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Key Points

• D-3He appears to be the fusion fuel of choice for space 
applications.

• D-3He fusion will provide capabilities not available from 
other propulsion options.

• Several configurations appear promising for space 
propulsion, particularly the field-reversed configuration 
(FRC), magnetized-target fusion (MTF), spheromak, and 
spherical torus.

• Successful development of D-3He fusion would provide 
attractive propulsion, power, and materials processing 
capabilities.
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A Prophecy Whose Time Will Come

“The short-lived 
Uranium Age will see 
the dawn of space flight; 
the succeeding era of 
fusion power will 
witness its fulfillment.”

From the essay “The Planets 
Are Not Enough” (1961).
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At the Predicted Specific Power, α=1-10 kW/kg,
Fusion Propulsion Would Enable Attractive Solar-System Travel

• Comparison of trip times and payload fractions for chemical and fusion 
rockets:
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Key Fusion Fuel Cycles
for Space Applications

D + 3He → p (14.68 MeV) + 4He (3.67 MeV)
D + T → n (14.07 MeV) + 4He (3.52 MeV)
D + D → n (2.45 MeV) + 3He (0.82 MeV){50%}

→ p (3.02 MeV) + T (1.01 MeV) {50%}
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Physics Viewpoint:
D-3He Fuel Requires High β, nτ, and T†

Power densityConfinement

† β = plasma pressure/magnetic field pressure
τ = energy confinement time
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D-3He  Fuel Could Make Good Use of the High Power 
Density Capability of Some Innovative Fusion Concepts

• D-T fueled innovative concepts become limited by neutron wall loads 
or surface heat loads well before they reach β or B-field limits.

• D-T fueled FRC’s (β~85%) optimize at B ≤ 3 T.

• D-3He needs a factor of ~80 above D-T fusion power densities.

Superconducting magnets can 
reach at least 20 T.

Fusion power density scales as 
β2 B4.

Potential power-density 
improvement by increasing
β and B-field appears at right.
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• Reduced neutron flux allows
Smaller radiation shields
Smaller magnets
Less activation
Easier maintenance

• Increased charged-particle 
flux allows direct energy 
conversion to thrust or 
electricity
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Spacecraft Mass Gains
Nonlinearly with Thrust Efficiency
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• High efficiency increases thrust power and reduces radiator mass.

• Doubling efficiency from a thermal cycle’s ~1/3 to direct conversion’s 
~2/3 gives 4 times better power per unit waste heat.
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Predicted Specific Power of
D-3He Magnetic Fusion Rockets is 1-10 kW/kg

• Prediction based on reasonably detailed magnetic fusion rocket studies.

130Gasdynamic mirror2000Emrich

1.5Colliding-beam FRC2000Wessel

5.8Spherical torus1987Borowski

10.5Spheromak1987Borowski

50Magnetized-target fusion2002Thio

8.7Spherical torus2003Williams

1.0Field-reversed configuration1994Nakashima

1.0Dipole1991Teller

3.9Riggatron1990Bussard

1.2Tandem mirror1988Santarius

Specific Power 
(kW/kg)ConfigurationYearFirst Author
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Generic Fusion Rocket Model Supports 1-10 kW/kg

• Rationale for this performance published by J.F. Santarius and B.G. Logan, 
“Generic Magnetic Fusion Rocket,” Journal of Propulsion and Power 14, 519 
(1998).   Features of the model are:

Cylindrical geometry
Main mass contributors: radiation shields, magnets, refrigerators, and radiators
Heat flux limit of 5-10 MW/m2

Neutron wall load limit of 20 MW/m2

Radiators reject 5 kW/kg
Low temperature superconducting magnet He refrigerators require 1000 kg/kWrejected

Low-mass radiation shield (LiH with 10% Al structure)
Magnet mass calculated by virial theorem and by winding-pack current density limit 
(50 MA/m2); larger value used
Development of high-temperature superconductors should reduce the power-plant 
mass.

Reduced refrigerator mass for magnet coolant
Reduced shielding, because more magnet heating can potentially be tolerated before 
quenching
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Earliest D-3He Reactor Design
Was a Fusion Rocket

G.W. Englert,
NASA Glenn Research Center
New Scientist (1962)

“If controlled thermonuclear 
fusion can be used to power 
spacecraft for interplanetary 
flight it will give important 
advantages over chemical or 
nuclear fission rockets.  
The application of 
superconducting magnets and 
a mixture of deuterium and 
helium-3 as fuel appears to be 
the most promising 
arrangement.”
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Conventional Tokamaks Have Large Mass
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EFBT Toroidal Fusion Rocket
J. Reece Roth, NASA Lewis, 1972
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Spherical Torus Space Propulsion

Princeton Plasma Physics 
Lab NSTX experiment• ST’s give high β, implying 

high power density.
• Crucial problems are 

recirculating power and 
providing thrust from a 
toroidal configuration.

• Martin Peng has suggested 
helicity ejection, and the 
concept will be tried on 
NSTX.
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Plasma-Jet Magnetized-Target Fusion
Allows Liner Standoff from Target

Plasma jet

Arrows indicate 
flow direction

Plasma gun

Magnetized 
target plasma

Plasma 
liner

Based on NASA MSFC figures

• An approximately spherical 
distribution of jets is launched 
towards the compact toroid at 
the center of a spherical vessel.

• The jets merge to form a 
spherical shell (liner), 
imploding towards the center.
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The MTF Explosion/Implosion Process Involves a 
Complicated Mixture of Shock Waves

• Red=target; Purple=plasma jet; Green=buffer plasma
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Conversion of Fusion Energy into Thrust
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• Fusion produces a high-temperature 
plasma, which can be used to push 
against a magnetic field to produce thrust 
directly.

• Direct conversion of the fusion energy 
into thrust is important in realizing the 
benefits of fusion for propulsion. 

NASA MSFC



Revolutionary Aerospace 
Systems Concepts 

(RASC) FY02 Study 
Proposal

Group 2 – Human 
Exploration 

Beyond Mars

Revolutionary Aerospace 
Systems Concepts 

(RASC) FY02 Study 
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Group 2 – Human 
Exploration 

Beyond Mars
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RASC/HOPE MTF Engine Configuration

TD30/Fincher
7/31/02

Theta Pinch Gun
(Located 180 deg. Apart)
(2 plcs)

Thrust Coil
(7.87 in. dia.)

(8 plcs)

Structural Ring Stiffener
(12 in. thk.)

(4 plcs)

Plasma Gun
(Approx. 56 in. long x 9.5 in. dia.)

(48 plcs)

Reversed Conical
Theta Pinch

Structural Tapered Spline
(12 plcs)

NASA MSFC
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NASA Produced a Conceptual MTF Rocket Design

Fusion power = 4 GW

Total power-system mass = 80 Mg
α = 50 kW/kg



JFS   2004 Fusion Technology Institute 23

Plasma Power Flows in Linear Devices Differ 
Significantly from Flows in Toroidal Devices

• Power density can be very high due to β2B4 scaling, but 
first-wall heat fluxes would remain manageable.

Charged-particle power transports from internal plasmoid to edge 
region and then out ends of fusion core.
Magnetic flux tube can be “pinched” on one end by increasing the
magnetic field on that side, giving primarily single-ended flow.

 

 

Not to scale 
Expanded 
flux tube to 
reduce heat 
flux 

FRC core region 

Charged particles  
Bremsstrahlung Neutrons ThrustThrust
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Linear Geometry
Greatly Facilitates Engineering

• Steady-state heat flux is broadly spread and due almost 
exclusively to bremsstrahlung radiation power.

Relatively small peaking factor along axis for bremsstrahlung and 
neutrons.

• Maintenance of single-unit modules containing blanket, 
shield, and magnet should be relatively easy, improving 
reliability and availability.

• Considerable flexibility and space exist for placement of 
pipes, manifolds, etc.

• Direct conversion of transport power to thrust by a magnetic 
nozzle can increase efficiency.
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Radioactivity Will Most Likely Lead to a
Requirement for Remote Maintenance

Telescopic Vacuum Vessel 

Seal 

Maintenance Scheme for FRC 
Using a Telescopic Vacuum Vessel 

LIFT 

Feed to  
Module # N 

Return From  
Module # N 

Module # N 

Maintenance Scheme for a Terrestrial-Electric
FRC Using a Telescopic Vacuum Vessel

• Design by E.A. Mogahed
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Several Concepts with Linear External Magnetic Fields 
Have Been Investigated for Space Propulsion

Tandem mirror

Spheromak
FRC
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D-3He Space-Propulsion Tandem Mirror

Tandem mirror
engine

Tandem mirror rocket design 
by UW EMA 569 students

Specific power   1.2 kW/kg
Thrust power      1500 MW
Length                  113 m
Ave. outer radius      1 m
Core B field           6.4 T
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Field-Reversed Configurations (FRC) Would
Be Attractive for Space Applications

• High β≡Pplasma/PB-field

• Linear external B field
• Cylindrical geometry
• Rotating B field current drive

AzimuthalAzimuthal
currentcurrent

From Univ. of Washington web page for the Star Thrust Experiment (STX):
www.aa.washington.edu/AERP/RPPL/STX.html
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ARTEMIS Field-Reversed Configuration
(D-3He, Momota, et al., NIFS, 1992)
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Colliding-Beam FRC
Conceptual Design Exists for Space Propulsion

• Variant of “classic” FRC.
• Invokes p-11B fusion fuel.
• 51 MWthrust, 33 Mg mass ⇒ α = 1.5 kW/kg
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The Dipole Configuration Offers a Relatively Simple 
Design That an MIT/Columbia Team Is Testing

Io plasma torus around Jupiter LDX experiment
(under construction at MIT)

Dipole space propulsion design
(Teller, et al., 1992)

12 m
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Inertial-Electrostatic Confinement (IEC)
May Be Attractive for Space Propulsion

•Key principle: spherical or 
cylindrical electrostatic focussing.

UW IEC experiment
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Other IEC Concepts
Potentially Attractive for Space Propulsion

1 cm

Barnes-Nebel-Turner,
Penning Trap

Bussard,
Polywell

1 m
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VISTA: Fusion Propulsion Using
Inertial-Confinement Fusion (ICF)

Charles Orth, et al., “The VISTA Spacecraft--Advantages of ICF for 
Interplanetary Fusion Propulsion Applications,” IEEE 12th SOFE (1987).
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D-3He Fusion Propulsion
Could Provide Flexible Thrust Modes

Fuel 
plasma 
exhaust

Mass-
augmented 

exhaust

Pellet 
injection

Thermal 
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Direct Conversion to Electricity Could Take 
Advantage of the Natural Vacuum in Space

Direct converter 
grids and collectors

Faraday 
cage

Magnetic 
field lines

Core 
plasma

Barr-Moir experiment, LLNL
(Fusion Technology, 1973)



JFS   2004 Fusion Technology Institute 37

Plasmas Provide
Many Materials Processing Capabilities

• B.J. Eastlund and W.C. Gough, “The Fusion Torch--Closing the Cycle 
from Use to Reuse,” WASH-1132 (US AEC, 1969).
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Summary

• D-3He fusion requires continued physics progress.
• D-3He engineering appears manageable.
• Several configurations appear promising for space 

propulsion, particularly the field-reversed configuration 
(FRC), magnetized-target fusion (MTF), spheromak, and 
spherical torus.

• Successful development of D-3He fusion would provide 
attractive propulsion, power, and materials processing 
capabilities.
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