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Abstruct- Direct transcription optimal control codes have 
been very successful. One common source of numerical dif- 
ficulty is getting a feasible solution on the first iteration. Over- 
coming this often requires a high level of expertise on the user’s 
part. This paper discusses research aimed at the development 
of a collection of utilities to assist users in solving complex 
industrial optimal control problems with direct transcription 
codes. 

I.  INTRODUCTION 
Direct transcription has proved in practice to be effective 

in solving a wide variety of optimal control problems [2]. 
One of the most common difficulties with direct transcription 
codes is getting a feasible solution on the first iteration. There 
will always be problems that require user expertise and this 
expertise should be used when available. See for example 
[4]. However, any software’s usefulness is greatly increased 
the more easily it is usable on complex problems by less 
experienced users. There is a need for more sophisticated 
initialization utilities that can be called on for difficult 
problems. This paper will examine one such utility that 
is under development. Our discussion is in terms of the 
direct transcription software SOCS [5] but the comments are 
relevant to other direct transcription codes. Page limitations 
prevent us from discussing how this utility would fit within 
a larger library of utilities. Similarly we have had to delete 
proofs of the estimates given later and include only a few 
numerical examples. 
A .  Direct Transcription 

The direct transcription approach to solving optimal con- 
trol problems parameterizes the dynamic variables using 
values at grid points on the time interval thus transcribing 
the problem into a finite dimensional nonlinear programming 
(NLP) problem. The NLP problem is solved and the dis- 
cretization refined if necessary. SOCS solves optimal control 
problems by the direct transcription approach. Typically the 
dynamics of the system are defined on t I  5 t F  by state equa- 
tions, y’ = f ( y ( t ) ,  u ( t ) ,  t ) ,  boundary conditions, algebraic 
path constraints, simple state bounds, and simple control 
bounds. The problem is to determine the u ( t )  that minimizes 
a performance index J. SOCS can handle problems with 
multiple phases. At each grid iteration, the time interval is 
divided into segments tl = tl < t z  < . . . < t M  = t F .  The 
two primary discretization schemes used in SOCS are the 
second order trapezoidal (TR) and the fourth order Hermite- 
Simpson (HS). Each scheme produces a distinct set of NLP 

variables. SOCS currently solves this large, sparse NLP 
using a sequential quadratic programming (SQP) method. 
SOCS can adjust the actual grid time values through scaling 
and this is often done if the final time is not known. Internally 
the grids are refined only by the addition of extra grid points 
so that each grid is a subset of the previous grid. 

B .  Initialization 

SOCS needs an initial guess consisting of an initial grid, 
values of the states and controls on this grid, and values 
of any parameters. Currently users specify either a uniform 
grid with a stated number of points or a grid of their choice. 
They can also either specify the function values directly or 
let SOCS generate them with a linear interpolation between 
user specified values at the endpoints of the grid. Experience 
has shown that uniform grids are often not acceptable. Any 
utility needs to not only determine the size of the grid but 
also the distribution of the grid points and the values of 9, U 

at those grid points. 
This initialization problem has certain aspects in common 

with the problem of initialization of iterative boundary value 
problem (BVP) solvers. This is not surprising since it is 
well known that the necessary conditions for optimal control 
problems are BVP and the numerical solutions of optimal 
control problems often act like the numerical solutions of 
BVP. Also the direct approach used by SOCS is based on 
global collocation like a BVP solver. 

Our approach will take some ideas from the initialization 
of BVP especially monitor functions [l]. However, there are 
important differences between our problem and a standard 
BVP including some differences from the usual numerical 
analysis where one can just assume the grids are fine enough. 
Once a feasible solution is found the remaining grid refine- 
ments are performed by the sophisticated grid refinement 
procedure in SOCS. There will be a number of refinement 
iterations to determine the control and resolve the dynamics. 
Taking too fine an initial grid will lead to unnecessarily 
large NLP problems when trying to find the control. Also, 
the initial guess for the control is often not very good so 
the grid distribution is likely to not be clustered in those 
places needed to determine the control sufficiently accurately. 
Thus in our situation taking too fine an initial grid pays a 
much larger computational burden than with a plain BVP 
solver. Also, practical control problems often take place in 
the presence of a large number of state and control inequality 

0-7803-7924-1/03/$17.00 02003 IEEE 3802 



constraints. Finally we want to make most of the utility as 
transparent to the user as possible. 

Another feature of many industrial grade optimal control 
problems is that often some of the functions are not given in 
the form of explicit functions but come out of interpolation of 
experimental or tabular data. This suggests that, if possible, 
the utility should rely only on function evaluations of the 
right hand side of the differential equation. 

11. MONITOR FUNCTIONS 
The basic idea of a monitor function is as follows. For 

a given initial control law U = w(y,t), one integrates the 
differential equation 

Y' = Y' = f ( Y , U , t ) ,  Y ( t 0 )  = Yo (la) 
s' = 4 ( Y , t ) ,  4 t o )  = 0 (lb) 

over the interval [to,t,] where q 5 ( y , t )  2 6 > 0. Then one 
equidistributes the grid points using s. Thus if there are to 
be N grid points, they are taken to be 

t k  = s - l ( k s ( t f ) / ( N  - I ) ) ,  k 0,.  . . , N - 1 

The arc length monitor function (ALMF) [I]  is 

which equidistributes the initial yk values along the graph of 
the solution. 

The examples that follow show that a simple monitor 
function like (2) is often not best and, in some cases, will fail 
to provide any assistance. We will also see that even when 
(2) works, special care is sometimes needed. Let fi be the 
ith entry of f. We also consider monitor functions of the 
form 

/ n  

(3) 

where 0 < a 5 1 and Pi 2 0,  pi > 0 .  Notice that 
a constant multiple of q5 will produce the same grid as 4. 
The default choice is (2) which is a = 1 , p i  = 1 .  "he user 
adjustable parameter a in (3) appears in other applications 
of monitor functions such as with the use of moving grids 
in solving PDEs [3]. However, we have not seen the ,& 
parameters before. The pi are sometimes very useful [4]. 
Other monitor functions will be discussed later. 

A. Estimating N 
Once the monitor function has been chosen and the for- 

ward integration has determined t f ,  it is necessary to come 
up with N ,  the number of points in the initial grid. We know 
A4, the number of accepted time steps of the integrator, the 
order of the integrator, the desired accuracy of our initial 
guess, and the order of the SOCS discretization used on the 
initial grid. Extensive computational testing has previously 
shown that SOCS usually performs better if initialization 
is done with a lower order integrator like TR and then 

later SOCS can switch to HS. However, Example 2 shows 
that generally the initialization integrator has to be at the 
requested initialization tolerance or tighter. 

Naively assuming that things scale, A4/N is a ratio of the 
estimated stepsize for the integrator to the step size needed 
by the optimizer discretization (OD) to get a certain accuracy. 
Let P be the order of the integrator used in finding the grid, 

= ODE tolerance requested of the integrator, and lo-' 

order of OD. Let L = t o  - t f .  Then ignoring the variability 
- - tinit = tolerance wanted for the initial guess, Q = the 

plausible number of initial grid points is 

N = min(MXGD, max{MNGD, I I , I I O S / Q - R / P } }  (4) 

where MXGD, MNGD are the largest and smallest initial 
grid the user will consider. 

Algorithm I :  (Algorithm for t k ,  y k  and initid grid.) The 
user specijies the monitor function, an initial guess control 
law U = w ( y , t ) ,  an initial condition y ( t 0 )  = yo, and a 
subroutine to evaluate f (y, U, t ) .  In addition the user can 
specifj, a desired tolerance finit = whose default 
is 1 0 - l .  The user can set MXGD and MNGD which lzave 
defaults of MXGD=300 and MNGD = 15. 

Step 1: A variable step, jixed order integrator is used to 
integrate ( I )  from to  to t f  with a requested tolerance of 

The result is s f ,  A4 the number of accepted time steps, 
and also t f  if t f  was a variable. 

Step 2: Let N be given by (4)  and let 
IC-1 
N-1 '  

S k = S f -  k = 1, ..., N 

Step 3: Integrate the system (6) 

dt 
ds  
- 

front 0 to sf. The solution y ( s ) , t ( s )  is output at the s = s k .  
This gives values of ? j k , t k .  Note that this integration need 
not be done by the same integrator used in Step I .  

The only expensive function used is f which is needed 
by SOCS anyway. Other functions are all simple scalar 
functions o f f .  The algorithm assumes the utility provides the 
integrator so that the order constants are known. We will see 
later that to get the intervals accurately, we sometimes need 
to reduce MaxStep. This suggests that perhaps A4 should be 
estimated separately from the generation of the grid. 

B. Computational Examples 
In the computational tests we used ODE45 and ODE23 

from MATLAB as the integrators in Steps 1 and 3. These are 
fixed order variable step Runge-Kutta codes. Unless stated 
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otherwise the integration tolerance was The computed 
initialization grids are much sparser than the ODE45 grids 
and do not have the initial clustering of the ODE45 grid due 
to initial stepsize variation. This shows the importance of 
using the monitorfunction and not just trying to adapt the 
ODE45 grid. 

I )  Example 1:  Fast Transients & Long Interval: Example 
(7) is due to A. V. Rao [8]. It has fast transients very close 
to either end of a long interval. SOCS solves this problem 
already using the default utilities. However, this example 
illustrates several points. TR is the initialization discretization 
so that Q = 2. 

The optimization problem, with t o  = 0, t f  = 10,000 is 

m i n J  U = m i n t ’  x 2  + U* dt  ( 7 4  

2’ = - x 3 + u  (7b) 
~ ( 0 )  = 1, x ( t f )  = 1.5 (7c) 

Part of any initial guess is the initial choice of the controls. 
Of course, the true optimal control is usually not known. 
However, often some rough properties of the control, such 
as when it will be active, are known. It is expected in problem 
(7) that the control will be active near the two ends of the 
interval and not do much for most of the middle portion. 
While a user cannot be expected to know exactly when this 
will occur they might well know that it does occur. This 
suggests that a reasonable choice for an initial U might be 

-1 if O l t < a  
u a ( t )  = 0 if a 5 t < 10000 - a ( 8 )  { 1 if 10000 - a 5 t 5 10000 

We pick a = 400 as a guess. The rationale for doing this 
is that it might provide a better grid just knowing that there 
is more activity early and late. First we note that if we just 
tried using (8), and the SOCS defaults for the state variables 
and the same starting grid of N = 13 that worked fine with 
the defaults, SOCS was unable to get consistency without 
our having to go to a finer initial grid. 

ODE45 had trouble integrating past 9600. Computed val- 
ues looked reasonable up to this time. Our best guess is that 
this was due to an underflow or zero divide in some of the 
heuristics due to an order reduction near 9600 because the 
solution is only one time continuously differentiable there. 
Switching to ODE23 we had no difficulty. This illustrates the 
desirability of having more than one integrator available for 
the user to call in the utility. 

Figure 1 shows the grid gotten using ODE23 and our 
algorithm using arclength, with finit = 10-1 using CY = 
,i3 = 1. The lower grid shows the time steps for ODE23. The 
computed top grid is uniform and essentially the same size 
as the grid we used with the SOCS defaults. 

We can emphasize putting points where something hap- 
pens by weighing the inactive periods less heavily by re- 
ducing CY. Figure 2 shows the result for our preferred value 

,k****- ..-e-. **”- -* .- .* ~ *“.̂ I-p 
2030 40w 6000 am 

Fig. 1. ODE 23 gnd and standard algorithm grid for Example 1 .  

of CY = 
CY = 
discretization requires some points throughout the interval. 

while Figure 3 gives the grid gotten using 
Figure 3 is not desirable either because the 

o . . I - - - - - - . . o m  

Fig. 2. ODE 23 grid and computed grid for a = for Example 1. 

1 :: . .  
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Fig. 3. ODE ‘23 grid and initialization grid with a = 
1 .  

for Example 

While SOCS had no difficulty in solving this problem 
using the current default initialization it is interesting to 
compare what happens if we take the grids coming from 
our initialization utility to what happens with using grids 
from the default initialization option of SOCS. The solution 
of the optimal control problem using the defaults and the 
utility grid took 11 and 12 iterations and had final grids 
of 216 and 205 respectively. However, the CPU time was 
reduced from 26.67 to 14.6. CPU results must always be 
viewed cautiously. Examination of the data suggests that this 
reduction is coming from having to do less work on each 
iteration. Even though the choices of a and the value of 400 
were based on nothing more than the idea something happens 
infrequently and at the ends, and no analysis was done to 
optimize these choices, the result was reduced CPU time 
because of quicker iterations. Also the ODE error, ERRODE, 
was reduced much more quickly at first with the new guess. 

2) Example 2: Singularities and highly nonlinear: Our 
second test problem is known as the Pleiades problem [6] .  It 
consists of seven stars moving in a coordinate plane. They 
each have mass m, and location x,, y,. The only force acting 
on them is gravitational attraction which obeys the inverse 
square law. The stars are considered to be point masses. Let 
T-, ,~  = ( x ,  - xJ)2 + (y, - yJ)2 be the square of the distance 
between stars i and j. The system is 

x f  = 21 (9a) 
gf = W (9b) 
21’ = f ( X , Y )  (9c) 

W f  = d X , Y )  ( 9 4  
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As in [6] we take mi = i, the initial conditions given in [6], 
and the time interval [0, 21. 

There are 28 state variables and the equations are highly 
nonlinear. Numerical integration of the solution shows that 
trajectories for these initial conditions exist on [0,2], but 
there are several near collisions around 1.22, 1.44,'1.62, 1.67, 
where the distance squared gets as low as lov3. At these near 
collisions the acceleration gets high, so that like many space 
missions, there are long periods of relatively slow motion and 
periods of rapid motion. Because the problem is planar the 
singularities can pose extra difficulties. If an approximation 
starts on one side of a star, and the true solution is on the 
other side of the star, then singularities may be encountered 
during grid refinement. Figure 4 shows the trajectories. The 
numbers indicates which star and where the trajectories start. 

\/----- 7 1 

2 31 v 
A 6 
1 3  -2 -1 0 1 2 

Fig. 4. All trajectories for Example 3 on [0, 21. 

There are no control variables. Thus when we pass the 
problem to SOCS with an initial condition there are no 
degrees of freedom. This is an important case that can occur 
when inequality constraints are active. It is also a problem 
that a user of SOCS might want to solve to examine their 
formulation. This is also a good test problem since the usual 
initialization routine in SOCS failed to get a feasible solution 
when started on moderate sized or small grids. The case 
N = 10 was an outlier where SOCS found a feasible solution 
but then could not get feasibility on the second iteration. The 
monitor function enabled us to get a consistent initialization 
but only when we used the higher order HS rather than the 
usually preferable TR. 

Since we knew from simulation that there were near 
collisions we generated test grids using ODE45 with a 
requested ODE tolerance of The integrator took 240 
time steps. We then generated initial grids for different 
tolerances, or equivalently, for different requested values 
of N .  At a requested initialization tolerance of and 
using a fourth order initialization discretization, we got the 
time grid in Figure 5 which turned out to be a good grid 
provided HS was used. With N = 66 and higher SOCS was 
able to find a feasible solution and iterate to convergence 
provided that we used HS as the initialization discretization. 

- 

T 
1 

m . 4  b . 6 y 8  1 1.2 1.4 1.6 1.8 2 

Fig. 5. Successful grid using N = 77 for Example 3. 

TABLE I 
SUCCESSFUL INlTlALIZATION OF EXAMPLE 3 USING HS. 

NFT Iterations Initial CPU Total CPU 
2359.39 

189.55 
924.39 

117 465 593.28 
135 484 70 525.19 

The code was not able to find a feasible solution if the 
default initialization was used or if the TR was used even if 
initialization iterations were allowed to run for a long time. 
Table I provides a summary of the successful runs. All used 
the monitor function grid. NPT is the final grid found by 
SOCS which gave ODETOL of 

C. Alternatbe monitor functions 
It has been observed in the moving grid literature that 

it might be desirable to choose the grid to equidistribute 
the error in the approximation rather than to equidistribute 
along the solution graph. One choice is to try and pick a 
grid to minimize the error of linear interpolation [3]. The 
more difficult case where there are time and spatial grids is 
discussed in [7]. Minimizing the error of linear interpolation 
leads to a different family of monitor functions of the form 

One choice of y is 

We shall refer to (lo), (1 1) as monitor2. Suppose that we have 
the exact solution y of the differential equation and a time 
grid { t t }  that comes from a monitor function. Suppose that 
we have a piecewise linear interpolation to y on this grid. 
The grid has N subintervals. The question is whether the grid 
from (10) leads to a better uniform approximation and what 
the consequences, if any, of this are. The argument in [3] was 
for a specific test problem. By modifying that argument we 
can prove a similar result in an asymptotic sense in Lemmas 
1-3. [The argument in [3] was not asymptotic.] 

Lemnta I :  Suppose that y is a smooth function defined on 
[0, TI. Let 6 be a nonnegative continuous function defined 
on the range of y. Let r = so S(y(t))dt.  Define the monitor 
function 4 by 

T 

(12) Pr d(Y> = T 4- 6(Y) 
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Fig. 6. Grids on iteration 1 with N = 77. 

GRID 
1.0 
2.0 
3.0 

where p > 0 is a parameter. Let A,  = t k + l  - t k .  If (12) is 
used to equidistribute the grid, then Ak 5 
Earlier we had only indirect control of the largest subinterval 
in the grid. The parameter p in (12) gives us direct control 
on the grid spacing since it sets an upper bound on the length 
of the longest grid interval. 

Lemma 2: Let L = s,’ d-dt and p > 0. Sup- 
pose that the modified arc length monitor function q5 = 

+ d- is used to generate a grid on [0, TI. Then 
the LO3 difference between a smooth function y and its linear 
interpolation jj on that grid is IIy - 811 O” 5 @ (1 + p) ,  

Lentnm 3: Suppose that r = so Ily’ll’”dt. Consider q5 = 
+ lly’lll/m with m = 2. Then the LO” difference between 

a smooth function y and its linear interpolation jj on a grid 
from the monitor function is asymptotically Ily-9[lO” I $. 

I )  Computational Comparison: We examined the behav- 
ior of the new monitor function in comparison to that of the 
arclength monitor function on the Pleiades problem. Since 
we already knew that the arclength monitor function worked 
well at NPT =77, we began with NPT=77 and p = 1. The 
new monitor2 function did not work nor did it work at a 
somewhat higher value of NFT. This was not too surprising, 
since with p = 1, we had Ak 5 4/77 so that a quarter of the 
points were forced in the first half of the interval and fewer 
grid points were being used for  the difficult second half. 

The first value of p where we got a feasible solution with 
N = 77 was at p = 1/7 so that Ak 5 + 7 7  = g. The 
grids which found feasibility are given in $ is re  6 .  The top 
grid is with the new monitor function and p = 1/7. The 
bottom grid is from the arc length monitor function. The arc 
length grid is much more focused on the second interval. 
SOCS was allowed to run to convergence for both of these 
grids. Table IIl gives the results using monitor2. Both of these 
initial grids led to convergence in only four iterations. Both 
initial grids gave comparable ERRODE. However, the new 
monitor function produced a final grid that was 31%. 

smaller and a CPU time that was half as much. Whether 
this is an artifact of this problem or a more general phe- 
nomena is unclear but it is clearly worth investigating more 
carefully. It is possible that since the new monitor function is 
more closely linked to the error estimate that it does a better 
job of equidistributing on the early grids. 

2)  Modification of monitor2: The computational results 
suggest that maybe the new monitor function is not really 
distributing the grid according to the ERRODE as well as 
expected since it had to go back and put more points near 
the closest near collisions. To understand why this might 
be the case we return to the proof of Lemma 3 and note 

5. 

T 

2 

NPT NFE NRHS ERRODE CPU 
77 2390 365670 0.35E-03 340 
153 889 271145 0.61E-05 270 
166 116 38396 0.12E-05 50 

TABLE I1 
77 NPT INITIAL ARC LENGTH GRID A N D  RESULTING ITERATION O N  

PLEIADES. 

4.0 I 331 I 291 I 192351 I 0.67E-07 I 220 
1 331 I 3686 I 8657562 I I 878 

that there is the constant M which is a bound for 1,. 
For purposes of discussion we can think of the Pleiades 
problem as being modeled by a scalar differential equation 
y’ = f (y)  = &p. Then If,l = 2+ I,+€ = 21y’13/2. Thus 
if we are using the new monitor function we see that on 
subintervals which include times close to the closest collision 
that the error estimate and A4 become very large. Can we 
modify the monitor function so that we get it second order 
without the large bound? 

Suppose we know that our problem has the additional 
bound that l l f y l l  I ~ ~ ~ y ’ ~ ~ ~ .  Then modifying the proof of 
Lemma 3 gives ~ l y ( t >  - jji(t>ll $& if we take F = Jr Ily’l\?dt and use the monitor function q5 = I l y ’ \ I y  + 
g. Then the previous discussion suggests that for the 
Pleiades problem we should choose a = 

F = I  I l y ’ l l k  q5 = I ly ’ l l~  + T ” (13) 

To test these ideas we again consider the Pleiades problem 
but using the monitor function given by (1  3) which we 
will refer to as monitor3. We considered p = l / k  with 
k = 1 , 3 , 7 , 9 .  It appears to be giving a feasible solution 
of comparable order to that of monitor2 and-the size of the 
final grids is comparable. However, it takes more CPU time 
due to a very expensive second iteration. The cause of this 
is not clear. 

D. Computational Comments 
For sensitive problems the integration in the various 

monitor functions must be done carefully. In fact, at first 
we thought we had a programming error in that when we 
went to generate the t grid the value of t f  was sometimes 
off by 15% on intervals like [0, 31 or [0, 41. This is turn can 
lead to the clustering of grid points near a sensitive spot being 
misplaced. A look at the s values shows why. s was computed 

5 

so that 
T 
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using ODE45 and an Abstol of le-8 on [0 31. The correspond- 
ing graph of t ( s )  on the second integration is shown in Figure 
7. It is giving a value of tf 3.3 instead of 3. Reflecting the 
graph of Figure 7 gives the graph in Figure 8b. This should 
be the same as Figure 8a but it is not. The difficulty occurs 
in two places. The rapid rise in s ( t )  introduces some error. 
But there are also problems in the second integration. The 
long flat middle part encourages the integrator to be overly 
aggressive in maintaining a large stepsize. These difficulties 
were overcome by replacing AbsTol by RelTol and more 
importantly putting in a MaxStep bound of 0.1. This forced 
the integrators to use smaller stepsizes. 

700 - 

Ha- 

m- 

m- 

Mc- 

Fig. 7. Graph of t ( s )  for monitor 3 with k = 9. 

Figure 8a. Figure 8b. 
Fig. 8. Reflected Graphs 

In Figure 9 we set = = 0 and scaled the magnitude 
so that all three monitor functions gave the same value of 
sf. The dashed line is [ly’(l’/2 from monitor2, the solid line 
is the arclength and the line with the small squares on it is 
liy’115/4 from monitor3. 

111. CONCLUSION 
Initialization of direct transcription codes is a major dif- 

ficulty in many complex optimization problem. This paper 
has examined the use of monitor functions with the goal 
of developing initialization utilities. While monitor functions 
can be very helpful, and are sometimes essential, we have 
seen that one monitor function does not suffice. A good ini- 
tialization utility needs to have a family of monitor functions, 

1 

I 
1.5 2 25 3 

Fig. 9. The three measures of 9’. 

the capability of the user to specify an initialization tolerance, 
a family of integrators to generate the grids, and a choice of 
different order initialization discretizations. 

IV. ACKNOWLEDGEMENTS 
Research supported in part by NSF Grants DMS-0 10 I802 

and ECS-O 1 1495.  

V. REFERENCES 

[I]  U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, 
Numerical Solution of Boundary Value Problems for 
Ordinary Diyerential Equations, S I A M ,  Philadelphia, 
1995. 

[2] J. T. Betts, Practical Methods for Optimal Control 
Using Nonlinear Programming, SIAM, Philadelphia, 
2001. 

[3] G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. 
Sloan, On the numerical solution of one-dimensional 
PDEs using adaptive methods based on equidistribu- 
tion, J. Comp. Physics, 167 (2001), 372-392. 

[4] J. T. Betts and S. 0. Erb, Optimal low thrust trajectories 
to the moon, SIAM J. Appl. Dynamical Systems, 2 

[5] J. T. Berts and W. P. Huffman, Sparse Optimal Control 
Sofmare SOCS, Mathematics and Engineering Analysis 
Technical Document MEA-LR-085, Boeing Informa- 
tion and Support Services, July, 1997. 

[6] E. Hairer, S .  P. Norsett, and G. Wanner, Solving 
Ordinary Differential Equations I:  Nonstiff Problems, 
Springer-Verlag, second revised edition, 1993. 

[7] W. Huang, Variational mesh adaptation: isotropy and 
equidisrribution, J. Comp. Physics 174, (2001), 903- 
924. 

[SI A. V. Rao and K. D. Mease, Eigenvector approximate 
dichotomic basis method for solving hyper-sensitive op- 
timal control problems, Optimal Cont. Appl. Methods, 

(2003), 144-170. 

20 (1999), 59-77. 

3807 


