
Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003 ThM07-1

Initialization of Direct Tkanscription Optimal Control Software

S. L. Campbell
North Carolina State University

Department of Mathematics
Raleigh, N C 27695-8205

N. N. Kalla
North Carolina State University
Operations Research Program

Raleigh, NC 27695.

J. T. Betts
Math. & Engineering Analysis

The Boeing Company

Seattle, Washington 98124-2207.
P.O. BOX 3707, MS 7L-21

Abstruct- Direct transcription optimal control codes have
been very successful. One common source of numerical dif-
ficulty is getting a feasible solution on the first iteration. Over-
coming this often requires a high level of expertise on the user’s
part. This paper discusses research aimed at the development
of a collection of utilities to assist users in solving complex
industrial optimal control problems with direct transcription
codes.

I. INTRODUCTION
Direct transcription has proved in practice to be effective

in solving a wide variety of optimal control problems [2].
One of the most common difficulties with direct transcription
codes is getting a feasible solution on the first iteration. There
will always be problems that require user expertise and this
expertise should be used when available. See for example
[4]. However, any software’s usefulness is greatly increased
the more easily it is usable on complex problems by less
experienced users. There is a need for more sophisticated
initialization utilities that can be called on for difficult
problems. This paper will examine one such utility that
is under development. Our discussion is in terms of the
direct transcription software SOCS [5] but the comments are
relevant to other direct transcription codes. Page limitations
prevent us from discussing how this utility would fit within
a larger library of utilities. Similarly we have had to delete
proofs of the estimates given later and include only a few
numerical examples.
A . Direct Transcription

The direct transcription approach to solving optimal con-
trol problems parameterizes the dynamic variables using
values at grid points on the time interval thus transcribing
the problem into a finite dimensional nonlinear programming
(NLP) problem. The NLP problem is solved and the dis-
cretization refined if necessary. SOCS solves optimal control
problems by the direct transcription approach. Typically the
dynamics of the system are defined on t I 5 t F by state equa-
tions, y’ = f (y (t) , u (t) , t) , boundary conditions, algebraic
path constraints, simple state bounds, and simple control
bounds. The problem is to determine the u (t) that minimizes
a performance index J. SOCS can handle problems with
multiple phases. At each grid iteration, the time interval is
divided into segments tl = tl < t z < . . . < t M = t F . The
two primary discretization schemes used in SOCS are the
second order trapezoidal (TR) and the fourth order Hermite-
Simpson (HS). Each scheme produces a distinct set of NLP

variables. SOCS currently solves this large, sparse NLP
using a sequential quadratic programming (SQP) method.
SOCS can adjust the actual grid time values through scaling
and this is often done if the final time is not known. Internally
the grids are refined only by the addition of extra grid points
so that each grid is a subset of the previous grid.

B . Initialization

SOCS needs an initial guess consisting of an initial grid,
values of the states and controls on this grid, and values
of any parameters. Currently users specify either a uniform
grid with a stated number of points or a grid of their choice.
They can also either specify the function values directly or
let SOCS generate them with a linear interpolation between
user specified values at the endpoints of the grid. Experience
has shown that uniform grids are often not acceptable. Any
utility needs to not only determine the size of the grid but
also the distribution of the grid points and the values of 9, U

at those grid points.
This initialization problem has certain aspects in common

with the problem of initialization of iterative boundary value
problem (BVP) solvers. This is not surprising since it is
well known that the necessary conditions for optimal control
problems are BVP and the numerical solutions of optimal
control problems often act like the numerical solutions of
BVP. Also the direct approach used by SOCS is based on
global collocation like a BVP solver.

Our approach will take some ideas from the initialization
of BVP especially monitor functions [l]. However, there are
important differences between our problem and a standard
BVP including some differences from the usual numerical
analysis where one can just assume the grids are fine enough.
Once a feasible solution is found the remaining grid refine-
ments are performed by the sophisticated grid refinement
procedure in SOCS. There will be a number of refinement
iterations to determine the control and resolve the dynamics.
Taking too fine an initial grid will lead to unnecessarily
large NLP problems when trying to find the control. Also,
the initial guess for the control is often not very good so
the grid distribution is likely to not be clustered in those
places needed to determine the control sufficiently accurately.
Thus in our situation taking too fine an initial grid pays a
much larger computational burden than with a plain BVP
solver. Also, practical control problems often take place in
the presence of a large number of state and control inequality

0-7803-7924-1/03/$17.00 02003 IEEE 3802

constraints. Finally we want to make most of the utility as
transparent to the user as possible.

Another feature of many industrial grade optimal control
problems is that often some of the functions are not given in
the form of explicit functions but come out of interpolation of
experimental or tabular data. This suggests that, if possible,
the utility should rely only on function evaluations of the
right hand side of the differential equation.

11. MONITOR FUNCTIONS
The basic idea of a monitor function is as follows. For

a given initial control law U = w(y,t), one integrates the
differential equation

Y' = Y' = f (Y , U , t) , Y (t 0) = Yo (la)
s' = 4 (Y , t) , 4 t o) = 0 (lb)

over the interval [to,t,] where q 5 (y , t) 2 6 > 0. Then one
equidistributes the grid points using s. Thus if there are to
be N grid points, they are taken to be

t k = s - l (k s (t f) / (N - I)) , k 0,. . . , N - 1

The arc length monitor function (ALMF) [I] is

which equidistributes the initial yk values along the graph of
the solution.

The examples that follow show that a simple monitor
function like (2) is often not best and, in some cases, will fail
to provide any assistance. We will also see that even when
(2) works, special care is sometimes needed. Let fi be the
ith entry of f. We also consider monitor functions of the
form

/ n

(3)

where 0 < a 5 1 and Pi 2 0, pi > 0 . Notice that
a constant multiple of q5 will produce the same grid as 4.
The default choice is (2) which is a = 1 , p i = 1 . "he user
adjustable parameter a in (3) appears in other applications
of monitor functions such as with the use of moving grids
in solving PDEs [3]. However, we have not seen the ,&
parameters before. The pi are sometimes very useful [4].
Other monitor functions will be discussed later.

A. Estimating N
Once the monitor function has been chosen and the for-

ward integration has determined t f , it is necessary to come
up with N , the number of points in the initial grid. We know
A4, the number of accepted time steps of the integrator, the
order of the integrator, the desired accuracy of our initial
guess, and the order of the SOCS discretization used on the
initial grid. Extensive computational testing has previously
shown that SOCS usually performs better if initialization
is done with a lower order integrator like TR and then

later SOCS can switch to HS. However, Example 2 shows
that generally the initialization integrator has to be at the
requested initialization tolerance or tighter.

Naively assuming that things scale, A4/N is a ratio of the
estimated stepsize for the integrator to the step size needed
by the optimizer discretization (OD) to get a certain accuracy.
Let P be the order of the integrator used in finding the grid,

= ODE tolerance requested of the integrator, and lo-'

order of OD. Let L = t o - t f . Then ignoring the variability
- - tinit = tolerance wanted for the initial guess, Q = the

plausible number of initial grid points is

N = min(MXGD, max{MNGD, I I , I I O S / Q - R / P } } (4)

where MXGD, MNGD are the largest and smallest initial
grid the user will consider.

Algorithm I : (Algorithm for t k , y k and initid grid.) The
user specijies the monitor function, an initial guess control
law U = w (y , t) , an initial condition y (t 0) = yo, and a
subroutine to evaluate f (y, U, t) . In addition the user can
specifj, a desired tolerance finit = whose default
is 1 0 - l . The user can set MXGD and MNGD which lzave
defaults of MXGD=300 and MNGD = 15.

Step 1: A variable step, jixed order integrator is used to
integrate (I) from to to t f with a requested tolerance of

The result is s f , A4 the number of accepted time steps,
and also t f if t f was a variable.

Step 2: Let N be given by (4) and let
IC-1
N-1 '

S k = S f - k = 1, ..., N

Step 3: Integrate the system (6)

dt
ds
-

front 0 to sf. The solution y (s) , t (s) is output at the s = s k .
This gives values of ? j k , t k . Note that this integration need
not be done by the same integrator used in Step I .

The only expensive function used is f which is needed
by SOCS anyway. Other functions are all simple scalar
functions o f f . The algorithm assumes the utility provides the
integrator so that the order constants are known. We will see
later that to get the intervals accurately, we sometimes need
to reduce MaxStep. This suggests that perhaps A4 should be
estimated separately from the generation of the grid.

B. Computational Examples
In the computational tests we used ODE45 and ODE23

from MATLAB as the integrators in Steps 1 and 3. These are
fixed order variable step Runge-Kutta codes. Unless stated

3803

otherwise the integration tolerance was The computed
initialization grids are much sparser than the ODE45 grids
and do not have the initial clustering of the ODE45 grid due
to initial stepsize variation. This shows the importance of
using the monitorfunction and not just trying to adapt the
ODE45 grid.

I) Example 1: Fast Transients & Long Interval: Example
(7) is due to A. V. Rao [8]. It has fast transients very close
to either end of a long interval. SOCS solves this problem
already using the default utilities. However, this example
illustrates several points. TR is the initialization discretization
so that Q = 2.

The optimization problem, with t o = 0, t f = 10,000 is

m i n J U = m i n t ’ x 2 + U* dt (7 4

2’ = - x 3 + u (7b)
~ (0) = 1, x (t f) = 1.5 (7c)

Part of any initial guess is the initial choice of the controls.
Of course, the true optimal control is usually not known.
However, often some rough properties of the control, such
as when it will be active, are known. It is expected in problem
(7) that the control will be active near the two ends of the
interval and not do much for most of the middle portion.
While a user cannot be expected to know exactly when this
will occur they might well know that it does occur. This
suggests that a reasonable choice for an initial U might be

-1 if O l t < a
u a (t) = 0 if a 5 t < 10000 - a (8) { 1 if 10000 - a 5 t 5 10000

We pick a = 400 as a guess. The rationale for doing this
is that it might provide a better grid just knowing that there
is more activity early and late. First we note that if we just
tried using (8), and the SOCS defaults for the state variables
and the same starting grid of N = 13 that worked fine with
the defaults, SOCS was unable to get consistency without
our having to go to a finer initial grid.

ODE45 had trouble integrating past 9600. Computed val-
ues looked reasonable up to this time. Our best guess is that
this was due to an underflow or zero divide in some of the
heuristics due to an order reduction near 9600 because the
solution is only one time continuously differentiable there.
Switching to ODE23 we had no difficulty. This illustrates the
desirability of having more than one integrator available for
the user to call in the utility.

Figure 1 shows the grid gotten using ODE23 and our
algorithm using arclength, with finit = 10-1 using CY =
,i3 = 1. The lower grid shows the time steps for ODE23. The
computed top grid is uniform and essentially the same size
as the grid we used with the SOCS defaults.

We can emphasize putting points where something hap-
pens by weighing the inactive periods less heavily by re-
ducing CY. Figure 2 shows the result for our preferred value

,k****- ..-e-. **”- -* .- .* ~ *“.̂ I-p
2030 40w 6000 am

Fig. 1. ODE 23 gnd and standard algorithm grid for Example 1 .

of CY =
CY =
discretization requires some points throughout the interval.

while Figure 3 gives the grid gotten using
Figure 3 is not desirable either because the

o . . I - - - - - - . . o m

Fig. 2. ODE 23 grid and computed grid for a = for Example 1.

1 :: . .

O‘***..*.-*..-*: +:_--.... ~ 4 A-- ... + 4 *ri
0 loo0 2N)O 3wO 4Gx) 5wo BWO 7wO 8 W 90 1woO

Fig. 3. ODE ‘23 grid and initialization grid with a =
1 .

for Example

While SOCS had no difficulty in solving this problem
using the current default initialization it is interesting to
compare what happens if we take the grids coming from
our initialization utility to what happens with using grids
from the default initialization option of SOCS. The solution
of the optimal control problem using the defaults and the
utility grid took 11 and 12 iterations and had final grids
of 216 and 205 respectively. However, the CPU time was
reduced from 26.67 to 14.6. CPU results must always be
viewed cautiously. Examination of the data suggests that this
reduction is coming from having to do less work on each
iteration. Even though the choices of a and the value of 400
were based on nothing more than the idea something happens
infrequently and at the ends, and no analysis was done to
optimize these choices, the result was reduced CPU time
because of quicker iterations. Also the ODE error, ERRODE,
was reduced much more quickly at first with the new guess.

2) Example 2: Singularities and highly nonlinear: Our
second test problem is known as the Pleiades problem [6] . It
consists of seven stars moving in a coordinate plane. They
each have mass m, and location x,, y,. The only force acting
on them is gravitational attraction which obeys the inverse
square law. The stars are considered to be point masses. Let
T-, ,~ = (x , - xJ)2 + (y, - yJ)2 be the square of the distance
between stars i and j. The system is

x f = 21 (9a)
gf = W (9b)
21’ = f (X , Y) (9c)

W f = d X , Y) (9 4

3804

As in [6] we take mi = i, the initial conditions given in [6],
and the time interval [0, 21.

There are 28 state variables and the equations are highly
nonlinear. Numerical integration of the solution shows that
trajectories for these initial conditions exist on [0,2], but
there are several near collisions around 1.22, 1.44,'1.62, 1.67,
where the distance squared gets as low as lov3. At these near
collisions the acceleration gets high, so that like many space
missions, there are long periods of relatively slow motion and
periods of rapid motion. Because the problem is planar the
singularities can pose extra difficulties. If an approximation
starts on one side of a star, and the true solution is on the
other side of the star, then singularities may be encountered
during grid refinement. Figure 4 shows the trajectories. The
numbers indicates which star and where the trajectories start.

\/----- 7 1

2 31 v
A 6
1 3 -2 -1 0 1 2

Fig. 4. All trajectories for Example 3 on [0, 21.

There are no control variables. Thus when we pass the
problem to SOCS with an initial condition there are no
degrees of freedom. This is an important case that can occur
when inequality constraints are active. It is also a problem
that a user of SOCS might want to solve to examine their
formulation. This is also a good test problem since the usual
initialization routine in SOCS failed to get a feasible solution
when started on moderate sized or small grids. The case
N = 10 was an outlier where SOCS found a feasible solution
but then could not get feasibility on the second iteration. The
monitor function enabled us to get a consistent initialization
but only when we used the higher order HS rather than the
usually preferable TR.

Since we knew from simulation that there were near
collisions we generated test grids using ODE45 with a
requested ODE tolerance of The integrator took 240
time steps. We then generated initial grids for different
tolerances, or equivalently, for different requested values
of N . At a requested initialization tolerance of and
using a fourth order initialization discretization, we got the
time grid in Figure 5 which turned out to be a good grid
provided HS was used. With N = 66 and higher SOCS was
able to find a feasible solution and iterate to convergence
provided that we used HS as the initialization discretization.

-

T
1

m . 4 b . 6 y 8 1 1.2 1.4 1.6 1.8 2

Fig. 5. Successful grid using N = 77 for Example 3.

TABLE I
SUCCESSFUL INlTlALIZATION OF EXAMPLE 3 USING HS.

NFT Iterations Initial CPU Total CPU
2359.39

189.55
924.39

117 465 593.28
135 484 70 525.19

The code was not able to find a feasible solution if the
default initialization was used or if the TR was used even if
initialization iterations were allowed to run for a long time.
Table I provides a summary of the successful runs. All used
the monitor function grid. NPT is the final grid found by
SOCS which gave ODETOL of

C. Alternatbe monitor functions
It has been observed in the moving grid literature that

it might be desirable to choose the grid to equidistribute
the error in the approximation rather than to equidistribute
along the solution graph. One choice is to try and pick a
grid to minimize the error of linear interpolation [3]. The
more difficult case where there are time and spatial grids is
discussed in [7]. Minimizing the error of linear interpolation
leads to a different family of monitor functions of the form

One choice of y is

We shall refer to (lo), (1 1) as monitor2. Suppose that we have
the exact solution y of the differential equation and a time
grid { t t } that comes from a monitor function. Suppose that
we have a piecewise linear interpolation to y on this grid.
The grid has N subintervals. The question is whether the grid
from (10) leads to a better uniform approximation and what
the consequences, if any, of this are. The argument in [3] was
for a specific test problem. By modifying that argument we
can prove a similar result in an asymptotic sense in Lemmas
1-3. [The argument in [3] was not asymptotic.]

Lemnta I : Suppose that y is a smooth function defined on
[0, TI. Let 6 be a nonnegative continuous function defined
on the range of y. Let r = so S(y(t))dt. Define the monitor
function 4 by

T

(12) Pr d(Y> = T 4- 6(Y)

3805

Fig. 6. Grids on iteration 1 with N = 77.

GRID
1.0
2.0
3.0

where p > 0 is a parameter. Let A, = t k + l - t k . If (12) is
used to equidistribute the grid, then Ak 5
Earlier we had only indirect control of the largest subinterval
in the grid. The parameter p in (12) gives us direct control
on the grid spacing since it sets an upper bound on the length
of the longest grid interval.

Lemma 2: Let L = s,’ d-dt and p > 0. Sup-
pose that the modified arc length monitor function q5 =

+ d- is used to generate a grid on [0, TI. Then
the LO3 difference between a smooth function y and its linear
interpolation jj on that grid is IIy - 811 O” 5 @ (1 + p) ,

Lentnm 3: Suppose that r = so Ily’ll’”dt. Consider q5 =
+ lly’lll/m with m = 2. Then the LO” difference between

a smooth function y and its linear interpolation jj on a grid
from the monitor function is asymptotically Ily-9[lO” I $.

I) Computational Comparison: We examined the behav-
ior of the new monitor function in comparison to that of the
arclength monitor function on the Pleiades problem. Since
we already knew that the arclength monitor function worked
well at NPT =77, we began with NPT=77 and p = 1. The
new monitor2 function did not work nor did it work at a
somewhat higher value of NFT. This was not too surprising,
since with p = 1, we had Ak 5 4/77 so that a quarter of the
points were forced in the first half of the interval and fewer
grid points were being used for the difficult second half.

The first value of p where we got a feasible solution with
N = 77 was at p = 1/7 so that Ak 5 + 7 7 = g. The
grids which found feasibility are given in $ is re 6 . The top
grid is with the new monitor function and p = 1/7. The
bottom grid is from the arc length monitor function. The arc
length grid is much more focused on the second interval.
SOCS was allowed to run to convergence for both of these
grids. Table IIl gives the results using monitor2. Both of these
initial grids led to convergence in only four iterations. Both
initial grids gave comparable ERRODE. However, the new
monitor function produced a final grid that was 31%.

smaller and a CPU time that was half as much. Whether
this is an artifact of this problem or a more general phe-
nomena is unclear but it is clearly worth investigating more
carefully. It is possible that since the new monitor function is
more closely linked to the error estimate that it does a better
job of equidistributing on the early grids.

2) Modification of monitor2: The computational results
suggest that maybe the new monitor function is not really
distributing the grid according to the ERRODE as well as
expected since it had to go back and put more points near
the closest near collisions. To understand why this might
be the case we return to the proof of Lemma 3 and note

5.

T

2

NPT NFE NRHS ERRODE CPU
77 2390 365670 0.35E-03 340
153 889 271145 0.61E-05 270
166 116 38396 0.12E-05 50

TABLE I1
77 NPT INITIAL ARC LENGTH GRID A N D RESULTING ITERATION O N

PLEIADES.

4.0 I 331 I 291 I 192351 I 0.67E-07 I 220
1 331 I 3686 I 8657562 I I 878

that there is the constant M which is a bound for 1,.
For purposes of discussion we can think of the Pleiades
problem as being modeled by a scalar differential equation
y’ = f (y) = &p. Then If,l = 2+ I,+€ = 21y’13/2. Thus
if we are using the new monitor function we see that on
subintervals which include times close to the closest collision
that the error estimate and A4 become very large. Can we
modify the monitor function so that we get it second order
without the large bound?

Suppose we know that our problem has the additional
bound that l l f y l l I ~ ~ ~ y ’ ~ ~ ~ . Then modifying the proof of
Lemma 3 gives ~ l y (t > - jji(t>ll $& if we take F = Jr Ily’l\?dt and use the monitor function q5 = I l y ’ \ I y +
g. Then the previous discussion suggests that for the
Pleiades problem we should choose a =

F = I I l y ’ l l k q5 = I ly ’ l l~ + T ” (13)

To test these ideas we again consider the Pleiades problem
but using the monitor function given by (1 3) which we
will refer to as monitor3. We considered p = l / k with
k = 1 , 3 , 7 , 9 . It appears to be giving a feasible solution
of comparable order to that of monitor2 and-the size of the
final grids is comparable. However, it takes more CPU time
due to a very expensive second iteration. The cause of this
is not clear.

D. Computational Comments
For sensitive problems the integration in the various

monitor functions must be done carefully. In fact, at first
we thought we had a programming error in that when we
went to generate the t grid the value of t f was sometimes
off by 15% on intervals like [0, 31 or [0, 41. This is turn can
lead to the clustering of grid points near a sensitive spot being
misplaced. A look at the s values shows why. s was computed

5

so that
T

3806

using ODE45 and an Abstol of le-8 on [0 31. The correspond-
ing graph of t (s) on the second integration is shown in Figure
7. It is giving a value of tf 3.3 instead of 3. Reflecting the
graph of Figure 7 gives the graph in Figure 8b. This should
be the same as Figure 8a but it is not. The difficulty occurs
in two places. The rapid rise in s (t) introduces some error.
But there are also problems in the second integration. The
long flat middle part encourages the integrator to be overly
aggressive in maintaining a large stepsize. These difficulties
were overcome by replacing AbsTol by RelTol and more
importantly putting in a MaxStep bound of 0.1. This forced
the integrators to use smaller stepsizes.

700 -

Ha-

m-

m-

Mc-

Fig. 7. Graph of t (s) for monitor 3 with k = 9.

Figure 8a. Figure 8b.
Fig. 8. Reflected Graphs

In Figure 9 we set = = 0 and scaled the magnitude
so that all three monitor functions gave the same value of
sf. The dashed line is [ly’(l’/2 from monitor2, the solid line
is the arclength and the line with the small squares on it is
liy’115/4 from monitor3.

111. CONCLUSION
Initialization of direct transcription codes is a major dif-

ficulty in many complex optimization problem. This paper
has examined the use of monitor functions with the goal
of developing initialization utilities. While monitor functions
can be very helpful, and are sometimes essential, we have
seen that one monitor function does not suffice. A good ini-
tialization utility needs to have a family of monitor functions,

1

I
1.5 2 25 3

Fig. 9. The three measures of 9’.

the capability of the user to specify an initialization tolerance,
a family of integrators to generate the grids, and a choice of
different order initialization discretizations.

IV. ACKNOWLEDGEMENTS
Research supported in part by NSF Grants DMS-0 10 I802

and ECS-O 1 1495.

V. REFERENCES

[I] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell,
Numerical Solution of Boundary Value Problems for
Ordinary Diyerential Equations, S I A M , Philadelphia,
1995.

[2] J. T. Betts, Practical Methods for Optimal Control
Using Nonlinear Programming, SIAM, Philadelphia,
2001.

[3] G. Beckett, J. A. Mackenzie, A. Ramage, and D. M.
Sloan, On the numerical solution of one-dimensional
PDEs using adaptive methods based on equidistribu-
tion, J. Comp. Physics, 167 (2001), 372-392.

[4] J. T. Betts and S. 0. Erb, Optimal low thrust trajectories
to the moon, SIAM J. Appl. Dynamical Systems, 2

[5] J. T. Berts and W. P. Huffman, Sparse Optimal Control
Sofmare SOCS, Mathematics and Engineering Analysis
Technical Document MEA-LR-085, Boeing Informa-
tion and Support Services, July, 1997.

[6] E. Hairer, S . P. Norsett, and G. Wanner, Solving
Ordinary Differential Equations I: Nonstiff Problems,
Springer-Verlag, second revised edition, 1993.

[7] W. Huang, Variational mesh adaptation: isotropy and
equidisrribution, J. Comp. Physics 174, (2001), 903-
924.

[SI A. V. Rao and K. D. Mease, Eigenvector approximate
dichotomic basis method for solving hyper-sensitive op-
timal control problems, Optimal Cont. Appl. Methods,

(2003), 144-170.

20 (1999), 59-77.

3807

