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Periodic Swing-By Orbits between Earth and Venus

WALTER M. HOLLISTER* AND MICHAEL D. MENNING!

Massachusetts Institute of Technology, Cambridge, Mass.

The general problem of finding fly-by dates for multiple swing-by missions involves an
iterative search in a space with dimension equal to the number of swingbys assuming the
launch date and final arrival date are specified. A double swing-by trajectory that visits Mars
and Venus requires a search in two dimensions. Periodic orbits connecting Earth and Venus
require a search in a space of dimension between 10 and 15. This paper reports the results of a
study of the latter class of orbits. The computing procedures are generally applicable to any
multiple swing-by problem. A summary is given of the computational experience gained.
Trajectory data are presented for those periodic orbits which were computed.

Introduction

THE use of a multiple swingby as part of an interplanetary
mission was considered as early as 1925 by Hohmann1

and 1956 by Crocco.2 They each proposed interplanetary
fly-by missions that would take a vehicle past both Mars and
Venus before returning to Earth. Several investigators3"5

have subsequently studied this class of mission in more detail.
It was Minovitch,6 however, who first recognized the funda-
mental role which the planetary fly by can play in trajectory
design. He saw the planets as sources of free thrust which
could be utilized to project a vehicle from one planet to an-
other without the use of fuel. In Ref. 7 he described, for
example, a round trip mission leaving and arriving Earth
with six intermediate flybys at Venus, Mars, Earth, Mars,
Earth, and Venus. He further proposed an interplanetary
transportation network,8 using multiple fly-by trajectories
that would continue indefinitely. In the interest of finding
such trajectories it has been proposed that the natural period-
icity of the solar system be used to develop periodic orbits.9

For the orbit to be periodic, the spacecraft must recurrently
flyby a sequence of planets. The first and last flyby of the
sequence must therefore occur at the same planet with identi-
cal spacecraft velocities and absolute planet orientations.
For this reason the duration of one period of an acceptable
orbit is restricted to integral multiples of the time required for
the encountered planets to repeat their absolute orientation.
Ideally a perfectly established periodic orbit would result
in no subsequent thrust requirements. In practical applica-
tion injection errors and small perturbations from the periodic
orbit will inevitably be present. Hickman10 has shown,
however, that the guidance requirements for nominal periodic
orbits connecting Earth and Venus are quite reasonable.

Although periodic orbits are perhaps the most difficult
of the multiple swing-by problems to analyze, their large
number of swingbys make them particularly interesting.
The computing procedures are generally applicable to any
multiple swing-by problem. Rail,11 for example, has used
the techniques reported here to find periodic orbits connecting
Earth and Mars.
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Multiple Swing-By Orbits

All the results in this report are based on patched conic
analysis.12 The interplanetary trajectory is completely
defined by the dates at each planet. Assume that only the
initial and final dates of a multiple flyby are given. Then
the number of dates to be selected is equal to the number of
swingbys. For the case of a double swingby, all the possible
combinations of dates are represented by the points on a plane.
The locus of dates that produce equal magnitude inbound and
outbound hyperbolic velocity at one planet is a line in the
plane. The locus of dates that produce equal magnitude in-
bound and outbound Iryperbolic velocity at the other planet
is another line in the plane. The intersection of the two lines
represents a pair of dates that satisfies the first necessary
condition for a multiple swingby. Figure 1 shows these loci
for a double swingby of Venus and Mars. This example has
six intersections. The problem of finding the intersections
is equivalent to finding the zeros of a function defined as the
sum of the squares of the differences in relative velocity
magnitudes at the two flybys. At each intersection the
value of the function vanishes and thereby achieves a global
minimum. The function represents a surface in three dimen-
sions. The value of the function determines the height of the
surface above the date-at-Mars-date-at-Venus plane. Con-
tours are sketched around one of the better behaved inter-
sections. A study of Fig. 1 shows how complex the surface
can be even with only two swing-by dates to consider. Suc-
cessful solution by iterative methods is contingent upon the
initial approximation of the independent variables. A poor
initial choice may cause the iterative procedure to find a local
minimum rather than the desired solution. It is also possible
for the search process to bog down in a ravine of the surface.
Since the problem is compounded for higher-dimensional
spaces, the need for a good initial guess is apparent.

The feasibility of a swing-by orbit also rests on each planet's
capability to turn the inbound relative velocity into the out-
bound relative velocity on a hyperbolic path that does not
pass below the planet surface. If this is possible, the dates
of the planet encounters and corresponding planet locations
are the solution to the problem. In this report all flybys
occurring beyond 1.1 planet radii are considered acceptable.
Not all the intersections in Fig. 1 satisfy the second condition.
Each point needs to be found and then tested to ascertain that
the hyperbolic path does not go below the surface.

Direct Return Orbits

A direct return orbit is a sun-centered ellipse that returns
a spacecraft to the same planet from which it was launched
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244 1900 .

244 1800 •

....Pure Flyby at Mars
•-.Pure Flyby at Venus

e Double Flyby

Fig. 1 Flyby dates for double swingby.

without interruption by encounters with other planets.
These orbits find useful application when the elliptical tra-
jectory between the planets results in large excess hyperbolic
velocities. Large excess hyperbolic velocities reduce the
maximum allowable turn angle at a given planet and hence the
chances for making acceptable flybys above the planet's
surface. Large values of the excess hyperbolic velocity can
often be reduced by delaying the interplanetary flight with
direct returns until the relative planet positions permit inter-
planetary transfers with lower excess hyperbolic velocities.
The long delay is unfortunate, however, the planet and space-
craft remain relatively close to one another during this period,
which may be of practical use in the ultimate mission. Two
commonly used direct return orbits are the "full-revolution
return" and the "symmetric return."

A full-revolution return is a sun-centered elliptical orbit
which returns the spacecraft to the launch planet in one
launch planet period. Because the spacecraft and planet
have equal periods, they must have equal velocity magnitudes
relative to the sun. A double infinity of such orbits exists
at each encountered planet. When the magnitude of the
excess hyperbolic velocity is small with respect to the launch
planet's orbital velocity, the two velocities will be nearly
perpendicular. Furthermore, the orbital plane of the full-
revolution return will be only slightly inclined to the plane of
the launch planet's orbit. A "half-revolution return" is a

LAUNCH ARRIVAL

special case of the full-revolution return in which the space-
craft has both the same period and eccentricity as the launch
planet's orbit. In these cases the relative velocity vector is
nearly perpendicular to the plane of the launch planet's orbit
and the spacecraft returns to the launch planet after a half
revolution of the sun.

A symmetric return is a sun-centered elliptical orbit which
is coplanar with the launch planet's orbit and returns the
spacecraft to the launch planet after a time greater than one
launch planet period.4 In the construction of periodic orbits,
the symmetric returns of most interest are those with times
of flight greater than one, but less than two, launch planet
periods. An example of a symmetric return is shown in Fig.
2. In this diagram the spacecraft and planet each pass
through the arrival point (independently) and complete one
circuit on their respective trajectories before the encounter
is made. For a symmetric return orbit, the launch and
arrival relative velocity magnitudes will be equal when the
launch planet is in circular orbit.

Iterative Solutions

Swing-by orbits are obtained by adjusting approximate
dates of the planet flybys until differences in the relative
velocity magnitudes at each flyby simultaneously vanish.
Since the second flyby of a full-revolution return is con-
strained to occur one launch planet period after the first, only
one fty-by date is an independent variable. Similarly, only
one date can be considered independent for direct return orbits
consisting of two or more consecutive full-revolution returns.
In any event the number of independent dates N equals the
total number of interplanetary transfers and symmetric re-
turns in a periodic orbit.

Successful solution by iterative methods is contingent
upon the initial approximation of the independent variables.
Approximate solutions to periodic orbits are not easily ob-
tained. Hollister9 has discovered three periodic orbits that
connect Earth and Venus. In the circular coplanar case each
orbit includes a direct return orbit at Earth, an interplane-
tary transfer to Venus, two direct return orbits at Venus,
and an interplanetary transfer back to Earth. The duration
of each orbit is 3.2 yr; they differ in the type of direct return
orbits occurring at Earth and Venus. The first orbit has
a full-revolution return at Earth and two consecutive full-
revolution returns at Venus. The second orbit consists of a

Table 1 Key to orbit descriptionsa

Launch Planet Orbit

Periodic
orbit

number

1 and 1H
2 and 2H
3 and 3H

4
5
6
7
8

9
10
11
12

13
14
15

Direct return
orbits

at Earth

5FR
5FR
5SY

2FR, SY, 2FR
FR, 2SY, 2FR
2FR, 2SY, FR
FR, 3SY, FR
FR, 4SY

5FR
5FR
5FR
5FR

2FR, SY, 2FR
2FR, SY, 2FR
2FR, SY, FR, SY

Direct return
orbits

at Venus

5TFR
5FRSY
5TFR

5TFR
5TFR
5TFR
5TFR
5TFR

2TFR, FRSY, 2TFR
2TFR, 2FRSY, TFR
FRSY, TFR, 2FRSY, TFR
FRSY, TFR, 3FRSY

FRSY, 4TFR
FRSY, 2TFR, FRSY, TFR
FRSY, 2TFR, FRSY, TFR

— — — - S p a c e c r a f t O r b i t

Fig. 2 Symmetric return orbit.

0 FR = full-revolution return; SY = symmetric return; FRSY = full-
revolution return followed by a symmetric return; TFR = two consecutive
full-revolution returns. Direct return orbits are listed in the order they
occur.
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Table 2 Flyby dates, (Julian date
-2440000) orbits 1H-3H

Planet

E
E
V
V
V

Orbit
1H

441
806
971

1196
1421

Orbit
2H

417
782
914

1139
1470

Orbit
3H

352
852
970

1195
1420

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E

1592
1957
2125
2350
2575

2797
3163
3316
3541
3765

3935
4300
4471
4696
4921

1612
1977
2086
2311
2642

2763
3128
3253
3478
3809

3927
4293
4427
4642
4953

1542
2042
2142
2367
2592

2697
3197
3297
3522
3747

3853
4353
4477
4702
4927

5077 5107 5038
5442 5472 5538
5664 5591 5644
5889 5816 5869
6114 6149 6094

6285 6261 6196

Repeating after 16 years

full-revolution return at Earth and a full-revolution and
symmetric return at Venus. In the third orbit are a sym-
metric return at Earth and two full-revolution returns at
Venus.

For the inclined elliptic case, Earth and Venus repeat their
absolute orientation to within several degrees accuracy every
16 yr.13 The error made by assuming exact periodicity of
the solar system is of the same order of magnitude as the
error made by the patched conic model. By using five cir-
cular coplanar orbits in succession (see Table 1) as an initial
approximation, Hollister found solutions for each of the three
periodic orbits in the inclined elliptic case. To simplify
analysis, the duration of symmetric returns was assumed
constant and the launch and arrival relative velocity (Vr)
magnitudes on the symmetric returns were assumed equal.
The duration of the symmetric returns was chosen in accor-
dance with expected values for the semimajor axes of the sym-
metric return orbits. The solutions for these three orbits are
reproduced in Table 2 where they are denoted as orbits 1H,
2H, and 3H, respectively. Since orbit 1H contains no sym-
metric returns, the solution for this orbit is rigorous in the
patched conic sense. Dates of planet flybys in orbits 2H
and 3H are used herein as initial approximations for a solution
that eliminates the assumptions of constant time of flight
and equal relative velocity magnitudes on symmetric returns.

The function to be minimized can be considered an N
dimensional surface whose arguments are the dates of the N
planet flybys. The gradient of the function is an N dimen-
sional vector in the direction of the greatest rate of change
of the function value. In steepest-descent iterations, dates
of the N flybys are incremented to correspond with movement
along the gradient vector. Reduction of the function value
is guaranteed for sufficiently small date increments. Fol-
lowing reduction of the function value, a new gradient vector
is calculated and the iteration repeated.

In Newton-Raphson iterations the difference in the veloc-
ity magnitudes at each of the N flybys is expanded in a Taylor
series about the current values of the N fly-by dates. Only
first-order terms are retained in each Taylor series. Date
increments are made to cause each of the linearized expres-
sions for velocity difference to simultaneously vanish. Upon
reduction of the function value, velocity differences are ex-
panded in Taylor series about the new fly-by dates and the
iteration repeated. Convergence is likely only when the
initial date approximations are sufficiently accurate and
higher derivatives of the velocity difference expressions are
excessively large.

In both the steepest-descent and New^ton-Raphson itera-
tions, the first partial derivatives of the differences in velocity
magnitude are required with respect to the fly-by dates.
Approximate values of the partial derivatives are obtained
by calculating the change in velocity difference at each flyby
which results from making small changes in the N fly by
dates one at a time.

First attempts at obtaining rigorous solutions to the peri-
odic orbit problem employed both steepest-descent and New-
ton-Raphson procedures. Steepest-descent methods were
first used to reduce the sum of the absolute differences in
relative velocity (Vr) magnitudes to 0.1 EMOS (Earth Mean
Orbital Speed Unit). Newton-Raphson methods were then
used to reduce the value from 0.1 EMOS to assumed con-
vergence at 0.005 EMOS. Sometimes oscillations in the date
increments indicated that a "ravine" problem had been
encountered on the N dimensional surface. The Davidon14

and conjugate gradient15 methods were employed when this
situation developed.

Attempts to obtain a solution to Hollister's third periodic
orbit resulted in convergence to a local minimum rather than
a solution. Endeavors were made to sequentially modify
orbit 1H until an accurate approximation for orbit 3H could
be obtained.

Although orbit 1H and 3H have the same type of direct re-
turn orbits at Venus, orbit 1H has five full-revolution re-
turns at Earth and orbit 3H has five symmetric returns at
Earth. A solution was first attempted for orbit 1H modified
to include one symmetric return and four full-revolution re-
turns at the Earth encounters. An approximate solution for
this orbit was obtained by merely replacing one of the full-
revolution returns at Earth in orbit 1H by a symmetric return
of 1.37 yr duration. The symmetric return was inserted so
as to equate the times of flight for the interplanetary transfers
on either side of the Earth encounter. Rapid convergence to
the orbit solution was achieved with the steepest-descent and
Newton-Raphson procedures. Following this favorable out-
come, the modified orbit was altered by replacing one of the
remaining full-revolution returns by a second symmetric
return. A solution was easily obtained in this case and also
for orbits with three, four, and finally five symmetric returns
at the Earth encounters. Solutions for each of these orbits
are listed in Table 3 (orbits 3-8). For orbits 4, 7, and 8,
convergence was rapid and predictable. In orbits 5 and 6
oscillation was encountered and convergence slowed at low
levels of the function value. In these cases the conjugate
gradient method was used to further reduce the function
value.

Although a solution for each of the modified ©rbits was re-
quired to obtain a rigorous solution to orbit 3H, the modified
orbits are more than a means to an end. Each is a unique
periodic orbit with characteristics far different from similar
orbits. This fact is illustrated by a comparison of orbits
5 and 6. Although these orbits each have two symmetric
and three full-revolution returns at Earth, the order in which
the returns occur differs. In orbit 5 the minimum pass
distance occurs during a flyby of Earth in which the space-
craft comes within 1.16 Earth radii of the planet surface.
In orbit 6 the minimum pass distance also occurs during a flyby
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Table 3 Solutions for orbits 1-15

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
Y
Y

E
E
V
V
V

E

Date0

441
806
971

1196
1421

1591
1957
2125
2350
2575

2798
3163
3316
3541
3766

3935
4300
4471
4696
4921

5076
5442
5664
5889
6114

6285

432
798
989

1214
1439

1614
1980
2133
2358
2573

2710
3201
3313
3538
3763

3929
4294
4468
4693
4918

5074
5439
5659
5884
6109

6276

Vrb

EMOS

Orbit 1
0.155
0.155
0.179
0.179
0.179

0.154
0.154
0.206
0.206
0.206

0.193
0.193
0.196
0.196
0.196

0.158
0.158
0.194
0.194
0.194

0.175
0.175
0.225
0.225
0.225

0.155

Orbit 4
0.133
0.133
0.180
0.180
0.180

0.188
0.188
0.282
0.282
0.282

0.203
0.202
0.208
0.208
0.208

0.159
0.159
0.185
0.185
0.185

0.163
0.163
0.204
0.204
0.204

0.133

o,b
deg

81.1
81.1
61.3
61.3
61.3

81.7
81.7
34.6
34.6
34.6

42.5
42.5
60.2
60.2
60.2

84.1
84.1
59.2
59.2
59.2

45.4
45.4
32.0
32.0
32.0

81.1

76.8
76.8
43.4
43.4
43.4

78.6
78.6
18.9
13.8
19.9

57.4
35.5
30.9
26.5
26.5

86.5
86.5
57.4
57.4
57.4

46.9
46.9
34.1
34.1
34.1

76.8

Rm\nb

1.59
1.59
1.77
1.77
1.77

1.57
1.57
3.30
3.30
3.30

3.36
3.36
1.53
1.53
1.53

1.40
1.40
1.61
1.61
1.61

3.66
3.66
3.06
3.06
3.06

1.59

2.45
2.45
4.11
4.11
4.11

1.16
1.16
3.79
5.41
3.58

1.86
3.94
3.77
4.59
4.59

1.28
1.28
1.86
1.86
1.86

4.03
4.03
3.41
3.41
3.41

2.45

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E

Date"

415
780
914

1139
1470

1614
1979
2086
2311
2643

2762
3127
3252
3477
3809

3927
4293
4426
4651
4983

5108
5473
5590
5715
6147

6259

442
808
977

1242
1467

1542
2036
2147
2372
2597

2698
3192
3307
3532
3757

3922
4287
4474
4699
4924

5088
5453
5662
5877
6102

6286

VJ
EMOS
Orbit 2
0.137
0.137
0.231
0.231
0.230

0.145
0.145
0.257
0.257
0.258

0.161
0.161
0.246
0.246
0.246

0.146
0.146
0.245
0.245
0.245

0.143
0.143
0.257
0.257
0.256

0.137

Orbit 5
0.133
0.133
0.165
0.165
0.165

0.173
0.173
0.136
0.136
0.136

0.171
0.171
0.186
0.186
0.186

0.135
0.135
0.148
0.148
0.148

0.143
0.143
0.188
0.188
0.188

0.133

eb

deg

69.3
69.3
20.9
18.4
30.9

77.4
77.4
14.3
14.3
6.9

67.5
67.5
16.4
8.7

23.4

85.6
85.6
20.9
20.9
12.6

66.9
66.9
16.3
10.5
13.0

69.3

80.3
80.3
34.0
34.0
38.7

43.9
15.5
52.0
52.0
52.9

13.2
37.7
32.9
26.0
29.4

80.0
80.0
64.4
64.4
64.4

52.3
52.3
35.6
35.6
35.6

80.3

R • b

2.87
2.87
4.99
5.83
3.06

2.02
2.02
6.26
6.26

13.92

2.18
2.18
5.85

11.80
3.83

1.57
1.57
4.44
4.44
8.00

2.81
2.81
5.42
8.87
7.06

2.87

2.21
2.21
5.25
5.25
3.37

3.96
15.16
4.06
4.06
3.95

18.71
5.03
4.30
5.86
4.00

2.16
2.16
2.37
2.37
2.37

4.37
4.37
3.78
3.78
3.78

2.21

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V

' V
V

E
E
Y
V
V

E

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E

Datea

382
877

1012
1237
1462

1540
2034
2149
2374
2599

2697
3190
3308
3533
3758

3885
4374
4485
4710
4935

5039
5533
5641
5866
6091

6226

444
809
995

1220
1445

1620
1986
2135
2585
2810

2716
3206
3299
3524
3749

3870
4363
4474
4699
4924

5093
5458
5660
5885
6110

6288

Vrb

EMOS

Orbit
0.162
0.162
0.248
0.248
0.248

0.165
0.164
0.136
0.136
0.136

0.176
0.176
0.204
0.204
0.204

0.215
0.216
0.158
0.158
0.158

0.165
0.165
0.144
0.144
0.144

0.162

Orbit 6
0.125
0.125
0.187
0.187
0.187

0.200
0.200
0.302
0.302
0.302

0.209
0.209
0.150
0.150
0.150

0.186
0.186
0.134
0.134
0.134

0.133
0.133
0.173
0.173
0.173

0.125

0b

deg

3
58.8
34.5
20.7
19.7
19.7

28.7
18.4
50.1
50.1
54.3

11.2
43.6
62.7
62.7
62.7

67.1
26.7
57.2
57.2
57.2

27.3
10.7
67.9
67.9
67.9

58.8

85.0
85.0
41.7
41.7
41.7

75.7
75.7
17.5
11.4
18.0

64.1
11.4
62.8
62.8
62.8

48.0
32.3
54.9
45.4
45.4

56.6
56.6
38.3
38.3
38.3

85.0

Rminb

2.78
6.42
4.38
4.66
4.66

7.92
13.74
4.36
4.36
3.81

21.04
3.86
1.31
1.31
1.31

1.23
5.06
2.57
2.57
2.57

8.40
25.12
2.26
2.26
2.26

2.78

2.18
2.18
3.06
3.06
3.06

1.12
1.12
3.60
5.85
3.48

1.43
14.62
2.43
2.43
2.43

2.98
5.18
3.87
5.26
5.26

4.41
4.41
4.02
4.02
4.02

2.18

* Julian - 2440000; dates repeating after 16 yr (add 5844 days).
^ Vr = relative velocity; 6 = turn angle; Rmin= minimum distance to planet center, planet radii.
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Table 3 Continued

Planet

E
E
V
Y
V

E
E
V
Y
Y

E
E
Y
V
Y

E
E
V
V
V

E
E
V
V
Y

E

E
E
V
V
Y

E
E
V
V
V

E
E
V
V
V

E
E
V
Y
V

E
E
V
V
V

E

Date0

452
817

1009
1234
1459

1539
2034
2148
2373
2598

2700
3195
3299
3524
3749

3870
4362
4473
4698
4923

5100
5465
5664
5889
6114

6296

430
795
973

1198
1423

1602
1967
2164
2389
2614

2784
3149
3255
3480
3812

3926
4291
4422
4647
4980

5086
5451
5624
5849
6074

6274

V b

EM'OS
Orbit 7
0.135
0.135
0.224
0.224
0.224

0.164
0.163
0.134
0.134
0.134

0.164
0.164
0.148
0.148
0.148

0.185
0.185
0.131
0.131
0.131

0.128
0.128
0.175
0.175
0.175

0.135

Orbit 10
0.129
0.129
0.148
0.148
0.148

0.142
0.142
0.192
0.192
0.192

0.144
0.144
0.270
0.270
0.270

0.151
0.151
0.259
0.259
0.259

0.127
0.127
0.188
0.188
0.188

0.129

e,b
deg

79.2
79.2
21.2
1.3

23.6

26.5
18.6
51.1
51.1
52.4

14.3
22.2
58.4
58.4
58.4

47.2
31.8
56.3
51.4
51.4

60.2
60.2
38.3
38.3
38.3

79.2

61.2
61.2
60.4
60.4
60.4

62.7
62.7
30.5
30.5
30.5

85.6
85.6
12.5
11.5
18.5

84.8
84.8
18.5
18.5
13.6

83.2
83.2
34.0
34.0
34.0

61.2

#minb

2.21
2.21
5.24

99.11
4.59

8.90
13.82
4.36
4.36
4.18

18.53
11.05
2.84
2.84
2.84

3.09
5.45
3.83
4.47
4.47

4.27
4.27
3.95
3.95
3.95

2.21

4.11
4.11
2.66
2.66
2.66

3.23
3.23
4.48
4.48
4.48

1.62
1.62
6.67
7.30
4.24

1.49
1.49
4.60
4.60
6.55

2.21
2.21
4.05
4.05
4.05

4.11

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
Y

E
E
Y
V
V

E

E
E
Y
Y
Y

E
E
V
Y
Y

E
E
Y
Y
Y

E
E
Y
V
Y

E
E
Y
V
V

E

Date"

454
819

1008
1233
1458

1539
2034
2149
2374
2599

2697
3190
3308
3533
3758

3889
4374
4485
4710
4935

5039
5534
5645
4870
6095

6298

430
795
915

1140
1471

1603
1968
2165
2390
2615

2784
3149
3255
3480
3813

3925
4291
4422
4647
4979

5086
5451
5624
5849
6074

6274

V b

EM'OS
Orbit 8
0.129
0.129
0.218
0.218
0.218

0.163
0.163
0.136
0.136
0.136

0.176
0.176
0.205
0.205
0.205

0.216
0.216
0.158
0.158
0.158

0.164
0.164
0.158
0.158
0.158

0.129

Orbit 11
0.127
0.127
0.248
0.248
0.247

0.140
0.140
0.191
0.191
0.191

0.144
0.144
0.270
0.270
0.270

0.151
0.151
0.259
0.259
0.258

0.127
0.127
0.188
0.188
0.188

0.127

eb

deg

81.1
81.1
21.8
2.0

24.6

26.1
18.9
49.8
49.8
54.4

11.4
43.6
62.6
62.6
62.6

67.3
26.4
56.9
56.9
56.9

27.9
13.3
46.3
46.3
46.3

81.1

80.9
80.9
17.6
17.6
23.1

86.0
86.0
30.6
30.6
30.6

85.8
85.8
12.4
11.6
18.3

84.8
84.8
18.6
18.6
13.6

83.3
83.3
34.3
34.3
34.3

80.9

#minb

2.30
2.30
5.34

71.47
4.60

9.16
13.62
4.42
4.42
3.81

20.71
3.86
1.30
1.30
1.30

1.22
5.11
2.48
2.48
2.48

8.30
20.16
3.66
3.66
3.66

2.30

2.36
2.36
5.31
5.31
3.85

1.69
1.69
4.50
4.50
4.50

1.61
1.61
6.68
7.18
4.30

1.49
1.49
4.55
4.55
6.55

2.21
2.21
4.01
4.01
4.01

2.36

Planet

E
E
V
V
Y

E
E
V
V
V

E
E
Y
V
V

E
E
V
V
V

E
E
V
V
V

E

E
E
Y
Y
V

E
E
V
V
V

E
E
V
V
V

E
E
V
Y
Y

E
E
Y
Y
Y

E

Date0

430
795
973

1198
1423

1602
1967
2165
2390
2615

2785
3150
3254
3479
3812

3918
4283
4467
4692
4917

5082
5447
5622
5847
6072

6274

417
782
914

1139
1469

1605
1970
2165
2389
2614

2785
3150
3255
3480
3813

3923
4289
4426
4651
4982

5108
5473
5591
5816
6147

6261

V b

EM'OS
Orbit 9
0.133
0.133
0.148
0.148
0.148

0.142
0.142
0.194
0.194
0.194

0.146
0.146
0.277
0.277
0.278

0.148
0.148
0.153
0.153
0.153

0.135
0.135
0.194
0.194
0.194

0.133

Orbit 12
0.138
0.138
0.237
0.237
0.237

0.138
0.138
0.188
0.188
0.188

0.143
0.143
0.273
0.273
0.272

0.151
0.151
0.244
0.244
0.244

0.143
0.143
0.255
0.255
0.255

0.138

e,b
deg

61.2
61.2
60.6
60.6
60.6

62.5
62.5
30.4
30.4
30.4

85.9
85.9
11.7
10.9
16.3

62.5
62.5
57.1
57.1
57.1

76.8
76.8
33.2
33.2
33.2

61.2

69.5
69.5
19.9
17.6
27.2

85.0
85.0
31.1
31.1
31.1

86.6
86.6
12.1
12.0
17.1

86.0
86.0
22.1
22.1
12.5

66.8
66.8
16.5
10.4
13.8

69.5

"min

3.86
3.86
2.65
2.65
2.65

3.27
3.27
4.43
4.43
4.43

1.55
1.55
6.80
7.31
4.62

2.99
2.99
2.75
2.75
2.75

2.38
2.38
3.92
3.92
3.92

3.86

2.81
2.81
5.03
5.82
3.41

1.79
1.79
4.56
4.56
4.56

1.58
1.58
6.74
6.80
4.56

1.45
1.45
4.18
4.18
8.10

2.82
2.82
5.42
9.05
6.64

2.81

a Julian —2440000; dates repeating after 18 yr (add 5844 days).
6 Vr = relative velocity; 9 = turn angle; Rmin = minimum distance to planet center, planet radii.
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Table 3 Concluded

J. SPACECRAFT

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

Date"

437
802
916

1141
1473

1607
1972
2132
2357
2582

2701
3194
3309
3534
3759

3924
4289
4471
4696
4921

5084
5449
5659
5884
6109

Vrb

EMOS

Orbit 13
0.129
0.124
0.250
0.250
0.250

0.146
0.146
0.217
0.217
0.217

0.180
0.178
0.190
0.190
0.190

0.140
0.140
0.155
0.155
0.155

0.144
0.144
0.184
0.184
0.184

e,b
deg

74.6
74.6
17.0
17.0
22.9

59.4
59.4
25.1
22.5
27.3

40.1
36.4
32.7
26.6
28.7

82.2
82.2
61.0
61.0
61.0

52.1
52.1
36.6
36.6
36.6

RmirP

2.99
2.99
5.47
5.47
3.80

3.40
3.40
4.54
5.19
4.07

4.19
4.89
4.16
5.44
4.94

1.87
1.87
2.40
2.40
2.40

4.39
4.39
3.82
3.82
3.82

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

Date0

443
808
916

1141
1473

1605
1970
2130
2355
2580

2699
3192
3310
3535
3760

3921
4287
4423
4648
4980

5092
5457
5659
5884
6109

v,b
EMOS
Orbit 14

0.122
0.122
0.255
0.255
0.255

0.146
0.146
0.213
0.213
0.213

0.183
0.183
0.212
0.212
0.212

0.154
0.154
0.253
0.253
0.252

0.130
0.130
0.171
0.171
0.171

eb

deg

78.5
78.5
16.2
16.2
21.3

60.8
60.8
25.6
24.2
28.6

36.7
44.0
28.3
21.5
25.5

51.8
51.8
20.3
20.3
13.9

74.6
74.6
38.9
38.9
38.9

7? • b•it mm

2.76
2.76
5.53
5.53
4.01

4.25
4.25
4.56
4.89
3.96

4.59
3.53
4.07
5.73
4.66

3.86
3.86
4.32
4.32
4.74

2.72
2.72
4.05
4.05
4.05

Planet

E
E
V
V
V

E
E
V
V
V

E
E
V
V
V

E
E
V

• v
V

E
E
V
V
V

Datea

448
813
917

1142
1474

1603
1968
2130
2355
2580

2696
3188
3310
3535
3760

3918
4284
4417
4642
4975

5042
5535
5644
5869
6094

Vrb

EM'OS
Orbit 15

0.121
0.121
0.261
0.261
0.261

0.146
0.146
0.211
0.211
0.211

0.189
0.189
0.233
0.233
0.233

0.167
0.167
0.281
0.281
0.281

0.173
0.173
0.154
0.154
0.154

e,b
deg

86.5
86.5
15.4
15.4
20.2

62.9
62.0
26.0
26.0
29.5

33.6
50.7
24.9
17.7
23.0

53.4
53.4
16.2
16.2
17.0

28.0
9.5

48.7
48.7
48.7

#min6

2.23
2.23
5.62
5.62
5.07

3.12
3.12
4.57
4.57
3.87

4.88
2.65
3.96
5.97
4.35

3.10
3.10
4.58
4.58
4.21

7.39
26.13
3.53
3.53
3.53

E 6281 0.124 74.6 2.99 E 6287 0.122 78.5 2.76 E 6291 0.121 5.5 2.23

Julian - 2440000; dates repeat after 16 yr (add 5844 days).
Vr = relative velocity; 6 = turn angle; Rmin = minimum distance to planet center, planet radii.

of the Earth. In this case the spacecraft comes within 0.12
Earth radii of the planet surface. Thus despite similarity of
the orbits, each combination of direct return orbits requires
individual evaluation. Details of the turn angle (6) calcula-
tion are contained in Ref. 16.

The method of sequential modification was also used to
obtain solutions to a series of orbits which differ only in the
direct return orbits at the Venus encounters. These orbits
are numbered 9-12 in Table 3. Solutions to orbits 13-15
demonstrate the effectiveness of sequential modification for
periodic orbits with symmetric returns at both Earth and
Venus. In all orbits numbered 9-15 no additional conver-
gence problems were encountered.

Summary

Four types of iterative solutions were attempted in solving
the periodic orbit problem. The Davidon method was found
to be an inappropriate choice due to the excessive amount of
time required for each iteration. The steepest-descent
method proved to be extremely useful in obtaining initial
reduction of the function value resulting from the approxi-
mate fly-by dates. Since only calculation of the function
value and gradient vector are required, each steepest-descent
interaction requires little time. When simplicity of the
steepest-descent method slowed convergence at a "ravine,"
the conjugate gradient method was used successfully to obtain
additional reduction of the function value. For periodic
orbit problems, the conjugate gradient method is character-
ized by an appropriate tradeoff between the time required
for each iteration and the sophistication required for satis-
factory reduction of the function value. The Newton-Raph-

son method was used with success only after a sufficiently
accurate approximation to the fly-by dates had been reached.
Although Newton-Raphson iterations suffered from the
time required to invert an Af-order matrix, large reductions in
the function value were obtained from each iteration.

An average of 1.2 min of computer time was required to
reach a solution for each periodic orbit in which no local
minimums were encountered between the initial approxima-
tion and the global minimum. Of the 1.2 min, approximately
0.3 min were required for compilation whereas approximately
0.9 min were required for execution. The longest time re-
quired to obtain a solution was approximately 2.5 min (70
iterations) while the shortest time required was approximately
0.4 min (3 iterations).

The technique described herein is in no way restricted
to the solution of periodic orbit problems. A periodic or-
bit is merely a multiple-fly-by problem in which the first and
last flyby are constrained to occur at the same planet with
equal relative velocity magnitudes on dates separated by an
integral multiple of a specified time period. In a general
multiple-fly-by problem any one or all of these constraints
may be relaxed.

As specifically demonstrated by orbits 5 and 6, the order
in which direct return orbits occur drastically affects the
characteristics of each orbit. It is important to consider
approximating the total number of acceptable periodic orbits
which connect Earth and Venus. Each orbit contains five
encounters at Earth and five encounters at Venus. At each
encounter either one of two direct return orbits is available
for selection. For this reason a minimum of 1024 acceptable
orbits may exist. Although acceptable orbits containing as
many as five sj^mmetric returns have been shown to exist, the
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times of flight for interplanetary transfers on these orbits are
quite small. The inclusion of additional symmetric returns
would tend to further reduce the time available for interplane-
tary transfers. It is reasonable to assume that periodic orbits
with six or more symmetric returns would require flybys
passing below the surface of a planet. This assumption
reduces the total number of periodic orbits with acceptable
flybys to 648.

A larger number of periodic orbits are possible if additional
variations in the direct return orbits are considered. Those
Venus encounters with two consecutive full-revolution re-
turns could be replaced by encounters consisting of a half-
revolution return followed by a full-revolution return and a
second half-revolution return. This alternative would cause
rotation of the relative velocity vector at four rather than
three flybys. The additional fly by might reduce the largest
turn angle enough to allow more desirable flybys. Still
more orbits could be obtained by reversing the order of the
full-revolution and symmetric returns which occur in suc-
cession at many of the Venus encounters. This variation
would change the direction of the inbound and outbound
relative velocities at the full-revolution and symmetric re-
turns so that a reduction in the largest turn angle might
result. No variations of this type were required for the
orbits listed in the Appendix since the flybys at all such
Venus encounters occur well above the planet surface.

The periodic orbits require 16 yr to complete each cycle.
Earth arid Venus repeat their absolute orientation every 8 yr.
Therefore, two spacecraft are required to take advantage of
all the opportunities for each periodic orbit. When one
spacecraft is leaving Earth for Venus, the other is approaching
Earth from Venus. The alternate sets of fly-by dates can
be obtained by adding 8 yr to each set of fly-by dates listed
in the Appendix. The 15 periodic orbits presented here
would allow 30 spacecraft to simultaneously make periodic
flights between Earth and Venus. The large number of tra-
jectory choices provides considerable flexibility in establish-
ing a particular mission.

References
1 Hohmann, W., Die Erreichbarkeit des Himmelskorper, Olden-

bourg, Munich, 1925.

2 Crocco, G. A., "One Year Exploration Trip Earth-Mars-
Venus-Earth," Proceedings of the Xllth International Astro-
nomical Congress, Rome, 1956.

3 Battin, R. H., Astronautical Guidance, McGraw-Hill, New
York, 1964.

4 Ross, S., "A Systematic Approach to the Study of Nonstop
Interplanetary Round Trips/' Interplanetary Missions Con-
ference 9th Annual AAS Meeting, Los Angeles, Jan. 1963.

5 Vander Veen, A. A., "Triple-Planet Ballistic Flybys of Mars
and Venus," AAS/AIAA Astrodynamics Specialist Conference,
Jackson, Wyo., Sept. 1968.

6 Minovitch, M. A., "A Method for Determining Interplane-
tary Free-Fall Reconnaissance Trajectories," TM 312-130,
Aug. 1961, Jet Propulsion Lab, California Institute of Technol-
ogy, Pasadena, Calif.

7 Minovitch, M. A., "The Determination and Characteristics
of Ballistic Interplanetary Trajectories Under the Influence of
Multiple Planetary Attractions," TR 32-464, 1963, Jet Pro-
pulsion Lab., California Institute of Technology, Pasadena,
Calif.

8 Minovitch, M. A., "Gravity Thrust and Interplanetary
Transportation Networks," AAS Science and Technology Series,
Vol. 17, May 1967.

9 Hofflster, W. M., "Periodic Orbits for Interplanetary Flight,"
Journal of Spacecraft and Rockets, Vol. 6, No. 4, April 1969,
pp.366-369.

10 Hickman, D. E., "Guidance Requirements for Periodic
Orbits," S.M. thesis, July 1968, MIT.

11 Rail, C. S., "Free-Fall Periodic Orbits Connecting Earth
and Mars," Sc.D. thesis, MSL TE-34, Oct. 1969, MIT.

12 Breakwell, J. V. and Perko, L. M., "Matched Asymptotic
Expansions, Patched Conies and the Computation of Inter-
planetary Trajectories," XVI International Astronautical Con-
gress, Athens, 1965; also AIAA Paper 65-689, Monterey, Calif.,
1965.

13 Gillespie, R. W. and Ross, S., "Venus Swingby Mission
Mode and Its Role in Manned Exploration of Mars," AIAA
Paper 66-37, New York, 1966.

14 Davidon, W. C., "Variable Metric Methods for Minimiza-
tion," A.E.G. Research and Development Report ANL-5990
(Rev.), 1959.

15 Fletcher, R. and Reeves, C. M., "Function Minimization by
Conjugate Gradients," The Computer Journal, Vol. 7, 1964.

16 Menning, M.D., "Free-Fall Periodic Orbits Connecting
Earth and Venus," S.M. thesis, July 1968, MIT.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
-I

R
V

IN
E

 o
n 

A
ug

us
t 2

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.3
01

34
 


