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The OpenOrbiter project is a campus-wide effort at the University of North Dakota to 

design and build a low-cost CubeSat-class satellite.  The intent is to create a publically-

available framework that allows a spacecraft to be built with a parts cost of less than USD 

$5,000 (excluding mission payload-specific costs). This paper focuses on OpenOrbiter’s 

software system methodology and implementation.  

Current work seeks to create a generalized framework that other CubeSat developers 

can use directly or alter to suit their mission needs. It discusses OpenOrbiter’s overall design 

goals with an emphasis on software design. The software architecture is divided into three 

main components: operating software, ground station software and payload software. Each 

component is discussed along with the requirement for efficient and effective communication 

between the components. A communication standard that fulfills these goals is discussed 

herein. 

The paper also discusses several challenges encountered and their resolution, including 

the creation of heuristics to optimally schedule tasks, handling the uncertainty that is 

inevitable in satellite operations, defining useful standards for all components of the 

software, communicating between components effectively and testing software to ensure 

proper operation in an orbital environment. Then, the current state of each software 

component and its implementation is presented. Finally, the significance of OpenOrbiter is 

discussed and plans for future work are presented. 

I. Introduction 

HE OpenOrbiter Small Spacecraft Development Initiative (OOSDI) at the University of North Dakota is an 

ongoing project to design and develop a low-cost framework for a CubeSat-class spacecraft.  This framework, 

entitled the Open Prototype for Educational Nanosats (OPEN), will be made publically available to aid other 

developers, giving them a starting point that can be adapted to their specific needs. 

An important part of this spacecraft cyber-physical system is the software.  The software is responsible for 

command and control of the spacecraft; it manages communications with the ground station, schedules the 

performance of the tasks provided and commands and monitors the spacecraft hardware. 

This paper provides an overview of that software system.  It begins with a discussion of relevant background in 

three areas.  It, then, presents the goals of the OpenOrbiter software system.  Next, it discusses, in depth, the 

components of this system, followed by a discussion of development and implementation challenges, before 

concluding. 

II. Background 

Prior work from three areas informs the current design and development efforts.  These areas include the 

CubeSat form factor, prior work on CubeSat software and the OpenOrbiter project.  Each is now discussed. 

A. CubeSat Form Factor 

The CubeSat form factor was developed by Twiggs and Puig-Suari in the early 2000s to facilitate the 

incorporation of hands-on development work into aerospace engineering courses [1].  The CubeSat concept was 

based on the OPAL [2] mission (which ejected six hockey-puck shaped sub-satellites); the P-POD, a launcher based 

on the OPAL launcher, was developed by Puig-Suari and the CalPoly team [3]. 

CubeSats were initially decried as little more than toys [1]; however, their use has now been demonstrated across 

multiple constituencies.  They are being developed by industry [4] (and have spawned new entrants: e.g., [5]) and 
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government agencies [6, 7].  The form factor’s capabilities for education [8-10], technical development [8, 11] and 

scientific work [12, 13] have been demonstrated.  The use of CubeSats in clusters [12, 14] and as a mechanism for 

space entry [15] and collaborative missions [16] for developing nations has been considered.  CubeSats have even 

been proposed for use on interplanetary missions [17, 18], either free-flying or ‘hitchhiking’ with other spacecraft 

[19]. 

B. CubeSat Software Systems 

While the initial CubeSats had limited computational hardware, recent and future proposed missions have 

significantly more robust computational capabilities, allowing significant potential for software.  Samson [20], for 

example, proposes the use of multiple onboard processors (using several GumStix computer-on-module units).  A 

distributed architecture (separating mission-specific functionality from spacecraft operations) using an I2C bus was 

developed by Mitchell, et al. [21]; prior work [22] had also used the payload / core functionality separation.  

Brandon and Chapin [23] discuss the use of ADA on a CubeSat.  Rapid development for nanosatellites, however, 

Fitzsimmons [5] suggests, can be facilitated through the use of open-source software (backed by the knowledge base 

of a large user community). 

Work [24] at the Jet Propulsion Laboratory on autonomy has demonstrated the ability to have significant 

autonomy on a CubeSat, the utility of using autonomy for “instrument processing and product generation” and the 

utility of using small spacecraft for testing parts for later larger craft.  Manyak [25] has considered how fault 

tolerance and flexibility can be attained, given CubeSat limitations, while Spangelo, et al. [26] had demonstrated the 

use of model-based systems engineering for CubeSats (including software components).  Schmidt and Schilling [27] 

have considered the extensibility of CubeSats’ software platforms.  Farkas [28] discusses the creation of standard 

software bus (for CalPoly spacecraft) and Montenegro [29] discusses how dependability can be facilitated with a 

double-board design. 

C. OpenOrbiter 

The OpenOrbiter Small Satellite Development Initiative started in 2012 as an offshoot of a thematically-related 

precursor program.  The program, which aims to demonstrate the efficacy and space-worthiness of the Open 

Prototype for Educational Nanosats designs, is developing a complete set of plans, fabrication instructions and other 

materials to aid the implementation of CubeSat programs at other institutions.  The base OPEN design [22, 30] is a 

1U (10 cm x 10 cm x 11 cm, 1.33 kg) CubeSat with a design that utilizes the overhang space between the CubeSat 

deployment rails in the P-POD, maximizing the available volume.  It has a central cavity for payload storage, in 

addition to reserving one of its four side panels for this purpose.   

 

 

Figure 1. OpenOrbiter CubeSat [30]. Figure 2. Exploded view of Open Prototype for 

Educational Nanosats [30]. 

In the OpenOrbiter spacecraft, this payload board will include significant processing capabilities via the 

inclusion of multiple GumStix computer-on-module (COM) units.  These units supplement the processing 
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capabilities of the flight computer, a Raspberry Pi single board computer.  The flight computer controls all actuation 

and sensing components of the spacecraft (including the payload camera); it also is responsible, via the software 

defined radio [31], for communications with the ground station.  Figures 1 and 2 depict the OpenOrbiter design. In 

addition to technical development, educational activities [9, 32, 33] have also been a major focus of the program. 

III. OpenOrbiter Software System Goals 

In keeping with the intent of OpenOrbiter to provide a framework to facilitate future CubeSat work, the goal of 

the software system is to provide a generalized architecture.  This allows CubeSat developers to utilize the OPEN 

architecture directly or to modify it to suite their specific purposes. To accomplish this, the software must provide 

two things.  

The first is the basic functions that every satellite requires. This functionality includes executing satellite tasks, 

scheduling tasks and communicating with the ground station. Tasks are defined as any function that the satellite may 

need to perform, for example checking sensors or carrying out the satellite’s mission. In addition to simply 

executing tasks, a control system must be in place to do the following: ensure the time of task execution is correct, 

terminate tasks if they have been running too long and receive and deal with errors and information reported from 

finished tasks.  The scheduler determines an optimized execution order and particular runtime assignments for tasks. 

This is provided to the task execution mechanism. To acquire these execution times, heuristics must be defined that 

help build a logical schedule. Since uncertainties are inherent in the operation of a CubeSat, the system responsible 

for building the schedule must be able to respond to events that affect the normal operations of the satellite. 

Communication between a ground station and the satellite is another key aspect of any CubeSat. This system must 

be able to send relevant data to the ground station and receive any data that the ground station sends up. 

Second, the overarching goal of the OPEN software architecture is to create a framework that allows the control 

software and software that supports the satellites’ basic functions to be easily modified or scaled to accommodate 

future CubeSat missions. To this end, the ability to easily modify the basic functions and defined conventions to add 

or modify satellite tasks within the context of the existing software system is critical. This has been enabled through 

componentized design and a robust documentation process. 

IV. Software System Components 

The structure of OpenOrbiter’s software architecture is comprised of three main components: the operating 

software, payload, and ground station software. The structure of these components is depicted in Figure 3. 

A. Operating Software 

The operating software is responsible for executing and scheduling tasks. Control structures are required to 

ensure proper execution. The structure that executes tasks is a loop that executes tasks sequentially based on a 

schedule. Each task contains data that informs the execution loop on how and when to execute it. The schedule is a 

list of tasks sorted by and stamped with the time at which they are to execute. 

Since the tasks are sorted in the schedule, the execution loop can take the first (next to be executed) task from the 

schedule, wait until the task is to be executed, then execute the task. Each task also contains a value indicating how 

long the task is allowed to execute for. If a running task exceeds its allotted runtime and another task is scheduled in 

the subsequent time block, the execution loop will terminate the task and move on to the next task. If a certain type 

of task is repeatedly terminated due to exceeding its execution time, it is possible that an error is occurring. 

Therefore, the loop makes a log of tasks that fail.  Tasks that fail above a designated frequency are reported to the 

ground station. Each task also defines how to handle its results. For example, if a task that checks the temperature 

returns a value that exceeds the acceptable range, the main execution loop is required to respond accordingly. A 

diagram of this main execution loop is presented as Figure 4. 

Scheduling tasks is the other major responsibility of the operating software. Although some may suggest that a 

ground station generated schedule that is simply executed by the spacecraft would be ideal, uncertainties in 

spacecraft operations combined with limited communications windows make this untenable. To account for 

uncertainties such as long running processes, changing task assignments and hardware issues, onboard scheduling is 

performed. To accomplish this, heuristics have been defined that inform the scheduler on how to build a schedule, 

given specific satellite conditions. For example, if batteries are low on power, the scheduler will avoid tasks that are 

not mission-critical, to reduce battery draw. When the batteries charge up to an acceptable level, the scheduler will 

incorporate the tasks it excluded back into the list of potential tasks.  
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Figure 3. OpenOrbiter Software System. 
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Figure 4. Operating Software Diagram 

B. Ground Station Software 

The ground station software is responsible for communication between operators on Earth and the satellite. The 

three modules that are necessary to accomplish this task are a user interface that allows the user to input information 
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to be sent to the satellite and receive data that was sent from the satellite, a communication standard that provides 

efficient communication between the satellite and ground station, and modules to convert incoming data to a usable 

form and send data using the previously mentioned communications standard.  

The user interface is a web-application that was developed with the Django Web Framework. It has a connection 

to a MySql database that facilitates storage and retrieval of data. The interface displays data received from the 

satellite in a user-friendly format. It also allows the user to input tasks that will be sent to the satellite. The backend 

of this web-application is a module that converts data to and from the communication standard to a usable format. 

To run this application, the ground station interface utilizes Microsoft’s Azure cloud service to host an Ubuntu 

virtual machine that houses the webserver, database and backend program. A management client program connects 

to this virtual machine via TCP/IP. This approach allows multiple users running the client program to connect and 

share information using the main server.   
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Figure 5. Ground Station Software Diagram 

 

A communications framework has been developed to coordinate communications between the ground station 

and the satellite. It includes six types of transmissions that can be sent from the ground station to the satellite. The 

first is task assignments, which are new tasks for the satellite to perform. A task update is used to modify an existing 

task. A task status request queries the satellite for relevant information regarding a specific task. A system status 

request asks the satellite for a report on a specific satellite system’s status, such as battery charge, temperature, 

memory capacity and such. A data request is used when data, such as a picture or a sensor reading, is desired. 

Conversely, the satellite has five types of communications that can be sent to the ground station. A confirmation is a 

message that tells the ground station that a transmission has been received. An error report contains a log of all of 

the instances of a system failure. Data transmission is a response to a data request from the ground station, in which 

the requested information (or part thereof) is sent. A task status response is the response to a task status request from 

the ground station. A system status response sends data regarding the satellite’s status. A mechanism for issuing 

direct commands to the satellite in an emergency also exists. 
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In order to send and receive data, the satellite is equipped with a software defined radio and modem. When the 

satellite comes within communications range of the ground station, a task is executed that converts all the data that 

needs to be sent into messages based on the communication standard and then transmits the data to the radio receiver 

on the ground. Upon receiving data, the ground station converts it and adds the information to the database, which is 

used by the interface to display the data to users. When a user creates a task that needs to be sent to the satellite, the 

client program connects to the web server which receives the data from the user. The data is then sent through a 

serial port to a radio transmitter / receiver to be sent to the satellite. This radio transmitter / receiver is also the means 

of receiving data sent from the satellite. A diagram of the flow of the ground station software is shown in Figure 5. 

C. Payload Software 

The third major component of the software system is the payload software, which is responsible for carrying out 

the spacecraft’s mission. OpenOrbiter’s current payload consists of a camera system, that when requested by the 

ground station operators, will take pictures of specified areas of the Earth. Once the pictures are gathered, they can 

be processed onboard the satellite and / or stored to be sent down to the ground station, when requested. The payload 

will likely be different in every satellite that uses the OPEN framework, so the payload software is less likely to be 

reused, as compared to the other software components. However, as imaging is a common spacecraft task, this 

software may serve as a template for others. An overview of the payload software is shown in Figure 6. 

Since OpenOrbiter’s payload software will be performing computationally expensive image processing tasks, the 

payload tasks will be performed on a computer that is external to the main flight computer.  This ensures that the 

flight computer is able to perform tasks that are critical to the spacecraft’s maintenance in a timely manner and that 

it is not overwhelmed by payload tasks. Although separating the payload and operating software on two computers 

helps the operations of each system, communicating between these two computers then becomes an issue. To 

address this, basic communications message types have been developed, similar to the ground station transmissions 

types. In general, the communication messages request and send data. A message to acknowledge the retrieval of 

data is also included.  
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Figure 6. Payload Software Diagram 

 

From the operating software to the payload software, the communication types include the following: a task 

processing request, a data processing request, a transmission acknowledgement, a task status request, a subsystem 

status request, a data request and a power down command. The task processing request tells the payload computer to 

perform a task, such as to calculate when a region can be imaged. A data processing request is a task processing 

request that tells the payload to perform an image processing task on a set of existing data. Possible tasks include 

super resolution, mosaicking and combined super resolution and mosaicking. A transmission acknowledgement 

informs the payload software that a message has been received. Similar to the ground station software, a task status 
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request asks for the current status of a task. A subsystem status request asks the payload for information regarding 

the status of the payload computers and auxiliary systems. A data request requests data that is stored on the payload 

computer. The power down command tells the payload computer to shut down immediately or at a future time.  

Also similar to the ground station, the payload software has message types to respond to requests from the 

operating system. Task processing and data processing responses send the data that resulted from a task or data 

processing request from the operating system. An error report is a notification regarding a specific significant error 

identified by the payload software. A task status response is a transmission containing the status of a task that was 

requested by the operating system. A data response includes data that was requested by the operating system. 

Finally, an acknowledgement is a message that informs the operating system of a successful transmission.   

V. Software System Development & Implementation Challenges 

Challenges are inherent in creating a spacecraft software system. In addition to challenges caused by the unique 

characteristics of the orbital environment, challenges stem from two principles of the OpenOrbiter spacecraft’s 

mission: for the satellite to operate without constant user control and to create a framework that others can use and 

modify easily.  

A. Definition of Heuristics 

The process of defining heuristics for the main operating software loop is ongoing and will need to be refined 

during testing and even on-orbit operations.  The spacecraft will utilize the concept of management by exception 

(which is similar to the beacon concept proposed the Beacon-Based Exception Analysis for Multi-missions (BEAM) 

system [34]).  In order for this approach to be successful, however, the heuristic thresholds must be defined closely 

enough to normal system operating levels to allow errors to be quickly caught, before problems can escalate, and – 

simultaneously – be far enough away that random ‘noise’ fluctuations don’t trigger unnecessary responses. 

A characterize and constrain approach to heuristic development has been taken, which measures the actual 

performance over a period of time to set thresholds.  However, as multiple characteristics are different from testing 

environment to testing environment (and will be, similarly, different in the orbital environment), ongoing 

characterization is required.  It is anticipated that some of these heuristics thresholds will be usable by others 

implementing the OPEN designs, while others will be configuration and/or fabrication-instance specific.  It is also 

anticipated that the normal level may change over time, requiring the recalibration of the heuristic thresholds during 

operations. 

B. Architecture, Validation and Testing of Software 

A model-based development and validation approach [35], utilizing the Architecture Analysis & Design 

Language (AADL) [36], has been undertaken.  Under this approach, an AADL model has been created of the 

hardware-software system, which defines how the components interoperate and allows actual system performance to 

be validated against the performance projected by the model. 

C. Standards for Software Development & Code Maintenance 

With the goal of allowing reuse and extensibility of the OPEN designs, a robust set of software development 

standards have been developed.  These provide guidance to the team’s developers regarding code formatting, 

commenting and other related matters.  These standards will be included with the OPEN deliverables set, to 

facilitate their use by others who may wish to contribute their extensions of the framework back to the user 

community. 

The OPEN / OpenOrbiter development efforts have utilized GitHub extensively [37].  This tool is utilized for 

code storage, versioning and to track issues through to their resolution (and preserve a historical record of the 

changes made).  This tool will also be utilized to facilitate the incorporation of community-generated changes back 

into the spacecraft software framework, after the general OPEN deliverables release. 

D. Development for Autonomous Operations 

Since the satellite will not be in communications range at all times, operators will not be able to respond 

immediately to issues with the operation of the satellite. This requires issue response to be considered during 

development, instead of dealt with, by operators, during flight. To accomplish this, a dynamic scheduler with robust 

heuristics is being implemented. Every function of the satellite is given an initial priority that may change given the 

occurrence of an event. A heuristic response mechanism is being defined that is triggered by significant events and 

decides the necessary response to the event. However, as every possible event cannot be accounted for beforehand, 
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the scheduler must be generalized to react reasonably to any prospective event. In the event that an error cannot be 

directly responded to by the onboard software, it must act to preserve the spacecraft hardware and communications 

capabilities to allow prospective controller intervention during the next communications, thus the onboard autonomy 

has a ‘fail-soft’ methodology. 

E. An Extensible Framework 

The other major challenge is to create software that allows CubeSat developers that use the OPEN framework to 

easily augment the code to suit their mission’s needs. This is problematic as the needs and intentions of future 

developers using the framework cannot be specifically accounted for. Consequently, the software has to be 

developed in way that the basic satellite functions are abstracted, so future developers can focus on their payload, as 

opposed to the details regarding basic operations. This abstraction manifests itself as a modular architecture that 

essentially allows developers to “plug-in” their payload. The architecture is implemented as follows: any satellite 

function that needs to be scheduled and executed is coded and placed in a task directory. Accompanying these tasks 

are structures, called templates, which inform the scheduler of relevant scheduling information about that task. Upon 

compilation of the operating software, the files in the task directory are compiled into executables. The scheduler 

and execution loop are then made aware of all of the resulting executables and can take the information from the 

task’s templates to create a schedule and execute the schedule.  

VI. Conclusion 

The goal of the OpenOrbiter Small Spacecraft Development Initiative is to create a low-cost framework for a 

CubeSat developers. OpenOrbiter’s software system supports this goal by defining a scalable software framework 

that future CubeSat developers can utilize and modify to suit their specific needs. The three main parts of this 

framework are the operating system, ground station and payload software. These components work together to 

perform the satellite’s mission effectively and respond to events that will occur during the operation of the 

spacecraft.  This architecture is also designed to facilitate future development using the OPEN framework.   
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