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Periodic Orbits for Interplanetary Flight

WALTER M. HOLLISTER*
Massachusetts Institute of Technology, Cambridge, Mass.

The possibility exists that a spacecraft can be placed on a free-fall trajectory that goes back
and forth between Earth and Venus forever. Such trajectories have been found using
patched-conic analysis. The trajectory is first established for the case when the two planets
are in circular, coplanar orbits. The synodic period of Earth and Venus is used to establish
the time of flight and the transfer angle. These values permit a solution of Lambert's
problem for the orbit. The search procedure in the general case of inclined, elliptic orbits is
more complex. A ten-dimensional iteration is required to find the boundary conditions for
ten simultaneous solutions of the Lambert problem. Three periodic orbits connecting Earth
and Venus have been found in the general case. There is a strong probability of the existence
of other similar orbits.

1. Introduction

PERIODIC orbits for interplanetary flight are free-fall tra-
jectories which shuttle back and forth between the planets,

making a flyby at each terminal. The energy exchange asso-
ciated with the planet flyby establishes the new trajectory
toward the next destination. No propulsion is required once
the orbit is established other than that needed to correct for
guidance errors. The orbits are unstable in the sense that
small perturbations from the orbit destroy the periodicity if
left uncorrected. For this reason practical use of the orbits
requires some form of station keeping. Assuming perfect
guidance, the thrust requirement for station keeping would
be extremely small.

The analysis of periodic orbits is performed by means of
patched conies. The trajectory between the planets is as-
sumed to be an ellipse relative to a set of nonrotating, sun-
centered coordinates. The ellipse is a solution of the problem
of two bodies, namely the sun and the spaceship. The tra-
jectory near the planet is assumed to be a hyperbola relative
to a set of nonrotating, planet-centered coordinates. The
hyperbola is also a solution of the problem of two bodies,
namely the planet and the spaceship. The two trajectories
are patched by equating the terminal velocity of the space-
craft relative to the planet on the sun-centered ellipse to the
hyperbolic velocity of the spacecraft relative to the planet
far out on the planet-centered hyperbola. The time duration
of the patched trajectory is assumed equal to the time deter-
mined from the ellipses alone. The accuracy of patched conic
analysis for interplanetary orbits has been shown to be quite
reasonable.1 All of the analysis in this report is based on
patched conies.

The analytic problem is to find a trajectory that continually
makes a flyby of one planet after another. From the patched-
conic point of view, the flyby at each terminal planet results
in a rotation of the hyperbolic velocity vector. Therefore,
it is necessary to find a set of repeating sun-centered ellipses
that have equal magnitude inbound and outbound velocities
relative to the terminal planet at each terminal planet. In
addition, the turn angle between the inbound and outbound
relative velocity vector must be small enough to allow the
flyby to take place above the surface of the planet. Any
single interplanetary trajectory is determined by the specifi-
cation of the two terminal points and the time of flight. This
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is equivalent to the specification of the location of the terminal
planets at the terminal times. The dates of the terminal
events are fixed by the planet locations at the time of the
terminal events. Consequently, the solution to the problem
is the set of terminal planet locations that produces equal-
magnitude relative velocity vectors for the inbound and out-
bound trajectory with the turn angle between the vectors
small enough to permit the flyby to take place above the
planet.

The periodicity of the solar system causes planet orienta-
tions to reoccur at regular intervals. A repeated flyby will
continue forever if a set of terminal locations satisfying the
foregoing constraints reoccurs periodically.

2. Orbital Geometry

The main planets of interest for manned, interplanetary
flight are Earth, Venus, and Mars. To an accuracy of a few
degrees2 their motion can be described as follows. Earth
makes 32 revolutions of the sun in 32 yr, giving it an orbital
period of 1 yr. Venus makes 52 revolutions of the sun in
32 yr, giving it an orbital period of ̂  yr. Mars makes 17
revolutions of the sun in 32 yr, giving it an orbital period of
YT yr. After 32 yr the cycle is complete and the absolute
orientations of the three sun planet-vectors repeat in the same
part of the sky as they did 32 yr earlier. For Earth and
Venus the absolute orientation repeats after only 8 yr. In
that time Earth has gone 8 revolutions while Venus has gone
13. The five alignments of the two planets during this period
are equally spaced around the Earth's orbit.

The trajectories between the planets depend on the relative
orientation, which repeats with the synodic period. Venus
passes Earth 20 times in 32 yr, giving an average synodic
period between alignments of f yr. Venus passes Mars 35
times in 32 yr giving an average synodic period of f f yr.
Earth passes Mars 15 times in 32 yr, giving an average synodic
period of ff yr. If all three planets were in circular, coplanar
orbits the relative orientations of the three planets would
reoccur identically every --£- yr although in a different part of
the sky. The alignment dates would be spaced in time as
shown in Fig. 1, and the pattern would repeat every 6.4 yr.
The eccentricities of the three orbits cause slight variations
from this pattern with the most noticeable being due to the
eccentricty of Mars (e = 0.093). For Earth and Venus the
relative orientation repeats every 1.6 yr in a different part of
the sky. The eccentricities of Earth (0.017) and Venus
(0.007) are small enough to make the timing of the alignments
quite regular. The relatively large orbital inclination of 3°24'
causes differences in the terminal velocities for similar tra-
jectories in adjacent synodic periods. The assumption of
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circular, coplanar orbits, however, makes each 1.6-yr synodic
period identical. That is, the planets and the spaceship move
in the same way relative to one another, but they traverse a
different part of the sky relative to the stars. The assump-
tion greatly simplifies the problem of finding a repeating orbit
since everything repeats after only 1.6 yr. This case is ana-
lyzed in Sec. 4. The general case of eccentric and inclined
orbits for Earth and Venus is treated in Sec. 5.

3. Direct-Return Orbits

A direct-return orbit is a free-fall ellipse about the sun
which returns the spaceship some time after launch to the
same planet from whence it was launched. There exists a
large class of such orbits, but for the purposes of this study
only two types are considered. The first type, called the
"full-revolution return," is an ellipse which has the same
period as the launch planet. After one revolution of the sun
both the spaceship and the planet return simultaneously to
the launch point. There are a double infinity of ellipses
passing through the launch point with period equal to that
of the launch planet. The magnitude of the velocity of the
spaceship relative to the sun is equal to that of the launch
planet relative to the sun. Therefore, the locus of the tip
of the velocity vector of the spaceship relative to the sun lies
on a sphere in velocity space and the hyperbolic velocity of the
spaceship relative to the launch planet is approximately per-
pendicular to the velocity vector of the launch planet relative
to the sun. The "half-revolution return" is a special case
when the ellipse has both the same period and the same
eccentricity as the launch planet's orbit, but is inclined to it.
The spaceship returns after only a half-revolution of the sun.
There are a single infinity of these orbits and the hyperbolic
velocity vector is approximately perpendicular to the plane
of the launch planet's orbit.

The second type of direct return is shown in Fig. 2. The
ellipse is coplanar with the launch planet orbit. The space-
ship returns to the launch planet after about 1.4 solar revo-
lutions. The exact transfer angle is found by an iterative
solution of Lambert's equation. The condition for a return
to a planet that is in circular orbit is that the time of flight in
launch planet periods is equal to the transfer angle in revo-
lutions. There are a single infinity of solutions for this case
near the 1.41 point, as can be seen in Fig. 3. This type of
transfer will be called a "symmetric return" after Ross.3 The
locus of the hyperbolic velocity of the spaceship relative to the
launch planet at launch is also shown in Fig. 3.

All these direct-return orbits have the useful property that
they can be achieved with an arbitrary initial velocity mag-
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Fig. 2 Sy mine trie return orbits.

nitude. Also, when the launch planet is in circular orbit, the
arrival velocity magnitude is equal to the launch velocity
magnitude. This makes it easy to pair the direct-return
orbits with interplanetary transfers in order to synthesize a
periodic orbit.

4. Circular, Coplanar Case for Earth and Venus

Consider Earth and Venus to be in circular, coplanar orbits
so that the relative orientation of the two planets repeats
exactly every 1.6 yr. A connecting orbit is periodic if it
repeats after a multiple of 1.6 yr. Several combinations of
orbits making a total of 4.2 solar revolutions in 3.2 yr have
been found to satisfy this special condition.

For periodic orbit I, let the spaceship make one full-revo-
lution return at Earth, transfer to Venus and make two full-
revolution returns at Venus, then transfer back to Earth and
repeat. By subtraction, the time for each transfer between
Earth and Venus is 0.485 yr and the transfer angle is 0.6
revolution. These values allow a solution of Lambert's
equation for the orbital elements of the transfer ellipse and
the launch and arrival hyperbolic velocity vectors. The same
transfer is used going to and from Venus, so the magnitudes of
the hyperbolic velocity at each terminal planet are equal.
The result of the Lambert computation shows the hyperbolic
relative velocity at each Venus flyby to be 0.126 Earth Mean
Orbital Speed unit (3.8 km/sec), and at each Earth flyby to
be 0.107 Earth Mean Orbital Speed unit (3.2 km/sec). The
gravities of Earth and Venus are strong enough to rotate
these hyperbolic velocity vectors through the angles required
to go from the interplanetary transfer to a planet-return
transfer during flybys that take place well above the surface
of each planet. The choice of full-revolution return at Earth
and Venus is not unique. Any return which keeps the space-
craft at a distance greater than 1.1 planet radii during the
flyby is considered acceptable. This amounts to a constraint
on the magnitude of the turn angle. The maximum value
of the turn angle is a function of the hyperbolic velocity
magnitude VH, as shown in Fig. 4. An example of periodic
orbit I as it would be seen from Earth is shown in Fig. 5.

For periodic orbit II let the spaceship make one full-
revolution return at Earth, transfer to Venus and make one
symmetric return and one full-revolution return, then transfer
back to Earth and repeat. For periodic orbit III let the
spaceship make one symmetric return at Earth, transfer to
Venus and make two full-revolution returns at Venus, then
transfer back to Earth and repeat. Periodic orbits II and III

1,0
0.9

0 0.8
Rp-s 0.7

0.6

Fig. 1 Spacing of the planetary alignments.

1,0 1.2 1.4
ff,PLANET PERIODS

Fig. 3 Semimajor axis vs time of flight, locus of hyper-
bolic velocity vector (radial vs circumferential component),

for symmetric return to a planet in circular orbit.
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,0.2 EMOS AT d1 s
- CIRCULAR SATELLITE VELOCITY AT
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Vs =0.254 EMOS AT I.I EARTH RADII
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60° 120° 180°
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Fig. 4 Limiting turn angles.

also give hyperbolic relative velocity magnitudes small enough
to accomplish flybys above the surface of each planet.

5. General Case for Earth and Venus

The general case where Earth and Venus are considered to
move in elliptic, inclined orbits is more complex. The peri-
odic orbits of the last section can be used as starting points,
but they now take 16 yr before repeating exactly. There are
10 transfers between Earth and Venus in the 16 yr, spaced in
between direct-return orbits at each planet. Consider first
the general case of periodic orbit I. Since the direct-return
orbits start and end at the same point, there are only 10
terminal locations required to specify completely the inter-
planetary portions of the periodic orbit. Let U identify the
10 terminal locations of Earth and Venus and Vi the difference
between inbound and outbound hyperbolic velocity for the
10 terminal locations. Ten solutions of Lambert's problem
are required to find the Vi given the ti. The problem is to
adjust the Wti to make the 10Ft vanish simultaneously. A
solution has been, obtained using steepest-descent procedures.
A step is taken in ti space in the direction which causes the
largest change in the sum of V^. Convergence is slow but
satisfactory. The procedure is as follows: 1) Use the circular,
coplanar analysis to establish the 10^ for the case of zero
eccentricity and inclination. 2) Increase the eccentricity and
inclination to their actual values. 3) Find the 10F; corre-
sponding to the IQti by 10 solutions of Lambert's problem.
4) Test

10
E TV < e

5) Form the matrix | |dVj/d£i| | by making small changes
in the ti one at a time. 6) Change the ti to ti by ti =
ti — K\\dVj/dti\\Vj (K is a constant used to control the
step size and convergence rate. If the procedure fails to
converge the magnitude of K is adjusted.) 7) Repeat 3-6
until test 4 is satisfied.

Fig. 5 Periodic
orbit I as seen from

Earth.

ORBIT OF VENUS

A Newton iteration4 to solve for the 10^- was also used
successfully, but gave less satisfactory convergence than the
steepest-descent procedure. Any future work would profit
from modifications to provide more efficient convergence.
The results of the computation are shown in Table 1. The
hyperbolic velocity magnitudes are significantly higher than
the coplanar case because of the high out-of-plane components.
The full-revolution returns must be chosen so as to take the
arrival velocity vector into the departure velocity vector after
two flybys at Earth or after three flybys at Venus. As before,
the choice of direct-return orbits at Earth and Venus is not
unique. It was verified that a set existed that did not strike
the planet by plotting the angle and elevation from Table 1
on a sphere, judiciously selecting return orbits, measuring the
turn angles geometrically, and then verifying that the turn
angles could be accomplished above the surface through the
use of Fig. 4.

Periodic orbits II and III were also studied in the general
case of elliptic, inclined orbits for Earth and Venus. The use
of the symmetric return creates greater than 10 terminal
locations of Earth and Venus. In order to keep the analysis
relatively simple and also use the same computer program,
the duration of the symmetric return was assumed to be a
constant value selected from Fig. 3 for the approximate value
of semimajor axis expected. The launch and arrival velocity
magnitudes on the symmetric return were assumed equal.
These approximations allow the periodic orbit again to be
specified by only 10 values of ti. Solutions were found for
both periodic orbit II and periodic orbit III in the general
case. Again the turn angles permitted the flybys to take
place above the surface of each planet. The average magni-
tudes of the hyperbolic velocities in the three periodic orbits
are shown in Table 2 for comparison.

These three cases are the only combinations that have been
investigated so far. They all lead to a satisfactory periodic
orbit connecting Earth and Venus. However, it is not neces-
sary that the five direct-return orbits used at each terminal
be of the same type. It would be reasonable to use any
combination that satisfied the conditions for a periodic orbit.
There are a minimum of twenty combinations to investigate
since each of the 10 direct-return orbits can be chosen in at

Table 1 Periodic orbit I"

JD 244- V, EMOS

LV ©
AR 9
LV 9
AR ©
LV ©
AR 9
LV 9
AR 0
LV ©
AR 9
LV 9
AR ©

0806
0971
1421
1592
1957
2125
2575
2797
3163 \
3316
3765
3935

Ang, deg Elev, deg JD 244- V, EMOS Ang, deg Elev, deg

0.154
0.178
0.178
0.154
0.154
0.203
0.203
0.191
0.191
0.194
0.194
0.156

163
38
335
201
143
8

294
240
186
36
343
215

-52
55

-60
50

-44
67
14
12
58

-62
65
46

4300
4471
4921
5077
5442
5664
6114
6285
6650

Repeating after

0.156
0.192
0.192
0.174
0.174
0.223
0.223
0.154
0.154

16 yr

154
17
319
183
123
69
8

215
163

50
-64
58

-56
-12
-15
-69
47

-52

a The angle is in the orbital plane clockwise from the circumferential direction.
b The elevation is positive when above the orbital plane.
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Table 2 Velocities (EMOS X 103) for periodic orbits I,
II, and III, lowest/average/highest

II III

VH at Earth
VH at Venus

154/165/191
178/198/223

136/145/159
232/243/249

173/196/214
144/174/232

least two ways. In general one could search for the particular
combination that gives the optimum set of characteristics for
a particular mission. The conclusion is that three periodic
orbits connecting Earth and Venus have been shown to exist,
but there is a strong probability of the existence of additional
orbits similar in nature.

6. Applications

The Earth-Venus periodic orbits presented here take two
synodic periods to complete one cycle. Therefore, two space-
ships are required in order to take advantage of every Earth-
Venus opportunity. With both spaceships operating, there
is a flyby of Venus at intervals that average one every 6.4
months. One spaceship is going to Venus and one returning
from Venus at the time of planetary alignment. When one
is on a planet return near Earth, the other is on a planet return
near Venus, and vice-versa. During the time spent near
Venus the spaceship goes behind the sun relative to the Earth.
During the course of the trip the two spaceships have the
opportunity to see each planet from all sides. One appli-
cation for the spaceship is as a reusable interplanetary vehicle,
i.e., a long-life shelter for astronauts and their equipment.
It could also serve as the location of a communications link,
a rescue station, or an interplanetary navigation beacon or
solar probe.7

The computing technique described here is useful for the
analysis of any multiple-planet-flyby trajectory. Examples
of such trajectories are missions to the outer planets via
Jupiter5 and Earth-Vehus-Mars-Earth round trips.6 The lat-
ter suggests the possibility that unending orbits exist which
periodically visit Mars as well as Earth and Venus. The
analysis, however, is even more complicated when Mars is
included. The assumption of a circular orbit for Mars is very
unrealistic (e = 0.093). There is also the problem that the
surface gravity of Mars is small by comparison with Earth
and Venus. From Fig. 4, the limiting turn angle at Mars for
the same hyperbolic velocity is half as large as it is at Earth
or Venus. The solution of the Lambert iteration might call
for the spaceship to go beneath the surface during a Mars

flyby. The flyby at Venus rarely exhibits this result for
attractive transfers to Mars via Venus. It may be necessary
first to establish the trajectories from Earth and Venus which
fly by Mars above its surface, and then attempt to pair these
trajectories at Earth and Venus where the limiting turn angles
are not so small. It might also be reasonable to take the known
Earth-Venus-Mars-Earth round-trip trajectories and attempt
to pair them with other trajectories at Earth. The large
number of possible combinations makes it a difficult search.
Another approach to the problem is to work with continuous
thrust trajectories instead of free-fall orbits. First establish
a periodic, continuous-thrust trajectory which visits the three
planets, and then search for the neighboring optimum tra-
jectory satisfying constraints on the point of closest approach
to the planets plus the periodicity condition. The absolute
optimum would be a free-fall periodic orbit if such a trajectory
existed in the neighborhood of the initial guess.

References
1 Breakwell, J. V. and Perko, L. M., "Matched Asymptotic

Expansions, Patched Conies and the Computation of Inter-
plane tory Trajectories," XVI International Astronautical Con-
gress, Athens, 1965; also Paper 65-689, 1965, AIAA; also AIAA
Progress in Aeronautics and Astronautics: Methods in Astrody-
namics and Celestial Mechanics, edited by R. L. Duricombe and
V. G. Szebehely, Vol. 17, Academic Press, New York, 1966, pp.
159-182.

2 Gillespie, R. W. and Ross, S., "Venus Swingby Mission Mode
and Its Role in Manned Exploration of Mars," Paper 66-37,
1966, AIAA; also Journal of Spacecraft and Rockets, Vol. 4,
No. 2, Feb. 1967, pp. 170-175.

3 "Final Report: A Study of Interplanetary Transportation
Systems," No. 3-17-62-1, June 1962, Lockheed Missiles and Space
Co., Sunny vale, Calif.

4 Hollister, W. M., "Periodic Orbits Connecting Earth and
Venus," Zeitschrift fur Angewandte Matheniatik and Mechanik,
Band 47, Sonderheft 1967.

5 Deerwester, J. M., "Jupiter Swingby Missions to the Outer
Planets," Journal of Spacecraft and Rockets, Vol. 3, No. 10, Oct
1966, pp. 1564-1567.

6 Ross, S., "A Systematic Approach to the Study of Nonstop
Interplanetary Round Trips," Interplanetary Missions Confer-
ence, 9th Annual AAS Meeting, Los Angeles, Jan. 1963.

7 Casal, F. and Ross, S., "The Use of Close Venusian Passages
During Solar Probe Missions," AAS Symposium on Unmanned
Exploration of the Solar System, Denver, Colo., Feb. 1965.

8 Hollister, W. M. and Prussing, J. E., "Optimum Transfer to
Mars via Venus," Astronautica Acta, Vol. 12, No. 2, March-April
1966.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
-I

R
V

IN
E

 o
n 

A
ug

us
t 2

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.2
96

64
 


