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On November 25
th

, 2011, NASA launched a rocket that will carry a rover called 

Curiosity to Mars.  The rover is scheduled to land at Mars’s Gale crater on August 6
th

, 

2012.  In this project you will model the 352 million mile (567 million Km) flight path of 

this rover, and will send it into orbit around the Sun towards Mars. 

 

You are part of the Initial Condition Group at NASA that will work on sending the rover 

to Mars. Your task is to model the orbital path, and find the correct initial velocity of the 

spaceship to send it into orbit around the Sun towards Mars.  NASA's Curiosity Rover 

groups are:  

 

The Launch Group (launches the satellite into space out of Earth's gravitational field)  

The Initial Condition Group (your group, models orbital path, finds initial velocity) 

The Course Correction Group (corrects the course to Mars every few weeks) 

The Entry and Landing Group (works on entry into Mars's atmosphere, and landing) 

 

 

 



Introduction: 
 

Johann Kepler in 1609 discovered that planets orbit the Sun in elliptic orbits, and that 

their orbital velocity is not constant but varies.  The following summarizes Kepler’s first 

two laws (See Figure 1): 

 

1) The planets orbit the Sun in Elliptic orbits with the Sun at one of the focal points. 

2) The line joining the Sun to a planet sweeps out equal areas in equal time. 

 

His second law, simply said, means that planets slow down when they are farther from 

the Sun, and speed up when they are closer.  Since the line joining the Sun to the planet is 

shorter when the planet is closer, the length of the orbit covered by the planet in a given 

interval of time would be larger to make the areas swept equal.  The spaceship carrying 

Curiosity rover to Mars will be orbiting the Sun as well as Earth and Mars, and the above 

laws applies to it and any other celestial object orbiting the Sun, or any other star. 

 

The closest point of orbit to the Sun is called perihelion (periapsis), and the farthest 

point is called aphelion (apoapsis). 

 

Kepler did not have the physics and mathematical tools to prove his own discovery, and it 

was left for the genius of Sir Isaac Newton to do that, in 1665, using his second law of 

motion and his law of gravitation ( amF ⋅= , and 
2

d

mMG
F

⋅⋅
−= ).  The 23-year old was 

a student at the University of Cambridge when an outbreak of the Plague forced the 

university to close down for 2 years.  Those two years were to be the most creative in 

Newton’s life.  He conceived the law of gravitation, the laws of motion, differential 

calculus, and the proof of Kepler’s law. 
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Path of a Spaceship from Earth to Mars 

It may seem that the best way to send a spaceship from Earth to Mars is to choose the 

shortest path straight out to Mars, and time it so that the spaceship and Mars will meet at 

the same time and place, as shown in the Figure 2. But since the spaceship is working 

against Sun's gravity, it will need an impractically large amount of fuel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  How not to send a spasceship to Mars 

 

In 1925 German engineer Wolfgang Hohmann proposed that the most efficeint way to 

send a spaceship to Mars (or to any outer planet) is to set the spaceship in orbit around 

the Sun with its perihelion at Earth's orbit, where it is launched, and its aphelion at Mars's 

orbit, where it will meet Mars.  The spaceship needs almost no fuel to orbit the Sun, 

except for a small amount to give it the correct initail velocity to send it into orbit, and 

some course corrections.  Figure 3 shows the flight path, with the standard xy coordinate 

system for the solar system.  See Appendix A for a detailed explanation of the solar 

coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  How to send a spasceship to Mars 
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The Mathematics of the Project 

Your task in this project is to model the orbit of the two planets, and the spaceship, and 

find the initial velocity of the spaceship to set it into orbit around the Sun so that it will 

meet Mars on August 6
th

, 2012. 

We will let 0=t  designate Nov. 25
th

, 2011.  Counting the number of days to August 6
th

, 

and dividing it by 365.24 days per year, we can find that 70.0=t on August 6
th

, 2012.   

 

0=t        is  Nov. 25
th

, 2011  (Launch) 

70.0=t   is  August 6
th

, 2012  (Landing) 

 
We will use differential equations to model the orbits and locations of Earth, Mars, and 

the spaceship using Newton’s two laws mentioned above.   

 

Newton’s second law of motion in vector form is: 
→→

= amF           (1) 

where 
→

F is the force vector in N (Newtons), and 
→

a is the acceleration vector in 2sm , 

and m is the mass in kg.   

 

Newton’s law of gravitation in vector form is: 

r

r

r

GMm
F

→

→

⋅−=
2

        (2) 

where 
kgs

m
G

⋅
×=

−

2

3
11  1067.6  is the universal gravitational constant, M is the mass of 

the larger object (the Sun), and is kg  102 30
× , and m is the mass the smaller one (the 

planets or the spaceship).  The vector r
�

 is the vector connecting the Sun to the orbiting 

objects.  Note that in (1) and (2), the variables aF
��

 ,  and r
�

 are all functions of time, and 

)()( trta ′′=
��

. 

 

The following will describe the steps you need to take to do this project. 

 

1) Astronomers use Astronomical Units (AU) for distance, and years instead of seconds.  

An Astronomical Unit is the average distance between the Sun and the Earth.  This is the 

same as the semi-major axis for the Earth (a in Figure 1 above).   There are 

AUm  10598.149 9
× , there are ys  1015569.3 7

× .  In order to use more conventional 

units that astronomers use, convert the units of universal gravitational constant from 

kgs

m

⋅
2

3

 to 
kgy

AU

⋅
2

3

 using the information above.  Use at least three decimal places. 

 



2) The motion force in Equation (1) and the gravitational force in Equation (2) are equal.  

Equate the right hand sides of equations (1) and (2), and cancel the common factor on the 

left and right sides. 

 

3) Using  )()( trta ′′=
��

, and jtyitxtr
���

)()()( += , convert the equation in step 2 above to 

an equation involving )(tx , )(ty  and their second derivatives.  Note that these are the xy- 

coordinates of each orbiting object. 

 

4) When two vectors are equal, their components are equal (this means that when 

jdicjbia
����

+=+ , then ca =  and db = ).  Equate the x and the y components on each 

side of the equation you got in step 3.  This should give you two second-order differential 

equations, one involving )(tx ′′ , )(tx , and )(ty , and the other involving )(ty ′′ , )(tx , and 

)(ty .  These equations will not have i
�

and j
�

in them. 

 

5) Let )()( txtvx ′= , and )()( tytvy ′= , and turn each equation into a system of two first-

order differential equations.  Collect these into a system of four first-order differential 

equations (the order should be )(),(),(),( tvytytvxtx ).  The four unknowns are the x 

and the y coordinate, and the velocities in the x and the y directions of each celestial 

object orbiting the Sun.  This system of four first-order differential equations will 

separately model the orbits of Earth, Mars and the spaceship, if we use the correct initial 

conditions for each orbiting object.  In other words, if you use the four initial conditions 

for Mars in this system of equations, and solve them, you can get the x, and the y 

coordinates of Mars, and its velocity in the x and the y directions for a given time. 

 

6) The four initial conditions for this system, for each orbiting object at 0=t  (Nov. 25
th

, 

2011) are given below.  The letter e is for Earth, m is for Mars, and c is for the curiosity 

spaceship.  Note that the initial positions for the spaceship are the same as Earth's.  That 

is because when the spaceship is launched outside of Earth's strong gravitational field, it 

is about 200 miles above Earth, which is negligible compared to cosmic distances (one 

AU is about 93 million miles).   

 

xe(0) = 0.44503            AU   

vxe(0) = -5.71113    AU / y   

ye(0) = 0.88106            AU 

vye(0) = 2.80924      AU /  y  

 

xm(0) = -0.81449         AU  

vxm(0) = -4.23729   AU / y   

ym(0) = 1.41483          AU 

vym(0) = -2.11473   AU / y 

 

xc(0) = 0.44503            AU  

vxc(0) = Yours to find out AU / y,    

yc(0) = 0.88106            AU 

vyc(0) = Yours to find out  AU / y  



 7) Use MAPLE, or your calculator, to solve this system numerically as described in a) 

or b) below.  The initial conditions for Earth and Mars for 0=t  are given above.  You 

will have to choose the initial velocity for the spaceship (vxc(0), and vyc(0)), so that the 

spaceship is launched into orbit around the Sun, and is within 0.08 AU of Mars on 

August 6
th

 ( 7.0=t ). 

 

Hint: First solve the system for Earth and Mars, to make sure that the orbits look 

reasonable, and your calculations are correct.  Then input reasonable numbers for vxc(0), 

and vyc(0) to get a reasonable orbit for the spaceship.  Note that since the spaceship's 

orbit is a bit larger and more elliptic than Earth's, the spaceship's initial velocity should be 

a tad bit bigger than Earth's. 

 

a) With MAPLE use the DEplot( … ) command and the dsolve( … type=numeric) 

command.  The first one will give you the graph of the orbit, while the second one will 

give you the positions at different times after 0=t  (Nov. 25
th

, 2011).  Make stepsize 

equal to .005, and use scene=[x,y].  You will have to do this three times, one for Earth, 

one for Mars, and one for the Curiosity spaceship.  The only difference between these 

MAPLE commands will be the initial conditions.  Once you solve the Earth's orbit, you 

can do copy and paste and edit to get the other two orbits. 

 

See Appendix B for an example of how you can use MAPLE to a system numerically 

and plot locations 

 

b) If you use your TI calculator, you can, unfortunately, only get one solution and graph 

at a time.  You need to set the following setting: 

 

MODE→Graph→Diff Eq 

y = → Let x = y1, vx = y2, y = y3, vy = y4, and type your four equations and four initial   

         conditions in:  ==′==′==′==′ 4,4,3,3,2,2,1,1 yiyyiyyiyyiy  

         

y = → F1 → Format → Coord → RECT 

                                          → Solution → RK 

                                          → Fields → FLDOFF 

y = → F7 → Axes → CUSTOM ,    x Axis  y1,        y Axis   y3 

WINDOW →  t0 = 0,  tmax = 0.7, tstep= 0.005,  xmin=-2*7/3,  xmax=2*7/3,  ymin=-2, 

ymax=2  (This will give you equal scaling on the axes, as in zoom square) 

 

8)  Present the initial velocity for the spaceship in a table, and find the xy-coordinates of 

each celestial object and present that in a second table as shown blow.  Use four decimal 

places for the initial velocity table, and three decimal places for the xy-coordinates.   

 

 

 

vxc(0) 

 

vyc(0) 

 

 

 



 

 

t (y) xy-coord. of Earth xy-coord. of Mars xy-coord. of Curiosity 

0 

 

   

0.2 

 

   

0.4 

 

   

0.6 

 

   

0.7 

 

   

 

9) Present the graph of orbits and their locations superimposed on it like the figure in 

Appendix B.  See Appendix B for an example of how to attach these plots so the 

positions are superimposed on the orbits. 

 

10) Calculate the distance between Mars and the Curiosity spaceship at 7.0=t y.  This 

distance should be no more than 0.08 AU.  Present it in a table as shown below.  

Reminder: The distance equation is 2

21

2

21 )()( yyxxd −+−= . 

 

t (y) Distance between Mars and Curiosity spaceship (AU) 

0.7 

 

 

  

 

 

Your Report 
 

Your report should be complete and easy to understand by a mathematician who 

has not seen this paper and has not been to our class.   

 

Your report should include: 

 

I) A cover sheet. 

II) A short and complete statement of the problem in your own words.   

III) All your math and calculations. 

IV) All the graphs and tables (include the tables in steps 8, 9, and 10 above). 

V) All the MAPLE worksheets or calculator work (attached as an Appendix to the back  

     of your report) 

VI) A short conclusion of what this project has contributed to your cosmic 

       consciousness. 

VII) The report should be all your own original words, graphs, equations, and tables 

        (with the possible exception of the figures in this handout you are reading now). 



 

Appendix A 

 

A short review of the heliocentric coordinate system 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three dimensional solar coordinate system, called the Heliocentric Coordinate 

System is shown above.  The Sun is at the origin and the xy-plane is the plane of Earth's 

orbit.  The Earth orbits the Sun, and rotates about its axis counterclockwise as seen from 

the positive z-axis.  The Earth's rotation axis (north-south pole line) is in the z direction, 

but tilted towards the positive y-axis.  The Earth is on the positive y-axis on Winter 

Solstice when the North Pole is tilted away form the Sun (approx. Dec. 21
st
), and on the 

negative y-axis on Summer Solstice when the North Pole is tilted into the Sun (approx. 

June 21
st
).  The Earth is on the x-axis on the Equinoxes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top view of the orbits of Earth and Mars are shown above.  The Earth's perihelion, 

measured clockwise from the positive x-axis, is at about �103 (approx. Jan. 3
rd

).  Mars's 

perihelion is at about �336 . 

The orbital period of Earth is 1 year, and that of Mars is 1.88 years.  The Earth's semi-

major axis is 1 AU, and that of Mars is 1.52 AU.  
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Appendix B 

 

You will solve the system of four equations in your project numerically using 

Maple.  The following is an example of how you can solve a system of three Diff. Eqs. in 

three unknowns x(t), y(t), and z(t) numerically.  You can use the same commands as in 

this example, but will have to modify it to reflect your own project. 

 

x'(t) = -2x(t)+3y(t)+z(t) 

y'(t) = 2x(t)-6y(t)-2z(t) 

z'(t) = x(t)-2y(t)-3z(t) 

 

DEplot gives the graph of the numeric solution. 

dsolve gives the numeric solution that can be evaluated at any t. 

 

You can then save the DEplot as p1, and the pointplot of locations as p2, and then  

display the graph and the locations of each solution on top of it.  When saving plots, 

make sure to end the command with a colon (:), and not a semicolon (;).  The colon 

suppresses the output until you are ready to display the plots.  

 

> with(DEtools): with(plots): 
 

> DEplot({diff(x(t),t)=-2*x(t)+3*y(t)+z(t), 

diff(y(t),t)=2*x(t)-6*y(t)-2*z(t),diff(z(t),t)=x(t)-2*y(t)-

3*z(t)},[x(t),y(t),z(t)],t=0..4,[[x(0)=1,y(0)=2,z(0)=-1]] 

,scene=[x,y],arrows=thin,linecolor=red,stepsize=.05); 

 

 
 

> sol:=dsolve({diff(x(t),t)=-2*x(t)+3*y(t)+z(t), 

diff(y(t),t)=2*x(t)-6*y(t)-2*z(t),diff(z(t),t)=x(t)-2*y(t)-

3*z(t),x(0)=1,y(0)=2,z(0)=-1}, 

[x(t),y(t),z(t)],type=numeric); 

 
 := sol procprocprocproc ( )  ... end procend procend procend procrkf45_x  

> sol(0); 
[ ], , , = t 0  = ( )x t 1.  = ( )y t 2.  = ( )z t -1.  



> sol(0.2); 
 = t .2  = ( )x t 1.22464334242087536  = ( )y t 1.08667890529896894, , ,[

 = ( )z t -.797300639411056334 ]  

> sol(.5); 
 = t .5  = ( )x t 1.09121351452654158  = ( )y t .649786284216056998, , ,[

 = ( )z t -.410865740179701122 ]  

> sol(1); 
 = t 1  = ( )x t .774048507820265241  = ( )y t .354922732807339714, , ,[

 = ( )z t -.0932091994835609061 ]  

> sol(2); 
 = t 2  = ( )x t .349881052241647838  = ( )y t .127842021374964642, , ,[

 = ( )z t .0272897365510226253 ]  

> sol(3); 
 = t 3  = ( )x t .151077207063233798  = ( )y t .0510881785512952366, , ,[

 = ( )z t .0205865881299654302 ]  

> sol(4); 
 = t 4  = ( )x t .0643413765672093269  = ( )y t .0212120472193912287, , ,[

 = ( )z t .00993510209622652276 ]  

> p1:=DEplot({diff(x(t),t)=-2*x(t)+3*y(t)+z(t), 

diff(y(t),t)=2*x(t)-6*y(t)-2*z(t), diff(z(t),t)=x(t)-

2*y(t)-3*z(t)}, [x(t),y(t),z(t)], t=0..4, 

[[x(0)=1,y(0)=2,z(0)=-1]], scene=[x,y], arrows=thin, 

linecolor=red,stepsize=.05): 

 

> p2:=pointplot({[1,2],[1.22,1.09],[1.09,0.65],[.77,0.35], 

[.35,0.13],[.15,.05]},symbol=circle,color=black): 

 

> display(p1,p2); 

 

 

 
 


