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Measurement of interaction between antiprotons
The STAR Collaboration*

One of the primary goals of nuclear physics is to understand the 
force between nucleons, which is a necessary step for understanding 
the structure of nuclei and how nuclei interact with each other. 
Rutherford discovered the atomic nucleus in 1911, and the large 
body of knowledge about the nuclear force that has since been 
acquired was derived from studies made on nucleons or nuclei. 
Although antinuclei up to antihelium-4 have been discovered1 
and their masses measured, little is known directly about the 
nuclear force between antinucleons. Here, we study antiproton 
pair correlations among data collected by the STAR experiment2 
at the Relativistic Heavy Ion Collider (RHIC)3, where gold ions 
are collided with a centre-of-mass energy of 200 gigaelectronvolts 
per nucleon pair. Antiprotons are abundantly produced in such 
collisions, thus making it feasible to study details of the antiproton–
antiproton interaction. By applying a technique similar to Hanbury 
Brown and Twiss intensity interferometry4, we show that the force 
between two antiprotons is attractive. In addition, we report 
two key parameters that characterize the corresponding strong 
interaction: the scattering length and the effective range of the 
interaction. Our measured parameters are consistent within errors 
with the corresponding values for proton–proton interactions. Our 
results provide direct information on the interaction between two 
antiprotons, one of the simplest systems of antinucleons, and so 
are fundamental to understanding the structure of more-complex 
antinuclei and their properties.

Although the theory of quantum chromodynamics (QCD) provides 
us with an understanding of the foundation of the nuclear force, this 
binding interaction in nuclei operates at low energy, where the force is 
strong and difficult to calculate directly from the theory (see ref. 5 and 
references therein for recent developments). For that reason, a com-
mon parameterization of the effective interaction between nucleons is 
based on experimental measurements, and the corresponding param-
eterization for antinucleons remains undetermined. The important 
paramfeters in such a description of the interaction are the scattering 
length (f0), which is related to elastic cross-sections, and the effective 
range of the interaction (d0), which is determined to be a few femto-
metres (the typical nuclear scale). For a short range potential, these two 
parameters are related to the s-wave scattering phase shift δ0 and the  
collision momentum k by ( )≈ +k δ d kcot

f0
1 1

2 0
2

0
. The existence and 

production rates of antinuclei offer indirect information about inter-
actions between antinucleons, and also have relevance to the unex-
plained baryon asymmetry in the Universe6. Antinuclei produced to 
date include antiprotons, antideuterons, antitritons, antihelium-3, and 
the recently discovered antihypertriton and antihelium-4 (see ref. 1 
and references therein). The interaction between two antinucleons is 
the basic interaction that binds the antinucleons into antinuclei, and 
this has not been directly measured previously. Of equal importance, 
one aspect of the current measurement is a test of matter–antimatter 
symmetry, more formally known as CPT—a fundamental symmetry 
of physical laws under the simultaneous transformations of charge 
conjugation (C), parity transformation (P) and time reversal (T). 
Although various prior CPT tests7 have been many orders of 

magnitude more precise than what is reported here, there is value in 
independently verifying each distinct prediction of CPT symmetry7.

Ultra-relativistic nuclear collisions produce an energy density sim-
ilar to that of the Universe microseconds after the Big Bang, and the 
high energy density creates a favourable environment for antimatter 
production. The abundantly produced antiprotons provide the oppor-
tunity to measure, for the first time, the parameters ƒ0 and d0 of the 
strong nuclear force between antinucleons rather than nucleons.

The technique used to probe the antiproton–antiproton interaction 
involves momentum correlations, and it resembles the space-time cor-
relation technique used in HBT (Hanbury Brown and Twiss) intensity 
interferometry. Since its invention for use in astronomy in  
the 1950s4, the HBT technique has been adopted in many areas of  
physics, including the study of the quantum state of Bose–Einstein  
condensates8, and the correlation among electrons9 and among atoms 
in cold Fermi gases10. A Bose–Einstein enhancement in particle physics 
was first observed in the late 1950s as an enhanced number of pairs of 
identical pions produced with small opening angles, the GGLP 
(Goldhaber, Goldhaber, Lee and Pais) effect11. Later on, Kopylov and 
Podgoretsky noted the common quantum statistics origin of the HBT 
and GGLP effects12, and, through a series of papers (see a review13 and 
references therein), they devised the basics of the momentum correla-
tion interferometry technique. In this technique, they introduced the 
correlation functions (CFs) as ratios of the momentum distributions 
of correlated and uncorrelated particles, ( , )= ( , )

( ) ( )
p pC

p p

p p

P

P P1 2
1 2

1 2

 with  

C = 1 for no correlations, suggested the so-called mixing technique to 
construct the uncorrelated distribution by using particles from different 
collisions (events), and formulated a simple relation of the CFs with the 
space-time structure of the particle emission region. Here C(p1, p2) is 
the correlation function, P(p1) and P(p2) are probabilities for detecting 
a particle with momentum p1 and a particle with momentum p2, 
respectively, and P(p1, p2) is the joint probability for detecting both 
simultaneously. As a result, the momentum correlation technique has 
been widely embraced by the nuclear physics community14–17.

Figure 1 illustrates the process of constructing two-particle correla-
tions in heavy-ion collisions. In addition to quantum statistics effects, 
final state interactions (FSIs) play an important role in the formation 
of correlations between particles. FSIs include, but are not limited to, 
the formation of resonances, the Coulomb repulsion effect, and the 
nuclear interactions between two particles14,15,18,19. In fact, FSI effects 
provide valuable additional information. They allow for (see refs 16, 
20 and references therein) coalescence femtoscopy, correlation fem-
toscopy with non-identical particles, including access to the relative 
space-time production asymmetries, and a measurement of the strong 
interaction between specific particles. The last measurement is often 
difficult to access by other means and is the focus of this paper (for 
recent studies see refs 21, 22).

In a semi-classical geometrical description, a complex heavy-ion col-
lision can be regarded as a superposition of many individual nucleon–
nucleon collisions, each governed by a constant probability of interaction 
with all nucleons travelling in straight lines. The centrality corresponds 
to the extent that two nuclei overlap, and events are categorized by their 

*Lists of participants and their affiliations appear at the end of the paper.
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centrality, based on the observed number of tracks emitted from each 
collision. Zero per cent centrality corresponds to exactly head-on colli-
sions which produce the most tracks, while 100% centrality corresponds 
to barely glancing collisions which produce the fewest tracks. The data 
used here consists of Au + Au collisions at a centre-of-mass energy of 
200 GeV per nucleon pair, taken during the operation of RHIC in the 
year 2011. In total, 500 million events were taken by the minimum-bias 
trigger at STAR. This trigger selects all particle-producing collisions, 
regardless of the extent of overlap of the incident nuclei, but with a 
requirement that collisions must have occurred along the trajectory of 
the colliding Au ion and within ± 30 cm of the centre of STAR’s Time 
Projection Chamber (TPC)23. Events used in this analysis correspond 
to the 30%–80% centrality class, for which the signal due to two-particle 
interaction is stronger than that from smaller centrality classes, while 
particle yields are larger than that from larger centrality classes.

The two main detectors used in the measurement are the STAR TPC 
and the Time of Flight Barrel (TOF)24. The TPC is situated in a sole-
noidal magnetic field (0.5 T), and it provides a three-dimensional 
image of the ionization trails left along the path of charged particles. 
The TOF encloses the curved surface of the cylindrical TPC. In con-
junction with the momentum measured via the track curvature in 
TPC, particle identification (PID) is achieved by two key measure-
ments: the mean energy loss per unit track length, 〈 dE/dx〉 , which can 
be used to distinguish particles with different masses or charges, and 
the time of flight of particles reaching the TOF detector, which can be 
used, together with tracking information, to derive the square of a 

particle’s mass (m2). Figure 2 shows a typical calculated mass-squared 
(m2) distribution versus nσz (see Fig. 2 legend) for antiprotons.

The population distribution of (anti)proton pairs as a function of 
(anti)proton momentum (k*) in the pair rest frame (in which the centre 
of mass of the pair is at rest, convenient for carrying out measurements) 
is measured for the correlated pairs from within the same event, A(k*), 
and, separately, for the non-correlated pairs from two different (mixed) 
events, B(k*). The former corresponds to the joint probability P(p1, p2), 
and the latter corresponds to the product of two probabilities, 
P(p1)P(p2), where P(p1) and P(p2) each corresponds for observing single 
(anti)protons. The ratio of the two, A(k*)/B(k*), gives the measured CF 
(see Methods). The observed (anti)protons can come from weak decays 
of already correlated primary particles, hence introducing residual cor-
relations which contaminate the CF. The dominant contaminations to 
the CF come from the p–Λ ( –p Λ) and Λ–Λ ( –Λ Λ) correlations (where 
p and Λ denotes the proton and lambda particle, respectively, and p  and 
Λ  denotes the corresponding antiparticle), and are taken into account 
by fitting the CF with corresponding contributions. Taking the two-pro-
ton correlation measurement as an example25,

⁎ ⁎ ⁎

⁎

( )= + 
 ( )−  +


 ( )− 

+ 
 ( )−  ( )

�

�

C k x C k R x C k R

x C k

1 ; 1 ; 1
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where Cinclusive(k*) is the inclusive CF, and Cpp(k*; Rpp) is the true  
proton–proton CF, which can be described by the Lednický and 
Lyuboshitz analytical model19. In this model, for given s-wave scatter-
ing parameters, the correlation function with FSI is calculated as the 
square of the properly symmetrized wavefunction averaged over the 
total pair spin and the distribution of relative distances of particle emis-
sion points in the pair rest frame (see Methods). �C  are the residual CFs 
which are expressed through the p–Λ and Λ–Λ CFs, ⁎( )C k R;pΛ pΛ pΛ  and 

⁎( )C kΛΛ ΛΛ , using integral transformation25 from ⁎kpΛ and ⁎kΛΛ to ⁎kpp (see 
Methods). ⁎( )C k R;pΛ pΛ pΛ  is taken from a theoretical calculation19, which 
includes all final-state interactions and explains experimental data 
well21. ⁎( )C kΛΛ ΛΛ  is from an experimental measurement corrected for 
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Figure 1 | A schematic of the two-particle correlation process in a 
heavy-ion collision. The display is overlaid on an event display from 
the Time Projection Chamber in the STAR detector. The curves show 
particle trajectories, from which the track momenta are determined. These 
trajectories are measured in three dimensions, but are projected onto a 
single plane in this illustration. The STAR detector measures three-vector 
momenta over a wide range beginning at about 0.1 GeV c−1. Two particles 
emitted from two separated points, with four-coordinates Xa and Xb, are 
detected with four-momenta p1 and p2. For the pair of indistinguishable 
particles with even/odd total spin, the two quantum mechanical amplitudes 
(representing, for non-interacting particles, products of plane waves 〈 p1|Xa〉  
〈 p2|Xb〉  and 〈 p2|Xa〉  〈 p1|Xb〉 , where 〈 p|X〉 = exp(− ipX)) must be added/
subtracted to yield the amplitude which is symmetric/antisymmetric 
with respect to the interchange of particle momenta. This results in 
an enhancement/suppression in the joint detection probability at zero 
momentum separation with the width inversely proportional to the space-
time separation of particle emission points.
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Figure 2 | m2 versus nσz  for negatively charged particles. Here 
m2 = (p2/c2)(t2c2/L2 − 1), where t and L are the time of flight and path 
length, respectively. c is the light velocity. z = ln(〈 dE/dx〉/〈 dE/dx〉 E) and 
〈 dE/dx〉 E is the expected value of 〈 dE/dx〉  for (anti)protons. σ z is the r.m.s 
width of the z distribution, and nσz is the number of standard deviations 
from zero, the expected value of z for (anti)protons. The antiprotons, 
centred at m2 = 0.88 (GeV c−2)2 and =n 0σz

, are well separated from other 
particle species. (Anti)protons satisfying 0.8 (GeV c−2)2 < mass2 <1  
(GeV c−2)2 and | | < .n 1 5σz

 are selected for making pairs. With this 
selection, the purity is >99% for (anti)protons with transverse momentum 
less than 2 GeV c−1. Colours denote particle population (counts) in cells 
formed by even division of m2 and nσz.
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mis-identified Λs (ref. 22). Rpp and RpΛ, assumed to be the same numer-
ically, are the invariant Gaussian radii21 from the proton–proton cor-
relation and the proton–Λ  correlation, respectively. xpp, xpΛ and xΛΛ, 
taken from the THERMINATOR2 model26, are the relative contribu-
tions from pairs with both daughters from the primary collision, pairs 
with one daughter from the primary collision and the other one from 
a Λ decay, and pairs with both daughters from a Λ   decay, respectively.

Figure 3 shows the CF for proton–proton pairs (Fig. 3a) and  
antiproton–antiproton pairs (Fig. 3b), for the 30%–80% centrality 
class of Au + Au collisions at a centre-of-mass energy of 200 GeV 
per nucleon pair. The proton–proton CF exhibits a maximum at  
k* ≈ 0.02 GeV c−1 due to the attractive singlet s-wave interac-
tion between the two detected protons and is consistent with pre-
vious measurements27. The antiproton–antiproton CF shows 
a similar structure with the maximum appearing at the same 
k* value. In Fig. 3c, the ratio of the inclusive CF for proton– 
proton pairs to that of antiproton–antiproton pairs is presented. 
It is well centred at unity for almost all the k* range, except for  
the region k* < 0.02 GeV c−1, where the error becomes large.  
This indicates that the strong interaction is indistinguishable within 
errors between proton–proton pairs and antiproton–antiproton pairs. 
By fitting the CF with equation (1), we determine the singlet s-wave 

scattering length and effective range for the antiproton–antiproton 
interaction to be f0 = 7.41 ± 0.19(stat.) ±  0.36(sys.) fm and d0 = 2.14 ±  
0.27(stat.) ± 1.34(sys.) fm, respectively. Here stat. and sys. indicate statis-
tical and systematic errors, respectively. The extracted radii for protons 
(Rpp) and that for antiprotons (Rpp) are 2.75 ± 0.01(stat.) ± 0.04(sys.) fm 
and 2.80 ± 0.02(stat.) ± 0.03(sys.) fm, respectively.

Figure 4 presents the first measurement of the antiproton–antiproton 
interaction, together with prior measurements for nucleon–nucleon 
interactions. Within errors, the f0 and d0 for the antiproton–antiproton 
interaction are consistent with their antiparticle counterparts—the ones 
for the proton–proton interaction. Our measurements provide para
meterization input for describing the interaction among cold-trapped 
gases of antimatter ions, as in an ultracold environment, where s-wave 
scattering dominates and effective-range theory shows that the scatter-
ing length and effective range are parameters that suffice to describe 
elastic collisions. The result provides a quantitative verification of  
matter–antimatter symmetry in the important and ubiquitous con-
text of the forces responsible for the binding of (anti)nuclei. Possible 
future improvement of the measurement could be made by reducing 
the uncertainty from the Λ–Λ CF (CΛΛ(k*)), which dominates our 
systematic error, by further accumulation of data. In addition, a sim-
ilar extraction of f0 and d0 could also be repeated with (anti)proton– 
(anti)proton CF28 measured at the Large Hadron Collider, where the 
yield ratio of antiproton to proton is close to unity.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 3 | Correlation functions and their ratio. a, b, Correlation 
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The ratio of the former to the latter is shown in c. Errors are statistical only. 
The fits to the data with equation (1), Cinclusive(k*), are plotted as solid lines, 
and the term 1 + xpp[Cpp(k*; Rpp) − 1] is shown as dashed lines. The χ 2 per 
number of degrees of freedom of the fit is 1.66 for a and 1.61 for b.  
To take advantage of the existing knowledge on the proton–proton 
interaction, which is relatively well understood, when fitting the  
proton–proton correlation, f0 and d0 for protons are fixed at values 
measured from proton–proton elastic-scattering experiments, which 
are 7.82 fm and 2.78 fm, respectively29. When fitting the antiproton–
antiproton correlation, f0 and d0 are treated as free parameters.
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a few per cent, smaller than the symbol size.

http://www.nature.com/doifinder/10.1038/nature15724


3 4 8  |  N A T U RE   |  VO  L  5 2 7  |  1 9  n o v e m b e r  2 0 1 5

LetterRESEARCH

© 2015 Macmillan Publishers Limited. All rights reserved

1AGH University of Science and Technology, Cracow 30-059, Poland. 2University of 
Kentucky, Lexington, Kentucky, 40506-0055, USA. 3Joint Institute for Nuclear Research, 
Dubna, 141 980, Russia. 4Panjab University, Chandigarh 160014, India. 5Variable 
Energy Cyclotron Centre, Kolkata 700064, India. 6Alikhanov Institute for Theoretical 
and Experimental Physics, Moscow 117218, Russia. 7Kent State University, Kent, Ohio 
44242, USA. 8Brookhaven National Laboratory, Upton, New York 11973, USA. 9National 
Institute of Science Education and Research, Bhubaneswar 751005, India. 10University 
of Houston, Houston, Texas 77204, USA. 11University of Jammu, Jammu 180001, India. 
12University of Texas, Austin, Texas 78712, USA. 13Czech Technical University in Prague, 
FNSPE, Prague, 115 19, Czech Republic. 14Nuclear Physics Institute AS CR, 250 68 
Řež/Prague, Czech Republic. 15Rice University, Houston, Texas 77251, USA. 16Moscow 
Engineering Physics Institute, Moscow 115409, Russia. 17Yale University, New Haven, 
Connecticut 06520, USA. 18University of California, Davis, California 95616, USA. 19Ohio 
State University, Columbus, Ohio 43210, USA. 20Texas A&M University, College Station, 
Texas 77843, USA. 21Shanghai Institute of Applied Physics, Shanghai 201800, China. 
22Institute of Modern Physics, Lanzhou 730000, China. 23Tsinghua University, Beijing 
100084, China. 24Creighton University, Omaha, Nebraska 68178, USA. 25Lawrence 
Berkeley National Laboratory, Berkeley, California 94720, USA. 26University of California, 
Berkeley, California 94720, USA. 27Institute of Physics, Bhubaneswar 751005, India. 
28Shandong University, Jinan, Shandong 250100, China. 29Institute of High Energy 
Physics, Protvino 142281, Russia. 30Pennsylvania State University, University Park, 
Pennsylvania 16802, USA. 31Valparaiso University, Valparaiso, Indiana 46383, USA. 
32University of California, Los Angeles, California 90095, USA. 33University of Illinois 
at Chicago, Chicago, Illinois 60607, USA. 34Central China Normal University (HZNU), 
Wuhan 430079, China. 35Purdue University, West Lafayette, Indiana 47907, USA. 
36Warsaw University of Technology, Warsaw 00-661, Poland. 37Temple University, 
Philadelphia, Pennsylvania 19122, USA. 38University of Science and Technology of 
China, Hefei 230026, China. 39Indiana University, Bloomington, Indiana 47408, USA. 
40Korea Institute of Science and Technology Information, Daejeon 305-701, South 
Korea. 41Wayne State University, Detroit, Michigan 48201, USA. 42Frankfurt Institute 
for Advanced Studies FIAS, Frankfurt 60438, Germany. 43Argonne National Laboratory, 
Argonne, Illinois 60439, USA. 44Institute of Nuclear Physics PAN, Cracow 31-342, 
Poland. 45World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 
11571, Egypt. 46Indian Institute of Technology, Mumbai 400076, India. 47Michigan State 
University, East Lansing, Michigan 48824, USA. 48Pusan National University, Pusan 
609735, South Korea. 49University of Zagreb, Zagreb, HR-10002, Croatia. 50University 
of Rajasthan, Jaipur 302004, India. 51Max-Planck-Institut fur Physik, Munich 80805, 
Germany. 52United States Naval Academy, Annapolis, Maryland 21402, USA.

The STAR Collaboration 
 
L. Adamczyk1, J. K. Adkins2, G. Agakishiev3, M. M. Aggarwal4, Z. Ahammed5,  
I. Alekseev6, J. Alford7, A. Aparin3, D. Arkhipkin8, E. C. Aschenauer8,  
G. S. Averichev3, V. Bairathi9, A. Banerjee5, R. Bellwied10, A. Bhasin11,  
A. K. Bhati4, P. Bhattarai12, J. Bielcik13, J. Bielcikova14, L. C. Bland8,  
I. G. Bordyuzhin6, J. Bouchet7, J. D. Brandenburg15, A. V. Brandin16, I. Bunzarov3,  
J. Butterworth15, H. Caines17, M. Calderón de la Barca Sánchez18, J. M. Campbell19, 
D. Cebra18, M. C. Cervantes20, I. Chakaberia8, P. Chaloupka13, Z. Chang20,  
S. Chattopadhyay5, J. H. Chen21, X. Chen22, J. Cheng23, M. Cherney24,  
W. Christie8, G. Contin25, H. J. Crawford26, S. Das27, L. C. De Silva24, R. R. Debbe8,  
T. G. Dedovich3, J. Deng28, A. A. Derevschikov29, B. di Ruzza8, L. Didenko8,  
C. Dilks30, X. Dong25, J. L. Drachenberg31, J. E. Draper18, C. M. Du22,  
L. E. Dunkelberger32, J. C. Dunlop8, L. G. Efimov3, J. Engelage26, G. Eppley15,  

7.	 Particle Data Group. Olive, K. A. et al. Review of particle physics. Chin. Phys. C 
38, 090001, 96–106 (2014).

8.	 Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. 
Science 310, 648–651 (2005).

9.	 Kiesel, H., Renz, A. & Hasselbach, F. Observation of Hanbury Brown–Twiss 
anticorrelations for free electrons. Nature 418, 392–394 (2002).

10.	 Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas 
released from an optical lattice. Nature 444, 733–736 (2006).

11.	 Goldhaber, G., Goldhaber, S., Lee, W. & Pais, A. Influence of Bose-Einstein statistics 
on the antiproton-proton annihilation process. Phys. Rev. 120, 300–312 (1960).

12.	 Kopylov, G. I. & Podgoretskiĭ, M. I. Interference of two-particle states in 
elementary-particle physics and astronomy. Sov. Phys. JETP 42, 211–214 (1975).

13.	 Podgoretskiĭ, M. I. Interference correlations of identical pions. Theory. Sov. J. 
Part. Nucl. 20, 266–282 (1989).

14.	 Gyulassy, M., Kauffmann, S. K. & Wilson, L. W. Pion interferometry of nuclear 
collisions. 1. Theory. Phys. Rev. C 20, 2267–2292 (1979).

15.	 Boal, H. D., Gelbke, C.-K. & Jennings, B. K. Intensity interferometry in subatomic 
physics. Rev. Mod. Phys. 62, 553–602 (1990).

16.	 Lednický, R. Correlation femtoscopy of multiparticle processes. Phys. Atom. 
Nucl. 67, 72–82 (2004).

17.	 Lisa, M., Pratt, S., Soltz, R. & Wiedemann, U. Femtoscopy in relativistic heavy ion 
collisions: two decades of progress. Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005).

18.	 Koonin, S. E. Proton pictures of high-energy nuclear collisions. Phys. Lett. B 70, 
43–47 (1977).

19.	 Lednický, R. & Lyuboshitz, V. L. Influence of final-state interaction on 
correlations of two particles with nearly equal momenta. Sov. J. Nucl. Phys.  
35, 770–788 (1982).

20.	 Lednický, R. Notes on correlation femtoscopy. Phys. Atom. Nucl. 71, 1572–1578  
(2008).

21.	 STAR Collaboration. Proton-Λ  correlations in central Au+ Au collisions at 
=S 200 GeVNN . Phys. Rev. C 74, 064906 (2006).

22.	 STAR Collaboration. Λ -Λ  correlation function in Au+ Au collisions at 
=S 200 GeVNN . Phys. Rev. Lett. 114, 022301 (2015).

23.	 Anderson, M. et al. The STAR time projection chamber: a unique tool for 
studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 
499, 659–678 (2003).

24.	 STAR Collaboration. Multigap RPCs in the STAR experiment at RHIC. Nucl. 
Instrum. Methods Phys. Res. A 661, S110–S113 (2012).

25.	 Kisiel, A., Zbroszczyk, H. & Szymański, M. Extracting baryon-antibaryon 
strong-interaction potentials from Λp  femtoscopic correlation functions.  
Phys. Rev. C 89, 054916 (2014).

26.	 Chojnacki, M., Kisiel, A., Florkowski, W. & Broniowski, W. THERMINATOR 2: 
THERMal heavy IoN generATOR 2. Comput. Phys. Commun. 183, 746–773 (2012).

27.	 Pochodzalla, J. et al. Two-particle correlations at small relative momenta for 
40Ar-induced reactions on 197Au at E/A = 60 MeV. Phys. Rev. C 35, 1695–1719 
(1987).

28.	 ALICE Collaboration. One-dimensional pion, kaon, and proton femtoscopy in 
Pb-Pb collisions at = .S 2 76 TeVNN . Preprint at http://arxiv.org/
abs/1506.07884 (2015).

29.	 Mathelitsch, L. & VerWest, B. J. Effective range parameters in nucleon-nucleon 
scattering. Phys. Rev. C 29, 739–746 (1984).

30.	 Šlaus, I., Akaishi, Y. & Tanaka, H. Neutron-neutron effective range parameters. 
Phys. Rep. 173, 257–300 (1989).

R. Esha32, O. Evdokimov33, O. Eyser8, R. Fatemi2, S. Fazio8, P. Federic14,  
J. Fedorisin3, Z. Feng34, P. Filip3, Y. Fisyak8, C. E. Flores18, L. Fulek1,  
C. A. Gagliardi20, D. Garand35, F. Geurts15, A. Gibson31, M. Girard36, L. Greiner25,  
D. Grosnick31, D. S. Gunarathne37, Y. Guo38, A. Gupta11, S. Gupta11, W. Guryn8,  
A. Hamad7, A. Hamed20, R. Haque9, J. W. Harris17, L. He35, S. Heppelmann30,  
S. Heppelmann8, A. Hirsch35, G. W. Hoffmann12, D. J. Hofman33, S. Horvat17,  
B. Huang33, H. Z. Huang32, X. Huang23, P. Huck34, T. J. Humanic19, G. Igo32,  
W. W. Jacobs39, H. Jang40, K. Jiang38, E. G. Judd26, S. Kabana7, D. Kalinkin6,  
K. Kang23, K. Kauder41, H. W. Ke8, D. Keane7, A. Kechechyan3, Z. H. Khan33,  
D. P. Kikoła36, I. Kisel42, A. Kisiel36, S. Klein25, L. Kochenda16, D. D. Koetke31,  
T. Kollegger42, L. K. Kosarzewski36, A. F. Kraishan37, P. Kravtsov16, K. Krueger43,  
I. Kulakov42, L. Kumar4, R. A. Kycia44, M. A. C. Lamont8, J. M. Landgraf8,  
K. D. Landry32, J. Lauret8, A. Lebedev8, R. Lednicky3, J. H. Lee8, X. Li37,  
Z. M. Li34, Y. Li23, W. Li21, X. Li8, C. Li38, M. A. Lisa19, F. Liu34, T. Ljubicic8,  
W. J. Llope41, M. Lomnitz7, R. S. Longacre8, X. Luo34, G. L. Ma21, R. Ma8,  
Y. G. Ma21, L. Ma21, N. Magdy45, R. Majka17, A. Manion25, S. Margetis7,  
C. Markert12, H. Masui25, H. S. Matis25, D. McDonald10, K. Meehan18,  
N. G. Minaev29, S. Mioduszewski20, D. Mishra9, B. Mohanty9, M. M. Mondal20,  
D. A. Morozov29, M. K. Mustafa25, B. K. Nandi46, Md. Nasim32, T. K. Nayak5,  
G. Nigmatkulov16, L. V. Nogach29, S. Y. Noh40, J. Novak47, S. B. Nurushev29,  
G. Odyniec25, A. Ogawa8, K. Oh48, V. Okorokov16, D. Olvitt Jr37, B. S. Page8,  
R. Pak8, Y. X. Pan32, Y. Pandit33, Y. Panebratsev3, B. Pawlik44, H. Pei34, C. Perkins26, 
A. Peterson19, P. Pile8, M. Planinic49, J. Pluta36, N. Poljak49, K. Poniatowska36,  
J. Porter25, M. Posik37, A. M. Poskanzer25, J. Putschke41, H. Qiu25, A. Quintero7,  
S. Ramachandran2, R. Raniwala50, S. Raniwala50, R. L. Ray12, H. G. Ritter25,  
J. B. Roberts15, O. V. Rogachevskiy3, J. L. Romero18, A. Roy5, L. Ruan8, J. Rusnak14, 
O. Rusnakova13, N. R. Sahoo20, P. K. Sahu27, I. Sakrejda25, S. Salur25,  
J. Sandweiss17, A. Sarkar46, J. Schambach12, R. P. Scharenberg35, A. M. Schmah25, 
W. B. Schmidke8, N. Schmitz51, J. Seger24, P. Seyboth51, N. Shah21, E. Shahaliev3, 
P. V. Shanmuganathan7, M. Shao38, M. K. Sharma11, B. Sharma4, W. Q. Shen21, S. 
S. Shi34, Q. Y. Shou21, E. P. Sichtermann25, R. Sikora1, M. Simko14, M. J. Skoby39,  
N. Smirnov17, D. Smirnov8, L. Song10, P. Sorensen8, H. M. Spinka43, B. Srivastava35,  
T. D. S. Stanislaus31, M. Stepanov35, R. Stock42, M. Strikhanov16, B. Stringfellow35, 
M. Sumbera14, B. Summa30, Z. Sun22, X. M. Sun34, Y. Sun38, X. Sun25, B. Surrow37, 
N. Svirida6, M. A. Szelezniak25, Z. Tang38, A. H. Tang8, T. Tarnowsky47, A. Tawfik45,  
J. H. Thomas25, A. R. Timmins10, D. Tlusty14, M. Tokarev3, S. Trentalange32,  
R. E. Tribble20, P. Tribedy5, S. K. Tripathy27, B. A. Trzeciak13, O. D. Tsai32, T. Ullrich8, 
D. G. Underwood43, I. Upsal19, G. Van Buren8, G. van Nieuwenhuizen8,  
M. Vandenbroucke37, R. Varma46, A. N. Vasiliev29, R. Vertesi14, F. Videbæk8,  
Y. P. Viyogi5, S. Vokal3, S. A. Voloshin41, A. Vossen39, G. Wang32, H. Wang8,  
J. S. Wang22, Y. Wang34, Y. Wang23, F. Wang35, J. C. Webb8, G. Webb8, L. Wen32,  
G. D. Westfall47, H. Wieman25, S. W. Wissink39, R. Witt52, Y. F. Wu34, Z. G. Xiao23,  
W. Xie35, K. Xin15, Y. F. Xu21, Q. H. Xu28, H. Xu22, N. Xu25, Z. Xu8, Y. Yang22, C. Yang38, 
S. Yang38, Y. Yang34, Q. Yang38, Z. Ye33, P. Yepes15, L. Yi17, K. Yip8, I.-K. Yoo48,  
N. Yu34, H. Zbroszczyk36, W. Zha38, J. B. Zhang34, Z. Zhang21, J. Zhang28, S. 
Zhang21, X. P. Zhang23, J. Zhang22, Y. Zhang38, J. Zhao34, C. Zhong21, L. Zhou38,  
X. Zhu23, Y. Zoulkarneeva3 & M. Zyzak42

Acknowledgements We thank the RHIC Operations Group and RCF at BNL, the 
NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid 
consortium for providing resources and support. This work was supported in 
part by the Office of Nuclear Physics within the US DOE Office of Science, the  
US NSF, the Ministry of Education and Science of the Russian Federation, NSFC, 
the MoST of China (973 Programme No. 2014CB845400), CAS, MoST and 
MoE of China, the Korean Research Foundation, GA and MSMT of the Czech 
Republic, FIAS of Germany, DAE, DST and UGC of India, the National Science 
Centre of Poland, National Research Foundation, the Ministry of Science, 
Education and Sports of the Republic of Croatia, and RosAtom of Russia.

Author Contributions All authors contributed equally.

Additional Information Reprints and permissions information is available 
at www.nature.com/reprints. The authors declare no competing financial 
interests. Readers are welcome to comment on the online version of the paper. 
Correspondence and requests for materials should be addressed to The STAR 
Collaboration (star-antiprotonf0d0-l@lists.bnl.gov).

http://arxiv.org/abs/1506.07884
http://arxiv.org/abs/1506.07884
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature15724


Letter RESEARCH

© 2015 Macmillan Publishers Limited. All rights reserved

Methods
Event mixing for non-correlated pairs and the correction for purity. Non-
correlated pairs each consist of two daughter particles. These daughters belong 
to two events which are carefully chosen so that they have similar event multi-
plicity and topology. The ratio A(k*)/B(k*) (see above), after being normalized at 
a large k* (at least 0.25 GeV c−1), gives the measured CF, C(k*)meas. Because in 
practice one cannot select 100% pure (anti)protons, a correction to pairs is applied 
to obtain the PID-purity-corrected CF: ⁎ ⁎

⁎C k 1C k
kPurityCorrected

1
PairPurity

meas( ) = + .( ) −
( )

  
For simplicity, in equation (1) the subscript “meas” is dropped, and elsewhere in 
this paper, the subscript “PurityCorrected” is dropped.
The transformation from ⁎kpΛ and ⁎kΛΛ to ⁎kpp. The residual CF ⁎( )�C kpΛ  in equa-
tion (1) is naturally expressed as an integral transformation of the parent  
CF ⁎( )C kpΛ pΛ . Here ⁎kpΛ (and ⁎ ⁎=k kpp) is the magnitude of the three-momentum 
of either particle in the pair rest frame, while in this case for ⁎kpp, one of  
the protons is the decay daughter of Λ. This transformation is done by 

⁎ ⁎ ⁎ ⁎ ⁎
∫( ) = ( ) ( , )�C k C k T k k kdpΛ pp pΛ pΛ pΛ pp pΛ, where ⁎ ⁎( , )T k kpΛ pp  is a matrix that trans-

forms ⁎kpΛ to ⁎kpp (ref. 25). The transformation matrix is generated with the 
THERMINATOR2 model26 which is a Monte Carlo event generator dedicated 
to studies of the statistical production of particles in relativistic heavy-ion colli-
sions. The same procedure is also used in the transformation from ⁎kΛΛ to ⁎kpp.
The calculation of the FSI contribution to the correlation function. The fem-
toscopic correlations due to the Coulomb FSI between the emitted electron and 
the residual nucleus in beta decay have been well known for more than 80 years; 
they reveal themselves in a sensitivity of the Fermi function (an analogue of  
the CF31) to the nuclear radius. Compared with non-interacting particles, the  
FSI effect in a two-particle system with total spin S manifests itself in the substi-
tution of the product of plane waves, exp(−ip1Xa −  ip2Xb), by the non- 
symmetrized Bethe-Salpeter amplitudes ⁎( , ) = ( , )(−) (+)Ψ X X Ψ X Xp p

S
a b p p

S
a b1 2 1 2

(refs  
14, 19, 32, 33). For identical particles, the symmetrization requirement in the 
representation of total pair spin S takes on the same form for both bosons and 
fermions: the non-symmetrized amplitude should be substituted by 

( , ) + (− ) ( , ) /(−) (−)Ψ X X Ψ X X[ 1 ] 2p p
S

a b
S

p p
S

a b1 2 2 1
. In the pair rest frame, Xa −  Xb =  

{t*, r*} and ⁎ ⁎ ⁎− = − , kp p ω ω{ 2 }1 2 1 2    where ⁎ ⁎= ( + ) /ω m ki i
2 2 1 2 is the energy of 

a particle of mass mi, and t* and r* are the relative emission time and relative 
separation in the pair rest frame, respectively. In this frame, the non-symmetrized 
Bethe-Salpeter amplitude at equal emission times (t* = 0) reduces, up to an ines-
sential phase factor, to a stationary solution of the scattering problem, ⁎

⁎ ( )−
(+) rψ k
S . 

At small relative momenta, k*<~1/r*, this solution can be used in practical cal-
culations with the condition ⁎ ⁎| |�t mr 2(refs 19, 32). The equal-time approxi-
mation is almost exact in beta decay, and it is usually quite accurate for particles 
produced in high-energy collisions (to a few per cent in the FSI contribution to 
CFs of particles even as light as pions32). In collisions involving heavy nuclei, the 
characteristic separation of the emission points, r*, can be considered substantially 
larger than the range of the strong-interaction potential. The FSI contribution is 
then independent of the actual potential form and can be calculated analytically 
with the help of corresponding scattering amplitudes only34. At small k*, it is 
basically determined by the s-wave scattering amplitudes f  S(k*) scaled by the 
separation r* (ref. 19).
The analytical calculation of the (anti)proton–(anti)proton correlation  
function. The (anti)proton–(anti)proton correlation function, Cpp(k*; Rpp) in 
equation (1), can be described by the Lednický and Lyuboshitz analytical 
model19. In this model, the correlation function is calculated as the square of the 
properly symmetrized wavefunction averaged over the total pair spin S and  
the distribution of relative distances (r*) of particle emission points in the pair 
rest frame, assuming 1/4 of the singlet and 3/4 of triplet states and a simple 
Gaussian distribution ⁎ ⁎/ ≈ (− /( ))r rN Rd d exp 4 pp

3 2 2 . Starting with the FSI 
weight of nucleons emitted with the separation r* and detected with the relative 
momentum k*,

⁎ ⁎ ⁎ ⁎
⁎ ⁎( , ) = | ( ) + (− ) ( )| /−
(+) (+)k r r rw ψ ψ1 2k k
S S S 2

where ⁎
⁎ ( )−
(+) rψ k
S  is the equal-time (t* = 0) reduced Bethe–Salpeter amplitude which 

can be approximated by the outer solution of the scattering problem19,35. This is

where η = (k*ac)−1, ac = 57.5 fm is the Bohr radius for two protons, ρ = k*r*,  
ξ = k*r* + ρ , Ac(η) is the Coulomb penetration factor given by Ac(η ) = 2π η  
[exp(2πη)−1]−1,  F  is  the conf luent hypergeometric  funct ion, 
( , ) = ( ) ( , ) + ( , )�G ρ η A η G ρ η iF ρ η[ ]c 0 0  is a combination of the regular (F0) and 

singular (G0) s-wave Coulomb functions,

⁎ ⁎ ⁎( ) =







+ − ( )− ( )









−

f k
f

d k
a
h η ik A η1 1

2
2

c
0

0
2

c
c

1

is the s-wave scattering amplitude renormalized by the Coulomb interaction,  
and ( ) = ∑ ( + ) − − | |=

∞ −
h η η n n η C η[ ] lnn

2
1

2 2 1
(here .�C 0 5772 is the Euler  

constant). The dependence of the scattering parameters on the total pair spin S is 
omitted since only the singlet (S = 0) s-wave FSI contributes in the case of iden-
tical nucleons. The theoretical CF at a given k* can be calculated as the average 
FSI weight 〈w(k*, r*)〉  obtained from the separation r*, simulated according to the 
Gaussian law, and the angle between the vectors k* and r*, simulated according 
to a uniform cosine distribution. This CF is subject to the integral correction19 

⁎− ( )| ( )| /( )A η f k d R8 π ppc c
2

0
3  due to the deviation of the outer solution from the 

true wavefunction in the inner potential region. In addition, in Au + Au collisions 
the emitting source has a net positive charge, and it influences the CF differently 
for proton and antiproton pairs. This effect is included in the consideration 
according to refs 32, 33.
Systematic uncertainties. The systematic uncertainties include variations due to 
track-wise and pair-wise cuts, the uncertainty in describing the CpΛ correlation 
function36, and the uncertainty from the CΛΛ measurement. The latter dominates 
the systematic error of d0 and f0, and it affects d0 more than it does f0 because the 
shape of the CF is sensitive to d0, in particular at low k*. As a consistency check, 
when fitting the proton–proton CF, both f0 and d0 are also allowed to vary freely, 
and the fitted f0 and d0 agree with the results from fitting the antiproton–antiproton 
CF. Assuming the measurements from different systematic checks follow a uniform 
distribution, the final systematic error is given by ( − )/maximum minimum 12. 
In our calculations, we consider the two-proton wavefunction, taking into account 
the Coulomb interaction between point-like protons in all orbital angular momen-
tum waves and the strong interaction in the s-wave only. We neglect the small 
non-Coulomb electromagnetic contributions due to magnetic interactions, vacuum 
polarization, and the finite proton size29,37,38. This approximation changes the  
scattering parameters at the level of a few per cent29,37,38. The decomposition of 
systematics from our analysis can be found in Extended Data Table 1.
Sample size. No statistical methods were used to predetermine sample size.
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Extended Data Table 1 |  The decomposition of systematic errors

The table presents systematic uncertainties for f0 and d0 for antiproton–antiproton interaction, and R for both 
proton–proton and antiproton–antiproton interaction. Errors are listed separately by their sources. Assuming the 
measurements (f0, d0 and R) from different systematic checks follow a uniform distribution, the systematic error is 
given by (maximum measurement −  minimum measurement)/ 12 .
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