be used to calculate the qth
order derivative ii of a band A according to

where P is the set of filter coefficients, and r is the half
width of the filter size, which correspond to a smoothing
window of 2r + 1. Note that A == {r + 1, . .. , n - r + I},
where n is the number of bands. Equation (9) allows calcu
lation of the smoothed signal from zeroth order to the sixth
order of derivatives [20]. The present study implements
Savitzky-Golay smoothing using cubic (order 3) polynomi
als, for a moderate level of smoothing and capable of pro
viding up to the third derivative.

(5)

(6)

y(x) == w T cp(x) + b,

where cp is a non linear function which maps the input space
into a higher dimensional space, the weight vector wand
bias bare parameters of the hyperplane. The LS-SYM opti
mization problem can be formulated as the minimization of
a function J defined as

threshold () that takes a feature ¢ such that the minimum
number of examples x is misclassifed. It can be defined as

where 8 is an indicator function, and a and b are regression
parameters. The parameters {¢, (), a, b} are optimized by
minimizing the weighted squared error w.r.t. f. This can be
performed efficiently by best-first search and forward selec
tion [11].

SYMs have been shown to be effective for nonlinear clas
sification, regression and density estimation problems [12].
SYMs were introduced for the binary classification prob
lem by fitting an optimal separating hyperplane between
the positive and negative classes with the maximal mar
gin [13]. The classical SYM algorithm is based on con
vex optimization theory, typically quadratic programming
involving inequality constraints. We focus on a different
formulation called Least Squares Support Vector Machines
(LS-SYMs) [14], which present lower computational com
plexity and may scale better for high-dimensional problems.
In a LS-SYM classifier the problem is simplified because of
the use of equality constraints instead of inequalities. The
solution can then be obtained in a finite number of steps by
solving a set of linear equations.

In a LS-SYM classifier, its primal weight space is de
fined as

where I is the regularization factor. The optimization is
subject to the constraints Yi == wT CP(Xi) + b + ei, where
e; == Yi - Yi. Solving this optimization problem in dual
space using the kernel trick leads to finding the coefficients
of the function

where the kernel function K(x, Xi) is the dot product be
tween the cp(x) T and cp(x) mappings. The present study
employs a radial basis function (RBF) as the kernel func
tion, which can be defined as

K(x, y) = cxp o ( -(J [[x - y[[2) , (8)

where (J" is a free model selection parameter that controls
the widths of the Gaussian or RBF functions.

n

f(x) == L QiK(x, Xi) + b,
i=l

(7)

The hyperspectral data was collected using a portable field
spectrometer manufactured by Analytical Spectral Devices
(ASD) Inc. (Boulder, Colorado). The sensor acquires hyper
spectral data from the visible (350 nm) to the short-wave
infrared (SWIR) (2500 nm) region of the spectrum at 1 nm
intervals. The data were downsampled to 2 nm intervals
on the visible region and to 6.5 nm in the SWIR in order
to match the resolution of bandpasses which are consistent
with many commercially available hyperspectral imaging
systems; the total number of bands used was 429.

For this study, 14 rock samples from an iron ore mine
located in the Pilbara region of Western Australia were col
lected. The samples comprise several rock types represen
tative of the mineralogy commonly found in that region:
banded ironstone formation (BIF), martite, goethite, kaolin
ite, and mixtures of those. The classification of the samples
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Fig. 2: Derivative spectra of three rock samples: BIF (in
blue), goethite (in green) and kaolinite (in red)

spond to the different pre-processing techniques, smoothing
and derivatives, applied to the data set; the indices 20, 40,
80 indicate the width of the smoothing window in nanome
ters. The columns correspond to the different levels of noise
added to the data, and the last column shows the no-noise
added data set; the best results for each SNR level are high
lighted in bold letters. We have also separated the results
into three groups based on the type of the data set: raw
reflectance, first and second derivatives. These results are
presented in Fig. 4 as box-and-whisker diagrams .

In the experiments, LogitBoost presented better perfor
mance than GentleBoost overall, although with slightly more
variance on the derivatives data. The LS-SYMs achieved
higher accuracy for the raw reflectance data, but presented
higher variance and performed very poorly on the deriva
tives and noisy data . This agrees with a previous compara
tive study of SYMs and also AdaBoost [21], which indicate
that the cost function for hyperspectral classification leads
to sparser solutions by the Boosting algorithm . Neverthe
less, LS-SYMs could yield better results on all cases if its
parameters were fine tuned for each case, a procedure that
is not required for Boosting, which performs well with fixed
parameters. Another advantage of LogitBoost is that it can
provide class probability estimates, which can be useful for
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Fig. 1: Spectral signatures of three typical ore rocks: ElF
(in blue), goethite (in green) and kaolinite (in red). The
effect of light absorption from water vapour present in the
atmosphere can be observed at wavelengths around 1450,
1950 and 2500 nm

was provided by an experienced geologist. A total of 10
spectral measurements were taken from each rock type. As
an example, the spectral reflectance signatures of three ore
rocks are shown in Fig. 1. The resulting curves of the first
and second derivatives are illustrated in Fig. 2a and Fig. 2b,
respectively. We decided to keep the noisy bands due to
water vapour absorption to provide a rigorous test for the
machine learning algorithms.

In order to evaluate the performance of the algorithms
over different conditions , artificial noise at various levels
was added to the reflectance data. White Gaussian noise
was added to produce spectra with different signal-to-noise
ratios (SNRs) ranging from 60dB to lOdB, at lOdB inter
vals. Figure 3 shows an example of the resulting spectral
signatures after this procedure.

For LogitBoost and GentleBoost using decision stumps
as weak learners, the only parameter that needs to be defined
is the number of weak learners. We have chosen the num
ber of weak learners that provided the better classification
for the unprocessed reflectance data set, 35 for the Logit
Boost and 33 for the GentleBoost. For LS-SYMs using a
radial basis function kernel, we have to adjust the kernel
scale factor. Using the same criterion as used in Boosting,
the scale factor was set to 3 for all experiments.

The algorithms were tested using k-fold cross-validation.
For the present data set, a 5-fold approach was implemented.
At each turn, 2 spectral samples of each class are taken out
of the training set. The model is then tested on this valida
tion set. The results of all turns are grouped together and the
final results are calculated based on the confusion matrix of
the whole validation set. The model accuracy is the percent
age of correctly classified samples over the total number of
samples.

The experimental results for LogitBoost, GentleBoost
and LS-SYMs are presented in Table 1. The rows corre-



Table 1: Comparison of results of algorithms for ore classification using hyperspectral data

Method Preprocessing 10dB 20dB 30dB 40dB 50dB 60dB No-noise

Raw Reflectance 0.1643 0.3857 0.7214 0.8714 0.9071 0.9214 0.9214
Smoothing 20 0.3571 0.7643 0.9071 0.9286 0.9214 0.9214 0.9143
Smoothing 40 0.4429 0.7857 0.9357 0.9286 0.9357 0.9143 0.9214
Smoothing 80 0.4286 0.8500 0.9071 0.9286 0.9143 0.9286 0.9214

LogitBoost 1st Derivative 20 0.0214 0.0571 0.1214 0.2786 0.6929 0.8357 0.9571
1st Derivative 40 0.0643 0.1643 0.3357 0.6357 0.8929 0.9000 0.9429
1st Derivative 80 0.0857 0.2357 0.6714 0.8500 0.9071 0.9571 0.9643

2nd Derivative 20 0.0786 0.1143 0.0786 0.1714 0.2857 0.5571 0.9571
2nd Derivative 40 0.0500 0.1357 0.1857 0.4500 0.6000 0.8786 0.9643
2nd Derivative 80 0.0929 0.1714 0.4429 0.6929 0.8714 0.9643 0.9714

Raw Reflectance 0.1500 0.3643 0.6500 0.7929 0.8786 0.9071 0.9071
Smoothing 20 0.3143 0.6643 0.8500 0.8786 0.9143 0.8929 0.8929
Smoothing 40 0.3857 0.7714 0.8571 0.9214 0.9286 0.9143 0.9143
Smoothing 80 0.4071 0.8000 0.8786 0.9214 0.9143 0.9000 0.9071

GentleBoost 1st Derivative 20 0.0500 0.0500 0.0643 0.3500 0.5786 0.8286 0.8929
1st Derivative 40 0.0929 0.1429 0.3929 0.6000 0.8286 0.8571 0.9071
1st Derivative 80 0.1429 0.2429 0.6143 0.8000 0.8714 0.9143 0.9429

2nd Derivative 20 0.0857 0.0286 0.1500 0.2071 0.3071 0.4643 0.8929
2nd Derivative 40 0.0643 0.0857 0.1571 0.3286 0.5857 0.8643 0.9071
2nd Derivative 80 0.1214 0.2000 0.4357 0.6357 0.8000 0.8929 0.9357

Raw Reflectance 0.0500 0.0786 0.0429 0.7571 0.9429 0.9500 0.9429
Smoothing 20 0.0286 0.0500 0.7571 0.9429 0.9429 0.9429 0.9429
Smoothing 40 0.1071 0.0500 0.9143 0.9429 0.9500 0.9429 0.9500
Smoothing 80 0.0643 0.1714 0.9429 0.9429 0.9500 0.9571 0.9429

LS-SVMs 1st Derivative 20 0.0857 0.0500 0.1000 0.0643 0.0643 0.0571 0.0714
1st Derivative 40 0.0500 0.0929 0.0714 0.0500 0.0643 0.0643 0.0857
1st Derivative 80 0.1000 0.0429 0.0929 0.1000 0.0714 0.0571 0.1000

2nd Derivative 20 0.0429 0.0714 0.0786 0.0857 0.1071 0.0643 0.0714
2nd Derivative 40 0.0857 0.1071 0.0571 0.0571 0.0857 0.0714 0.0571
2nd Derivative 80 0.0357 0.0643 0.0643 0.0714 0.0714 0.0357 0.0500

eventual post-processing phases; in case its results need to
be combined with other sensors for example.

4. CONCLUSIONS

In this paper, we evaluated three machine learning approaches
for hyperspectral classification of rock types. LogitBoost,
GentleBoost and LS-SYMs are able to classify rocks with
a high degree of accuracy even when dealing with sam
ples that present high spectral similarity, which can be chal
lenging for conventional remote sensing methods based on
spectral similarity measures. The classification problem is
rendered difficult by the high dimensionality (429 features)
and small number of labeled samples (10 per class). In
our experiments considering noisy, filtered and derivative
transformed data sets, LogitBoost presented better perfor
mance overall. Smoothing the data improved accuracy for
all algorithms. Derivative analysis improved accuracy of the
Boosting methods on high signal-to-noise ratio data sets,
but the results deteriorate as noise increases. Therefore,
while smoothing and derivatives can improve classification
accuracy of the Boosting algorithm, the derivative transfor
mation should only be applied to spectra presenting a high
SNR.

Despite the fact that the LS-SYM approach provided

higher accuracies for unprocessed reflectance data and for
data with low noise, both Boosting algorithms yielded bet
ter results on the noisiest data sets and on the derivatives
using a fixed number of weak learners. While the LS-SYM
parameters require fine tuning for each case, Boosting is
more flexible to classify different transformations of hyper
spectral data.
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