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Abstract— This paper studies existing direct transcription
methods for trajectory optimization applied to robot motion
planning. There are diverse alternatives for the implemen-
tation of direct transcription. In this study we analyze the
effects of such alternatives when solving a robotics problem.
Different parameters such as integration scheme, number of
discretization nodes, initialization strategies and complexity of
the problem are evaluated. We measure the performance of the
methods in terms of computational time, accuracy and quality
of the solution. Additionally, we compare two optimization
methodologies frequently used to solve the transcribed problem,
namely Sequential Quadratic Programming (SQP) and Interior
Point Method (IPM). As a benchmark, we solve different
motion tasks on an underactuated and non-minimal-phase
ball-balancing robot with a 10 dimensional state space and 3
dimensional input space. Additionally, we validate the results
on a simulated 3D quadrotor. Finally, as a verification of using
direct transcription methods for trajectory optimization on real
robots, we present hardware experiments on a motion task
including path constraints and actuation limits.

I. INTRODUCTION

Numerical methods for trajectory optimization (TO) [1]
have received considerable attention from the robotics com-
munity in recent years. These methods are especially con-
venient for motion planning and control problems on high
dimensional systems with complex dynamics [2], [3]. In such
systems, using common approaches separating kinematic
planning and control struggles in finding plausible solutions
and tends to produce inefficient and artificial motions. In
contrast to designed or motion captured references, TO
methods generate dynamically feasible motions maximizing
a performance criterion while satisfying a set of constraints.
This is an appealing approach when dealing with nonlinear
and unstable systems like legged or balancing robots, where
an optimal solution cannot be obtained analytically from the
necessary conditions of optimality.

There are different types of methods to numerically solve
the TO problem (direct, indirect, single shooting, multiple
shooting). The classification of these methods is out of the
scope of this paper [1]. Here we are interested in studying
the performance of the family of methods known as direct
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transcription when applied to systems with high nonlinear-
ities and unstable dynamics. Recent results in the area of
whole-body dynamic motion planning have demonstrated the
potential of these methods [4], [5], [3], where very dynamic
and complex motions have been obtained. Interestingly, to
the best of our knowledge there are no reports of hardware
experiments of direct transcription methods on floating-base
and naturally unstable robots.

In direct transcription the state and control trajectories
are discretized over time, and an augmented version of the
original problem is stated over the values of the trajectories at
the discrete points or nodes [6], [7]. Therefore, constraints
enforcing the system dynamics between nodes need to be
included. The resulting problem can be solved by a nonlinear
programming (NLP) solver. There are many approaches to
direct transcription, mainly differing in the method used to
enforce the dynamic constraints.

During robot motion planning, the procedure consists of
folding the problem into a continuous TO framework and
subsequently find optimal trajectories using direct transcrip-
tion and an NLP solver. The main challenge of TO for
robotics applications is to adequately integrate all compo-
nents of the problem into this formulation (e.g. contact
forces [3], contact dynamics [5]). However, the transcription
and solver stages are often treated as black box processes
with few degrees of freedom for the robotics researcher.
Specialized software is available to apply direct transcription
on general optimal control problems (e.g., PSOPT [8]), and a
number of NLP solvers exist (e.g. SNOPT [9], IPOPT [10]),
based on mature methods in mathematical optimization.

One of the main disadvantages of direct transcription
is the augmented size of the subsequent NLP, making its
solution computationally expensive. This is especially true
for robotics problems with high dimensional systems with
contact forces or obstacle constraints. The accuracy of the
solution is also a major concern, as the dynamics of the robot
are approximated in between the nodes and the resulting plan
might not be feasible on the real robot. Given such difficul-
ties, it is worth to evaluate the impact of choosing different
types of dynamic constraints, number of discretization nodes
and NLP solvers on the accuracy and quality of the solution.
Moreover, it is also important to measure the performance
of the different implementations for tasks with diverse levels
of complexity.

The main contribution of this paper is the quantification
of the performance of various direct transcription methods in
an experimental study. It is also shown that these methods
are sufficiently fast so online motion planning on robotic
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hardware comes in reach. This work also investigates the
performance of two types of methods, namely Sequential
Quadratic Programming (SQP) and Interior Point Methods
(IPM), for solving the corresponding NLP problem. This
paper does not present a survey or comparison of methods
for solving TO problems [11], nor does it evaluate available
optimization software packages or compare NLP solvers
[12]. Instead, we use an unstable ball-balancing robot [13]
(10 states, 3 inputs) to compare the performance of these
techniques in terms of computational time, accuracy and
quality of the solution. Influences of the complexity of the
task and NLP initialization are also evaluated. Moreover, the
results of the evaluation are validated using a different robot
and task (3D quadrotor, 12 states, 4 controls), indicating how
results scale to other systems.

This paper is organized as follows. Section II presents a
theoretical review of direct transcription methods and NLP
solvers. In Section III, the methodology designed to evaluate
and compare the methods is described. Information about
the model of the robot used in this study, together with
a description of the cost function and feedback controller
used during the benchmark tasks are provided in Section IV.
Results are shown in Section V and analyzed and discussed
in Section VI. Section VII presents the conclusions.

II. BACKGROUND

In this section we describe direct transcription as well as
the key concepts supporting SQP and IPM solvers.

A. Direct transcription for trajectory optimization

In general, the system dynamics of a nonlinear robot can
be modeled by a set of differential equations,

ẋ(t) = f(x(t), u(t)), (1)

where x ∈ Rn represents the system states and u ∈ Rm the
vector of control actions. The transition function f(·) defines
the system evolution in time. A single phase TO problem
consists in finding a finite-time input trajectory u(t),∀t ∈
[0, T ], such that a given criteria is minimized,

J = Ψ(x(T )) +

∫ T

0

ψ(x(t), u(t), t) dt (2)

where ψ(·) and Ψ(·) are the intermediate and final cost
functions respectively. The optimization may be subject to
a set of boundary and path constraints,

φp,min ≤ φp(x(t), u(t), t) ≤ φp,max (3)

and bounds on the state and control variables

xmin ≤ x(t) ≤ xmax , umin ≤ u(t) ≤ umax. (4)

Direct transcription translates this continuous formulation
into an optimization problem with a finite number of vari-
ables. The set of decision variables, y ∈ Rp, includes the
discrete values of the state and control trajectories at certain
points or nodes. Therefore, y = {xk, uk}, for k = 1, ..., N .
Moreover, the set of decision variables can be augmented
with additional parameters to be optimized. For instance, in

the results presented in this paper the time between nodes
∆T = tk+1 − tk has been included as a decision variable.

The resulting NLP is then formulated as follows,

min
y

f0(y)

s.t. ζ(y) = 0
gmin ≤ g(y) ≤ gmax

ymin ≤ y ≤ ymax,

(5)

where f0(·) is a scalar objective function which in our
implementation is given by a quadrature formula approxi-
mating (2), whereas the boundary and path constraints in
(3) are gathered in g(·). The NLP also includes bounds on
the decision variables. Additionally, a vector of dynamic
constraints or defects ζ(·) ∈ R(N−1)n is added to verify
the system dynamics at each interval.

As a consequence of the discretization, the resulting NLP
is considerably large. This fact is partially compensated by
the sparsity of the resulting problem, as such structural
property is handled particularly well by large-scale NLP
solvers [9], [10].

Direct transcription methods mainly differ in the way
they formulate the dynamic constraints in (5). The simplest
dynamic constraint is given by Euler’s integration rule,

ζk = xk+1 − xk − f(xk, uk)∆T = 0. (6)

There are other approaches using different implicit integra-
tion rules. For example, using a trapezoidal [1] interpolation
for the dynamics, the defects are then given by

xk+1 − xk −
∆T

2
[f(tk) + f(tk+1)] = 0, (7)

where the notation f(ti) = f(xi, ui) has been adopted
for simplicity. In the original formulation of the scheme
known as direct collocation [7] [6] piecewise cubic Hermite
functions are used to interpolate the states between nodes.
In this method the difference between the system dynamics
and the derivative of the Hermite function at the middle of
the interval, (t = tc), is used as dynamic constraint. This
approach is equivalent to a Simpson’s integration rule,

xk+1 − xk −
∆T

6
[f(tk) + 4f(tc) + f(tk+1)] = 0. (8)

Euler’s and trapezoidal integration rules are computationally
less expensive than the one given in (8). Therefore, the in-
tegration scheme influences the accuracy of the solution and
also the possibility of the solver of finding a feasible solution.
To mitigate these issues a more refined discretization, i.e.
more nodes, might be necessary. In return however, the size
of the problem and potentially the time required to find a
solution is increased. Depending on the ability of the solver
to handle the sparsity in the structure of the problem, this
increase in complexity may be partially absorbed by the
solver itself. Still, there is a compromise between simplicity
of the integration rule, number of nodes and efficiency of the
solver to be made.



B. NLP solvers

Nonlinear programming solvers are in a mature state of
development given the vast experience of the field of math-
ematical optimization. Here we evaluate two representative
instances of NLP solvers. The first solver in our comparison
is SNOPT which is based on Sequential Quadratic Program-
ming. The second solver is IPOPT using the Interior Point
Method. The goal of the analysis is to evaluate the perfor-
mance of both approaches within a robotics application. The
complete description of the solvers and the algorithms lies
outside of the scope of this paper. This section presents some
features aiming to describe the main differences between
them and to identify the nature of any difference in their
performances. A complete comparison between these classes
of solvers can be found in [12].

1) SNOPT (Sparse Nonlinear OPTimizer): The basic
structure of this implementation of the SQP algorithm in-
volves major and minor iterations. Major iterations advance
along a sequence of points yh that satisfy the set of linear
constraints in ζ(yh) and g(yh). These iterations converge
to a point that satisfies the remaining nonlinear constraints
and the first-order conditions of optimality [9]. The direction
towards which the major iterations move is produced by
solving a QP subproblem. Solving this subproblem is an
iterative procedure by itself (i.e. the minor iterations), based
on a Newton-type minimization approach.

An important characteristic of all SQP algorithms is that
they are ‘active set’. Roughly speaking, this means that
during the iterative procedure all the inequality constraints
play a very explicit role as the QP subproblem must estimate
the active set in order to find the search direction.

2) IPOPT: This algorithm also depends on a Newton
type subproblem. Nevertheless, inequalities are handled in
a different manner. A barrier function is used to keep the
search as far as possible from the bounds of the feasible
set. The barrier parameters change along iterations, allowing
proximity to the adequate constraint.

III. EVALUATION PROCEDURE

Considering the elements presented in the previous sec-
tion, there are several decisions to make in order to put all
the pieces together to solve a robot motion planning problem
using direct transcription.

What integration method to use? What is the influence
of the number of nodes? Given a complex robotic problem
(i.e. high state dimensionality, nonlinear dynamics and path
constraints), how long does it take to find a solution? Can
this technique be implemented online? What type of solver
is more favorable for TO in robotics? Can the resulting
trajectory be implemented on a real robot?

We address these questions measuring the performance of
different configurations of the method against a robot motion
benchmark.

A. Benchmark robot and tasks

The robot used for the benchmark is the ball balanc-
ing robot Rezero [13], a so called ballbot. These kind of
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Fig. 1. Illustration of the benchmark tasks (top view). Starting from the
origin the robot should reach the goal (star mark). Circle obstacles (blue)
are included to increase the problem complexity. (a) Go-to task, (b) one-
obstacle task and (c) two-obstacles task. Position and size of the obstacles
are expressed in meters.

robots are essentially 3D inverted pendulums and hence
are statically unstable, underactuated and non-minimal phase
systems. Due to this instability there is a complex interaction
between the requirements for stable control and satisfying
constraints.

The benchmark consists of a set of three different motion
tasks. Each task is a variation of a go–to task, i.e. the
robot is supposed to move from an initial to a final spatial
location avoiding fixed obstacles (see Fig. 1). State and
control trajectories are not pre-specified and should result
from the minimization of a cost function as well as from the
satisfaction of the boundary and path constraints. Details on
the implementation of the cost function and constraints are
presented in Section IV.

B. Problem components

The benchmark compares the performance of different
configurations of the direct transcription method. Table I
summarizes the variables evaluated in this study.

Regarding the complexity of the task, each path constraint
added to (3) has to be verified at each node in (5), augment-
ing the size and density of the gradients required to find
an optimal solution. This complexity is also increased when
bounds on the state and control are considered. This is the
case for the hardware experiments presented later in Section
V-D. Here we measure the effect of including such bounds
to the two-obstacle task, in a problem complexity labeled as
‘two-obstacle-bounds’.

At the same time, the performance also depends on the
initial values of the decision variables of the NLP. Here we
evaluate three different initialization methods, namely Zero,
Linear and Incremental. In the first method all variables
are naively set to zero before the optimization begins. The
linear method initializes only the variables corresponding to
the states of the robot, using a linear interpolation between
the initial and desired final states. Finally, the incremental
method uses the optimal solution of a simpler task (e.g. less
constrained) as initial values for all variables.



TABLE I
ANALYZED COMPONENTS OF A DIRECT TRANSCRIPTION PROBLEM

Integration Scheme Trapezoidal
Hermite-Simpson

Problem Complexity Go-to
One-obstacle
Two-obstacle
Two-obstacle-bounds

NLP Initialization Zero
Linear interpolation
Incremental

Number of Nodes
NLP Solvers SNOPT

IPOPT

C. Performance criteria

The ultimate goal of TO is to obtain state and control
trajectories that can be implemented on a real robot, such that
a certain task is accomplished while an objective function is
minimized. Accordingly, we measure the performance of the
methods in terms of accuracy, solving time and quality of
the solution.

a) Accuracy: The system dynamics are approximated
using a piecewise polynomial function. A solution is only
valid if such an approximation is accurate. In case of perfect
accuracy, almost no stabilizing feedback control would be
required during simulation. We measure the accuracy of
the solution using the mean squared error between the
planned and the actual total control trajectories measured
when the complete system is simulated (i.e. an indication of
the divergence between planned (u∗) and total (u) control
signals as defined in Section IV and represented in Fig. 2).

b) Running time: Ideally, the motion planner should be
fast enough to compute trajectories online. However, depend-
ing on the configuration, different number of iterations might
be required to solve the NLP. Here we use the total time re-
quired to find a feasible solution as indicator of performance.
In contrast to the number of iterations, it provides an absolute
value that can be used to compare among solutions obtained
with different solvers and integration schemes.

c) Quality of the solution: The conditions of optimality
for the continuous trajectory optimization problem are given
by the Pontryagin’s minimum principle. In direct transcrip-
tion such conditions are approximated by the Karush-Kuhn-
Tucker (KKT) necessary conditions for the corresponding
NLP (see e.g., [1]). Continuous and discrete conditions
converge as N → ∞ and ∆T → 0. In this paper the KKT
conditions are satisfied by any given solution with a tolerance
of 10−6. We compare the quality of the solutions in terms of
optimality using the resulting value of the objective function.

IV. ROBOT MODEL AND CONTROL SCHEME

A. Robot model

The non-linear model of the ballbot dynamics is described
in [13]. The robot is modeled as two rigid bodies, the torso
of the robot and the ball. The two bodies are linked by three
actuators. In our model, we neglect wheel dynamics and we

assume that no slip or friction losses occur. The state vector
of this ballbot is defined as

x = [φr φ̇r φp φ̇p φy φ̇y θx θ̇x θy θ̇y]T ,
(9)

where φ and φ̇ represent the torso angles and velocities in the
roll, pitch and yaw directions (rpy). Furthermore, the state
includes the rotational angles of the ball (θx, θy) as well as
their derivatives (θ̇x, θ̇y), representing the ball position with
respect to the initial state. The control actions are defined by
the wheels’ input torques u = [τ1 τ2 τ3]T .

The desired goal state for all tasks is given by,

xg = [0 0 0 0 0 0 8 0 24 0]
T

where the goal angles of the ball (θx = 8 rad, θy = 24 rad)
correspond to the desired spatial location (x = 1 m , y = 3
m), given that the radius of the ball is r = 0.125 m.

B. Cost function, terminal conditions and total trajectory
time constraint

A quadratic function is used for the intermediate cost, i.e.,

ψ(xk, uk) = xTkQxk + uTkRuk. (10)

Where x̄N = xN − xg is the difference between the last
state of the trajectory xN and the desired goal state xg . The
diagonal cost matrices Q,R weigh the contribution of the
state and control to the total cost. Setting those values of Q
to zero that correspond to the rotational angles of the ball,
tends to reduce the amount of time the robot is not in the
upright pose, and at the same time use as little torque as
possible along the path.

In direct transcription initial conditions are assumed to
be fixed. Additionally, in the simulations and experiments
presented in this paper, the desired goal state is added as
a hard terminal condition to the NLP, (i.e., xN = xg). In
case this condition is not satisfied the problem is considered
infeasible. It is important to note that by using this hard
constraint the use of a final cost function Ψ(xN ) can be
avoided.

Finally, the time between nodes (∆T ) is chosen to be
constant and included as a decision variable. A constraint is
added bounding the total trajectory time (T ),

Tmin ≤ (N − 1) ·∆T ≤ Tmax, (11)

where the bounds are given as a task specification. For this
study we define that motions should be completed between
Tmin = 1.0 s, and Tmax = 3.5 s.

C. Trajectory stabilization

Despite using an elaborated integration scheme or a very
small discretization time, solutions obtained using direct
transcription are based on an approximation of the system
dynamics. Even in simulation very small numerical integra-
tion errors push the system towards instability. Therefore, it
is necessary to stabilize the system.

In this work we use Time Variant Linear Quadratic Regu-
lator - TVLQR (see e.g., [14]) to obtain a feedback controller.
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Fig. 2. Complete control scheme. Feed forward control action is provided
by the TO planner and a feedback stabilization control is computed using
a time varying gain matrix, K(t), obtained via TVLQR.

The derivation of this optimal controller is out of the scope
of this paper. However, a descriptive explanation is provided
for completeness: The dynamics of the system are linearized
around the continuous optimal trajectory (x∗t , u

∗
t ) using a

Taylor approximation of (1). The state and control trajectory
errors are defined as x̂t = x∗t − xt and ût = u∗t − ut. Thus,
its dynamics are described as a linear time varying system

˙̂xt = A(t)x̂t +B(t)ût. (12)

The state and input matrices are given by

A(t) =
∂f (x, u)

∂x

∥∥∥∥
x∗
t ,u

∗
t

B(t) =
∂f (x, u)

∂u

∥∥∥∥
x∗
t ,u

∗
t

.

By solving the TVLQR problem for the system in (12), a
matrix of time dependent optimal feedback gains K(t) ∈
Rm×n is obtained. The resulting control scheme is illustrated
in Fig. 2.

V. RESULTS

The results presented in this section were obtained using
a standard laptop computer with 2.4Ghz Intel Core i5 (dual
core) processor with 4GB 133Mhz DDR3 RAM. Feasibility
tolerance of the NLP solvers was set to 1× 10−6, meaning
that all the constraints, including the terminal condition
(xN = xg), are satisfied with an error bounded by this value.

A. Optimal solution and stabilizer

Here we present the resulting state and control trajectories
for the goto task obtained with a typical configuration: 100
Nodes, Hermite-Simpson integration scheme, linear initial-
ization and SNOPT as NLP solver.

Fig. 3 presents the optimal trajectories for the states. The
desired state is reached in T = 3.1 s. Similarly, Fig. 4 shows
the control trajectories and Fig. 5 shows the corresponding
stabilizer gains obtained using TVLQR.

B. Task complexity and initialization strategy

In this part, the performance of direct transcription for
tasks of diverse complexity as well as the influence of
different NLP initialization strategies are evaluated.

Firstly, we observed that the two-obstacles task cannot be
solved using zero initialization regardless of the number of
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Fig. 3. State trajectories for the goto task. Solution found using N =
100 nodes, linear initialization, Hermite-Simpson integration and SNOPT
solver. The optimal solution also includes the time increment between nodes
∆T = 0.03131 s. All velocities and body angles converge to zero.
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Fig. 4. Control trajectories for the goto task. Solution found using N = 100
nodes, linear initialization, Hermite-Simpson integration and SNOPT solver.
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Fig. 5. Feedback gains for stabilizing the goto task. Gains are grouped
(line/color) by the corresponding control. Each feedback control (ûi) is
computed adding the weighted contribution of the state error (x̂).
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Fig. 6. This plot compares the solving time for the different tasks and
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and integration scheme (trapezoidal) are constant. SNOPT is not able to
find a solution for the real robot task given those conditions.
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Fig. 7. This plot compares the solving time for the different tasks and
solvers using incremental initialization. Number of nodes (N = 100) and
integration scheme (trapezoidal) are constant.

nodes, integration scheme or solver used. On the other hand,
such a task can be solved using linear initialization. Fig.
6 shows the solving time required by the solvers to find a
solution to the different tasks using the same scheme (100
nodes, trapezoidal interpolation and linear initialization). It
can be seen that the complexity of the task affects the time
required by the solvers. This is more significant in the case of
SNOPT. Moreover, for the two-obstacle-bounds complexity,
SNOPT does not find a feasible solution before reaching the
maximum number of iterations (1000), irrespective of the
integration scheme or number of nodes used.

In Fig. 7 solving time for the different tasks and solvers
are shown for the case of incremental initialization. Decision
variables are initialized with the solution of the previous task.
As expected in this type of initialization, the solving time
is lower than those shown in Fig.6. Moreover, in this case
SNOPT is able to find a solution for the two-obstacle-bounds
complexity. Apart from the variation on running time and
feasibility reported in this section, no significant differences
were observed on the accuracy or quality of the solution
given different initialization methods.

C. Integration scheme

In this section we show the influence of the integration
scheme and solvers in terms of run time, accuracy and quality
of the solution. In order to obtain the corresponding data we
use the one-obstacle task using zero initialization.

Fig. 8 compares the runtime for the integration schemes in
combination with both solvers. While the absolute values of
these measures are highly dependent on the CPU capacity,
this section is concerned with their relative values. With
a low number of nodes (i.e. N < 20) both solvers show
similar performance. However, with an increasing number of
nodes the computational complexity of SNOPT is higher and
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Fig. 8. This plot shows the runtime of the different combinations of
integration methods and solvers. For a low number of nodes, differences
are small. However, with an increasing number of nodes, the runtimes of
SNOPT are above those of IPOPT and also rise faster.
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Fig. 9. This plot shows the accuracy of the solution for both solvers and
integration schemes. As indicator of accuracy we use the mean squared error
(MSE) between the planned and the total control required to simulate the
task. It can be seen that Hermite integration is significantly more accurate
than trapezoidal integration.

increases faster than the one obtained with IPOPT. For both
solvers, Hermite integration requires more CPU time than
trapezoidal integration, but the difference is not significant.

Fig. 9 shows the divergence, in terms of mean squared
error, between the planned and total control trajectories
(during simulation). As it can be observed, the accuracy
is independent of the solver. However, Hermite integration
produces an error which is by several magnitudes lower than
the one of trapezoidal integration.

Fig. 10 compares the value of the objective function after
optimization. This value can be understood as being inversely
proportional to the quality of the solution. The difference
between the two solvers is marginal. However, Hermite
integration is able to achieve a significantly lower objective
function value, especially with a low number of nodes.

D. Hardware experiments

All the benchmark tasks shown in Fig. 1 (including those
with path constraints) were applied to the real hardware in
order to verify that these approaches also hold on a physical
system. Control inputs and states were bounded to more
conservative values avoiding aggressive behaviors and to
operate in a safer regime. Moreover, upper bound for the total
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Fig. 10. This plot shows the objective function value for the different
combinations of integration methods and solvers. Especially for low number
of nodes, Hermite integration clearly outperforms trapezoidal integration.
For more than 50 nodes, the differences vanish.

Fig. 11. Ball balancing robot. This robot
consists of three major elements: the ball, the
propulsion unit and the upper body (torso).
The ball is driven by three omniwheels
mounted on brushless motors with planetary
gear heads. Through optical encoders on the
motors, the ball rotation is measured provid-
ing onboard odometry for the robot.

trajectory time was relaxed (Tmax = 7 s). Solutions were
found using 100 Nodes, Hermite approximation and IPOPT
as a solver. The robot used in the experiment is shown in Fig.
11 and a video with the experimental results can be found
at https://www.youtube.com/watch?v=VGIROnFWgMw. In the video
it can be seen that the robot executes the task synchronized
with the simulation, following the planned trajectories.

The xy position of the robot during execution of all tasks
matches the planned trajectory fairly well with almost no
deviation. Fig. 12 shows the results for the third task. Even
though this is the most challenging task, it can be seen
that the tracking behavior is very good. In summary, the
hardware tests show good tracking performance, verifying
that the optimized trajectory is dynamically feasible and that
the tracking control is able to reject disturbances and model
inaccuracies very well.

E. Validation on a different robot

Results presented above are validated by applying the
same methods on a simulated 3D quadrotor (x ∈ R12, u ∈
R4) executing an obstacle avoidance task. Fig. 13 shows the
trajectory followed by the quadrotor, starting from the origin
and reaching the goal after avoiding a cylindrical obstacle.
The complete motion can be seen in the supplemental video.

We observed that the influences of the type of solver, dy-
namic constraints, initialization method and number of nodes
are similar to the ones shown on the ballbot experiments. For
instance, Table II shows the time required to solve this task
for different configurations using zero initialization strategy.
The same patterns can be observed: Solution time increases
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Fig. 12. Position of the robot in x and y direction during execution of the
two obstacles task. The blue solid line shows the measured data while the red
dashed lie shows the planned trajectory. Solution time for this configuration
is 1.79 s.

Fig. 13. Quadrotor valida-
tion task. Blue dot represents
the goal spatially located at
p = [5, 5, 5]. A cylindrical
obstacle (r = 1) is centered
at x = 2.5, y = 2.5.

with the number of nodes and IPOPT is faster than SNOPT
given the same integration scheme. As observed in Fig. 8,
there is no clear pattern regarding solution times required
by SNOPT when using different integration schemes. These
results support the hypothesis that the conclusions drawn
from the evaluation presented in this paper are not robot
specific but that they can be extended to other platforms.

VI. ANALYSIS AND DISCUSSION

a) NLP solver: We observed that SNOPT requires more
time in most of the comparisons. This is even clearer for
the case of the two obstacle task, where the difference to
IPOPT is significant. This can be explained by the need of
SQP methods in finding a solution within a big active set of
inequality constraints. As pointed out in other comparison
studies [12], IPM tend to be faster in a NLP problem
with many inequality constraints. Moreover, given a good
initialization, the IPM algorithm always outperformed the
SQP solver. In terms of quality and accuracy of the solution
both solvers acted similarly under different schemes.

TABLE II
VERIFICATION RESULTS - SOLUTION TIME (S)

N IPOPT SNOPT
Hermite Trapez. Hermite Trapez.

50 0.785 0.240 18.53 0.423
75 1.153 0.332 42.81 3.072

https://www.youtube.com/watch?v=VGIROnFWgMw


TABLE III
MISSING DATA POINTS - CONFIGURATIONS

Integration Scheme Number of Nodes Solver
Hermite 190 SNOPT
Hermite 15, 25, 40, 45 IPOPT
Trapez. 25,30 SNOPT

b) Integration scheme: The integration scheme has less
influence on the solution time than the solver. However, se-
lecting a Hermite-Simpson approximation has a considerable
impact on the accuracy of the solution. As expected, the error
decreases with the number of nodes, but this is not signif-
icant with respect to the better approximation reached with
Hermite-Simpson. The quality of the solution is also affected
by the integration scheme. Trapezoidal methods requires at
least 50 nodes to reach the same quality as the one obtained
with Hermite integration using 20 nodes. This fact, together
with the running time results, where Hermite and trapezoidal
schemes perform similarly when using IPOPT, suggests that
Hermite integration scheme should be preferred.

c) Initialization: The aspect of initialization is closely
related to the performance of the solver. We observed that
direct transcription in general is considerably sensitive to the
initialization strategy adopted at the NLP stage. Regardless of
the solver, applying an adequate initialization policy clearly
reduces the time to obtain a solution. This is a fundamental
aspect for applying direct transcription online.

d) Hardware experiments: It has been shown that TO
with a matching controller can be deployed on real hardware.
The good match between simulated and real behavior can
be observed both from the figures presented in this paper
as well as from the video attachment overlaying simulated
and physical robot. Small deviations between planned and
real trajectories can be explained by model mismatches and
sensor noise. These experiments validate the applicability of
TO to real hardware and they are one of very few examples
of using this technique on real underactuated robots.

e) Solving time: Ideally, the robot itself should be able
to obtain plans online. Since the optimized trajectory is
usually complemented with a stabilizing controller TO is
not bound to run at the same rate or in hard real-time.
However, the solving time of TO should be fast enough to
react to large scale disturbances or unforeseen changes in the
robot’s environment. The maximally acceptable solving time
depends on the dynamics of the system and on the task. For
the given example in Figure 7 the solving time is about 5 to
50 cycles of the inner stabilizing control loop. These solving
times lie within a reasonable magnitude for online planning.

f) Failures during optimal trajectory search: Occasion-
ally the solver might not be able to find a solution, declaring
numerical difficulties or because the maximum number of
iterations has been reached. As observed in Fig. 8 and
Fig. 10, data is missing for a few configurations of solver,
integration scheme and number of nodes. Such configurations
are reported in Table III. Further investigation is required to
detect the fundamental reasons for these failures, as no clear
pattern of the variables analyzed in this study is observed.

Finally, apart from the aforementioned cases, in Fig. 9
five other points are also missing. Such cases correspond
to solutions for which the TVLQR method is not able
to find a feedback controller and therefore the accuracy
as defined in Section III-C cannot be determined. This is
observed for some configurations with less than 30 nodes for
both integration schemes and solvers. Further investigation
regarding the relation between direct transcription and the
solution of a TVLQR problem is required in order to identify
the fundamental reason of such effect.

VII. CONCLUSIONS

The comparisons performed in this work show clear
patterns on the performance of direct transcription methods
with respect to the different integration methods, solvers,
initialization and problem types.

We showed a successful implementation of a direct tran-
scription based motion planning and control approach for
a real robot. For a problem of medium complexity, such as
the one evaluated here, the solution convergences sufficiently
fast so online planning using these methods comes in reach.
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