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Low-thrust interplanetary space missions are highly complex and there can be many lo-
cally optimal solutions. While several techniques exist to search for globally optimal so-
lutions to low-thrust trajectory design problems, they are typically limited to unconstrained
trajectories. The operational design community in turn has largely avoided using such tech-
niques and has primarily focused on accurate constrained local optimization combined with
grid searches and intuitive design processes at the expense of efficient exploration of the
global design space. This work is an attempt to bridge the gap between the global opti-
mization and operational design communities by presenting a mathematical framework for
global optimization of low-thrust trajectories subject to complex constraints including the
targeting of planetary landing sites, a solar range constraint to simplify the thermal design
of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch
thrusters on and off as available power changes over the course of a mission.

INTRODUCTION

Preliminary design of interplanetary missions is frequently labor intensive and computationally expensive.
The designer must choose the launch date, flight time, propulsive maneuvers, and possibly a sequence of
planetary flybys as well as altitudes and velocity vectors for each of those flybys. Low-thrust missions add
an additional degree of complexity over their impulsive counterparts because the designer must also choose
a time history of control variables, i.e. thrust magnitude and direction for months, if not years, of continuous
thrusting. The additional design variables often introduce many families of locally optimal solutions and it is
challenging to find the global optimum.

Real-world interplanetary missions are often subject to complex operational constraints. For example, a
spacecraft may be required to land on the surface of a planet with both latitude and longitude specified. In
some cases the landing might be required to occur at a particular time of local day, or the spacecraft may be
required to approach the landing site from a particular azimuth. Such constraints can significantly impact the
terminal velocity vector of the spacecraft relative to the planet and therefore have cascading effects throughout
the entire trajectory. Other possible constraints include a distance constraint with respect to other bodies in
the solar system such as a minimum distance from the sun for thermal reasons or a maximum distance from
the Earth for communications reasons.

In addition, the propulsion and power systems of current low-thrust spacecraft add complexity to the mis-
sion design process. One particularly challenging example of this is operation of a multi-thruster power-
limited propulsion system. Electric thrusters typically have a minimum power at which they may be turned
on, a maximum power that may be accommodated by the power processing unit (PPU), and a performance
model that describes their function between those bounds. If a spacecraft carries multiple thrusters then
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at various points along the trajectory, when the available power decreases and increases, thrusters must be
switched on and off. Further, there is some distance from the sun at which no thrusters may be fired at all.
Thruster switching creates a step function in the curves of available thrust and mass flow rate that characterize
the propulsion system. Since many low-thrust optimization techniques are gradient based, this step function
significantly impacts the robustness of the optimizer and must be accounted for in any robust global opti-
mization technique. It is possible to circumvent this problem by modeling the propulsion system as a single
“super engine” with no discontinuities, but as the required fidelity of the analysis increases, this approach
ceases to be an option [1].

The above constraints, and many others, must be satisfied by any feasible trajectory design. Historically
there have been several techniques to ensure feasibility. One approach is to solve the global unconstrained
problem and then use that solution as an initial guess for a constrained local optimization. Unfortunately,
the globally optimal solution to the unconstrained problem may not be in the neighborhood of the globally
optimal solution to the constrained problem. Another approach is to solve many versions of the unconstrained
problem and filter away all of those that do not satisfy the constraints. However, this approach is extremely
computationally expensive and will prune away trajectories that only mildly violate the constraints and could
easily be made to satisfy them. This scenario often occurs in low-thrust optimization because small changes
to the time history of thrust control variables can cause constraints to be satisfied for only a modest cost in
propellant and/or flight time.

Several techniques exist to find locally optimal solutions to low-thrust problems. These techniques are
generally separable into two categories: direct and indirect methods. Indirect methods are based on the
calculus of variations [2]. The trajectory design problem is formulated in terms of the Lagrange multipliers
and analytical necessary conditions. The sufficient conditions for optimality are then derived. A boundary
value problem is then solved to find the values of the Lagrange multipliers that satisfy the necessary conditions
and sufficient conditions. This becomes increasingly difficult as problem complexity increases because the
sensitivity of the problem to the Lagrange multipliers also increases.

In direct methods, the decision variables to be optimized are the control values themselves rather than La-
grange multipliers. A nonlinear programming (NLP) problem is then solved to find a set of control variables
that satisfies problem-specific control constraints, path constraints, and time constraints while minimizing an
objective function. There are many varieties of direct methods, including collocation [3–6], direct parallel
shooting [7], and two-point boundary shooting [8, 9]. Because all of the direct methods leverage a NLP
problem solver, all can be made to handle operational constraints.

Both indirect and direct methods, because they are dependent on a local solver, require an initial guess and
will tend to converge to a solution in the vicinity of the initial guess. If multiple locally optimal solutions
exist, then it is useful to find an initial guess in the vicinity of the global optimum. Direct methods tend to
be less sensitive to the choice of an initial guess than indirect methods, but this problem must be addressed
for both approaches. These initial guesses are usually developed using a low-fidelity model of the low-
thrust trajectory. Then, once an initial guess is found, the low-thrust trajectory optimization problem is
usually solved in a medium-fidelity model so that many options can be compared. Finally one or more of
the medium-fidelity trajectories is chosen to be re-designed in a high fidelity force model. Each of these
three design stages is very labor intensive and biased toward the designer’s intuition. An automated approach
that can efficiently explore the medium-fidelity design space and take into account non-intuitive solutions is
therefore desirable.

Several global optimization techniques have been developed for interplanetary low-thrust trajectories.
Many researchers have investigated the class of techniques known as “shape-based methods,” in which the
low-thrust trajectory is approximated as a geometric shape and the control history necessary to follow that
trajectory is derived as a function of the shape. Various shape-based methods have expressed low-thrust tra-
jectories as exponential sinusoids [10], inverse polynomials [11], Fourier series [12], or a variety of other
shapes [13, 14]. All of these techniques enable rapid generation of approximate low-thrust trajectories when
combined either with a grid search or a population based metaheuristic but unfortunately all of them, because
they are built for speed rather than fidelity and flexibility, cannot easily handle the operational constraints
posed here.
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One promising technique that could merge the modeling of operational constraints with the flexibility of
global optimization was introduced by Coverstone et al. [15] and then further addressed by Vavina et al. [16]
and Yam et al. [17], who expressed low-thrust design problem as a constrained global optimization problem
by combining a gradient-based solver with a stochastic search algorithm. All of these works considered only
trajectory continuity and control magnitude constraints but are generalizable to the additional constraints
considered in this work.

In this work, we demonstrate how several critical mission design constraints, including the targeting of
planetary landing trajectories, solar distance, and power-limited multi-thruster spacecraft can be expressed
mathematically such that they may be incorporated into a global trajectory optimization framework. Two
example missions are presented that exercise these constraints - a low-thrust version of the OSIRIS-REx
mission and a notional comet rendezvous. All of the constraints and models presented in this work are
incorporated into the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard’s open-source
medium-fidelity interplanetary mission design tool [18].

MODELING

Multiple Gravity Assist with Low-Thrust

The trajectory model employed in this work is called multiple gravity assist with low-thrust (MGALT) and
is derived from the well-known Sims-Flanagan transcription [8] in which the continuous-thrust trajectory is
discretized into many small time steps, and the thrust is approximated as a small impulse occurring at the cen-
ter of the time step. The trajectory is propagated between control points by solving Kepler’s problem [8]. The
Sims-Flanagan transcription, when used with a NLP solver such as Sparse Nonlinear Optimizer (SNOPT) and
a suitable initial guess, is very fast and robust. It is considered to be a “medium-fidelity” transcription and is
used in software packages such as EMTG [18], Mission Analysis Low-Thrust Optimization (MALTO) [19],
Gravity Assisted Low-thrust Local Optimization Program (GALLOP) [20], and Parallel Global Multiobjec-

tive Optimizer (PaGMO) [21].

In the classical Sims-Flanagan transcription, the optimizer chooses the three components of an impulsive
∆v vector at the center of each time-step. In order to improve the robustness of the solver, a modified tran-
scription known as “up-to-unit vector control” is used in this work, where instead of choosing the ∆v vector
directly the optimizer instead chooses a control 3-vector in [−1.0, 1.0] that is multiplied by the maximum ∆v
that the spacecraft can produce in that time-step. The magnitude of the control vector is bounded in the range
[0.0, 1.0], i.e.,

∆vi = ui∆vmax,i, ‖ui‖ ≤ 1.0 (1)

where

∆vmax,i =
DnavailableTmax (tf − t0)

mN
(2)

where D is the thruster duty cycle, navailable is the number of available thrusters, Tmax is the maximum
available thrust from one thruster, t0 and tf are the beginning and ending times of the time step, N is the
number of time steps in the phase, and m is the mass of the spacecraft at the center of the time step. This
modified Sims-Flanagan transcription is used in MALTO, PaGMO, and in this work.

The spacecraft state is propagated forward from the first endpoint (e.g. planet) in each phase and backward
from the second endpoint. The trajectory is propagated by solving Kepler’s equation and the spacecraft
mass is propagated by assuming a constant mass flow rate across the each time-step. The specific Kepler
propagator algorithm used here is a Laguerre-Conway method [22, 23]. A set of nonlinear constraints are
applied to ensure continuity in the center of the phase,

smf − smb =
[

∆x ∆y ∆z ∆vx ∆vy ∆vz ∆m
]

= ε (3)

where ε is a very small tolerance value.

The optimizer also chooses the initial and final velocity vectors for each phase. If a phase begins with
a launch, the magnitude of the initial velocity vector is used with a launch vehicle model to determine the
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Figure 1: An Example Trajectory Using the Sims-Flanagan Transcription

initial mass of the spacecraft as described later in this work. If a phase begins with a planetary flyby, two
nonlinear constraints are applied to ensure that the flyby is feasible. First, the incoming and outgoing velocity
magnitudes with respect to the planet must be equal,

v+∞ − v−∞ = 0 (4)

where v−∞ and v+∞ are the velocity magnitudes before and after the flyby, respectively. Second, the spacecraft
may not fly closer to the planet than some user-specified minimum flyby distance:

µplanet
v2∞

[
1

sin( δ2 )
− 1

]
− (rplanet + hsafe) ≥ 0 (5)

where

δ = arccos

[
v−∞ · v+

∞(
v−∞
)2

]
(6)

Here µplanet is the gravitational parameter of the planet, rplanet is the radius of the planet, δ is the flyby turn
angle, and hsafe is the user-defined minimum altitude.

Figure 1 is a diagram of a simple low-thrust mission to Jupiter with one Earth flyby using the MGALT
model. The continuity constraints are deliberately left unsatisfied in the diagram to illustrate where they must
be applied.

There are four significant advantages to using the Sims-Flanagan transcription. First, the optimal objective
function value for a Sims-Flanagan trajectory design is usually very close to the optimal cost value for a
higher-fidelity version of the same trajectory. Second, a low-thrust trajectory generated using the Sims-
Flanagan transcription makes a very good initial guess for a higher-fidelity trajectory design. Third, the Sims-
Flanagan transcription is very fast because it does not require numerical integration of differential equations.
Fourth, the convergence of an NLP solver solving a Sims-Flanagan problem is very robust to poor initial
guesses, making it ideal for an automated design approach. When analytical derivatives for the constraints
with respect to the decision variables are supplied as is the case in this work, speed and robustness are even
better than described above.
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Operational Constraints

We will now consider several operational constraints that a mission design may have to obey. Often these
constraints are omitted in the initial broad search for trajectories and then either applied in a second round of
optimization or used as filters to post-process the unconstrained results. However there are flaws to these ap-
proaches. First, there is no guarantee that the optimal solution to the constrained problem is in the vicinity of
the solution to the unconstrained problem and so this method may introduce “false positives” for which much
time is spent searching an area of the decision space where there is no constrained solution. Conversely, the
method of solving only the unconstrained problem and then pruning away a posteriori solutions that violate
the operational constraints can have the unintended consequence of pruning away solutions that are so nearly
feasible that a constrained optimization process could easily render them acceptable. This circumstance can
result in “false negatives,” i.e. cases where the solver algorithm finds no feasible solutions. Both approaches
can bias the search toward regions of the decision space that may not contain the desired solution.

In this work, the operational constraints are imposed directly in the global search problem so that no re-
optimization or filtering is necessary.

Distance Constraint

The first operational constraint considered here is a minimum and/or maximum value imposed on the
distance between the spacecraft and bodies in the solar system, i.e.,

dLB ≤ rs/c−body ≤ dUB (7)

where dLB and dUB are defined by the analyst for each problem and for each body. For example, the
spacecraft may be constrained to never get too close to the sun for thermal reasons, or may not be allowed to
fly farther away from the Earth than some maximum distance for communications reasons. These constraints
occur often in real-world mission design, especially in low-thrust design where the desire to prevent the
spacecraft from growing too hot is in conflict with the availability of more power and therefore more efficient
propulsion closer to the sun.

The distance constraint is very easy to pose in the optimization problem because it requires only looking
up the position of the relevant solar system bodies at each time-step in the trajectory. However it is quite
computationally expensive for two reasons. The first reason is that each ephemeris lookup requires a call an
ephemeris database, which is quite slow. The second reason is that computing analytical derivatives of the
distance constraint requires recursive multiplications of the state transition matrices (STMs) and maneuver
transition matricies (MTMs) along the trajectory. These computations are omitted from this paper in the
interest of brevity but may be found in the open-source code associated with this work [18]. In a large
problem with many time-steps, over 50% of the execution time for the trajectory optimization is consumed
by the derivative calculation code for the distance constraint.

Planetary Landing Constraint

The next set of constraints describe atmospheric entry and landing in a patched-conic framework. For
atmospheric entry, the user specifies the latitude of the atmospheric entry interface LEI , the flight path angle
γEI relative to a notional tangential velocity vector, and the radius (i.e. distance from the center of the body)
of the entry rEI . If the target is a body without an atmosphere, then LEI , γEI , and rEI may be used to define
the position of an intersection with the body’s surface instead. These values, along with the incoming v∞,
are used to compute the position and velocity vectors at interface rEI and vEI . Various constraints may then
be applied to those vectors as described later in this section.

The entry/landing interface constraints are applied in the reference frame of the body, so the first step is to
rotate v∞ from the International Celestial Reference Frame (ICRF), which is the calculation frame for the
interplanetary trajectory, to a body-centered inertial (BCI) frame that has ẑ aligned with the body’s spin pole,
and x̂ aligned with the first point in the constellation Ares. Note that if the target body is the Earth then ICRF
and BCI are the same frame.

v∞−BCI = RICRF−to−BCIv∞−ICRF (8)
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rbody
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atmosphere

body

Figure 2: Definition of rEI and γEI

where RICRF−to−BCI the rotation matrix from the ICRF to the body’s equatorial frame as defined by the
IAU working group on cartographic coordinates [24]. The next step is to calculate the periapse radius of the
inbound hyperbola,

rp =

(
µbody
v2∞

)(
−1.0 +

(
1.0 +

v2∞rEI
µbody

cos2 γEI

(
2.0 +

v2∞rEI
µbody

))1/2
)

(9)

where rEI is the interface radius and γEI is the flight path angle as described in Figure 2.

The next step is to determine βEI , the range angle between the entry/landing interface and the incoming
hyperbolic asymptote. βEI , described in Figure 3, defines the position of the interface point on the approach
hyperbola and is key to finding the position and velocity vectors rEI and vEI . First the true anomalies of the
hyperbolic asymptote ν∞ and the entry/landing interface point νEI are computed,

ν∞ = − arccos

(
−1.0/

(
1.0 +

v2∞rp
µbody

))
(10)

νEI = arccos

(
rp
rEI

(
2.0 +

rpv
2
∞

µbody

)
− 1.0

)
/

(
1.0 +

rpv
2
∞

µbody

)
(11)

Finally, the range angle βEI may be computed as:

βEI = −ν∞ − νEI (12)

Once βEI is known, it is possible to compute rEI and vEI . We compute rEI first. There are two possible
locations for rEI , a prograde solution rEI−prograde and a retrograde solution rEI−retrograde. Both of these
points are defined by the intersection of plane that passes through the user-defined interface latitude LEI and
the circle of accessible entry points defined by the geometry of the inbound hyperbola as described in Figure
5. The latitude plane is parallel to the body equatorial plane at a distance zL as shown in Figure 4,

zL = rEI sinL (13)
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Figure 4: Definition of the latitude plane

v∞

Figure 5: Circle of accessible points defined by
v∞ and examples of possible hyperbolic paths.
Only two of the continuum of paths shown here
intersect the latitude plane.

Before finding either rEI−prograde or rEI−retrograde, it is necessary to find the vector q from the origin
that defines the point midway between rEI−prograde and rEI−retrograde. Conveniently, the projection of q
into the body equatorial frame is aligned with the equatorial projection of v∞ (EPV). It is therefore possible
to define q in the plane defined by the body spin pole vector ẑ and ÊPV. The first step in this process is to
find the vector d, the projection of q onto v̂∞ as shown in Figure 6.

d = dv̂∞ (14)
d = rEI cos (π − βEI) (15)

The vector from d to q may then be defined,

g = m (n× d) (16)
n = v∞ × ẑ (17)

where m is defined such that the ẑ component of q is equal to zL, i.e.,

m =
zL − dz

nxdy − dxny
(18)

Once d and g are known, q may be computed as

q = d + g (19)

The candidate entry points rEI−prograde and rEI−retrograde are defined relative to q and are constructed
by translating half a chord length of the circle of accessible entry points at a distance g from d and aligned
normal to the ẑ-v̂∞ plane, i.e. along n̂ as described in Figure 7. The position of the entry points rEI−prograde
and rEI−retrograde is given relative to g as f ,

f = f n̂ (20)

f =
(
r2c + g2

)1/2
(21)

rc = rEI sin (π − βEI) (22)

rEI−prograde and rEI−retrograde may then be defined as,

rEI−prograde = q + f (23)
rEI−retrograde = q− f (24)
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Figure 7: Definition of f in the ĝ − n̂ plane

In practice the prograde solution is often chosen because the velocity vector of the spacecraft relative to the
rotating atmosphere or body surface is lower. It is therefore reasonable to set rEI equal to rEI−prograde for
the remainder of this analysis.

Once rEI is found, vEI may be constructed as

vEI = vEI v̂EI (25)

The magnitude vEI is easily found from the vis-viva equation,

vEI =

(
µbody

(
2

rEI
− 1

a

))1/2

(26)

where for a hyperbola,
a = −µbody

v2∞
(27)

The direction of interface velocity v̂EI may be found first by finding the unit vector t̂EI orthogonal to rEI
in the plane of the inbound hyperbola and then rotating about the orbital angular momentum unit vector ĥ by
the interface flight path angle γEI as described in Figure 2,

t̂EI = ĥ× v̂∞ (28)

where
ĥ = v̂∞ × r̂EI (29)

Finally v̂EI is computed by rotation,

v̂EI = R
(
ĥ,−γEI

)
t̂EI (30)

where R
(
ĥ,−γEI

)
is the rotation matrix about ĥ by angle −γEI .

The construction of rEI and vEI has been validated by computing several test entry interface states and
integrating the equations of motion backward in time in the high-fidelity modeling tool General Mission
Analysis Toolkit (GMAT) [25] to verify that the correct incoming hyperbolic v∞ is obtained.

Entry/Landing Azimuth Constraint It is sometimes desirable to constrain the entry/landing azimuthAZarrival,
i.e. the angle from the body’s spin pole to the arrival hyperbola at the moment of interface as shown in Figure
8. AZarrival is computed from declination of the v∞ vector at interface plant (DAP ) and the inclination of
the arrival hyperbola,

AZarrival = arcsin (cos iinterface/ cosL) (31)
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Figure 8: Definition of AZarrival

where iinterface is the inclination of the arrival hyperbola,

cos iinterface = cos θB cosDAP (32)

and θB is the B-plane clock angle,

θB = arccos

(
(sinL− cos (DAP + π/2) cosβEI)

sin (DAP + π/2) sinβEI

)
− π

2
(33)

and DAP is,
DAP = arcsin (v∞−z/v∞) (34)

Entry/Landing Illumination Constraint Some missions may require that the entry/landing event occur at
an interface point that is illuminated by the sun. This constraint is evaluated by computing the solar phase
angle βsun between the interface position vector rEI and the vector from the body center to the sun rbody−�
in the BCI frame. The body-sun vector is first computed,

v∞−BCI = −RICRF−to−BCIr�−body (35)

where r�−body is the position of the body relative to the sun in the ICRF and RICRF−to−BCI is computed
using Ref. [24]. The solar phase angle is then computed as

βsun = arccos
rEI · v∞−BCI
rEIv∞−BCI

(36)

If βsun ≤ 90◦ then the interface point is illuminated. However the user may choose to set a more stringent
constraint on βsun.

Entry/Landing Longitude Constraint While a value for entry interface latitude is specified as an assump-
tion in the model, the interface longitude is a function of the incoming asymptote and the epoch of encounter.
The longitude may be constrained by first finding the longitude of the actual interface point and then compar-
ing it to the desired longitude. First, the interface point rEI must be transformed from BCI to body-centered
fixed (BCF) coordinates,

rEI−BCF = RBCI−to−BCF rEI−BCI (37)

where RBCI−to−BCF is the rotation matrix from BCI to BCF and varies as a function of epoch. The longi-
tude may then be computed,

LON = arctan
rEI−BCF−y
rEI−BCF−x

(38)
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The entry longitude constraint may then be formulated as,

clongitude = LONactual − LONdesired (39)

Entry/Landing Surface Velocity Constraint Once rEI and vEI are computed in Equations 24 and 25, it
is possible to compute the relative velocity between the spacecraft at interface and the rotating atmosphere.
This is useful because a maximum atmosphere entry velocity is usually given as a requirement for sample
return vehicles. First it is necessary to compute the velocity vector of the atmosphere at the given interface
altitude and latitude,

vatm = (r̂EI × ẑ) vatm (40)

where vatm is the magnitude of the atmosphere’s velocity,

vatm = dspin−axisẆ (41)

Ẇ is the rotation rate of the planet [24] and dspin−axis is the distance between the interface point and the
planet’s spin axis at the given altitude and latitude,

dspin−axis = rEI cosL (42)

The relative velocity between the spacecraft and the atmosphere may then be computed,

ventry−relative = vEI − vatm (43)

The relative velocity magnitude ventry−relative may then be constrained as necessary.

Entry/Landing Feasibility The entry interface constraints described above are very helpful in global opti-
mization of sample-return trajectories but suffer from the limitation that f is defined only when the revolved
hyperbola intersects the latitude circle, i.e.,

g ≤ rc (44)

When this is not the case, f is undefined and therefore so are rEI and vEI . A penalty function is therefore
added to each of the entry constraints above that pushes the optimizer towards an entry asymptote whose
revolved hyperbola intersects the latitude circle and disappears smoothly into the other other constraints
when this condition is satisfied. If g > rc − 1 then the penalty function is computed,

gpenalty =
(g − rc + 1)

2

r2c
(45)

and g is rescaled as,

gscaled =
rc − 1

g
g (46)

gscaled is then used in place of g for the computation of f and the rest of the interface model. gpenalty is
then added to each of the constraints in the NLP problem to push the solver back into the region where 44
holds. This method is found to be quite robust and makes it possible for the entry interface model described
here to work effectively in a global search during that a wide variety of incoming velocity asymptotes might
be considered. However, unlike for the other constraints used in this work, analytical derivatives of the entry
constraints are not supplied to the optimizer. This is left for future work.

Spacecraft Hardware Modeling

Solar electric propulsion (SEP) systems produce varying amounts of thrust and consume propellant at
varying rates depending on the available power and therefore on the position of the spacecraft in the solar
system. This effect must be modeled in an effective low-thrust global optimization technique. In this work
we will focus on models of real-world thrusters. Typically trajectory design engineers are supplied with
polynomials defining the thrust and mass flow rate of a given thruster, i.e.,

T = aTP
4
eff + bTP

3
eff + cTP

2
eff + dTPeff + eT (47)

ṁmax = aFP
4
eff + bFP

3
eff + cFP

2
eff + dFPeff + eF (48)
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where Peff is the power available to each thruster,

Peff = P/Nactive (49)

and Nactive is the number of thrusters firing at any point in time.

Equations 48 are valid over a range [Pmin, Pmax] where Pmin represents the minimum amount of power
necessary to turn on the thrusterś PPU at the lowest setting and Pmax represents the maximum amount of
power that the PPU can safely accommodate.

The available power P is the difference between the power generated by the spacecraft Pgenerated and the
power required to operate the spacecraft bus Ps/c,

P = (1− δpower)
(
Pgenerated − Ps/c

)
(50)

where δpower is propulsion power margin.

In this work, the power delivered by a solar array is given by [16]:

Pgenerated =
P0

r2

(
γ0 + γ1/r + γ2/r

2

1 + γ3r + γ4r2

)
(51)

where the γi are user-defined solar panel coefficients, r is the distance between the Sun and the spacecraft in
Astronomical Unit (AU) and P0 is the “base power” delivered by the array at 1 AU. P0 is in turn a function
of the time since launch,

P0 = P0−BOL (1− τ)
t (52)

where P0−BOL is the base power delivered by the array at 1 AU on the day of launch, τ is the decay rate of
the solar arrays measured as a percentage per year, and t is the time since launch in years. Equation (52) may
also be used to model the decay of an radioisotope thermal generator (RTG) or advanced Stirling radiosotope
generator (ASRG) power system.

The power required by the spacecraft bus Ps/c is modeled as a polynomial,

Ps/c = as/c + bs/c/r + cs/c/r
2 (53)

where as/c, bs/c, and cs/c are chosen by the user.

The most interesting case is when Peff > Pmax or Peff < Pmin, and therefore thrusters must be switched
on or off. If Peff > Pmax then either an additional thruster must be switched on, or if no other thrusters are
available, Peff must be clipped to Pmax. If Peff < Pmin then a thruster must be switched off. A discontinu-
ity exists in Equation 48 at the boundaries where Peff = Pmax or Peff = Pmin. This discontinuity is very
confusing to gradient-based optimizers, especially in the case where there is not enough power to turn on
any thrusters at all. It is desirable to smooth the power and propulsion models and remove the discontinuity.
McConaghy [1] proposed smoothing the propulsion model using the “smoothstep” technique from the field
of computer graphics. However a different approach is used in this work.

Heaviside [26] defined the unit step function as instantaneously taking half value at the point of transition.
It is then possible to approximate the step function using the logistics function,

H (x) = lim
k→∞

1

1 + exp (−2kx)
(54)

Equation 54 is continuously differentiable and therefore eliminates the problems that a gradient-based solver
would have with a regular step function. In the context of multi-thruster switching, we define a set of Heavi-
side step functions Hi (P ),

Hi (P ) =
1

1 + exp (−2k (P − P ∗i ))
(55)

where each Heaviside step function Hi (P ) defines the switch state of the ith thruster and k defines the
sharpness of the transition. The larger the value of k, the closer Hi (P ) approximates the Heaviside step
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Figure 9: Nactive vs Available Power for various values of k

function. However, while the derivatives H ′i (P ) increase as k increases, they remain finite and Hi (P )
remains continuous. We find that the optimizer behaves best when the derivatives are reasonably small (i.e.
small k) but we also find that if k is too small then the thruster model will frequently report a fractional
non-integer Hi (P ). Nactive may then be defined as,

Nactive =

N∑

i=1

Hi (P ) (56)

To fully define Nactive, it is necessary to define the transition powers Pi at which a thruster would be
switched on and off. In this work it is assumed that as few thrusters as possible are used for a given available
power and so each Pi is an integer multiples of Pmax except for P1, which is equal to Pmin. Alternatively
if as many thrusters as possible are activated, then each Pi would then be an integer multiple of Pmin. It is
also possible to define other switching laws such as maximum thrust or maximum specific impulse (Isp), in
which case one would need to compute the Pi where those merit functions change as a function of number
of thrusters.

Figure 9 shows the number of active thrusters for a notional system with four BPT-4000 thrusters, each with
Pmin = 0.302kW . The spacecraft’s solar array can provide 10 kW at 1 AU and the spacecraft bus requires
0.5 kW at all times. Several values of k are shown, each a different compromise between smoothness and
accuracy. Figure 10 shows the same propulsion system but this time with axes of distance from the Sun and
available thrust, zoomed in to the region between 2 and 4 AU where the thruster transitions occur. One can
see that the green line, representing k = 1000, closely approximates the unsmoothed black line that does
not have continuous derivatives. However the smoothing method described here removes that discontinuity
and significantly improves the robustness of the solver. A value of k = 100 is recommended as a good
compromise between well-behaved derivatives and accuracy.

OPTIMIZATION

Nonlinear Programming

The optimization of the MGALT problem may be formulated as nonlinear programming (NLP) problems.
NLP problems explicitly model nonlinear constraints. The optimizer solves a problem of the form:

Minimize f (x)
Subject to:
xlb ≤ x ≤ xub
c (x) ≤ 0
Ax ≤ 0

(57)
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Figure 10: Thrust vs Distance from Sun for various values of k

where xlb and xub are the lower and upper bounds on the decision vector, c (x) is a vector of nonlinear
constraint functions, and A is a matrix describing any linear constraints (i.e. time constraints).

Almost all low-thrust interplanetary trajectory optimization problems, including those transcribed by the
MGALT model, are very large, composed of hundreds or thousands of decision variables and tens or hundreds
of constraints. A large-scale NLP solver such as SNOPT [27] is therefore required to solve the problems of
interest in an efficient and robust manner. However, SNOPT, like all NLP solvers, requires an initial guess of
the solution and will tend to converge to a solution in the neighborhood of that initial guess. The next section
will address how the automated method of this work generates this initial guess in a fully automated manner.

Monotonic Basin Hopping

Recent research in low-thrust trajectory optimization has led to the creation of stochastic search methods
that do not require an initial guess [9, 16, 17, 28–36]. The stochastic search method used in this work is
monotonic basin hopping (MBH).

MBH [37] is an algorithm for finding globally optimal solutions to problems with many local optima.
MBH works on the principle that many real-world problems have a structure where individual local optima,
or “basins” tend to cluster together into “funnels” where one local optimum is better than the rest. A problem
may have several such funnels. MBH was originally developed to solve molecular conformation problems
in computational chemistry, but has been demonstrated to be effective on various types of interplanetary
trajectory problems [17, 32–34, 38–40]. The pseudocode for MBH is listed in Algorithm 1.

MBH is run until either a specified number of iterations (trial points attempted) or a maximum CPU time
is reached, at which point the best solution stored in the archive is returned as final solution. The version
of MBH used in this work has two parameters - the stopping criterion and the type of random step used to
generate the perturbed points x′. In this work, the random step is drawn from a bi-directional Pareto distri-
bution with the Pareto parameter, α, set to 1.4. The bi-directional Pareto distribution will usually generate
small steps that allow MBH to exploit the local funnel around the current best solution. However some of
the steps generated by the bi-directional Pareto distribution will be much larger, in some cases spanning the
entire solution space. These larger steps allow MBH to explore the full problem. This approach has been
shown to be robust on complex low-thrust problems [36].

The combination of NLP and MBH is well suited to searching for globally optimal solutions to the prob-
lems presented in this paper. The hop operator in MBH naturally handles searching for the globally optimal
solution (i.e. escaping from local optima), and the NLP step is naturally suited to not only satisfy the trajec-
tory continuity constraints inherent in MGALT but also the complex operational constraints discussed in this
work.

13



Algorithm 1 Monotonic Basin Hopping (MBH)

generate random point x
run NLP solver to find point x∗ using initial guess x
xcurrent = x∗

if x∗ is a feasible point then
save x∗ to archive

end if
while not hit stop criterion do

generate x′ by randomly perturbing xcurrent
for each time of flight variable ti in x′ do

if rand (0, 1) < ρtime−hop then
shift ti forward or backward one synodic period

end if
end for
run NLP solver to find locally optimal point x∗ from x′

if x∗ is feasible and f (x∗) < f (xcurrent) then
xcurrent = x∗

save x∗ to archive
else if x∗ is infeasible and ‖c (x∗)‖ < ‖c (xcurrent)‖)

xcurrent = x∗

end if
end while
return best x∗ in archive

RESULTS

Low-Thrust OSIRIS-REx

The first example presented here is a simulation of a low-thrust equivalent of the OSIRIS-REx mission [41],
which we call “LowSIRIS-REx.” The OSIRIS-REx mission, and also its fictional low-thrust cousin, will
launch in 2016 and fly to 101955 Bennu. There it will perform one year of proximity operations culminat-
ing in acquisition of a sample, which it will then bring back to the Earth and drop into the Utah Test and
Training Range (UTTR). The LowSIRIS-REx concept is therefore an ideal test of the atmosphere interface
constraints developed in this work. In particular, the velocity relative to the Earth’s atmosphere at interface,
ventry−relative, is constrained to be no greater than 12.4 km/s. The problem assumptions for the LowSIRIS-
REx mission concept are shown in Table 1.

The LowSIRIS-REx problem was run twice, once with the atmospheric interface velocity constraint im-
posed and once without. In both cases the objective was to maximize the mass returned to Earth. The key
results of the two runs are shown in Table 2. Note that the unconstrained mission returns slightly more mass
than the constrained mission but at the cost of a much higher entry velocity of 13.06 km/s vs the 12.4 km/s
required by the sample return capsule. The outbound journeys of the two missions are identical, but the return
journeys are very different as shown in Figure 11. The constrained version of the mission departs Bennu two
months earlier and arrives at Earth one week later. The trajectory itself is quite different. Notably there is
only one thrust arc in the unconstrained return trajectory and then a long coast before arrival at the Earth,
but in the constrained trajectory there are three thrust arcs - one long arc to depart Bennu and then two more
short arcs to set up the entry velocity vector. In practical terms this costs only one week of flight time and 40
kg of propellant, but this example clearly shows that if one were to solve the unconstrained problem first and
then prune away solutions that do not naturally satisfy the constraint, one might miss the constrained optimal
solution that was not far from the unconstrained optimum. By imposing the operational constraint directly
onto the global search process, we have removed a potential “false negative” in which the optimal solution
might have been lost. However, in this particular example, the constrained solution is sufficiently close to the
unconstrained solution that the unconstrained solution could be used as an initial guess for the constrained
optimization.
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Table 1: Assumptions for the LowSIRIS-REx Mission

Option Value
Launch window open date 1/1/2016
Launch window close date 1/1/2017
Flight time upper bound 7 years
Arrival condition at Bennu rendezvous (match position and velocity)
Arrival condition at Earth intercept with ventry−relative ≤ 12.4km/s
Launch vehicle Atlas V 411
Launch asymptote declination bounds [−28.5, 28.5] (Kennedy Space Center)
Post-launch coast duration 60 days
Pre-arrival coast duration 90 days
Solar array P0 at end of life 15 kW
Solar array coefficients γi [1, 0, 0, 0, 0]
Propulsion system 2 NEXT
Duty cycle 90%
Power margin 15%
Number of control steps per phase 40
MBH run time 3600 seconds

Table 2: Comparison of the Constrained and Unconstrained LowSIRIS-REx Solutions

Unconstrained Constrained
Launch date 11/4/2016 11/4/2016
Bennu arrival date 7/2/2019 7/2/2019
Bennu departure date 2/12/2021 11/10/2020
Earth arrival date 9/25/2023 10/2/2023
ventry−relative (km/s) 13.06 12.40
Mass at Earth return (kg) 3442 3402

Figure 11: LowSIRIS-REx Earth Return Journey for the Unconstrained (L) and Constrained (R) Versions
of the Mission
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Table 3: Assumptions for the Comet Rendezvous Mission

Option Value
Launch window open date 1/1/2020
Launch window close date 1/1/2026
Flight time upper bound 15 years
Arrival condition at 45P rendezvous (match position and velocity)
Launch vehicle Falcon 9 v1.1
Launch asymptote declination bounds [−28.5, 28.5] (Kennedy Space Center)
Post-launch coast duration 60 days
Solar array P0 at end of life 15 kW
Solar array coefficients γi [1, 0, 0, 0, 0]
Propulsion system 2 NEXT
Duty cycle 90%
Power margin 15%
Number of control steps per phase 200
MBH run time 3600 seconds

Table 4: Comparison of the Constrained and Unconstrained Comet Rendezvous Solutions

Unconstrained Constrained
Launch date 1/1/2020 9/14/2020
45P arrival date 9/12/2029 5/9/2023
Flight time (years) 9.7 2.6
Minimum solar approach distance (AU) 0.5 0.9
C3 (km2/s2) 0.9 13.8
Mass at launch (kg) 3541 684
Mass at arrival (kg) 2255 307

Comet Rendezvous

The second example is a rendezvous mission to Comet 45P/Honda-Mrkos-Pajdušáková using the same
spacecraft as the LowSIRIS-REx mission but this time launching on a Falcon 9. Comet 45P was chosen
because it reaches a perihelion distance of 0.52 AU and an aphelion distance of 5.51 AU, two extremes
that would drive spacecraft design. The purpose of this example is to demonstrate how one might design a
trajectory for a mission that would only be in the vicinity of 45P when it is sufficiently far from perihelion
that the spacecraft would not have to be designed to survive both the extreme heat of 0.52 AU and the extreme
cold of 5.51 AU. This may be done by constraining the spacecraft to fly no closer than 0.9 AU to the sun prior
to rendezvous. In addition to testing the solar distance constraint, this example is also a good test of the new
multi-thruster switching method. Table 3 lists the problem assumptions for the comet rendezvous mission.

The comet rendezvous problem was run twice, both with and without the solar distance constraint. In both
cases the objective was to maximize mass delivered to the comet. The Heaviside multi-thruster switching
technique was applied in both runs. Earth flybys were considered for both versions of the mission but good
results were not found - the best solution found in both cases was a direct flight. The trajectories for the two
solutions are shown in Figure 12 and summarized in Table 4. Figure 13 shows distance from the sun, power,
and propulsion values as a function of time for both missions. The two solutions are completely different. The
unconstrained mission launches to a lower C3 than the constrained mission, has a much longer flight time,
and delivers far more mass than the constrained mission. These differences are all because the unconstrained
mission is allowed to get closer to the sun, which in turn allows thrusting at a more efficient location on the
orbit and also better thrust and Isp. The unconstrained mission slowly pumps periapse down and apoapse up
until it matches the orbit of 45P. The constrained mission, in contrast, needs to gain almost all of its orbital
energy in one orbit because it cannot lower its periapse until it is already outbound to the rendezvous point.
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Figure 12: Comet Rendezvous Trajectory for the Unconstrained (L) and Constrained(R) Versions of the
Mission

Clearly the unconstrained and constrained solutions are not in the same family. It is not possible to get to
one with a local optimizer and an initial guess from the other. Furthermore, the comet rendezvous problem is
an example of a “false positive” in which by solving the unconstrained problem one might be lead to believe
that a good solution exists to the constrained problem. In actuality the solution to the constrained problem
is completely unrelated. Further, while it is mathematically feasible it could not actually be flown because
a spacecraft with a 15 kW solar array and two NEXT thrusters would be much larger than 300 kg. This
is perhaps an extreme example of a “false positive” but is sufficient to illustrate the usefulness of imposing
the operational constraints directly in the global search algorithm. Additionally, this example is a good use
case for the Heaviside thruster-switching model because, as shown by the black plus signs in Figure 13, the
number of thrusters switches from 0 to 1 to 2 and back again several times.

The only common element in both versions of the comet rendezvous mission is that in both cases the
spacecraft appears to coast for a while immediately before rendezvous. This “terminal coast” lasts 18 months
in the unconstrained mission and 5 months in the constrained mission. This coast appears because SNOPT
cannot tell the difference between coasting next to the comet and arrival at the comet unless the analyst
specifies a reason for it to do so - either an upper bound on the flight time that is strict enough to affect
the solution or a time component in the objective function - neither of which are present in this example.
Furthermore in both cases the coasting occurs when the spacecraft passes 3 AU, at which point there is no
longer enough power to operate a single NEXT thruster. The Heaviside throttle switching model does allow
SNOPT to compute derivatives of the match point constraints with respect to the arrival state and therefore
improves solver performance, but it does not help SNOPT tell the difference between coasting and parking.
Fortunately this phenomenon, while graphically unpleasant, does not affect the solution.

CONCLUSION

This work demonstrates the practicality and utility of including operational constraints in an automated
global search process when designing low-thrust interplanetary trajectories. Such constraints may be applied
to the NLP step of the MBH global search as described in this work. By including constraints such as
atmosphere interface conditions and minimum solar distance, one can avoid both the “false negatives” and
“false positives” that can occur when solving the unconstrained version of a problem first and then using it
as an initial guess for a constrained optimization. While these constraints do add computational expense,
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Figure 13: Distance from the Sun, Power, and Propulsion Values as a Function of Date for the Unconstrained
(L) and Constrained (R) Comet Rendezvous Mission
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they are compatible with an automated global search method and can help an analyst find better solutions. It
would be possible to improve the performance of the solver when the atmosphere entry constraint is active
if the derivatives of the entry constraints were specified analytically. The constraints presented here are just
two of many that no doubt will be of interest to other researchers and mission planners.

In addition, the method of smooth thrusters switching using Heaviside’s definition of the step function
enables more robust convergence of the gradient-based local optimization component of the MBH global
search algorithm. This allows for smooth derivatives of the trajectory design problem even in cases such as
the comet rendezvous example where the number of thrusters must change over the course of the mission.
In general the Heaviside step function allows a gradient-based optimizer to make discrete choices without
causing a bifurcation in the solution space. There are no doubt many other applications for this technique.
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