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Spacecraft escape and capture trajectories from or to Halo orbits about the L1 or L2 points using impulsive

maneuvers at periapsis of the manifolds for interplanetary transfers are analyzed in the restricted Hill three-body

problem. This application is motivated by future proposals to place deep-space ports at the Earth andMars L1 or L2

points. First, the feasibility of interplanetary trajectories between Earth Halo orbits and Mars Halo orbits is

investigated. In this study, unstable and stable manifolds associated with the Halo orbits are used to approach the

vicinity of the planet’s surface, and use impulsive maneuvers at periapsis for escape and capture trajectories to and

from Halo orbits. Interplanetary trajectories between Earth and Mars Halo orbits with reasonable �V and flight

time are found. Next, applying these dynamics to an Earth–Mars transportation system using spaceports on Earth

and Mars Halo orbits, the system is evaluated in terms of the spacecraft mass of round-trip transfer. As a result,

transfer between low Earth orbits and low Mars orbits via the planets’ Halo orbits can reduce spacecraft wet mass

compared with a direct round-trip transfer, by leaving propellant for the return.

I. Introduction

T HIS paper investigates the possibility of designing realistic
connections between escape trajectories from Earth Halo orbits

and capture trajectories to a target planet’s Halo orbit for
interplanetary transfer, extending a previous paper which analyzes
capture trajectories to Halo orbits of planets [1]. Moreover, an
application to Earth–Mars transportation systems using spaceports at
Earth and Mars Halo orbits is discussed (see Fig. 1). Assuming
the construction of spaceports as candidate gateways for future
interplanetary transfers at the vicinity ofL1=L2 of the sun–Earth and
sun–target body system, payloads could be transported between
these spaceports by an interplanetary vehicle [1–6]. Moreover, the
transportation system facilitates round-trip exploration and also
leads to a reusable transportation system by supplying the
interplanetary cargo ship with fuel at spaceports.

This paper is organized as follows. Sec. II briefly describes the
dynamics of the Hill three-body problem. Sec. III defines escape and
capture trajectories to and from Halo orbits using impulsive maneu-
ver at periapsis of invariant manifolds and investigates the char-
acteristics of the periapsis of manifolds. Sec. IV discusses the
feasibility of linking interplanetary trajectories with stable/unstable
manifolds of Halo orbits. Sec. V applies our study of escape and

capture trajectories to and from Halo orbits to an Earth–Mars
transportation system. The round-trip Earth–Mars transportation
system using Halo orbits is then evaluated in terms of the required
spacecraft wet mass.

II. Brief Description of Dynamical Model

The physical model considered in this paper is the normalized Hill
model, which can be obtained from the circular restricted three-body
problem by setting the center of the coordinate system to be at the
secondary body and scaling the coordinates, assuming that the dis-
tance of the spacecraft from the center is small compared with the
distance between the primary and secondary bodies. The resulting
equations of motion provide a good description for the motion of a
spacecraft in the vicinity of the L1 and L2 libration points of the
secondary body [7,8]. This normalized Hill model allows us to
eliminate all free parameters from the equations; thus, computations
performed for them can be scaled to any physical system by
multiplying by the unit length and time, which depend only on the
properties of the primary and secondary bodies and theirmutual orbit.

In three-dimensional space, periodic orbits called Halo orbits exist
near the libration points [9–13]. The size of these periodic orbits is
related to their value of the Jacobi constant, which is a conserved
quantity determined from the initial conditions in theHill model. The
halo orbits of L1 and L2 are not located on the line between the
primary and secondary bodies, and are not hidden in the shadow of
the secondary body. Therefore, we assume that a spaceport built on a
Halo orbit is able to avoid communication failures due to eclipses.

A significant additional advantage of using Halo orbits is the
existence of invariant structures associatedwith these periodic orbits,
called the unstable and stable manifolds [14,15]. These unstable
and stable manifolds can be used for optimal escape and capture
trajectories to and from Halo orbits as they depart from or wind onto
Halo orbits with a nearly zero velocity correction [1].

In this paper our numerical computations use the Runge–Kutta–
Fehlberg method with an integration error tolerance� 1:0E � 15.
We compute Halo orbits as follows. First, we assume the initial
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conditions are X0 � �x0; 0; z0; 0; _y0; 0�. The equations of motion are
integrated until the sign of y changes twice, and the time at this point
is defined to be t. If Xt � �x0; 0; z0; 0; _y0; 0�, that orbit is considered
to be a Halo orbit (and t is considered to be the period of the Halo
orbit T at this time). If the orbit does not close on itself at t, we use a
minimization algorithm for nonlinear functions to drive the norm
of the difference Xt � X0 to zero. Moreover, invariant manifolds are
generated by applying an infinitesimal impulse [0.00001 (nondim)]
at different locations along the Halo orbit and integrating in time.

III. Escape and Capture Trajectories to
and from Halo Orbits

A. Assumption of Escape and Capture Trajectories

In this study, we define our escape trajectories as trajectories that
leave from a Halo orbit around the sun–Earth L1=L2 point using
unstable manifolds and approach the Earth with a perigee above the
Earth’s surface. Subsequently, at perigee an impulsive maneuver is
performed to escape from the Earth’s gravitational dominance and
put the spacecraft on an interplanetary trajectory. On the other hand,
we define capture trajectories as trajectories that enter the sphere of
influence of a target body from interplanetary space and have a close
flybywith the target body. Subsequently, at periapsis of the approach
hyperbola an impulsive maneuver is performed to place the space-
craft on a stable manifold that leads to capture to a Halo orbit around
the sun–target bodyL1=L2, as discussed in a previous paper [1]. The
reason why the impulsive maneuvers are performed at periapsis is
because this location is generally the energetically efficient place to
increase the escape energy or to reduce the approach energy. In this
way, the unstable and stable manifolds are used for escape and
capture trajectories to and from Halo orbits.

B. Characteristics of the Periapsis Points of Invariant Manifolds

Here, we investigate the periapsis passage points of unstable and
stable manifolds where an impulse maneuver may be performed
to transfer to and from an interplanetary transfer. The stable and
unstable manifolds propagate backwards/forwards in time from the
Halo orbits.

1. Periapsis Location and Minimum Periapsis Distance

In a previous paper, we investigated periapsis locations of stable
manifolds for capture to the Halo orbits of a target planet [1]. We
verified that the periapsis point locations of the stable manifold vary
with the value of the Jacobi constant (i.e., the size of Halo orbits) and
the phasing along the Halo orbit. We have obtained the relation
between a minimum periapsis distance and the value of the Jacobi
constant, looking across all phases of a Halo orbit. The minimum
periapsis distance means the distance from the origin of the second-
ary body to the periapsis point of the manifold closest to the origin of
the secondary, but above the surface. The minimum periapsis dis-
tance decreases as the value of the Jacobi constant increases, and the
minimum periapsis distance can become smaller than the normalized
mean surface radii of all the planets in the solar system for some
values of the Jacobi constant forHalo orbits. The same characteristics
exist for the periapsis of unstable manifolds, as the periapsis
locations of stable and unstable manifolds of a Halo orbit in the Hill
problem are symmetric about the x-z plane (where the x-axis is
aligned with the primary and secondary bodies and centered at the
secondary, the y-axis corresponds to velocity direction of the

secondary and the z-axis is normal to both x and y). Thus, the stable
and unstable manifold of the periapsis passage points can intersect
the surface of anyof the planets in the solar system (although the sizes
of these Halo orbits are limited). This means that a spacecraft can
depart from a Halo orbit and approach the surface of the planet with
negligible velocity corrections, and wind onto a Halo orbit from a
periapsis passage above the surface of the planet with negligible
velocity correction (after an appropriate maneuver to transfer to the
manifold).

2. Position and Velocity of Periapsis near the Surface of Planets

In this paper the position and velocity of periapsis near the surface
of the Earth and Mars are investigated so that unstable manifolds of
the Earth Halo orbits and stable manifolds ofMars Halo orbits can be
linked. The time of flight (TOF) from a Halo orbit to periapsis can be
different (e.g., a fast transfer ofPf � 1:74 years and a slow transfer of
Ps � 1:86 years). We find fast transfers and slow transfers that have
the same altitude of periapsis (Pf and Ps) for the same size of Halo
orbits, as shown in Figs. 2 and 3. These are obtained by analyzing
different initial positions along a given Halo orbit.

Figures 4 and 5 show the position and the speed at periapsis of
the Earth L1 unstable manifolds near the Earth’s surface
(altitude� 300 km) as a function of the Jacobi constant in the
sun–Earth fixed frame. The x and y components of the position and
velocity of Earth’s L2 unstable manifold are symmetric to the L1
unstable manifolds. According to Fig. 5, since the z component of
velocity increases as the value of the Jacobi constant (i.e., the size of
Halo orbits) increases, we are biased towards selecting small-size
Halo orbits to reduce the connecting�V between the Earth unstable
manifolds and the interplanetary trajectories. At this time, the y
direction component of velocity is positive for a small value of the
Jacobi constant. We wish to orient this direction so it aligns with the
periapsis velocity direction that leads to the desired departure excess
hyperbolic velocity vector. This also relates to the selection of either
the L1 or L2 unstable manifolds to connect with the desired
interplanetary trajectory. We will discuss the details in the next
section.

Fig. 1 Outline of an interplanetary transfer using Halo orbits [1].

Fig. 2 Fast and slow transfers between the planet’s periapsis and the

Halo orbit.
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On the other hand, Figs. 6 and 7 show the position and the velocity
of periapsis of the Mars L2 stable manifolds near the Mars surface
(altitude� 200 km) as a function of the Jacobi constant in the sun–
Mars fixed frame. Similar to the Earth unstablemanifolds, wewish to
select small Halo orbits since the z direction component of velocity
increases as the value of the Jacobi constant increases, as shown in
Fig. 7. Moreover, the y direction component of velocity is negative
with the small Halo orbit.

IV. Analysis of Linking Interplanetary Transfer
Trajectories with the Stable/Unstable Manifolds

In this section, we investigate the applicability of escape and
capture trajectories to and from Halo orbits to interplanetary transfer
missions, using impulsive maneuvers at the periapsis of the mani-
folds. We assume that the interplanetary transfer trajectories are
approximated by a patched conic method. We concentrate our atten-
tion on finding a connection between themanifolds of the Earth Halo
orbits on escape and the manifolds of Mars Halo orbits on capture,
although these results can be applied to other planets of the solar
system as well.

Fig. 3 Periapsis of fast and slow manifold transfers.

Fig. 4 Position of periapsis of Earth L1 unstable manifolds as a

function of the Jacobi constant.

Fig. 5 Velocity of periapsis of Earth L1 unstable manifolds as a

function of the Jacobi constant.

Fig. 6 Position of periapsis of Mars L2 stable manifold as a function of

the Jacobi constant.

Fig. 7 Velocity of periapsis of Mars L2 stable manifold as a function of
the Jacobi constant.
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A. Interplanetary Transfer from Earth to Mars

Figure 8 shows a general elliptic trajectory of the Earth–Mars
interplanetary transfer. The inner and outer circles correspond to
Earth and Mars orbit, respectively. Symbols vE and vM are the Earth
and Mars orbital velocities. At Earth departure a�V is added to the
perigee speed to create a hyperbolic velocity v1;d to escape from the
Earth. Subsequently, the spacecraft arrives at Mars with the arrival
hyperbolic excess velocity v1;a. A constraint for the interplanetary
transfer is the required phase angle �1, which is the difference
between the spacecraft transfer angle and an orbital motion of Mars
during the transfer, as shown in Fig. 8. The orbital motion of Mars
between the departure time at Earth t1 and the arrival time at Mars t2
is given by nm�t2 � t1�, where nm is the mean motion of Mars.

B. Connection Between Interplanetary Trajectories with

Escape Trajectories

The location of perigee of departure hyperbolic trajectories from
the Earth for interplanetary transfers is discussed in this section.
These perigee points would be used to perform escapemaneuvers for
transfer to Mars.

Figure 9 shows periapsis of the departure hyperbola P in the
ecliptic plane. The direction of the departure excess hyperbolic
velocity relative to the orientation of the Earth orbital velocity vector
is expressed by

�d � cos�1
�
vE � v1;d
jvEjjv1;dj

�
(1)

The orientation of periapsis location relative to the direction of v1;d is
represented by

�d � cos�1
�

1

1� �rE�h�jv1;d j
2

�E

�
(2)

where rE and�E are the radius and the gravitational parameter of the
Earth, respectively, andh is perigee altitude. The values of�d depend
on the magnitude of the departure hyperbolic excess velocity if the
perigee altitude is fixed. The value of phase angles �d and�d become
0 and 29.2 deg, respectively, in the case of the Earth–Mars Hohmann
transfer.

Fig. 8 Interplanetary transfer from Earth to Mars.

Fig. 9 Spacecraft departure trajectory for the interplanetary transfer

from Earth to Mars.

Fig. 10 Location of periapsis of theEarthL1 andL2unstablemanifolds
in the ecliptic plane. The center circle represents the Earth.

Fig. 11 Spacecraft approach trajectory for the interplanetary transfer

from Earth to Mars.
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Next, the location and velocity of the periapsis of Earth unstable
manifolds are discussed. As mentioned before, the position and the
velocity of the manifold periapsis depends on the value of the Jacobi
constant. Figure 10 shows an example periapsis location of the Earth
L1 and L2 unstable manifold (UM) for J��1:75 at the altitude
h� 300 km, and each arrow indicates the direction of velocity of the
Earth unstable manifolds at the periapsis when the z component of
velocity is small. Here,Ps is periapsis of the slow escape transfer and
Pf is periapsis of the fast escape transfer. For a general spacecraft
transfer from Earth to Mars, the departure hyperbolic express ve-
locity v1;d is added to the direction of the Earth orbital velocity.
Therefore, the Earth L1 unstable manifolds would be selected to
connect with the interplanetary trajectory, rather than Earth L2
unstable manifolds.

C. Connection Between Interplanetary Trajectories

with Capture Trajectories

Next, the periapsis locations of arrival hyperbolic trajectories after
an interplanetary transfer are investigated. Figure 11 represents a
schematic diagram of the approach trajectory to Mars after the
interplanetary transfer. The periapsis pointP atMars is at an assumed
altitude of h� 200 km in the ecliptic plane. A phase angle �a gives
the orientation of the hyperbolic arrival velocity v1;a with respect to
the direction opposite toMars’s velocity, and�a gives the orientation
of the periapsis point (h� 200 km)with respect to v1;a. These phase
angles �a and �a are expressed as

�a � cos�1
�
vM � v1;a
jvMjjv1;aj

�
(3)

�a � cos�1
�

1

1� �rM�h�jv1;a j
2

�M

�
(4)

where rM and �M are the radius of Mars and the gravitational
parameter of Mars, respectively. For comparison, �a is 0 and �a is
equal to 51.1 deg in the case of the Earth–Mars Hohmann transfer
case.

Now, consider the location and velocity of the periapsis point of
Mars’s stable manifolds. Figure 12 shows an example periapsis
location of the Mars L1 and L2 stable manifold (SM) for J��1:75
at the altitude h� 200 km, where each arrow indicates the velocity
direction of the stable manifolds at periapsis when the z component
of velocity is small. Here, Ps is periapsis of the slow capture transfer
and Pf is periapsis of the fast capture transfer. The direction of the
capture hyperbolic velocity v1;a should be in the opposite direction
of Mars’s velocity in the case of transfers from Earth to Mars. Thus,
the Mars L2 stable manifold is chosen to connect with the
interplanetary trajectory instead of Mars L1 stable manifold.

D. Interplanetary Return from Mars to Earth

For a return mission, Fig. 13 shows a general interplanetary
trajectory from Mars to Earth. The speed of the spacecraft must be
reduced for it to go into a lower-energy transfer at Mars departure.
Thus, the periapsis location of the departure hyperbolic trajectory
from Mars to Earth is opposite to that of the transfer from Earth to
Mars with respect to the origin (Fig. 14). Therefore, the Mars L2
unstable manifold is selected to connect with the interplanetary
trajectory to the Earth. On the other hand, the periapsis of the arrival
hyperbolic trajectory to Earth from Mars is located as in Fig. 15.
Hence, the Earth L1 stable manifold is chosen to connect with the
interplanetary trajectory from Mars.

For these reasons, putting spaceports at Earth L1 Halo orbit and
Mars L2 Halo orbit is effective from a propellant standpoint.

E. Numerical Results in the Coplanar Circular Model Case

Now, a patched conic approximation for the interplanetary transfer
is assumed linking the Earth and Mars manifolds associated with
Halo orbits. We focus our attention on a transfer between Earth and
Mars. However, these results can be applied to other planets of the

Fig. 12 Location of periapsis of the Mars L1 and L2 stable manifold in
the ecliptic plane. The center circle represents Mars.

Fig. 13 Return interplanetary transfer from Mars to Earth.

Fig. 14 Spacecraft departure trajectory for the interplanetary transfer

from Mars to Earth.
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solar system as well. First, a transfer between an Earth L1Halo orbit
and a Mars L2 Halo orbit is discussed using the Hill three-body
model around the Earth and Mars and using coplanar circular orbits
between the Earth and Mars spheres of influence.

When we connect the Halo manifolds with interplanetary
trajectories, assuming impulsive maneuvers near the surface of
planets, the position of periapsis of the Halo manifolds should be
matched with that of periapsis of the hyperbolic trajectories. Further-
more, it is more optimal when the velocity directions of the
interplanetary trajectories and hyperbolic trajectories are aligned at
periapsis. Therefore, we search the appropriate position and velocity

direction of periapsis of hyperbolic trajectories for interplanetary
transfer by varying the interplanetary transfer angle and the flight
time between Earth andMars step by step systematically, and search
the appropriate position and velocity directions of periapsis of Halo
manifolds by varying the size of the Halo orbit methodically. Here,
the required cost for varying the size of theHalo orbits is small (about
40 m=s with nearly 120 days [16]), compared with the cost for an
interplanetary transfer.

Tables 1 and 2 show the cost for a transfer from an Earth L1
Halo orbit to a Mars L2 Halo orbit. The columns called
“�VEPhasingtransfer” and “�VMPhasingtransfer” represent the
above-mentioned maneuvers to adjust the size of Earth and Mars
Halo orbits for the Earth–Mars interplanetary transfer, respectively
(Maneuver Nos. 4 and 9; see Table 9). “�VEHalodepart” and

“�VMHaloinsert . . .” indicate impulsive maneuvers to reduce the
TOF of the Earth Halo escape and Mars Halo capture between
periapsis of manifolds and points on Halo orbit (Nos. 5 and 8). In
general, the TOF is long for the escape and capture on the Halo orbit
using the unstable and stable manifolds because the manifolds orbit
around the L1=L2 point several times. By applying small impulsive
maneuvers at the periapsis of the manifold and at a point on the Halo
orbit, the TOF can be decreased considerably [17]. “�VEEscape” is
performed at perigee of the unstable manifold of the Earth L1 Halo
orbit for the interplanetary transfer (No. 6). “�VMCapture” is used at
periapsis of the stable manifold for the capture toMarsL2Halo orbit
(No. 7). “AyE” and “AyM” indicate y amplitudes of the Earth and
Mars Halo orbits, meaning the optimal Earth andMars Halo sizes for
�V. As a result, interplanetary trajectories between EarthHalo orbits
andMars Halo orbits with reasonable total�V and TOFwere found.
The required �V is less than half that of Alonso and Howell
(5:28 km=s), and the TOF is about a quarter of Alonso and Howell
(2919 days) [18]. This is because impulsive maneuvers for inter-
planetary transfers are assumed to be applied near the surface of
planets in this study, as opposed to being performed in deep space for
theAlonso andHowell study.The samegoes for a return transfer from
Mars L2 Halo orbit to Earth L1 Halo orbit (Tables 3 and 4).

Table 1 Required �V for the transfer from Earth L1 Halo to Mars L2 Halo

Type �VE Phasing
transfer

�VE Halo
depart

�VE
Escape

�VM
Capture

�VM Halo
insert

�VM Phasing
transfer

Total �V

Coplanar circular 0.04 �0:09 0.82 0.91 �0:04 0.04 �1:94
Alonso and Howell [18] 2.83 (Link Earth unstable manifold to arc) 2.45 (Link arc to Mars stable manifold) 5.28

a(�V in km=s)

Table 2 Required TOF for the transfer from Earth L1 Halo to Mars L2 Halo

Type TOF Phasing
transfer

TOF
E:Halo� E:Peri

TOF
E:Peri�M:Peri

TOF
M:Peri�M:Halo

TOF Phasing
transfer

Total TOF AyE AyM

Coplanar circular 120 69 308 117 120 734 0.755 0.552
Alonso and Howell [18] 2919 2919 - -

a(TOF in days)

Table 3 Required �V for the return transfer from Mars L2 Halo to Earth L1 Halo

Type �VE Phasing
transfer

�VE Halo
insert

�VE Capture �VM Escape �VM Halo
depart

�VM Phasing
transfer

Total �V

Coplanar circular 0.04 �0:09 0.82 0.91 �0:04 0.04 �1:94
a(�V in km=s)

Table 4 Required TOF for the return transfer from Mars L2 Halo to Earth L1 Halo

Type TOF Phasing
transfer

TOF
E:Halo� E:Peri

TOF
E:Peri�M:Peri

TOF
M:Peri�M:Halo

TOF Phasing
transfer

Total TOF AyE AyM

Coplanar circular 120 69 308 117 120 734 0.755 0.552

a(TOF in days, Ay in million km)

Fig. 15 Spacecraft arrival trajectory for the interplanetary transfer
from Mars to Earth.
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F. Numerical Results in the Ephemeris Model Case

Next, we consider a transfer between an Earth L1Halo orbit and a
MarsL2Halo orbit in theHill three-bodymodel around the Earth and
Mars and in the real ephemeris model between the Earth and Mars
spheres of influence. In amanner similar to the simplemodel case,we
investigate a solution to connect the Earth and Mars Halo manifolds
with interplanetary trajectories by varying the departure and arrival
dates to and from Earth and Mars systematically, and by varying the
size of the Earth and Mars Halo orbits methodically, assuming
impulsive maneuvers near the surface of planets.

Tables 5–8 show the�V and the TOF for a transfer from an Earth
L1Halo orbit to aMarsL2Halo orbit, and for the return transfer from
aMars L2Halo orbit to an Earth L1Halo orbit using ephemeris data
for a time interval between 2009 and 2015. It was found that EarthL1
Halo and Mars L2 Halo orbits could be connected for a reasonable
�V and TOF as in the previous coplanar circular model case;
however, those values differ by about 10% since the Earth and Mars
orbits are not circular.

V. Application to Earth–Mars Transportation System

A. Application to Earth–Mars Transportation System Using

Spaceports at Halo Orbits

In this section we make an application of our results to an Earth–
Mars transportation system, between lowEarth orbits (LEO) and low
Mars orbits (LMO), using spaceports at Earth and Mars Halo orbits
as discussed above, and compared with a direct transfer system.

Tables 9 and 10 show the required �V and TOF for a transfer
between LEO (altitude� 300 km) and LMO (altitude� 200 km)
via the Earth andMars Halo orbits and for a direct transfer case using

ephemeris data from 2009 to 2016. “�VLEO” and “�VLMO” are
maneuvers for a transfer fromLEO toEarthHalo orbit and fromMars
Halo orbit to LMO, respectively, (Maneuver Nos. 1 and 12).
“�VEHaloinsert” and “�VMHaloinsert” are performed to reduce
TOF between LEO/LMO and Earth/Mars Halo orbit (Nos. 2 and 11),
and “�VEPhasingLEO” and “�VMPhasingLMO” indicate phasing
maneuvers to adjust the size of the Earth and Mars Halo orbits for
transfers betweenLEO/LMOandEarth/MarsHalo orbits (Nos. 3 and
10). It was found that the required total�V for a transfer fromLEO to
LMO via Earth and Mars Halo orbits is slightly greater than that of
the direct transfer, and the TOF is longer. The same could be said for
return transfers from the LMO toLEOviaMars and EarthHalo orbits
as shown in Tables 11 and 12.

Considering the round-trip transfer between LEO and LMO,
phasing maneuvers to adjust the size of Earth and Mars Halo orbits
for return interplanetary transfers (“�VEPhasingtransfer” and
“�VMPhasingtransfer”) are as small as mentioned before [16]. On
the other hand, phasing maneuver to adjust the phase of an LMO for
return interplanetary transfers could be large. From these results, the
system using Halo orbits has no advantage over the direct transfer
with respect to�V and TOF. However, in the next section we show
that the system using Halo orbits is preferred in terms of total mass.

B. Evaluation of the Earth–Mars Transportation System

Using Halo Orbits

The Earth–Mars transportation system using spaceports at Earth
and Mars Halo orbits is evaluated in terms of spacecraft mass for the
round-trip transfer. Table 13 shows the required wet mass for the
round-trip transfer that starts fromLEO in 2013.Here, we assume the
following:

Table 6 Required TOF for the transfer from Earth L1 Halo to Mars L2 Halo

Departure and arrival date TOF Phasing
transfer

TOF
E:Halo� E:Peri

TOF
E:Peri�M:Peri

TOF
M:Peri�M:Halo

TOF Phasing
transfer

Total TOF AyE AyM

Sep: 2009� Oct: 2010 120 62 384 117 120 803 0.743 0.571
Oct: 2011� Oct: 2012 120 69 356 117 120 782 0.729 0.558
Nov: 2013� Oct: 2014 120 69 318 117 120 744 0.739 0.547

a(TOF in days, Ay in million km)

Table 7 Required �V for the return transfer from Mars L2 Halo to Earth L1 Halo

Departure and arrival date �VE Phasing
transfer

�VE Halo
insert

�VE Capture �VM Escape �VM Halo
depart

�VM Phasing
transfer

Total �V

July 2011� July 2012 0.04 0.09 0.93 0.87 0.04 0.04 2.01
Aug: 2013� Aug: 2014 0.04 0.09 0.84 1.11 0.04 0.04 2.16
Oct: 2015� Sep: 2016 0.04 0.09 0.76 1.37 0.04 0.04 2.34

a(�V in km=s)

Table 8 Required TOF for the return transfer from Mars L2 Halo to Earth L1 Halo

Departure and arrival date TOF Phasing
transfer

TOF
E:Halo� E:Peri

TOF
M:Peri� E:Peri

TOF
M:Peri�M:Halo

TOF Phasing
transfer

Total TOF AyE AyM

July 2011� July 2012 120 62 380 117 120 799 0.758 0.578
Aug: 2013� Aug: 2014 120 62 390 117 120 809 0.789 0.584
Oct: 2015� Sep: 2016 120 62 361 117 120 780 0.817 0.576

a(TOF in days, Ay in million km)

Table 5 Required �V for the transfer from Earth L1 Halo to Mars L2 Halo

Departure and arrival date �VE Phasing
transfer

�VE Halo
depart

�VE Escape �VM Capture �VM Halo
insert

�VM Phasing
transfer

Total �V

Sep: 2009� Oct: 2010 0.04 0.09 0.88 0.93 0.04 0.04 2.02
Oct: 2011� Oct: 2012 0.04 0.06 0.69 1.01 0.04 0.04 1.88
Nov: 2013� Oct: 2014 0.04 0.06 0.56 1.10 0.04 0.04 1.84

a(�V in km=s)
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Table 9 Required �V for the transfer from LEO to LMO

Maneuver No.
(No. for direct)

1 2 3 4 5 6 (i) 7 (ii) 8 9 10 11 12

Transfer type
(departure date
from LEO)

�V LEO �VE
Halo
insert

�VE
Phasing
LEO

�VE
Phasing
transfer

�VE
Halo
depart

�VE
Escape

�VM
Capture

�VM
Halo
insert

�VM
Phasing
transfer

�VM
Phasing
LMO

�VM
Halo
depart

�V LMO Total �V

Via Halo (in 2009) 3.15 0.06 0.04 0.04 0.09 0.88 0.93 0.04 0.04 0.04 0.04 1.42 6.79
Direct (in 2009) - - - (0� 5:0) - 3.67 2.03 - (0� 2:0) - - - 5.70 �12:70
Via Halo (in 2011) 3.15 0.06 0.04 0.04 0.06 0.69 1.01 0.04 0.04 0.04 0.04 1.42 6.62
Direct (in 2011) - - - (0� 5:0) - 3.63 2.16 - (0� 2:0) - - - 5.79 �12:79
Via Halo (in 2013) 3.15 0.06 0.04 0.04 0.06 0.56 1.10 0.04 0.04 0.04 0.04 1.42 6.59
Direct (in 2013) - - - (0� 5:0) - 3.64 2.39 - (0� 2:0) - - - 6.03 �13:03
a(�V in km=s)

Table 10 Required TOF for the transfer from LEO to LMO

Transfer type
(departure date from
LEO)

TOF
LEO� E:Halo

TOF
E.Phasing

LEO

TOF
E.Phasing

Transfer

TOF E:Halo�
E:Peri

TOF
E:Peri�M:Peri

TOF
M:Peri�M:Halo

TOF
M.Phasing

transfer

TOF
M.Phasing

LMO

TOF
M:Halo� LMO

Total
TOF

Via Halo (in 2009) 69 120 120 62 384 117 120 120 117 1226
Direct (in 2009) - - - - 322 - - - - 322
Via Halo (in 2011) 69 120 120 69 356 117 120 120 117 1208
Direct (in 2011) - - - - 307 - - - - 307
Via Halo
(in 2013)

69 120 120 69 318 117 120 120 117 1170

Direct (in 2013) - - - - 294 - - - - 294

a(TOF in days)
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Table 11 Required �V for the return transfer from LMO to LEO

Maneuvers No.
(No. for direct)

24 23 22 21 20 19 (iv) 18 (iii) 17 16 15 14 13

Transfer type
(departure date
from LMO)

�V LEO �VE
Halo depart

�VE
Phasing LEO

�VE
Phasing transfer

�VE
Halo insert

�VE
Capture

�VM
Escape

�VM
Halo depart

�VM
Phasing transfer

�VM
Phasing LMO

�VM
Halo insert

�V LMO Total �V

Via Halo (in 2011) 3.15 0.06 0.04 0.04 0.09 0.93 0.87 0.04 0.04 0.04 0.04 1.42 6.76
Direct (in 2011) - - - (0� 5:0) - 3.64 2.07 - (0� 2:0) - - - 5.71 (�12:71)
Via Halo (in 2013) 3.15 0.06 0.04 0.04 0.09 0.84 1.11 0.04 0.04 0.04 0.04 1.42 6.91
Direct (in 2013) - - - (0� 5:0) - 3.79 2.06 - (0� 2:0) - - - 5.85(�12:85)
Via Halo (in 2015) 3.15 0.06 0.04 0.04 0.09 0.76 1.37 0.04 0.04 0.04 0.04 1.42 7.09
Direct (in 2015) - - - (0� 5:0) - 3.98 2.06 - (0� 2:0) - - - 6.04 (�13:04)
a(�V in km=s)

Table 12 Required TOF for the return transfer from LMO to LEO

Transfer type
(departure date
from LMO)

TOF
LEO� E:Halo

TOF
E.Phasing LEO

TOF E.Phasing transfer TOF
E:Halo� E:Peri

TOF
E:Peri�M:Peri

TOF
M:Peri�M:Halo

TOF
M.Phasing transfer

TOF
M.Phasing LMO

TOF
M:Halo� LMO

Total
TOF

Via Halo (in 2011) 69 120 120 62 380 117 120 120 117 1225
Direct (in 2011) - - - - 329 - - - - 329
Via Halo (in 2013) 69 120 120 62 390 117 120 120 117 1235
Direct (in 2013) - - - - 350 - - - - 350
Via Halo (in 2015) 69 120 120 62 361 117 120 120 117 1206
Direct (in 2015) - - - - 229 - - - - 229

a(TOF in days)
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1) Payload mass carried during the round-trip transfer is
normalized to one.

2) The specific impulse of the impulsive spacecraft propulsion unit
is 300 s.

3) Structure and bus mass is four times heavier than the payload
mass.

4) The propellant for the return from an Earth Halo orbit to LEO is
left at a spaceport on an Earth Halo orbit on the way to LMO.

5) The propellant for return from a Mars Halo orbit to an Earth
Halo orbit is left at a spaceport on a Mars Halo orbit on the way to
LMO.

From Table 13, compared with direct transfers between LEO and
LMO, it is shown that the mass of the Earth–Mars transportation
system S=C is reduced by one-half when starting from LEO using
spaceports on Earth and Mars Halo orbits to leave propellant for the
return transfer. The reason is simply because it is not necessary to
carry the entire propellant load for return to LMO. First, the propel-
lant for returning from Earth Halo orbit to LEO [the value is 10.1
(unitless)] is left at the spaceport on an Earth Halo orbit. Also, the
propellant necessary for returning from the Mars Halo orbit to the
Earth Halo orbit (6.1) is left at the spaceport on a Mars Halo orbit.
Consequently, the propellant for the transfer fromLMO toMarsHalo
orbit (3.3) should only be carried to LMO. Therefore, it can be con-
cluded that this round-trip transportation system using spaceports at
the Earth and Mars Halo orbits is very effective. For comparison,
Fig. 16 shows thewet mass (the dry mass and the required propellant
mass) starting fromLEO in the casewhere propellant is left at neither
of the spaceports, the case of leaving propellant only at the Earth
spaceport, the case of leaving propellant at both Earth and Mars
spaceports, and the case of direct transfer. Numbers in the figure
(1� 24 and i� iv) correspond to the maneuver numbers in Tables 9
and 11. It is clear that leaving propellant at both the Earth and Mars
spaceports is the best strategy. In practice, we also have to take into
account the additional cost for the station keeping of the spaceports
and rendezvous maneuvers.

C. Application to Interplanetary Transfers Other than Mars

For transfers to outbound targets such asMars, the Earth spaceport
needs to be located at Earth’sL1Halo orbit. However, for transfers to
inbound targets such as Venus, the Earth spaceport needs to be
located at Earth’s L2 Halo orbits. Heteroclinic orbits such as those
used in the Genesis mission (�V � 37 m=s and TOF � 0:3 years)
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could be used to move the Earth spaceport between L1 Halo orbits
and L2 Halo orbits [19–21].

VI. Conclusions

This paper discusses escape and capture trajectories to and from
Halo orbits using impulsive maneuvers at periapsis of the manifold
for interplanetary transfers, and provides a proposed application of
these transfers to an Earth–Mars round-trip transportation system.

First, the characteristics of periapsis of Halo orbit manifolds near
the surface of planets, where an impulsive maneuver would be
performed for the interplanetary transfer,were investigated.Next, the
links between an interplanetary trajectory and escape/capture
trajectories to and fromHalo orbits were analyzed. The survey found
interplanetary trajectories between EarthL1Halo orbits andMarsL2
Halo orbits with reasonable delta-V and flight time.

Finally, our strategy is applied to an Earth–Mars transportation
system. The required delta-V for the round-trip transfer between the
low Earth orbit and the low Mars orbit via spaceports on Earth and
Mars Halo orbits becomes slightly larger than that of the direct
round-trip transfer. However, an evaluation in terms of the required
spacecraft wet mass for an Earth–Mars transportation system shows
that by placing spaceports in Halo orbits, the wet mass starting from
the low Earth orbit could be reduced by one-half compared with a
direct transfer, by leaving propellant for return at spaceports at the
Earth and Mars Halo orbits on the way to the low Mars orbit.
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