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ABSTRACT

This paper presents a résumé of current studies of
the systematics of low-thrust interplanetary trajectories
employing, generally, an optimized thrust program for power-
limited flight. Primarily, the analysis is two-dimensional,
although several three-dimensional examples are presented
showing the effects of non-coplanar orbit transfer. Accom-
panying each trajectory is its value of foT a? dt. This
quantity is analogous to the concept of characteristic veloc-
ity of chemical rockets and is an index of the vehicle
performance (e.g., propellant requirement) for the particular
mission. Trajectories are presented for the following
mission types: (1) the orbiter or rendezvous mission, and
(2) the flyby mission. The former type possesses terminal
conditions identical with the heliocentric kinematic condi-
tions of the target planet; the latter type encounters the
target planet with no directly specified velocity conditions.
Both types of trajectories have been computed for the fol-
lowing planets and ranges of heliocentric flight time:

Mercury 30 - 360 days
Venus 30 - 360
Mars 30 - 420
Jupiter 180 - 900
Saturn 180 - 900

For Mercury and Mars missions, both circular and the appro-
priate eccentric orbits were adopted. Circular orbits were
assumed for the other planets, including Earth.

A review of the basic concepts appropriate for
power-limited vehicles is presented. Approximate methods
for describing the geocentric and planetocentric spiral
portions of the transfer trajectories are presented as well
as methods for obtaining vehicle performances in these
regions. A sample comparison with digital results is pre-

sented.

vii
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viii

The work completed is of a preliminary nature and
serves as a basis for further studies whose ultimate aim is
to define a standard trajectory for a specified mission and
a thrust program which yields a near optimum payload and
is compatible with the engineering constraints arising from
the vehicle and propulsion system design. The thrust
program employed in these studies in some cases does not
satisfy these engineering constraints. On the other hand,
the results presented here yield upper bounds on payload
capabilities for each wmission considered. Subsequent
studies will utilize alternate thrust programs of a near
optimum nature but more generally compatible with engi-

neering constraints.
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. INTRODUCTION

The primary purpose of this paper is to present a fairly accurate assessment of the upper bound of the pay-
load capabilities of advanced propulsion vehicles for the various interplanetary missions contemplated within the
next decade. Secondly, the nature of advanced propulsion trajectories as they occur both in a planetocentric frame-

work as well as in the heliocentric sphere of influence is described in some detail.

The analysis by which these results were obtained was based upon a two-body inverse-square force field
model, generally of two dimensions. Occasional results based upon a three-dimensional analysis are presented, and

from these the general effects of non-coplanar orbit transfer may be understood.

To fully appreciate the results contained herein it is necessary to have a fair understanding of the fundamen-
tals of the flight analysis of power-limited propulsion systems. With this in mind, a brief summary of these fun-
damentals is presented in Section II. The nature of the thrust program employed for the heliocentric transfer region
is then discussed in some detail; its advantages and shortcomings are considered. The results of the numerical
studies are presented mainly in tabular and graphical form. A particular mission to Jupiter illustrates the manner
by which the payload capabilities of a particular vehicle are obtained. These results extend the original work of
Irving and Blum (Ref. 1) to a larger class of missions and to three-dimensional trajectories. Appendix A treats the

analytical basis of this program.
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II.  FUNDAMENTALS OF POWER-LIMITED PROPULSION SYSTEMS

The attractiveness of advanced propulsion systems stems from their high specific impulse Isp. Table 1

exhibits the range of Isp and acceleration levels of some propulsion systems presently under consideration.

Unlike the chemical system, for which the source of power for propulsion is coptained in the propellants,
the advanced propulsion systems currently under study possess a separate power supply to generate the kinetic
energy of the propellant. This power supply is necessarily limited in its power output and requires the allocation
of a significant percentage of the vehicle weight. These two factors tend to nullify the advantages gained from a
high Isp so that tradeoff studies become necessary to determine whether or not an advanced system should be
utilized at all for a particular mission, and, if utilized, to optimize the overall configuration of the vehicle in order
to obtain maximum payload, or to satisfy some other criterion. These points will become clear in the subsequent

discussion.

From Table 1 it is observed that advanced propulsion systems have low thrust acceleration capabilities.
The basic reason for this lies in the ability of the system to expend power in the exhaust propellant. In spite of its
low lsp, a chemical system typically is capable, through the oxidation of its propellants, of 10% more beam or
exhaust power than an ion rocket because of the high propellant flow rate. The chemical rocket expels large amounts
of propellant in a short time. The advanced system, on the other hand, derives its power from its power supply and
is therefore power-limited. If the advanced motor is to maintain its high lsp, it must necessarily regulate its propel-
lant flow rate in order not to exceed the power rating of the power supply. This may be seen quantitatively in the

following manner. The thrust F from the exhaust is given by

F:Mpglsp:Mpc (1)

and the power in the beam is given by
1 .
p - — it c (2)

where Mp is the mass flow rate of the propellant and ¢ is the exhaust velocity. It is convenient to introduce the

quantity @, the specific mass of the powerplant, as
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a = — (3)

where M, is the mass of the powerplant and its supporting equipment and P is its power rating. This quantity is

quite important in vehicle performance considerations. The relation between beam power and power rating is given by

p = epP (4-)

where € is the efficiency of the propulsion system in the conversion of power from the supply to kinetic power in the

beam. This quantity € for a given engineering design of the propulsion system is, in general, a function of Isp.

The thrust acceleration of the vehicle @ may now be written in the form

F 2¢ My 2
la] = — = 2. = < = (5)
M

where M is the vehicle mass. The lowest value for @ contemplated for powerplant designs in the next decade is
around 4 kg/kw. Using a specific impulse of 3000 sec, which is low for the MHD and ion systems, it follows that
a< 1073 g- Thus, it will be seen that the value of a plays a strong role in the thrust acceleration available to an
advanced propulsion vehicle. Even a reduction in a by a factor of 10, which might be possible in the next decade,

still restricts us to low thrust systems.

A. Rocket Equation for Power-Limited Flight

It will be recalled that the rocket equation for the chemical system is given by

M(e) = MO exp [— {)t i dt] (6)

c
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where M is the initial vehicle mass. Since the advanced propulsion system has a separate power supply and hence
a maximum power level, it is necessary to take cognizance of this constraint in considering its performance. The
above expression does not reflect this constraint. A rocket equation suitable for power-limited systems is obtained

by combining Eq. (1), (2), and (4) with the expression

and integrating over time to obtain

1 a

+ — d{ (7)

1
Me) M, 2P

where it has been assumed that the power rating of the power supply is constant with time. This equation will prove

instrumental in subsequent performance considerations.

In the case of the chemical system it will be seen that maximum vehicle weight relative to initial weight
is attained by choosing a thrust program for a particular mission which minimizes [ (a/c) dt. In the case of the

power-limited system this is attained by minimizing [(a®/¢€) de. This will be discussed in more detail later.

B. Allocation of M;, My, and Mp

In order to emphasize the importance of proper allocation of mass among the various vehicle components,
t
consider the variation of gross vehicle payload and structural mass M; with powerplant mass and J (a2/¢€) dt,
0
where T is the flight time of the mission. In this regard, the treatment in Ref. 1 will be followed closely. If Eq. (3)

is introduced into the rocket equation, it follows that
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where 532 is a dimensionless quantity given by

B2 - & 2 ©)

This quantity depends upon the flight time 7, the mission involved, by which is meant the specification of the
kinematic condition of the vehicle at ¢ = 0 and ¢ = T (and at any other time which might be necessary), the force
field in which the vehicle travels, the kind of thrust program used to accomplish this mission, and, finally, the
engineering design of the system as characterized by the quantities a and €. For the present, B2 = B2(T) will be

considered as a parameter in the allocating process. At any time the vehicle mass is given by

M) = My o+ My + M0 (10)

Mp(t) being the remaining mass of propellant. Now MP(O) will be assumed to be that amount of propellant required to

complete the mission; thus, MP(T) = 0. Placing this into Eq. (8) at ¢ = T there results

M M 1
L - 14 -1 (1)
M M M
0 0 W
+ B2
Mgy
and
M (0) 2
N S (12)
M M
0 W . 22
Mo
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Notice that 52 must be < 1 for positive M; . Assume for the moment that 5 is specified. Then it will be seen that

contingent on this value of 5 there is an optimum allocation of mass to the powerplant which maximizes M;. From

Eq. (11) it may be found that this occurs when

My
| = 31 -25) (13)
0 optimal
from which it follows that
ML )
— =(1- 15 (14)
MO maximum
and
MP(O)
= f3 (15)
MO

Figures 1 and 2 are plots of M; /M vs My /M, for various parametric values of 8. It is conceivable that a
weak relationship exists between 8 and My /M, through a slight dependence of a on My /M, in which case these
curves will be modified somewhat with a resultant shift in the maxima. For most power systems now being considered

a does seem to be fairly independent of My /M, for a given vehicle size.

C. The Minimization of (3

Ultimately, it is seen that the payload capability depends upon the minimization of 8. The quantities
a and €, as has been seen, depend on the state of the art of the engineering design of the system. Obviously, for
optimum performance the quantity € should be as near 1 as possible, particularly for regions requiring high thrust
acceleration. This, unfortunately, is usually not at present the case for most designs; € generally drops to low

values for low Isp. The optimization of the thrust program must in general take into account this variation of €.
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T
The minimization of fo (a2/€) dt for a specified mission will be seen to be a calculus of variations
problem in which this integral is minimized subject to certain constraints, namely, the equations of motion for the
vehicle and the specified kinematic conditions of the vehicle to be fulfilled at the initial, terminal, and any other

points of the trajectory as required.

This minimization procedure is far from being a pedantic exercise characteristic of some optimization
problems; rather, the results of this minimization provide a modus operand: for low thrust trajectories with specified
end conditions. There are an uncountable number of thrust programs which will accomplish the specified mission,
and, of course, the performance of the vehicle can be strongly dependent upon the program utilized. One of the
ultimate goals in the design of trajectories is to isolate those types of thrust programs which yield at least near-
optimum performances but which are also compatible with the engineering constraints arising from the vehicle and

propulsion system design .

The minimization of fOT (a2/€) dt will be seen, therefore, to be dependent on the design of the propulsion
system, i.e., on the manner in which € varies with Isp. If one is interested in the preliminary design and the
systematics of interplanetary power-limited trajectories, then this dependency on € is an undesirable feature and
a hindrance. At this stage of our studies it is desirable, instead, to use thrust programs which are independent of
this design constraint but which bracket or isolate that class of trajectories and vehicle performances which an

actual vehicle would be capable of achieving.

Two such thrust programs which serve this purpose are obtained from the following criteria:

T

I a® dt = minimum, unconstrained thrust vector
0

and alternately,

T
J a® dt = minimum, thrust magnitude = constant or 0
0

The former criterion yields the absolute minimum value that 2 may have and gives rise to the so-called optimum
thrust equations of power-limited flight (cf. Ref. 1, Appendix A). Its justification stems from the fact that over a wide

range of Isp (but excluding the lower range, e.g., [ < 3000 sec), € is essentially constant and may therefore be

sp

removed from the integral. The second criterion yields the constant thrust equations which minimize | a? dt over
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T
those periods where there is propulsion. The resulting value | a® dt is always higher than in the first case, but
0
with the judicious use of a coast period along the trajectory it may be reduced in some cases to about 10% more than
the first case! In the second case, € is also a constant since the thrust is constant over the trajectory (or zero in

the coasting region).

For a particular mission, then, the generation of a pair of trajectories, thrust programs,and vehicle
performances using these two criteria would be extremely valuable in determining mission feasibility, payload
capability, trajectory design, etc. The first phase of this study, using the optimum thrust equations, is nearly
completed, and the results are presented in this paper. The second phase, using the second criterion of constant

thrust, will be reported at a later date.

Now consider the optimum thrust equations in detail. It is shown in Appendix A that the differential

equations satisfying the criterion that

T 4
J(-) a“ dt = minimum

and also Newton’s laws of motion are given by

a+(a-VYVV=0 (16)

and
r+VV-a-=-0 a7

where r is the position vector from an inertial reference and V' is the potential of the force field. The gradient

operator is taken with respect to position coordinates only, and therefore does not operate on a, which is a

function of time. These vector equations admit a first integral in scalar form which may be written as

N | ]
u.r-——2—02+0-vx":(; (18)

This last equation is quite valuable in checking the accuracy of numerical integrations of Eq. (16) and (17).

1See Appendix A for a one-dimensional example comparing these two thrust programs.
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For the purposes of this study, the confinement of these equations to a two-body inverse-square force field
model will suffice. Just as in the case of chemical rocket trajectories, fairly accurate results, particularly in regard
to vehicle performances, may be obtained by considering the overall interplanetary trajectory in segments —a geo-
centric phase, a heliocentric phase, and a planetocentric phase. This procedure is followed here. Even with these

simplifications the resulting equations are sufficiently complex that a numerical solution is required.

The great bulk of the numerical results reported here were obtained with a two-dimensional analysis, but
occasional three-dimensional results are presented in support of this material. It is possible to assess the effects
of the third dimension fairly adequately through these results, although more complete information dealing with the

effects of both the planetary orbit inclinations to the ecliptic and eccentricities will be presented at a later date.
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lll.  INTERPLANETARY VEHICLE PERFORMANCE REQUIREMENTS

The discussion now turns to the heliocentric phase of interplanetary trajectories, which extends between
the spheres of influence of the departure and target planets. Over all of the heliocentric phase it is assumed that
only the Sun’s gravitational field need be considered. Thus, at the initial point of the heliocentric phase, the
vehicle is assumed to have just escaped from the Earth; therefore, it possesses its kinematic conditions about the

Sun.

The two kinds of missions to be considered here are the so-called orbiter and flyby missions. These two
missions require markedly different heliocentric thrust programs. In the case of the orbiter, it is necessary because
of the low thrust to encounter the target planet with its orbital velocity about the Sun in order for the vehicle to be
captured. This, in general, requires a thrust program which is variable in direction or magnitude, or both. The flyby
mission requires only that the vehicle encounter the planet and does not, in general? make any specification about
the terminal velocity. The thrust program employed for this case can be simpler and generally has significantly

lower propellant requirements.

As stated in Section II, the heliocentric trajectories for both of these mission types will be generated by
the optimum thrust program as characterized by Eq. (16) and (17). It will be observed that in three dimensions these
equations constitute a twelfth-order system, and thus 12 constants of motion are required for complete specification.
These are usually given by the six position and velocity coordinates at the initial point of the trajectory and six
other initial quantities whose values are such that the trajectory satisfies the desired terminal conditions. These
six additional quantities are customarily a (0) and a(0). This leads to the *‘two-point boundary value problem’’
which arises whenever analytical solutions to these differential equations are unavailable and values of the variables
of the problem are specified at some point other than the initial point. Since these differential equations are solved
numerically, an iterative procedure is employed to obtain the values of o (0) and a (0), which satisfy the terminal
conditions. Iterative procedures are hindered by the extreme sensitivity of some terminal quantities to changes in

initial conditions.

A reduction of the dimensionality to two improves the problem. Furthermore, by using a polar coordinate
formulation the inherent symmetry of the problem which exists in a central force field aids in reducing the number

of required variables. Both the two- and three-dimensional polar coordinate formulations of Eq. (16), (17), and (18)

2 The desirability of an encounter with a certain duration will, of course, affect the terminal velocity conditions.

10
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have been programmed for numerical solution on an IBM 7090. These formulations are presented in Appendix A. It
will be observed that the heliocentric polar angle ¢ is a cyclical variable and that the constant K, is the resulting
constant of motion. If no specification of the terminal value of ¢ is made, it is shown that Kl becomes zero, which
reduces the number of required initial quantities by one. With K| equal to zero, there is no constraint on 0(T) and

the resulting trajectory for a particular mission is an optimum one with respect to 8(T), since J;) a® dt is an extremal
for this case. For a particular mission, setting K| to zero yields, a one-to-one relation between 0(T) and T, the
heliocentric flight time. Since we are not interested in firing dates in this study and have assumed that the Earth’s

orbit is circular, it is not necessary to place a constraint on 0(7).

The two-dimensional polar equations (Eq. A-28— A-33, Appendix A) with K| equal to zero have been
coupled with an automatic three-variable iterative routine for selecting the appropriate values of a _(0), a4(0), and
‘;r (0) which satisfy the specified terminal conditions for a particular mission and heliocentric flight time. This

*memory”” scheme whereby information concerning the proper values of a_(0), a,(0), and c;r(O)

routine possesses a
for previous flight times and/or terminal conditions, as well as the matrix coefficients of the iterative routine, is
employed to predict the proper values for new flight times and/or terminal conditions. This direct method has been

remarkably successful in efficiently obtaining trajectories over a wide range of missions and flight times, which

satisfy the required terminal values to at least one part in 10° (and in many cases as high as one part in 10).

For the orbiter missions the three required terminal conditions in two dimensions are that at t = T (¢t being
zero at heliocentric injection) the heliocentric radius vector r(T) has a specified value and the two components of
velocity, which may be expressed in terms of &(T), the angular momentum, and }(T), the radial velocity, also have
specified values. For the flyby mission, where, at ¢t = T and r = r(T), a specified value, it is shown in Appendix A

that optimum performance is obtained by having a trajectory with a_(T) = a4(T) = 0.

For these two mission types, families of trajectories have been obtained which extend over a wide range of
heliocentric flight times for the planets Mercury, Venus, Mars, Jupiter, and Saturn. These trajectories all commence

with the Earth’s heliocentric orbital conditions, which are assumed circular and given by the values

r(0) = 1.494 x 1011
H0) = 0
9(0) - 0 (19)

R(0) = 4.4497877 x 1015 m?/sec

n
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The value of GM for the Sun was taken as

GM = 1.3253421 x 1020 3 ‘sec?

Tables 2-11 list the pertinent data for these heliocentric trajectories. The first column is T, the helio-
centric flight time in days. The terminal condition column indicates whether the orbit of the target planet was
assumed circular or eccentric and, if the latter, where on the orbit rendezvous occurred. The quantity s is the
semimajor axis of the planetary orbit about the Sun. For Mercury and Mars, a set of trajectories which rendezvous
at the optimum point on the orbit is included. For these trajectories, the value of 7, the true anomaly at the intercep-
tion point, is given. The other columns are self-explanatory. The units employed are meters, seconds, radians,
and degrees, if specified. The angle /' (0) is the angle between the initial thrust acceleration vector and the radius

vector; thus, a, (0) and a4(0) are defined by

a, (0) = a(0) cos Y (0)
(20)
ag(0) = a(0) sin Y (0)

The quantities a(0), Y (0), and c;r(O) have been included in order to facilitate the duplication of any of the trajec-
tories. If a detailed printout of an overall trajectory is desired, these three quantities, along with the four contained

in Eq. (19), and K set to zero, will be required as the eight initial conditions for the numerical solution of Eq.

(A-28) - (A-33) of Appendix A.

For vehicle payload capabilities the quantity {)T a® dt is required and is listed for each trajectory. This
quantity is also plotted vs T for these missions in Fig. 3—9. Figures 4 and 7 exhibit the effects on fOTaz dt
arising from rendezvousing Mercury and Mars at different points on their eccentric orbits and at the points yielding
the minimum value of .((;7 a? de. Figures 10 and 11 exhibit the variation of 7 with flight time for those trajectories
terminating at the optimum interception point. For the other planets the effects of orbital eccentricity are quite
small; an example of this can be seen in the case of Jupiter (Fig. 8). This is due to the small eccentricities of the
remainder of the planets and, in the case of the major planets, their great distances from the Earth. It will be
observed for the orbiter missions that the assumption of circular end conditions leads, as expected, to somewhat

T
higher values of fO a? dt compared with the elliptical cases.

12
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As an example of the manner in which the initial values of a(0), ¥ (0), and ';r (0) and the quantity w[)T a? dt
vary from one planetary orbit to another, these quantities are plotted (Fig.12—15,respectively) vs r(T), the helio-
centric terminal radius. The trajectories associated with these values all terminate at r(T) with circular conditions
and possess a fixed flight time of 178.5 days. The comparatively linear variation of a (0) and Y/ (0) with r leads to a
fairly efficient search routine with r varying and T fixed. The quantity (;r (0), on the other hand, is quite non-linear

which, because of the sensitivity of some of the terminal quantities to its value, leads to some complications.

One cautionary remark should be made here. The Euler—I.agrange equations as characterized by Eq. (16)
are only necessary conditions that fT a? dt be a minimum; they are not sufficiency conditions. It is possible to
have a stationary value of {)T a2 dt (inflection point) but not a minimum. More important, it is possible to have only
a relative minimum and not the absolute minimum value for a particular mission and flight time. That is to say there
may be a multiplicity of trajectory paths and thrust programs which are all distinctly different, which all satisfy the
Fuler—l.agrange equations and the mission and flight time requirements, but which yield significantly different

T
values of [ a2 dt.
0

As an example, the reader will recall that the geodesic between two points on a cyclinder is a helix between
the points. There are, however, two such arcs; the shorter one subtends a polar angle less than 180 deg while the

other one is greater than 180 deg.

Several “‘relative minimum’’ trajectories have been encountered by the writer, and a particular one is shown
in Table 2 for a 360-day Mercury flyby mission. Fortunately, even in the more subtle cases such as the above example,
the relative minimum trajectories are fairly easy to detect by the radical departures of their variables from the
general trend. Figure 16 exhibits an outstanding example of this effect for a 30-day orbiter flight to Mars. Since K,

is zero, the shorter path yields a local minimum with respect to ¢ (7) and the longer path is a local maximum.

By a combination of continuity methods using curves such as those shown in Fig. 12— 15 and the possession
of one or more sure ‘‘absolute minimum’’ trajectories it has been concluded that the trajectories presented in Tables

2—11 are ‘“absolute minimum’’ trajectories.

Unlike chemical vehicle trajectories the effect of departure from coplanarity of the planetary orbits on pay-
load capabilities is very small for advanced propulsion trajectories. This is due to the small planetary inclinations
and the relative efficiency with which the advanced system is capable of generating these required inclinations of
the trajectory at the terminal point. The planet Mercury shows the greatest effect, as would be expected, because

of its 7-deg inclination to the ecliptic.
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At present, the three-dimensional iterative routine is incomplete and only isolated trajectories have been
obtained which satisfy the three-dimensional terminal requirements of certain missions. A sample of these trajec-
tories is presented in Table 12 for Mercury, Venus, and Mars, for which the effects of the third dimension are most
noticeable. It will be observed that the values for a,(0), @ 4(0) and a-r (0) are almost insignificantly changed by the
introduction of the third dimension. This is because the small inclinations involved lead to an almost complete
uncoupling of the equations describing the variables in the third dimension from those equations for two dimensions

(see Appendix A). It will be observed that the effect of eccentricity is much more pronounced than inclination on

T
I a? dt.
0

Figures 17—19 and 20 — 22 are presented as examples of three-dimensional heliocentric trajectories for
178-day Mars and 120-day Venus orbiter missions, respectively. Figures 17 and 20 are ecliptic projections of the
trajectories for these two cases. The arrows on the trajectories indicate the projected direction and magnitude of
thrust acceleration. Figures 18 and 21 show the variation of ¢, the celestial latitude of the vehicle, while Fig. 19
and 22 exhibit the thrust acceleration programs. Figure 23 shows an example of a two-dimensional 510-day Jupiter

orbiter and flyby mission.

14
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IY. PLANETOCENTRIC SPIRAL TRAJECTORIES

The planetocentric phases of an interplanetary trajectory —the spiral trajectories —are now considered. This
phase is generally defined as including that portion of the trajectory within the sphere of influence of the planet.
For our purposes it will be defined as the region containing the commencement from (or termination in, if a capture
spiral) a satellite orbit to the point of escape energy. For the range of thrust acceleration now being considered
(1073-107%¢) the escape point lies at a fairly large distance from the planet (Fig. 24) and the transition region
between planetocentric and heliocentric phases is transversed quite rapidly. These approximations affect vehicle

performance considerations almost insignificantly.

From our previous considerations it follows that the planetocentric portion of interplanetary trajectories,
except near escape, are low thrust trajectories for advanced propulsion vehicles. An advanced propulsion vehicle
which commences from a satellite orbit generates an outward spiraling trajectory executing many revolutions about
the planet before escaping. Figure 24 illustrates such a trajectory for a vehicle possessing an initial acceleration
to local gravity ratio of 5 x 10™ and a specific impulse of 2624 sec. This vehicle commences from an altitude of
200 statute miles (r = 6.701 x 106m) above the Earth and employs a tangential thrust program. Because the inner

spirals are grouped so closely, only the last few turns are shown in detail.

This trajectory was obtained from the numerical integration of Newton’s equations for a two-body inverse-
square force field model. These equations have been programmed for numerical solution with various thrust programs

and may be expressed generally as

r+ — —a =20 (21)
3
and

a = afr, .I', t) (22)

where i is GM of the central body and af(r, r, t) is a function reflecting the specified thrust program. Equation (22),

in effect, replaces Eq. (16) for this phase.
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One may easily employ an optimum thrust program, but experience has shown that the improvement in vehicle
performance over a straightforward tangential or circumferential constant thrust program is very slight. This is due
to the low thrust acceleration to local gravity ratio which exists over all but the last turn of the spiral trajectory.

(In the heliocentric phase where this ratio is nearer to 1 and where specified terminal conditions require marked
departures from a gravity-turn thrust program, the superiority of the optimum thrust program is quite significant.)

The low thrust acceleration produces only a small perturbation in the vehicle motion about the planet. It is
possible by a method of variation of parameters to produce analytic and semiempirical expressions which accurately
describe the motion of the vehicle over all the planetocentric trajectory with the exception of the last one or two
turns. In Appendix B, several of these expressions are derived and a comparison is made with results obtained with
the digital computer. The expressions are extremely accurate for determining vehicle propellant requirements, time

to escape, etc.

In this section these formulae are used to show how the vehicle propellant requirement for the planetocentric
phase may be determined. From Appendix B it is found that the semimajor axis of the osculating ellipse describing
the instantaneous motion of the vehicle under constant tangential thrust (i.e., constant propellant flow rate and ISP)

may be expressed as a function of time by the relation

o
s - (23)

1 2
1+ — In (1—-7/7’)}

v

where s is the semimajor axis, ry is the initial radius of the satellite orbit (assumed circular), v is a dimensionless

parameter related to specific impulse by the expression

L. L & (24)

Isp ] o

g being the surface gravity of the Karth, and 7 is a dimensionless time variable measured from satellite orbit takeoff

and is related to actual time through the relation

/e (25)
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where a; is the initial thrust acceleration. Over all but the last couple of turns the semimajor axis s and the radial
distance r, are essentially the same for an initially circular satellite orbit (see Appendix B). For small values of v

which is, in effect, large values of [sp, and therefore an essentially constant vehicle weight with time, Eq. (23)

simplifies to

"o
) (26)

which was obtained by Tsien (Ref. 2). When s reaches infinity the vehicle has attained the velocity of escape, and if

v is negligible it follows from Eq. (25) and (26) that this occurs at

¥ (ay)
T o - (v = 0) (27)

ag o

As explained in Appendix B, 7(00) is a correction term, near 1, which is exhibited in Fig. 25. It was designed to
give the exact escape time when v = 0. It ranges from 1 for very low thrust to /2 = 1 for infinite thrust and is, in

effect, the velocity increment required to escape with a tangential thrust program, expressed as a percentage of the

initial circular velocity.

The effect of a {finite Isp is to reduce the vehicle weight with time, and thus escape occurs sooner. From

Eq. (23) and (25) this is given by

T - (28)

where the correction term 7y (aj) has been included. This expression yields a very accurate determination of escape

time. The factor (1 ~ e~ ¥)/v has been plotted in Fig. 26. For constant thrust acceleration, Eq. (27) holds.

These expressions are applicable to escaping trajectories. Capture trajectories are equivalent to escaping
spirals, with the vehicle weight increasing instead of decreasing; therefore, by changing ' to a negative number and

measuring time positive from the terminal satellite orbit, these apply also to capture trajectories.

17
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For the thrust program employed here, the propellant consumed in attaining the velocity of escape is given

by
Mp = Mp T (29)
The propellant flow rate is given by
. LAE
M, - (30)
Isp g
from which it follows, using Eq. (24) and (28),
Mp = My ¥ (g1~ e ") (31)
where M, is the initial vehicle mass.
For capture orbits, Eq. (31) becomes
M= Myt (32)

where M, and a, are evaluated at the terminal satellite orbit of the capture spiral.

T
It also is convenient to have fO a? dt for this case. For constant thrust
f aldt = — (33)
0

which, upon employing Eq. (24) and (28), becomes

ag I g ¥lag)(l-e™™)
fOTaZ.u: 0 sp 0 (34)

1 —’y(ao)(l —-e ")
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For capture spirals, Eq. (34) becomes

ay I, 87 (a )(l—elyl)
fOTazdt = 0 <P 0 (35)

1_7(,10)(1_81”1)

where a, is acceleration at termination in the satellite orbit, For constant thrust acceleration, Eq. (33) becomes

T
J(; a2 dt = ay ¥ (ag) i (36)

The trajectory exhibited in Fig. 24 has a lsp of 2624 sec and a value v= 0.300. The tabulation below gives

a comparison between Eq. (28), (31), and (34) and their exact values.

Analytic Exact
Tx1077S 1.3992 1.4067
M, /M, 0.24156 0.24286
T o 2,3
| a? dt, m*/sec 3.6344 3.6603
0

The value of v is rather high for most interplanetary vehicle systems now being considered but was chosen here to

illustrate the general validity of these expressions.

It follows from Eq. (31) or (34) and (24) that to the first order the vehicle propellant requirements for the
planetocentric phases are proportional, for a given Isp, to the satellite orbital velocity \/;/_ro_ Table 13 lists the
equatorial radii R and the orbital velocities of various altitude orbits above the equatorial surface of the planets.
The large propellant requirement for spiralling around the major planets can be lessened considerably by termination

in a highly elliptical satellite orbit with a low perigee distance.
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V.  NUMERICAL EXAMPLE OF VEHICLE PAYLOAD CAPABILITIES

Consider a mission to Jupiter employing an advanced propulsion vehicle coupled with a chemical booster
capable of placing 8,000 kg of useful payload into a 200-mile orbit about the larth. The specific mass of the
powerplant is taken as a = 4 kg/kw. As a first iteration it is assumed that the powerplant constitutes % of the total
vehicle mass, which leads to a powerplant mass of 2000 kg and a power rating of 500 kw. For the geocentric phase,
the escape time is nearly inversely proportional to the thrust acceleration. Thus, a thrust as high as that which is
compatible with propellant consumption and the engineering design of the propulsion system should be used to
minimize the escape time. For this case, assume an Isp of 5000 sec at an electrical power conversion efficiency

of € = 0.5. This leads to an initial acceleration of

a, = 1.28 x 1073 m/secz

and a propellant flow rate of
Mp - 2.08x107* kg/sec

From Eq. (24) one finds v to be

v = 0.157

From Eq. (28) it will be found that the escape time for this trajectory

T. = 5.35 x 10° = 62 days

e

T
The value of | © a? dt and the propellant consumption for the geocentric phase are
0

T
f € o2dt = 10.1 m*/sec®
0

and
Mp = MpTe = 1,110 kg

leaving a vehicle mass at heliocentric injection of 6890 kg.
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For the heliocentric phase, a flight time of Ty, = 510 days is selected. For the orbiter mission,
T o 2/ 03 whi T o 2/, 0.3
7 a% dt = 39.3 m?/sec® while for the flyby, [~ a? dt = 9.45 m?/sec®. Figure 23 shows these two trajectories.
0 0
The thrust acceleration at heliocentric injection for the orbiter for optimum performance is 1.6 x 1073 m/sec?; this
is comparable with the geocentric acceleration which at geocentric escape is 1.5 x 1073 m/sec. The initial flyby
acceleration is only 6.8 x 107 m/sec?; furthermore, the thrust acceleration over the remainder of the heliocentric

phase never exceeds the initial level in the orbiter trajectory. IFor the heliocentric phase, assuming an average

efficiency of € = 0.75, one finds the vehicle mass at the heliocentric terminal point to be

M(T,_, + Ty) = 5060 kg, orbiter

M(T, + Tp)

6350 kg, flyby

A comparison is made between these mission capabilities and those of a chemical vehicle commencing from
a 200-mile geocentric orbit. Assume that the vehicle travels on a heliocentric transfer ellipse to Jupiter in 570 days.
Generating this transfer ellipse requires a velocity increment in a 200-mile geocentric orbit of 7.0 km/sec. If one
assumes no staging and an ]sp of 400 sec for this system, the propellant required is 83% of the initial weight,
Further, for the orbiter mission, a second velocity increment to effect capture by Jupiter must be added. The mag-
nitude of this increment must be at least sufficient to cancel the relative hyperbolic velocity of 2 km/sec. However,
because of Jupiter’s large mass it is particularly advantageous to apply this retro maneuver near perigee of the
incoming hyperbola where only a small fraction of this 2 km/sec increment is required to obtain a highly elliptic
orbit about Jupiter. If 50% of the remaining vehicle weight after departure from the Earth-satellite orbit is assumed
to be useful gross payload containing the required retro motor for capture, then after the retro maneuver approximately
8% of the initial vehicle remains as gross payload, structures,and the empty propulsion system. Table 14 gives a
comparison of final vehicle weight percentages for the chemical and advanced systems. In the advanced system, the
final vehicle weight minus powerplant for the flyby mission may be increased slightly by choosing a powerplant of
approximately 15% the initial vehicle weight since 3 is 0.19 for this mission. For the orbiter, without considering
the capture spiral, 8 is about 0.4, from which it follows from Eq. 13 that the initial choice of MW/M0 is about

optimum,

The high mass of Jupiter creates a prohibitive propellant requirement in the attainment of a circular
satellite orbit near its surface. It may be shown for the above system that the final vehicle weight minus powerplant
reduces to 25% of the initial weight if it is placed in an eccentric orbit with a perigee distance and a semimajor

axis of 1 and 16 Jupiter radii, respectively. This orbit has a period of about 6 days.
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Table 1. Specific impulse and thrust acceleration of several propulsion systems

Propulsion type Isp, sec Thrust acceleration, g
Chemical 200 — 500 0.01 - 10
Plasma arc heating 400 - 2000 1074 - 1072
Plasma (MHD) 1500 — 25,000 10° - 107
lon 3000 - 60,000 1076 — 1074
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Table 2. Mercury orbiter trajectories
7,day | Terminal condition “C)T;z ol 0T vad | a(0), msec? | y(0), rad |  (0), m/sec?
m</sec r
circular
30 5.1443 x 103 1.2326 7.9534 %1072  3.3512 5.5950 x 1078
45 1.3815 1.7661 3.4252 3.4811 1.4751
60 5.2795 x 102 2.2744 1.8558 3.6116 5.4149 x 107°
75 2.4754 2.7702 1.1385 3.7363 2.3602
90 1.3424 3.2590 | 7.5422x 1073 |  3.8522 1.1376 x 1077
105 8.2066 x 10! 3.7434 5.2617 3.9581 5.8548 x 10710
120 5.5768 4.2247 3.8112 4.0532 3.1739
135 4.1584 4.7041 2.8437 4.1364 1.8182
150 3.3496 5.1834 2.1781 4.2062 1.1207
165 2.8637 5.6654 1.7125 4.2608 7.6203 x 107"
180 2.5552 6.1553 1.3874 4.2980 5.7949
195 2.3458 6.6625 1.1672 4.3164 4.8652
210 2.1907 7.2054 1.0328 4.3170 4.3565
240 1.9346 8.6056 1.0155 4.2950 3.6407
270 1.6320 10.361 1.0726 x 1073 | 4.3436 2.3891
300 1.3851 11.474 8.6775x 1074 |  4.4098 1.4285
330 1.2308 12.454 6.8078 4.4520 1.1348
360 1.1321 13.490 5.6565 4.4580 1.1087
375 1.0926 x 10 14.088 5.4317 4.4485 1.0760 x 1071}
elliptical
30 r=s, r=- 4.1556 x 103 1.0767 7.2944 x 1072 3.3774 5.0184 x 1078
30 r=s(l+e/2,r=—| 3.9756 0.98589 | 7.0136 3.3748 4.9358
30 apogee 4.4285 0.97316 | 7.1245 3.3557 5.2326
60 r=s,r=- 4.0395 x 102 1.9261 1.6107 3.6490 4.6509 x 1077
60 r=s(1+e/2),r=-| 4.3340 1.8373 1.6121 3.6267 4.8887
60 apogee 5.7792 1.9489 1.7955 3.5752 5.7563
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Table 2 (Cont'd)

T
T, day | Terminal condition fo 2“2 ’“3 6(T), rad | a(0), m/secZ | (0), rad a_(0), m/sec3
mZ/sec r
elliptical
90 r=s, r=- 1.1466 x 102 2.7258 6.3565 x 1073 3.8785 9.9451 x 10710
90 r=s(l+e/2),r==| 1.3377 2.6767 6.6891 3.8356 1.1271
9 apogee 1.8078 2.9978 8.1548 3.7799 1.4133 x 107°
120 res,r=- 5.8989 x 10! 3.5275 3.2424 x 1073 4.0423 3.1757 x 10710
120 r=s(1+e/2),r=~| 68944 3.5633 3.6521 3.9871 3.8185
120 apogee 7.7433 4.2848 4.8390 3.9681 4.6647
150 res, r=- 4.1901 4.3927 2.0348 4.1304 1.4526
150 r=s(l+e/2),r=~| 4.5541 4.6375 2.5289 4.0864 1.7361
150 apogee 3.6517 5.9477 3.0177 4.1847 1.4522
165° apogee 2.7795 6.4336 2.1868 x 1073 4.2927 7.0893 x 10711
165° | r=s(l+e/2),r=~ | 3.7372 6.5515 2.9866 x 1073 4.1688 1.4913 x 10710
165° r=s,r=- 3.7249 4.9065 1.7858 x 1073 4.1485 11123 x 10710
180 r=s,r=- 3.3188 5.7332 1.8656 4.1560 9.4576 x 107!
180 apogee 2.3244 6.8247 1.5782 4.3908 3.7915
195 apogee 2.0867 7.1783 1.1434 4.4759 2.6754
210 apogee 1.9611 7.5136 8.3537 x 1074 4.5404 2.5913
240 apogee 1.8586 8.1664 4.7849 4.5538 3.2848
270 apogee 1.8113 x 10! 8.8606 3.7544 4.3564 3.6247
optimum rendezvous
7°, true anomaly
45 ~110.498 1.0626 x 107 | 1.4774 3.0191x 1072 | 35129 | 1.2889x 1078
60 - 81.593 398.96 2.0331 1.6348 3.6594 4.5765 x 1077
75 - 51.668 182.69 2.6376 9.9394 x 1073 3.8040 1.8871 x 1077
90 - 22.628 97.481 3.2643 6.4745 3.9415 | 8.4226x107'0
105 5.457 59.754 3.8932 4.4170 4.0706 3.9184 x 10710
% See Table 12 for o comparison with three-dimensional trajectories.
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Table 2. (Cont'd)

T
T,day | Terminal condition o a* d 6(T), rad | a(0), m/sec?| y(0), rad | g (0), m/sec3
m2/sec?
optimim rendezvous
7° true anomaly
120 33.127 41.622 4.5122 3.1211 x 1073 4.1908 1.8705 x 10710
135 60.661 32.309 51097 | 2.2768 4.3005 9.2809 x 10~ 1!
150 87.942 27.200 5.6722 1.7200 4.3955 5.0651 x 107!
165 114.588 24.172 6.1889 1.3565 4.4687 3.3247 x 10711
180 140.268 22.197 6.6612 1.1275 4.5120 2.7188 x 107!
210 ~169.009 19.565 7.5746 9.3411 x 1074 4.5079 2.5332 x 10711
240 - 96.394 17.216 8.8723 1.0022 x 1073 4.4681 1.9506 x 10711
270 8.744 14.613 10.724 9.4142 x 1074 4.5377 6.0116 x 10712
300 83.343 12.790 12.077 7.3667 4.6319 1.3158 x 10712
330 141.017 11.649 13.079 6.0243 4.6815 1.9218 x 10712
360 ~168.005 10.811 13.970 5.4564 4.6696 3.1189 x 10712
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Table 3.  Venus orbiter trajectories
T, day | Terminal condition foT;2 d’; 0(T), rad | a(0), m/secZ | (0), rad | a (0), m/sec?
m</sec r
circular

30 1.1359 x 103 0.67583 3.6681 x 1072 3.3486 2.6874 x 1078
45 3.2250 x 102 1.0100 1.6162 3.4559 7.3986 x 1077
60 1.2866 x 102 1.3417 8.9760 x 1073 3.5643 2.8124 x 1077

75 6.1653 x 10! 1.6712 5.6470 3.6714 1.2557 x 1077
90 3.3158 x 10! 1.9993 3.8374 3.7754 6.1129 x 10710
105 1.9343 x 10! 2.3265 2.7460 3.8750 3.1060 x 10710
120° 1.2020 x 10! 2.6531 2.0382 3.9693 1.5950 x 10710
135 7.8802 2.9792 1.5543 4.0581 8.0188 x 10710
150 5.4249 3.3050 1.2099 x 1073 4.1414 3.7744 x 10710
165 3.9137 3.6306 9.5730 x 1074 4.2189 1.5133 x 107!
180 2.9556 3.9561 7.6757 4.2908 3.5081 x 10712
195 2.3330 4.2813 6.2243 4.3567  |-1.9478 x 10712
210 1.9196 4.6065 5.0984 4.4162  |-3.9486 x 10712
225 1.6397 4.9316 4.2157 4.4688  |-4.0625x 10712
240 1.4468 5.2567 3.5197 45135  |-3.2119x 10712
255 1.3109 5.5819 2.9690 4.5493  |-1.9424 x 10712
270 1.2132 5.9073 2.5344 4.5749  |-5.7855x 10713
285 1.141 6.2332 2.1947 4.5894  |+6.8855x 10713
300 1.0861 6.5600 1.9343 4.5920 1.7489 x 10712
315 1.0425 6.8881 1.7418 4.5835 2.5427 x 10712
330 1.0063 7.2181 1.6083 4.5659 3.0418 x 10712
345 0.97467 7.5508 1.5261 4.5431 3.2411 x 10712
360 0.94537 7.8873 1.4875 4.5198 3.1526 x 10712
375 0.91686 8.2282 1.4841 x 1074 4.5007 2.8050 x 10712

%See Table 12 for a comparison with three-dimensional trajectories.
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Table 4.  Mars orbiter trajectories
. T
T, day | Terminal condition | -, ;2 dt; (T), rad | a(0), m/sec? | ¢ (0), rad | a (0), m/sec?
m</sec
circular

30 41718 10% | 0.39477 6.9775x 1072 | 0.22375 |-5.1382x 1078
60 502.98 0.7849 1.7324 0.42998 [ -5.5501 x 1077

90 140.97 1.1688 7.6064 x 1073 0.61122 |-1.2817x107°
119.5 1.5406 4.2436 0.76615 | -3.7573x 10710
149.8 1.9169 2.6452 0.90520 | -1.0044 x 10710
179.64 14.013 2.2908 1.7807 1.0288 ~8.6363 x 10712
210 8.0601 2.6666 1.2582 1.1410 +2.1806 x 107!
240 5.0101 3.0270 9.2534 1.2414 2.9144 x 107!
270.046 3.3165 3.4074 6.9847 x 107 1.3328 2.7855 x 1071}

elliptical

30 r=s,r=- 3.8657 x 103 |  0.39703 6.8030 x 1072 0.22726 | -4.9396 x 1078
30 r=s,r=- 4.4902 0.39143 7.1512 0.21946 | -5.3356

30 r=s(l—e/2)r=+| 2.8847 0.41071 5.8764 0.22990 | -4.2674

30 r=s(l-e/2),r=-| 3.3756 0.40506 6.1927 0.22128 | -4.6268

30 perigee 2.2238 0.42376 5.0843 x 1072 0.22928 | -3.7514

60 r=s, r=+ 429.86 0.79475 1.6442 0.44358 | -5.0800 x 107°

60 r=s, r=- 582.00 0.77349 1.8198 0.41658 | -6.0132

60 r=s(l-e/2),r =+ |321.79 0.82200 1.4199 0.44796 | —4.3995

60 r=s(1-e/2),r= - |441.54 0.80067 1.5792 0.41858 | -5.2437

60 perigee 273.14 0.84252 1.2660 0.4373 - 4.0969

90 r=s, 1=+ 110.53 1.1907 7.0092 x 1073 0.63777 | -1.0970

90 r=s(1-e/2),r =+ | 83.617 1.2312 6.0563 0.6420 -9.595x 10710

90 perigee 79.148 1.2545 5.5881 0.61622 | -9.7020
120 r=s, 1=+ 39.753 1.5852 3.7473 0.80826 | -2.8431
120 r=s(1-e/2),r =+ | 30.703 1.6385 3.2442 0.81038 | -2.5606
120 perigee 32.689 1.6605 3.1144 0.76862 |-2.9318
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Table 4 (Cont'd)

T,day | Terminal condition foT,;z dt; 0(T), rad | a(0), m/sec | (0), rad | a (0), m/secd
m2/sec "
elliptical

150 res, r=+ 17.213 1.9798 2.2573x 1073 0.95087 | -6.1769 x 1071}
150 r=s(1-e/2),r=+ | 13.757 2.0451 1.9626 0.95623 | -6.1836 x 107!
150 perigee 16.476 2.0615 1.9719 0.90009 | -8.9248 x 1071!
180 r=s, r=+ 8.4757 2.3758 1.0114 1.2149 -7.8094 x 10712
180 r=s(1-e/2),r=+ 7.1127 2.4518 1.2800 1.0831 -2.6871 x 10712
178.5° perigee 9.7146 2.4384 1.2776 1.0098 -1.9885x 107!
180 perigee 9.4702 2.4584 1.3537 1.0153 -1.7727 x 10711
210 r=s,r=+ 4.6527 2.7742 9.9092 x 1074 1.2086 2.1202 x 10711
210 r=s(1-e/2),r=+ 4.1483 2.8593 8.7918 1.1933 1.3838 x 107!
210 perigee 5.9896 2.8511 9.8301 1.1174 8.4734 x 10712
240 r=s, 1=+ 2.8394 3.1756 6.9459 1.3134 2.1684 x 107"
240 perigee 4.0801 3.2396 7.4430 1.2086 1.7276 x 107!
270 r=s,r =1 1.9274 3.5800 4.9939 1.4041 1.7139 x 107!
270 r=s(1-e/2),r =+ 1.9354 3.6757 4.6400 1.3674 1.3629 x 107!
270 perigee 2.9511 3.6234 5.8223 1.2904 1.9016 x 107!
300 r=s,r=+ 1.4463 3.9872 3.6730 1.4787 1.1747 x 107!
300 r=s(i-e/2),r=+ 1.5069 4.0832 3.5384 1.4306 1.0265 x 107!
300 perigee 2.2425 4.0020 4.6761 1.3641 1.7884 x 1071
330 r=s, 1=+ 1.1803 4.3963 2.7686 1.5336 7.0280 x 10712
330 r=s(1-e/2),r=+ 1.2502 4.4889 2.7888 1.4773 7.2193 x 10712
330 perigee 1.7759 4.3752 3.8377 1.4304 1.5672 x 107!
360 r=s,r=+ 1.0252 4.8061 2.1522 1.4648 3.4544 x 10712
360 r=s(l-e/2),r=+ 1.0855 4.8912 2.2768 1.5082 4.8795 x 10712
360 perigee 1.4561 4.7428 3.2063 1.4903 1.3154 x 10711
390 r=s, 1=+ 0.92797 5.2147 1.7429 1.5703 1.0684 < 10712

%See Table 12 for a comparison with three-dimensional trajectory.

30



JPL Technical Report No. 32-68

Table 4 (Cont’'d)

T
T,day | Terminal condition f°m2a/2sed:3 6(T), rad | a(0), m/sec? | y(0), rad | a (0), m/sec’
elliptical
390 r=s(l-e/2),r=+ 0.97185 5.2887 1.9282 x 107 1.5259 3.2656 x 10712
390 perigee 1.2297 5.1046 2.7174 1.5441 1.0656 x 10711
420 r=s, r=+ 0.86121 5.6202 1.4847 1.5540 -2.7495 x 10713
420 r=s(1~e/2),r=+ 0.88754 5.6802 1.6913 1.5351 +2.2492 x 10712
420 perigee 1.0652 5.4611 2.3237 1.5923 8.3015 x 10712
450 r=s, 1=+ 0.81021 6.0206 1.3342 1.5267 ~8.0350 x 10713
450 r=s(1-e/2),r=+ 0.82072 6.0649 1.5280 1.5407 1.6530 x 10712
450 perigee 0.94353 5.8131 2.0113 1.6350 6.1240 x 10712
optimum rendezvous
7°, true anomaly
60 19.174 264.23 0.84356 | 1.2598 x 1072 0.44333 ~4.0146 x 1077
75 24.021 131.07 1.0512 8.0070 x 1073 0.54100 ~1.8305x 107°
90 28.844 73.144 1.2574 5.5128 x 1073 0.63257 -9.1574 x 10710
105 33.625 44.244 1.4620 4.0081 x 1073 0.71836 -4.8120 x 10710
120 38.363 28.382 1.6652 3.0306 x 1073 0.79886 ~2.5706 x 10710
135 43.030 19.056 1.8671 2.3601 x 1073 0.87453 ~1.3505 x 10710
150 47.621 13.275 2.0677 1.8802 x 1073 0.94581 -6.6410x 107!
165 52.132 9.5413 2.2672 1.5252 x 1073 1.01308 -2.7182 x 107!
180 56.556 7.0497 2.4655 1.2553 x 1073 1.0767 ~4.8428 x 1072
195 60.894 5.3423 2.6627 1.0456 x 1073 1.1368 7.5247 x 10712
210 65.140 4.1464 2.8588 8.7952 x 1074 1.1937 1.3897 x 107!
225 69.293 3.2932 3.0539 7.4606 x 1074 1.2475 1.6634 x 107!
240 73.346 2.6751 3.2481 6.3737 x 1074 1.2982 1.7177 x 10711
255 77.278 2.2213 3.4413 5.4789 x 107 1.3459 1.6418 x 10711
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Table 4 (Cont’d)

T
I\ day | Teminal condition | 0 % | 0(r), rad | a0) misec? | (0), rad a, (0), m/sec’
m2/sec
optimum rendezvous
7°, true anomaly
270 81.106 1.8841 3.6338 4.7352 x 1074 1.3904 1.4919 x 10711
300 88.357 1.4395 4.0169 3.0873 x 1074 1.4694 1.1001 x 10711
330 94.724 1.1803 4.3991 2.7638 x 1074 1.5326 6.9899 x 10712
360 99.915 1.0240 4.7840 2.1665x 1074 1.5750 3.5214 % 10712
390 102.868 0.92604 5.1780 1.7393 x 1074 1.5888 8.8752 x 10713
420 101.289 0.86049 5.5934 1.4632 x 1074 1.5660 -6.1436 x 10713
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Table 5.  Jupiter orbiter trajectories
. T
T,day | Terminal condition ) 2"2 d‘; 0(T), rad | a(0), m/sec? | (0), rad | 4, (0), m/sec’
m“/sec r
circular
180 1.1058 x 103 | 1.3495 1.5019 x 1072 1.0270 1.9714 x 10710
240 441.43 1.6693 8.2656 x 1073 1.1828 3.6374
300 215.25 1.9641 5.1755 1.2983 2.9861
360 119.54 2.2447 3.5196 1.3896 2.2361
420 72.825 2.5164 2.5353 1.4654 1.6530
480 47.596 2.7821 1.9052 1.5303 1.2255
540 32.904 3.0434 1.4788 1.5871 9.1221 x 1071
600 23.833 3.3010 1.1774 1.6372 6.7941
660 17.968 3.5557 9.5698 x 1074 1.6812 5.0355
720 14.030 3.8079 7.9110 1.7195 3.6869
780 11.306 4.0583 6.6338 1.7521 2.6397
840 9.3600 4.3072 5.6314 1.7787 1.8188
900 7.9462 4.5554 4.8322 1.7990 1.1714
elliptical
180 r=s. r=+ 1.0869 x 103 1.3519 1.4935 x 1072 1.0285 2.0145 x 10710
180 perigee 974.70 1.3684 1.4106 1.0260 1.6490
360 r=s, r=+ 115.25 2.2532 3.4762 x 1073 1.3924 2.2097
360 perigee 105.37 2.2914 3.3017 1.3905 2.0646
540 r=s, r=+ 31.195 3.0624 1.4494 1.5910 8.8796 x 1071
540 perigee 29.186 3.1195 1.3858 1.5909 8.3997
720 r=s, r=+ 13.180 3.8420 7.6910 x 1074 1.7237 3.4968
720 perigee 12.627 3.9125 7.4056 1.7243 3.3182
900 r=s, r=+ 7.4682 4.6092 4.6606 1.8008 1.0319 x 10711
900 perigee 7.2976 4.6876 4.5225 x 1074 1.8009 9.6943 x 10712
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Table 6.  Saturn orbiter trajectories
T, day | Terminal conditions foT @ di 0(T), rad | a(0), m/sec? | (0), rad a,(0), m/sec’
(circular) me/sec®

180 4.7507 x 103 1.2082 3.0883 x 1072 1.0386 9.2128 x 10710
240 1.9265 x 103 1.4545 1.7112 1.1910 1.0227 x 1077
300 951.75 1.6696 1.0784 1.3006 7.7601 x 10710
360 533.98 1.8668 7.3781 x 1073 1.3839 5.6356

420 2.0476 5.3454 1.4503 4.1188

480 214.92 2.2317 4.0401 1.5051 3.0610

540 148.49 2.4055 3.1548 1.5517 2.3147

600 106.97 2.5756 2.5281 1.5922 1.5922

660 79.761 2.7428 2.0690 1.6279 1.3817

720 61.224 2.9075 1.7232 1.6596 1.0845

780 48.181 3.0703 1.4566 1.6882 8.5674 x 1071}
840 38.748 3.2312 1.2468 1.7138 6.7929

900 31.762 3.3907 1.0788 1.7368 5.3888
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Table 7. Mercury flyby trajectories (apogee encounter)

T, doy | [ Tad| F(T)ymsec | AT m¥/sec | 6(T), rad | a(0), m/sec? | (0, rad | 4, (0), m/sec?
m2/sec’

30 940.05 ~5.2606 x 104 | 2.3413 x 10'5| 0.55013 | 3.4450 x 1072 | —2.6548 1.1228 x 1078

45 | 240.14 ~3.8453 2.5917 0.87253 | 1.4629 x 1072 | -2.4532 2.5393 x 1077
60 87.013 -3.051 2.8424 1.2263 7.7532 x 1073 | —2.2823 7.1061 x 10710
75 39.021 ~2.4559 3.0578 1.6032 4.6476 ~2.1365 1.9030 x 10710
90 20.457 -1.9477 3.2265 1.9967 | 3.0230 ~2.0084 2.2147 x 1071}
105 12.169 ~1.4929 3.3493 2.4032 2.0842 -1.8905 | -3.3281x 1071
120 8.0746 | -1.0826 3.4316 2.8195 1.4962 -1.7741 | -4.8829 < 107"!
135 5.9156 | -7.2241 x 103| 3.4792 3.2390 1.0979 ~1.6478 | -4.9066 x 1071
150 4.7489 | -4.3126 3.4995 3.6460 8.0543 x 1074 | —1.4947 | -4.2450 x 1071
165 4.1308 | -2.2955 3.5033 4.0176 | 5.7917 ~1.2906 | -3.1905 x 107!
180 3.8171 | -1.1485x 103| 3.5020 4.3393 4.0938 -1.0050 | -1.9217 x 107!
210 3.5644 | -425.63 3.5060 4.8550 | 2.4639 -0.14179 | 5.5518 x 10712
240 3.4157 | -452.28 3.5216 5.2678 | 2.4533 0.62901 | 2.3157 x 1071}
270 3.2444 | -587.11 3.5435 5.6253 2.6675 1.0577 3.2661 x 10711
300 3.0545 | -673.28 3.5680 5.9480 2.7154 1.3314 3.5914 x 10717
330 2.8690 | -690.71 3.5929 6.2457 | 2.6151 1.5426 3.4969 x 10711
360 2.7036 | -654.09 3.6 6.5249 | 2.4244 1.7276 3.1421 x 1071}
360° 3.4775 | -1.9603 x 103| 3.4767 8.1037 | 3.8454 -2.0061 | -8.2552 x 1072

9 Relative minimum trajectory.
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Table 8.  Venus flyby trajectories
T
T, day fom;:ts F(T), m/sec | h(T),m%/sec | O(T),rad | a(0), m/sec? | y(0), rad | a {0), m/sec’

30 | 26.125 ~2.6003 x 104 |3.3509 x 10'3 [ 0.5283 | 1.8007 x 1072 |-2.6550 5.7039 x 1077

60 | 25.335 - 1.4551 3.6060 1.1011 | 4.1495 x 1073 |-2.2888 3.5255 < 10710

90 5.9728 | -9.8313 x 103 |3.8133 1.7096 | 1.6512 ~2.0310 9.2878 x 10712
120 2.2250 ~6.6340 3.9409 2.3367 | 8.3506 x 1074 | -1.8339 -2.4682 x 1071
150 1.1421 ~4.1695 4.0084 2.9760 | 4.8434 ~1.6598 ~2.2035 x 1071
180 0.75347 | -2.2571 4.0354 3.6211 | 2.9910 -1.4737 -1.4659 x 1071
210 0.60604 | -9.4200 x 102 | 4,0378 4.2523 | 1.7999 -1.2216 -6.5408 x 10712
240 0.55689 | -2.8220 x 102 | 4.0330 4.8358 | 9.6993 x 1075 |-0.78067 1.5722 x 10712
270 0.54295 | -9.4501 x 10" | 4.0339 5.3564 | 5.5827 -0.077287 8.1787 x 10712
300 0.53558 | -9.1932 x 10! | 4.0429 5.8284 | 5.4446 0.981%90 1.2078 x 107
330 0.52726 | -1.0665 x 10% | 4.0567 6.2737 | 5.7747 1.5516 1.3129 x 1071
360 0.51912 | -9.2791 x 10 | 4.0711 6.7139 | 5.3075 x 1075 | 2.0900 1.1669 x 10711
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Table 9.  Mars flyby trajectories (mean distance encounter)

T, day fOT a®dt | [(T), m/sec | A(T), m¥/sec | 6(T), rad | a(0), m/sec? | 4(0), rad | a (0), m/sec?
m2/sec3

30 |980.38 4.6990 x 104 | 6.5402 x 10'5 | 0.50611 |3.4453 x 1072 | 0.48572 | -1.0404 x 1078
60 | 103.24 2.4855 6.0790 0.96987 |8.2032 x 1073 | 0.84548 | -5.6386 x 10710
90 25.451 1.6989 5.6879 1.3970 | 3.3900 1.0879 1.9471 x 1071
120 9.2737 1.2588 5.4203 1.8046 | 1.7640 1.2585 6.3333 x 107!
150 4.3390 9.6351 = 103 | 5.2478 2.2019 | 1.0512 1.3883 5.1233 x 107!
180 2.4357 7.4633 5.1388 2.5926 | 6.8651 % 1074 | 1.4945 3.6526 x 1071
210 1.5733 5.7789 5.0718 2.9778 | 4.7860 1.5864 2.5195 x 1071
240 1.1354 4.4306 5.0332 3.3581 | 3.4949 1.6694 1.6874 x 10711
270 0.89468 |  3.3337 5.0146 3.7341 | 2.6332 1.7461 1.0630 x 10711
300 0.75544 2.4390 5.0103 4.1072 | 2.0206 1.8171 5.7692 x 10712
330 0.67281 1.7173 5.0165 4.4799 1.5605 1.8802 1.8664 x 10712
360 0.62363 1.1508 x 103 | 5.0302 4.8555 | 1.2001 1.9292 -1.3041 x 10712
390 0.59484 | 728.47 5.0490 5.2381 9.1199 x 1075 | 1.9480 -3.8192 x 10712
420 0.57836 | 443.29 5.0706 5.6324 | 6.8869 1.9018 ~5.6362 x 10712
450 0.56869 | 291.25 5.0930 6.0432 | 5.4646 1.7361 -6.6156 x 10712
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Table 10.

Jupiter flyby trajectories (mean distance encounter)

T, day

180
240
300
360
420
480
540
600
660
720
780
840

900

fo a? dt
m2/sec3
206.81
79.523
39.095
22,757
14.984
10.822
8.3853
6.8572
5.8441
5.1412
4.6341
4.2549

3.9612

r'(T), m/sec

6.1349 x 104
4.4896
3.4862
2.8090
2.3207
1.9520
1.6644
1.4349
1.2487
1.0965
9.7171 x 103
8.7046

7.3451

K(T), m2/sec

1.0128 x 1016
8.7962 x 1013
8.0370
7.5840
7.3109
7.1513
7.0679
7.0384
7.0488
7.0897
7.1553
7.2416

5.5607

(T ),rad

1.8045
2.1631
2.5036
2.8327
3.1524
3.4637
3.7674
4.0649
4,3580
4.6494
4.9429
5.2440

5.5607

a(0), m/sec?

6.6830 x 1073
3.5381
2.1557
1.4417
1.0305
7.7415 < 107
6.0428
4.8619
4.0095
3.3759
2.8951
2.5259

2.2438

¥(0), rad

1.4203
1.5422
1.6281
1.6929
1.7435
1.7825
1.8110
1.829
1.8363
1.8317
1.8144
1.7827

1.7351

t;r (0), m/sec®

5.2025 x 10710
2.6454 x 10710
1.4514 x 10710
8.4175 x 107!
5.0174 x 107"
2.9762 x 10711
1.6769 x 10711
8.1205 10712

2.1811 x 10712

-1.9668 x 10712

-4.8605 x 10712
~6.8198 x 10712

-8.0138 x 10712
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Table 11.  Saturn flyby trajectories (mean distance encounter)
r
f a? dt . 9 9 .

T, day | "0 r(T), m/sec | A(T), m“/sec | O(T),rad | a(0), m/sec ¥(0), rad a_(0), m/sec?

mz/sec3 r
180 983.60 12323 10° | 1.6230x 1016 | 1.6255 | 1.4404 x 1072 1.4002 1.3541 x 1077
270 | 259.85 8.0465 x 104 | 1.2514 2.0092 | 6.0213x 1073 | 1.5596 5.3084 x 10710
360 102.93 5.9003 1.0695 2.3584 | 3.2205 1.6558 2.4567 x 10710
450 51.860 | 4.6143 9.6923x 10'% | 2.6923 | 1.9918 1.7216 1.2664 x 10710
540 30.723 3.7595 9.1077 3.0161 | 1.2468 1.7692 6.9208 x 1071
630 20.464 3.1515 8.7642 3.3317 | 9.7238 x 1074 1.8033 3.8371 x 10711
720 14.858 | 2.6978 8.5727 3.6403 | 7.3725 1.8261 2.0442 x 1071
810 11.517 | 2.3475 8.4829 3.9435 | 5.8053 1.8381 9.3842 x 10712
900 9.3842 | 2.0702 8.4688 4.2436 | 4.7114 1.8294 2.2753 x 10712
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Table 12.  Three-dimensional optimum thrust trajectories
T
a* e, a, {0, a (0, a. (9), a, (0, F(0), (N, (7, i, 51, hoATY, b (1),
7. days 0 Terminal conditions N a8 . o 4 N a N ;
m2 sec? m.sec” m/sec” mosec” n'sec ™ sec m misec deg deg m-. sec m-sec
120 12.548 Venus circular 1.3716 . 1074 1.5062 . 1677 26723 . 1074 | 1.5692 . 10710 | _ a.1451 | 1.566 . 16" 10510 152°.04 3-.0C0 1.0494 . 1014 | 37829 3015
i(7)-3.394
120 12.767 Venus circular -1.3867 . 1074 15112 . 1073 41867 . 1074 | 1.5994 . 1071} 8.8207 | 1.0806 . 10V}| -C.2877 152713 1:.500 2.0103 - 10 | 3.779%0 . 10'3
(1) - 3394
120 12.959 Venus circulnr 13968 <1674 | —1.5087 167 12927 1674 | 16174 . 10710 | 19,462 | 1.c8C6 . 10T _(.2587 152°.07 0°.0046 | 2.2402 ., 16" | 3.7778 . 108
(1) - 3.3%4
120 13.01 Venus circular 21,3850 . 1074 | _1.5038 « 1073 3.515¢ . 1074 | 1.6156 . 10710 | 26,146 1.0806 . 1014 0.1238 151.96 | -1.502 2.6089 » 10'4 | 27791 . 10'3
(1) -3.393 i
|
120 12.604 Venus circular 1.3699 . 1074 | —1.4978 . 1073 1.3417 . 1074 1 15863 - 10717 26283 10506 - 167 1.0403 151°.86 | - 3.000 1.0503 . 104 | 3.7829 . 10'%
i(F) - 3.395 I
| B
173.5 3.65¢0 Mars elliptical 7.2417 . 1074 1.1648 . 1077 14513 107 Lo2.037c 30 2m7e | 2,068 161 | 00613 113972 | —1.780 |- 5.2962 10713 5.4692 . 1018
rerigee encounter | :
Sy 1864 ! !
145 6 567 Hercury el vsiee 10l szse 107l soeda a0 essy oese1a 10" 7overned 30722 1 6aese | 12398 0000 lo70se 0%
i e 2 ‘
- 7.0C3 i
165 39.868 Mercury ~1.0597 . 1073 | -1.6137 . 1073 6.9388 . 1074 | 1.2248 - 16710 | 17.082 | 37832 16101 29,9018 . 1¢% | 285°.7C 6.6920 |-9.7859 . 10"3 | 2.706% . 1013
r s
(- 7.004
165 30,940 Mercury C9.4460 1074 | 2.0638 . 1073 | -7.3745 . 1074 | 8.2487 - 1671V -29.050 | 6.9794 1610 0.0037 37577 | -3.387 | 2.8944 . 10" | 2.6931.10'3
gpogee encounter
- 7.004

89-7§ "ON #0day jo31uyda) Jdf
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Table 13.  Equatorial radii and orbital velocities of orbits of various altitudes
Orbital Velocity, km/sec
Planet R, km
200 miles 500 miles 1000 miles 2000 miles

Mercury 2420 2.81 2.67 2.31 1.96
Yenus 6200 7.05 6.80 6.44 5.87
Earth 6378 7.70 7.40 7.08 6.44
Mars 3400 3.39 3.19 2.92 2.54
Jupiter 71,400 42.1 41.9 41.7 41.2
Saturn 60,400 25.0 24.9 24.7 24.4
Uranus 23,800 15.5 15.3 15.1 14.6
Neptune 22,300 17.4 17.2 16.9 16.4
Pluto 7200: 6.64: 6.44: 6.14: 5.54:
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Table 14.  Weight percentage comparison for chemical and advanced systems
(Jupiter 570-day flight)
Chemical propulsion system Advanced propulsion system
Mission - - -
Final vehicle weight, % Final vehicle weight, % Final vehicle weight
minus powerplant, %
Flyby 17 79 54
Orbiter 8% 63 38
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Appendix A.  Analytical Basis of Thrust Program

In this appendix, the origin of the necessary conditions that

T 2 .
f a® dt = minimum
0

and the accompanying terminal conditions are considered in detail. This is a calculus of variations problem in which
the above integral is minimized subject to certain constraining equations and boundary conditions. Considered here

is that class of problems where boundary conditions are applied only at the initial and terminal points and where all

the variables of the problem are continuously differentiable. An luler-l.agrange formulation of this variational

problem will be employed.

In general terms, the integral to be minimized is defined as

T . .
[ = fo QLX{(0), -+, X, (0), X (0), -, X (0}, ¢] dt (A-1)

where the Xi's are the state variables of the system (e.g., phase space coordinates, accelerations, etc.), the Xi’s

are their time derivatives,and T is a fixed time. The constraining equations will be expressed as

it
-
I
‘*l

N
=

C Xy oy Xy Xy Xy 0) = 0, (A-2)

There may be as many as 2n boundary conditions in this problem. These may be specified values of the state

variables themselves, or specified values of functions of these variables. In either case, these conditions may be

written in functional form as

HI(X].’ -..’Xn’ t) 't = O,Z = 1’ 2,... W

(A-3)

”l(Xl""’Xn’ t) lt=T =0,{=n+1,n+2,+.,2n
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where it is understood that some of these functions may be identically zero if not all 2n of the boundary conditions

are specified.

We wish to obtain the functional forms of the X‘. (t)’s such that / is a minimum subject to the conditions in
Eq. (A-2) and (A-3). It may be shown that the necessary and sufficient conditions that I take on a stationary value

is given by the following Euler-Lagrange equations and their subsidiary end conditions:

Z}\——— ——-—+Z>\— =0,i=1,2,-,n (A-4)

r n
3 G, o,
_Q + Z Ny K 5X,(0)=0,i=1,2,,n (A-5)
P
and
e, P am
E : !
¢, o Y SX,(T)=0,i=1,2,n (A-6)
. i i
X, X, 3X; | |,=1
j=1 {=n+1

where the >\I. (¢)’s and «;'s are Lagrange multipliers.

The quantities SXi (0) and SXi (T) are the variations of Xi at the end points, If the value of a particular
Xi is specified at an end point, then SXi is zero at that end point and the corresponding K (Ki, if initial point,
K, +;» if terminal point) is zero. If X; is not specified, the coefficient of 6X, is zero and the corresponding #; may

be identically zero or a function of the state variables.

Equations (A-2) and (A-4) serve to define the n + r variables of time, X, (¢) and X\ (¢). Equations (A-3),
q ; ;). Eq
(A-5), and (A-6) define the 2n Kl's and the 2n independent constants of motion which result from the solution of

Eq. (A-2) and (A-4).
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This formulation is now applied to the case at hand using Cartesian coordinates (xl, xq, x3). A vehicle is
considered traveling in a conservative force field under thrust acceleration. The origin of the coordinate system is

inertial. Thus, the state variables are

X, = x i=1,23 (A-7)
ey = Y i= 1,23 (A-8)
X6 = g i=1,23 (A-9)

where v; is the velocity component and a; is the thrust acceleration component. The integrand of I is

3
Q = a2 = X 4 (A-10)

v, + ——a; = 0 = G, i =123 (A-11)

where V is the potential of the force field. Upon applying Eq. (A-4) and eliminating the 6 Lagrange multipliers

the Euler equations become

5,. + a. -0 i =1,2,3 (A-12)

Both Eq. (A-11) and (A-12) may be written in vector form; thus one finds the necessary conditions that [ be

minimized are

a+{a-V) VP -0 (A-13)
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and
r+ VV-a =0 (A-14)

where r is the position vector.

Equations (A-13) and (A-14) form a twelfth-order system, and twelve constants of integration are needed to
completely specify the thrust program and the trajectory. These are provided by Eq. (A-3), (A-5), and (A-6). For a
two-dimensional formulation of this problem the number reduces to eight. One quite valuable constant of integration
can be provided from analysis. By combining Eq. (A-13) and (A-14) in a dot product and integrating over time it may

be shown that

a-r-—a2 4+ 0.9V =C (A-15)

which is recognized as the first integral of the Euler-Lagrange equations. Equations (A-13) and (A-14) are quite
general and apply to a vehicle in any conservative force field. They apply also when the field is time-varying, but

Eq. (A-15) is modified.

These results are now applied to a two-body inverse- - -
square force field employing spherical coordinates to benefit from -
the spherical symmetry of this problem. This coordinate system

and the direction of the basic vectors are illustrated in the accom-

|
|
panying sketch. The state variables for this formulation are r, i : -,
0,d,u, by, h¢,ar, ag, and Qg where u is radial velocity and A4 6 \\\\ll
and hy are the components of angular momentum. After some
X
manipulation it may be shown that Eq. (A-13) and (A-14) become '
3a 2h 4 tan hy F(2) K, h
“ 2 1 é 8 1%
a,+—i[hz- '"]—— (e +ad) - —— (h-a) - - -0 (A-16)
A 3 r A r3 2 cos ¢
d agy 4h6 a, 2h¢ag tanq')
Fle) + 2% — | —| - + =0 (A-17)
dt r r r
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64

. 2h¢ Kl h<i> sin ¢
Fty - ———— th-0) = — o =
r® cos? al r? cos? ¢

r r

d g h¢ tan &
— | — | + — (2a, - ay tan $) — —— (h-a) -

h2
Bk el
r3 r2
u-~r :O:G2
hy‘;tancﬁ
hg - . +ra¢:O:G3
r
h9h¢tan¢ .
h¢4‘**’2——r08=0'164
r
hg + 1% ¢ =0 = G
hy - 1% 0 cos ¢ =0 - G

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)
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where & is the angular momentum per unit mass of the vehicle and p is the gravitational constant of the central body.
The quantity F (¢) is an auxiliary variable, essentially one of the Lagrange multipliers which could not be easily

eliminated. The quantity K, is a constant of integration resulting from the cyclical nature of the variable 6.

Equation (A-15) becomes

] K hy hgF@) %, tang
2 [ -] - 22 S T ke - K, (A27)

r 2 cos ¢ r2 r3

The quantities K| and K, are the only constants of motion which have been found. Equation (A-27) is useful in
checking the accuracy of the numerical integrations of Eq. (A-16)-(A-25). For the two-dimensional formulation

these equations reduce to the set obtained in Ref. 1, which are

2
.o 5 96 Kk
a, - — (2ur ~3k%) - — - —— =0 (A-28)
r4 r r3
d aa 2ha th
2 2 <—> - -0 (A-29)
dt r r 2
. k2 I
- — 4+ — - ar = 0 = Gl (A'30)
r3 r2
u -1 =0=0, (A-31)
h-ray =0 =Gy (A-32)
h - r2é = 0 = G4 (A‘33)
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and

2a_ th

2 <! 2

@ 2% e — W) - — K, (A-34)
3 2

r r

Both sets of equations, Eq. (A-16)~(A-25) and Eq. (A-28)—(A-34), have been programmed for numerical solution and
are discussed in the text. Equations (A-28)-(A-34) have been coupled with a search routine (described in the text)

to obtain trajectories which satisfy the appropriate terminal conditions.

Terminal Conditions

In practice, the state variables X; are nearly always all specified at the initial point of the trajectory and,
in fact, most of them usually have specified terminal values. For those cases where the X,’s are specified, the

corresponding H,’s have the particularly simple form

H. = X.-X =0 (A-35)

' g ispecified

Furthermore, the corresponding «;’s in Eq. (A-5) and (A-6) are zero. There are some functions of the state variables

such as energy, inclination, etc., which might be specified terminally.

For example, suppose that in the inverse -square force field case the terminal energy, momentum, and
the component of angular momentum normal to the plane ¢ = 0 are specified. The remainder of the state variables

are unspecified terminally, and all the state variables are specified initially. For this case, Eq. (A-3) becomes

H = X, 0~ X, (0) =0 I = 1,2 ,n 7
specified
~
1 A2 i
2
Hoo = |Especified = — (" + 7) t =0
L 2 r =T
2 2 2
Havg = hspeciﬁed - h¢ - hﬁ:! r =0 > (A-36)
L t=
H = |k - h =0
n+3 Zspecified ¢ €08 ¢:l
- t=T
H, =0, Il =n+4,-,2n J
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It may be shown that the terminal or transversality expressions to be satisfied as given by Eq. (A-6) become

for this case

o a,(T)
a, (T)r(T) + lpr (D) = k2 (D] =0 (A-37)

3 (T)
Zhy (1) La(T)- h(D)] tan ¢ (T) + r (M kg (T F(T) = © (A-38)

and

K, =0 (A-39)

Incorporating these conditions in Eq. (A-27) reveals that
K, = a*(T) (A-40)

Quite generally, commencing from a circular orbit yields
Ky = a® (0) (A-41)

For two dimensions, Egq. (A-37), (A-39), and (A-40) hold. The orbiter trajectories in Tables 2 and 4, which
intercept the orbits of Mercury and Mars, optimally were obtained by satisfying Eq. (A-37) and the specified values

of energy and angular momentum of these two planets.

If, instead, only the energy is specified, it may be shown that the transversality expressions are given by

Eq. (A-37) and

ar (T) ag (T) ad, (T)
: = = (A-42)
r(T) h¢ (TY/r (1) —ha/r(T)

That is, the thrust acceleration vector is along the terminal velocity vector. Additional conditions for this case

are
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F(T) =0 (A-43)

Further, since Eq. (A-42) implies that h(T) . a(T) is zero, it follows that F.q. (A-40) holds for this case also.
Consider now the three-dimensional flyby mission commencing from specified initial conditions with only

the position coordinates r(T), 0(T), and ¢ (T) being specified terminally. For this case it may be shown that

ar (T) = 00 (T) = a¢ (T) =0 (A-45)

T
must be satisfied in order to minimize | a? dt. These three conditions along with the three specified terminal
0
position coordinates and the six initial conditions make up the twelve quantities required for evaluating the twelve
constants of integration of Eq. (A-16) ~(A-25). If only the terminal value of r is specified, then, in addition to

Eq. (A-45), one obtains
F(T) = K; =0 (A-46)
from which it follows that

Ky = -2a (T) r (T) (A-47)

This case is quite important and applies also to the two-dimensional problem. The two-dimensional flyby missions

described in the text have Kl taken as zero and use as terminal conditions:

r(T) =r (T)speciﬁed
a, (N =0 (A-48)
06 (T) = 0

The search routine mentioned earlier finds for a particular mission the values of a, (0), (;r (0), and a4 (0) which

satisfy the expressions in Eq. (A-48).
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The two-dimensional orbiter mission type described in the text specifies the terminal values of r (N, r (1),
and & (T). The exceptions to this for Mercury and Mars have been discussed. The only terminal expression
applicable in this case is K| = 0. This is more restrictive than specifying angular momentum and energy only, since
an additional constraint is specified, namely, the position or true anomaly on the orbit at which rendezvous occurs.
Equation (A-37) does not, in general, hold for this case. Only for circular orbits do these specifications coincide.
The orientation of the terminal ellipse relative to the initial point of the trajectory is not specified in either case

since Kl =0.

One-Dimensional Example

Consider a vehicle travelling in a field-free region in one dimension which is at rest initially and reaches a
specified distance L in a flight time T. Consider two mission types: (1) at¢ =T the vehicle is at rest; (2) at¢=T
the velocity is not specified. These are the one-dimensional analogues of the orbiter and flyby missions. Equations

(A-13), (A-14), and (A-15) reduce to

a = O W
X-a =0
{A-49)

ce 1 1 1
aX— —a® = C = — —a?(0) = -~ — a® (T), orbiter -

2 2 2
1, 1, oo
aX - 5 a = C = - —2—a (0) = a(T) X(T), flyby

a fourth-order system.
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For the orbiter mission the solutions to these equations satisfying the boundary conditions are

6L 2t
a = — (1 - -> (A-50)

¢ \? 2t
X -1 <~> (3_ _) (A-51)
T T

Thus, @ is antisymmetric about ¢ = (T/2).

It follows that

T 12 12

fo at dt = (A-52)

—
|
|
|
|

This is the best thrust program that can be employed and satisfy the mission requirements. Now, suppose that an
alternate thrust program is employed — one of constant thrust acceleration but which may be positive or negative.

To satisfy the mission, one accelerates to the midpoint in time, then decelerates at the same level.

It is easily shown that the required thrust acceleration is

(A-53)

»> /

o
———]~
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from which it follows that

T, 16L2 4
_{) a“dt = = ? optimum value (A-54)

T3

By placing a coast period from T'/3 < ¢ < 2T/3, it may be shown that one obtains the optimum performance capable

with a constant thrust acceleration program. For this case

lal o L {A-55)
a| = — — [ 3 -
2 T2
o
for which there results
27/3 r_ .
0 /3 e
T 27 L2 9
J a?dt = — —— = Z optimum value (A-56)
0 2 T2 8

These examples, although trivial, do lend insight into the more complicated problems of interplanetary trajectories.
T
The dependency of fO a? dt on L2/T3 is a basic behavior and may be seen in Fig. 3-9. The use of constant thrust

T
programs with coast periods in interplanetary trajectories does, in the few cases studied, degradate fO a dt by at

least 10%.

For the flyby mission, the solution to Eq. (A-49), without involving the C expression in Eq. (A-49), is

9 (A-57)

T
where o is an undetermined constant of integration. By evaluating fo a2 dt and differentiating with respect to a,
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T 9 .
one finds that [ a* dt is a minimum when
0

3L
a = - ——
T3
which is, of course, also obtained from the relation
1, oo
C = - —2-(1 (0) = a(])/Y(T)

With this value of @, Eq. (A-57) becomes

from which there results

2
fTa2 dt = _::}L_
0 T3

(A-58)

| (A-50)

(A-60)

T
Thus, the flyby requires 1/4 the f(; a2 dt of the orbiter mission. Figures 3, 5, 6, 8, and 9 show, for interplanetary

trajectories, that this factor varies from about 1/5 to about 1/2. The initial acceleration level is 1/2 orbiter value,

which is also roughly the case in interplanetary trajectories.
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Appendix B.  Origin and Utilization of Expressions Describing
Planetocentric Portions of Interplanetary Trajectories

This appendix presents a derivation of the semiempirical formulas, applicable to planetocentric trajectories,
which describe the spiral motion of a vehicle about the planet. These expressions are very accurate when the thrust
to local weight ratio of the vehicle is small, e.g., thrust accelerations of 1072 g or less. This discussion is concern-
ed with the tangentially directed constant thrust program in which the vehicle mass decreases linearly with time.

It is assumed that the vehicle commences from a circular satellite and spirals to the point of escape.

The thrust acceleration of this vehicle is given by

a = ——— (B-1)

t

sp8

where q is the initial acceleration, Isp is the specific impulse of the propulsion system, and g is the Earth’s gravity.

The quantity Isp g/ay has the units of time and is the upper limit of the lifetime of the vehicle.

Consider the growth rate of the osculating semimajor axis s of a low thrust trajectory due to a thrust accel-
eration applied in the tangential direction. The time derivative of the total orbital energy per unit mass of the

vehicle is given by

dE
— = a -V (B°2)

dt

where v is its velocity. The quantity £ is related to the semimajor axis through the expression

E .+ (B-3)

where u is GM, the gravitational constant of the planet. From these expressions it follows that the growth rate

of the semimajor axis is given by

73



JPL Technical Report No. 32-68

ds 252
— = 0-v (B-4)
dt *
which, for tangential thrust, reduces to
ds 252 a
—_— = v (B-5)
de ®

Because of the low thrust, the orbit of the vehicle remains nearly circular (see Fig. 5), and the velocity of the

vehicle is nearly the circular velocity

v = \/E (B-6)
S

In fact, by an application of a perturbation method to the equations of motion, it may be shown that the actual

velocity is related to the instantaneous circular velocity to the first order by the expression

\/;T a
v = — (1 + - sin @4 > (B-7)
s 2

where 0 is the orbital angle. The quantity a/(u/s?) is simply the ratio of thrust to local weight of the vehicle and
is, of course, extremely small over all but the last couple of turns of the trajectory. Thus, Eq. (B-6) is a highly
accurate approximation over nearly all of the trajectory. Incorporating Eq. (B-1) and this approximation into

Eq. (B-2) there results

2s  a

d 0

Sl - (B-8)
dt
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which may be integrated. Let us first introduce the dimensionless quantities
y = — (B-9)

and

T \/E (B-10)
;

1
v - Aol (B-11)

r
Isp g 0

Equation (B-8) is now integrated and with these substitutions becomes

1
y = (B-12)
! 2
[1 + — In (1~ 7/7’):,
v
As v ~ 0, the thrust acceleration approaches a constant and Eq. (B-12) becomes
1
y = (v=0) (B-13)
-2
At escape, y is infinite, and it follows that 7= 1. This implies an escape time of 1/ay v p/rg, which upon
comparison with numerical solutions is somewhat high. By the use of Eq. (B-13) in the energy equation
1 o9 o H
E = — (r*+0v9)- — (B-14)
2 r
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it may be shown that a lower bound for the escape time results. It follows [rom this that 7 is bounded by the

inequality

2
2r0 a,
- (v = 0) (B-15)

I
N

(A
—

For a thrust acceleration of 5 x 10—5g the left-hand side of this expression is 0.9.
An empirical correction factor ¥ (ao) is introduced which is near the value 1 and is exhibited in Fig. 26.

The escape time for v =0 is given by

7 (ay) 7
T . S (v - 0 (B-16)
a
0
That is, 7(00) has been designed to give the exact value when v = 0.

When the Isp is finite, escape occurs at

1-e”
T= (B-17)
v
and again employing 7(00), the escape time is
y(GO) M 1-e™”
T - o (B-18)
ag o v

This expression is remarkably accurate over a wide range of v'. (See Section IV for an illustration.)
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In the same manner it is possible to obtain the variation of s with 0, the polar angle. Let

0
x = — (B'lg)
2]
where
®
8 = 5 (B-20)
4ry “a
Upon employing the assumption that angular momentum is given by\/ps it may be shown that
dy 1 1

— =9 (B-21)

dx 2 l1-v7
which may be combined with Eq. (B-12) to yield

v
~4e”” v 3 v \2 v
x - o VY <—> -3<—> +6<—>—6 ‘e (B-22)
vt vy vy vy

where

4 3 6 6

e - — f1-2 4 22

v v 22 3
At escape

4 12 24 24 -

Tescape = — = — t —= = — (1-¢7"] (B-23)
1% 2 3 4

77



JPL Technical Report No. 32-68

which may be expanded to

P (B-24)

Equation (B-23) is highly accurate, as may be seen by comparison with Fig. 24, for which escape occurs after

750.434 turns; Eq. (B-23) or (B-24) predict 750.317 turns. Equation (B-22) simplifies, when v =0, to

y - — (v = 0) (B-25)

and thus Eq. (B-20) yields in radians the number of turns required to escape when v = 0.

Comparing Eq. (B-13) and (B-25) shows that

1-x=(1-7% (v=0) (B-26)

These expressions are also applicable to capture spirals terminating in a circular satellite orbit. In this case,

one continues to measure time increasing from the satellite orbit, but v has a negative value.

For small departures from initial circularity it may be shown that the effect on T and 6 at escape involves
the eccentricity to only second and higher order powers. By expanding Eq. (B-5) and (B-21) in powers of € and
averaging over a period of revolution, it may be shown for an initial orbit of eccentricity € that the time and the

number of turns required to escape are given by the approximate expressions

T'=TQ0-— &) (B-27)
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and

1
6’ =0 1+ — €

escape escape 6 0

(B-28)

These expressions do not hold for highly eccentric orbits but are fairly accurate up to eccentricities of 0.5.

For degenerate conic motion with constant thrust acceleration directed along the velocity vector, it may be

shown- that the escape time from a degenerate ellipse of semimajor axis s, is bounded by the inequality

1/4

2

8a, sp T

1 -\ —— < <| (B-29)
Tu ” 1 m

This is similar to Eq. (B-15) and would suggest that the escape time is approximately 10% larger for this extreme

case,
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