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This paper considers planar orbit transfers and rendezvous problems around a central body using Lyapunov

stability theory. The model used is the Levi-Civita transformation of the planar two-body problem. One of the

advantages of working in these transformed coordinates is that the solution to the unperturbed equations ofmotion is

that of a simple harmonic oscillator, so the analytical solution is known at all times during coast phases. We design a

closed-loop guidance scheme for orbit transfers from any initial elliptical orbit to any final elliptical orbit using a

spacecraft with thrust–coast capabilities. A similar procedure is performed to design a control law for rendezvous

with any desired target spacecraft. The proposed Lyapunov functions give rise to asymptotically stabilizing control

laws. The algorithms designed are robust to initial and final conditions, computationally fast, and no restrictions are

imposed on the magnitude of the thrust. The guidance scheme is also effective in a dynamic model where unmodeled

perturbations are present.

Nomenclature

A = magnitude of perturbing acceleration
E = energy of orbit
ef = difference between the value of a function f

and the desired value f�

F = perturbing acceleration vector
r, r = position vector ∈ R2 in Cartesian coordinates,

position magnitude
u = position vector ∈ R2 in Levi-Civita coordinates
u1, u2 = components of u
x, y = components of r
W = frequency of oscillation of analytical unperturbed

Levi-Civita solution
α = inverse of semimajor axis of the orbit, 1∕a
ϕ = control variable

Superscripts

· = time-derivative in Cartesian coordinates, d∕dt
0 = time-derivative in Levi-Civita coordinates, d∕ds
� = desired final value

I. Introduction

H ISTORICALLY, the problem of computing finite thrust orbit
transfers and rendezvous has been studied extensively in the

literature [1,2]. Much work has concentrated on optimal transfers
using both direct and indirect methods [3–7]. However, these
solutions are computationally expensive and do not often result in
closed-form solutions. Some attention has been given to heuristic
models to achieve orbit transfers where feedback control laws are
designed based on candidate Lyapunov functions, but these use
mostly singular perturbation theory in conjunction with Lagrange’s
variational equations to establish suitable guidance laws [8–11].
Similar methods to rendezvous a spacecraft with a target have been

studied as well [12,13]. In this paper, we take advantage of Lyapunov
theory to design guidance laws for closed orbit transfers as well as
rendezvous; however, the approach presented is quite novel because
not only are there are no additional time-scale-related approximations
involved, but the resulting new controllers require significantly lower
computation time to permit easy onboard implementation.
We take on a new approach to the problem by working in a

transformed model to design Lyapunov-based control laws. The
model we use is the classical Levi-Civita regularization trans-
formation of the planar two-body problem [14,15]. The main idea
behind regularization is to transform both the position coordinates
and time coordinates to a new model. This model has been mostly
used in the past to deal with close-encounter-type problems [14,16],
but has only been slightly exploited for orbit transfer problems. For
example, in [17], this model is used to solve the minimum-time
transfer between coplanar circular orbits using Lagrange multipliers.
More recently, we have used this model to design guidance laws for
orbit transfers from elliptical to circular coplanar orbits [18]. One of
the main advantages of working in these transformed coordinates is
that the solution to the unperturbed equations of motion is that of a
simple linear harmonic oscillator, where the frequency of oscillation
is a function of a, the semimajor axis of the orbit. Therefore, during
any coast phase, the analytical solution is explicitly characterized.
Additionally, this model is advantageous for propagating highly
eccentric orbits. This is due to the time transformation, where an orbit
segmented into equal time steps becomes segmented equally in
position by using this model. Because small time steps present an
issuewhen propagatingKeplerian orbits, this transformation is useful
to provide better resolution near periapsis.
The major contributions of this paper are twofold: 1) arbitrary

planar orbit transfers among closed orbits and 2) planar rendezvous.
The orbit transfer problem requires matching three desired
parameters: semimajor axis a�, eccentricity e�, and argument of
periapsis ω�. The rendezvous problem, on the other hand, requires
matching four parameters: two position coordinates r� and two
velocity coordinates _r� of the target spacecraft. The idea is to design
the control laws by using Lypaunov stability theory. This involves
forming a candidate Lyapunov function (i.e., quadratic function) that
is always monotonic (i.e., nonincreasing) and minimum at our
desired final state. Note that, although the guidance schemes are
designed in the transformed regularized coordinates, the results can
be explicitly characterized in the original coordinates; the
transformation procedure merely acts as an enabler for the design.
The algorithms designed are robust to any initial and final conditions,
computationally fast, and can be used for both low- and high-thrust
problems. Also, the effectiveness of the guidance scheme in a
dynamic environment where unmodeled perturbations are present is
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shown via numerical simulation. We show the validity of this by
adding J2 perturbations to an example.
The first problem solved in this paper is to design a closed-loop

guidance scheme for a coplanar orbit transfer from any initial closed
orbit (with semimajor axis a0, eccentricity 0 ≤ e0 < 1, and argument
of periapsis ω0) to any final closed orbit with a specified a�,
0 ≤ e� < 1, andω�, using a spacecraft with thrust–coast capabilities.
Petropoulos [8] has developed an algorithm using Lyapunov stability
to perform noncoplanar orbit transfers using a coast–thrust
mechanism, but this algorithm is restricted to low-thrust solutions
only. A detailed summary of Lyapunov-like algorithms previously
developed is presented in [19], however, these methods typically all
require computing the time derivatives associated with Lagrange’s
planetary equations and are restricted to low-thrust engines. In this
paper, the convergence to the desired orbit is performed in two steps.
The first step involves converging the spacecraft orbit to the desired
semimajor axis a� by continuously thrusting, even though the
eccentricity and orientation at this stage may not be the desired one,
by using a Lyapunov analysis that gives rise to an asymptotically
stabilizing control law. Once a� has been reached to within a
specified tolerance, the second step of the algorithm involves
matching the desired eccentricity and argument of periapsis (while
always maintaining the specified target a�), using exactly the same
control law as before, but with an added on/off switching mechanism
for coasting during certain intervals. A special case of the transfer
problem is also addressed, in which we desire to transfer to a circular
orbit (e� � 0). In this case, only two orbital parameters are required
to bematched because the argument of periapsis can be left undefined
for a circular orbit.
The second problem solved is to design a closed-loop guidance

scheme to achieve rendezvous between two coplanar spacecraft that
are in bounded orbits; that is, to match both the position and velocity
of a target spacecraft orbiting a central body.No restrictions are posed
upon the initial position and velocity separations between the chaser
and target. The first step in the algorithm involves converging only
the chaser’s initial semimajor axis to the target’s semimajor axisa�, in
fact by using the same control law as in the aforementioned orbit
transfer problem. Once a� has been reached to within a specified
tolerance, the second step of the algorithm involves achieving
rendezvous by adding an on/off switching mechanism for coasting
during certain intervals; however, the control law is the same one that
is used to match the semimajor axis. Guidance laws have been
developed previously for close proximity and terminal rendezvous
problems using Lyapunov theory, for closed-loop feedback control
[12,13] aswell as adaptive control schemes [20].However, to our best
knowledge, the algorithm presented in this paper is the first
noniterative finite thrust control scheme to perform a full rendezvous
with a target, without any restriction of the initial location of the
chaser.
The paper is organized as follows.We begin Sec. II by deriving the

Levi-Civita equations of motion of a spacecraft, which is allowed to
thrust in a two-body force model. The next section deals with
designing a guidance scheme to target only one orbital parameter: the
semimajor axis a�. This serves as a motivating example to solve both
the orbit transfer and rendezvous problems. We are able to show in
Sec. IV that, by allowing the spacecraft to have thrust–coast
capabilities, we can perform any planar closed-orbit transfer
problem. In Sec. V, the guidance scheme necessary to rendezvous
with a target spacecraft is established. Several examples are shown
for all the problems discussed. The last section summarizes the paper
and discusses future work.

II. Equations of Motion in Levi-Civita Coordinates

In this section, the Levi-Civita equations of motion are derived
from the governing equations of two bodies. The equations ofmotion
of a spacecraft in a perturbed planar two-body model are

�r � −
μ

r3
r� F (1)

where μ is the gravitational parameter of the central body, the position
vector r � � x y �T has magnitude r �

����������������
x2 � y2

p
, and F is the

perturbing acceleration. Using polar coordinates r and θ (where θ is
measured counterclockwise from the positivex axis), the position can
be written as

x � r cos θ y � r sin θ (2)

The main idea behind regularization is to transform both the position
coordinates and time coordinates to a new model [14,16,21]. There
are three steps to convert Eq. (1) into the regularizedmodel, following
the notation in [14].
1) Change position coordinates (Levi-Civita coordinates).
2) Introduce a fictitious time, bymeansof a velocity transformation.
3) Use conservation of energy.
We begin by introducing the following transformation:

x � u21 − u22
y � 2u1u2

⇔
u1 �

���
r
p

cos�θ∕2�
u2 �

���
r
p

sin�θ∕2� (3)

where the transformed position vector is u � �u1; u2�T . The visual
relationship between Eqs. (2) and (3) is shown in Fig. 1. Note,

r2 � x2 � y2 ⇔ r � u · u � u21 � u22 (4)

The transformation from u to r can be expressed in terms of the
following linear operator:

r � L�u�u �
�
u1 −u2
u2 u1

��
u1
u2

�
(5)

The linear operator L�u� has the following properties [21]:
1) LT�u�L�u� � rI, where I is the identity matrix.
2) L 0�u� � L�u 0�, where 0 denotes the time derivative.
3) L�u�v � L�v�u.
4) �u · u�L�v�v − 2�u · v�L�u�v� �v · v�L�u�u � 0.
The second step in the derivation involves introducing a velocity

transformation

_r � 1

r
r 0 ⇔

dr

dt
� 1

r

dr

ds

Note, that

�·� � d

dt
� �

denotes the time derivative in r coordinates, whereas

� � 0 � d

ds
� �

Fig. 1 Relation between x-y and u1-u2 coordinates.
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is the time derivative in u coordinates:

d

dt
� 1

r

d

ds
(6)

d2

dt2
� 1

r2
d2

ds2
−
r 0

r3
d

ds
(7)

Using properties 2 and 3 of the linear operator L�u�, the first- and
second-order derivative of r in terms of u coordinates are

r 0 � d

ds
r � d

ds
�L�u�u� � 2L�u�u 0 (8)

r 0 0 � d

ds
r 0 � 2L�u 0�u 0 � 2L�u�u 0 0 (9)

Using Eq. (7), the second time derivative of r can be written as

�r � 1

r2
r 0 0 −

r 0

r3
r 0

which, when compared with Eq. (1), and solved for r 0 0 gives

r 0 0 � 1

r
�r 0r 0 − μr� r3F� (10)

Using the fact that r � u · u, its time derivative is r 0 � 2u · u 0.
Equating Eqs. (9) and (10), and using Eqs. (5) and (8),

2L�u 0�u 0 � 2�u�u 0 0 � r
0

r
2L�u�u 0 − μ

r
L�u�u� r2F

Rearranging, and using property 4 of the linear operator L�u�,

u 0 0 � μ∕2 − u 0 · u 0

u · u
u � 1

2
�u · u�LT�u�F (11)

The third and last step in the transformation involves using the
conservation of energy principle. Before, note that _r � r 0∕r �
2L�u�u 0∕r and, therefore, the norm of the velocity squared is

v2 � _rT _r � 4

r
u 0 · u 0 (12)

where we have made use of property 1 of the linear operator. The
energy of the two-body problem

E � v
2

2
−
μ

r
� 1

r
�2u 0 · u 0 − μ� (13)

Note that the fraction in the second term of Eq. (11) is in fact
�μ∕2 − u 0 · u 0�∕r � −E∕2. Therefore, the Levi-Civita equations of
motion are

u 0 0 � E
2
u� Fu (14)

where the perturbing acceleration in Levi-Civita coordinates
Fu � rLT�u�F∕2. The energy E varies with time according

E 0 � 4

r
u 0 · Fu � 2u 0 · LT�u�F (15)

Lemma 1: The quadratic potential

C�s� � −
E

4
�u21 � u22� � �u 021 � u 022 � �

μ

2
(16)

is an integral of motion of the perturbed equations of motion in
Eqs. (14) and (15).
Proof: Taking the time derivative ofC�s�, and using Eqs. (14) and

(15), it is readily seen that C 0�s� � 0, regardless of the value of the
perturbing acceleration F and, in fact, C�s� � C�s0� � μ∕2
∀ s ≥ s0. □

A. Unperturbed Equations of Motion

In the case when there is no perturbing acceleration acting on the
spacecraft, that is,F � 0, the equations ofmotion in Eq. (14) become
decoupled linear harmonic oscillators andE 0 � 0 fromEq. (15). The
analytical solution is therefore known, with a frequency of oscillation
of W �

������������
−E∕2

p
. Because, in this case, we are dealing with closed

orbits,E < 0 and, therefore, its position in s time coordinates is given
by

u1�s� � u10 cos�Ws� �
u 010
W

sin�Ws� � Au1 cos�Ws�Φu1�

u2�s� � u20 cos�Ws� �
u 020
W

sin�Ws� � Au2 cos�Ws�Φu2� (17)

where

Aξ �
���������������������������������
u210 � �u

0
10
∕W�2

q
and Φu1 � tan−1

�
u 010
u10W

�

Aη �
���������������������������������
u220 � �u

0
20
∕W�2

q
and Φu2 � tan−1

�
u 020
u20W

�

and u10 , u20 , u
0
10
, and u 020 are the initial conditions at s0. Note, that in

the case when the orbit is unbounded, that is, E ≥ 0, the analytical
solution is also known, and its solution has an exponential form, with
its exponents given by the roots of its characteristic equation.

B. Finite Thrust Maneuvers

Suppose that the perturbation now comes from a finite thrust
engine, with constant thrust magnitude T, specific impulse c, and
variable thrust angleϕ (measured counterclockwise from the positive
x axis), such that

F � A
�
cos ϕ
sin ϕ

�

The acceleration magnitude A � T∕m and m is the mass of the
spacecraft at any point in time, which varies according to _m � −T∕c.
In the Levi-Civita coordinates, this corresponds to

Fu �
Ar3∕2

2

�
cos�ϕ − θ∕2�
sin�ϕ − θ∕2�

�
(18)

For implementation purposes, it is convenient to introduce a new
parameter α � 1∕a, where a is the semimajor axis of the orbit. The
parameter α is related to the energy E of an orbit through the relation
E � −μ∕�2a� � −�μ∕2�α and its derivative α 0 � −�2∕μ�E 0.
Combining this into Eqs. (14) and (15) results in the new equations
of motion

u 0 0 � −
μα

4
u� Ar

3∕2

2

�
cos�ϕ − θ∕2�
sin�ϕ − θ∕2�

�

α 0 � −
4A

μ
r1∕2

��������������������
u 021 � u 022

q
sin�ϕ� λ − θ∕2� m 0 � −r

T

c
(19)

where we have defined

sin λ � u 01��������������������
u 021 � u 022

p and cos λ � u 02��������������������
u 021 � u 022

p
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III. Matching Semimajor Axis

As a first step to performing orbit transfers and rendezvous, wewill
start with a motivating example. Suppose for now that we are
interested in matching the semimajor axis of a target orbit, but do not
take into account any other orbital elements. Let the semimajor axis
of the target orbit be denoted as a� and, therefore, its inverse is
α� � 1∕a�. At any point in time (in s coordinates) the spacecraft,
whosemotion is governed byEq. (19), has a semimajor axisa�s�, and
correspondingly α�s� � 1∕a�s�. The difference between the current
α�s� and the target α� is denoted by eα � α − α�.
The quadratic candidate Lyapunov-like function

V � 1

2
e2α (20)

is minimized when the semimajor axis of the spacecraft matches that
of the desired orbit. The time derivative of V (with respect to the s
variable) along solutions of Eq. (19) is given by

V 0 � eαe 0α � �α − α��α 0

� −�α − α�� 4A
���
r
p ��������������������

u 021 � u 022
p
μ

sin�ϕ� λ − θ∕2�

Choosing

ϕ � −λ� θ∕2� sin−1�Keα�; K � 1∕jeα0 j > 0 (21)

where eα0 � eα�s0�, results in

V 0 � −
4A

��������������������������
r�u 021 � u 022 �

p
μ

Ke2α ≤ 0 (22)

which ensures that V is nonincreasing.
Proposition 1:Let a spacecraft with a constant availablemaximum

thrustT and initialmassm0 be on a closed orbitwith initial semimajor
axis a�s0� � a0. All solutions governed by the force model (19) with
control (21) and A � T∕m converge to any prescribed final
semimajor axis a�.
Proof:Because of the commanded thrust protocol for driving α�s�

to some prescribed final value α� [by Eq. (21)], α�s� becomes an
exponential function of eα�s�, since

e 0α � α 0 � −K1Af�u; u 0�eα

where K1 � �4K�∕μ > 0 and f�u�s�, u 0�s�� ��������������������������������������������
�u21 � u22��u 021 � u 022 �

p
. We are guaranteed thatK1 > 0 and A�s� �

T∕m�s� > 0 [as long as m�s� > 0, otherwise A � 0 by turning the
thrusters off]. Therefore, to show that we always converge to the
desired α�, it is necessary to show that f�u; u 0� cannot become zero,
and if it does, it cannot stay at zero indefinitely.
The signal α�s� is monotonic due to the control chosen in Eq. (21)

[i.e., α�s� is nondecreasing for the case α� > α0 and α�s� is
nonincreasing for the case α� < α0]. Therefore, we are guaranteed
that there exists some αmin and αmax such that 0 < αmin ≤ α�s� ≤
αmax ∀ s ≥ s0. Specifically, αmin ≐ min�α�s0�; α�� and αmax ≐
max�α�s0�; α��.
The integral ofmotionC�s� � C�s0� ≠ 0∀ s ≥ s0 in Eq. (16) and,

because it is a quadratic function of u and u 0, we can guarantee that
both r � �u21 � u22� and �u 021 � u 022 � cannot both simultaneously be
at zero at the same time, which implies that they cannot perpetually
stay at zero. Therefore, f�u; u 0� cannot remain at zero, which means
that there exists finite constants s� > 0 and δ > 0 such that

Z
s�s�

s
f�u�σ�; u0 �σ�� dσ ≥ δ ∀ s ≥ s0

We can then conclude that

eα�s� � eα�s0�exp
−K1

R
s

s0
A�σ�f�u;u 0� dσ

→ 0

exponentially. □

It is interesting to note that we can lower bound f�u;u 0� by
rewriting it as f�u; u 0� � �rv�∕2. The angular momentum of an orbit
h � rv cos γ, where γ is the flight-path angle, is an integral ofmotion
of any unperturbed orbit. For a circular orbit, γ � 0 deg for the entire
orbit, so that h � rv, therefore, f�u; u 0� � h∕2 for a circular orbit.
For any elliptical orbit, 0 < sin γ ≤ 1 and, therefore, f is lower
bounded by f�u; u 0� ≥ h∕2, which again guarantees exponential
convergence of eα�s�.
Because we are guaranteed that 0 < αmin ≤ α�s� ≤ αmax, the

eccentricity of the orbit e�s� < 1 ∀ s ≥ s0, so that the orbit during the
transfer will always remain bounded. However, for implementation
purposes, especially for high-thrust problems, the eccentricity might
get very close to the critical value of making the orbit unstable before
the desired semimajor axis has been reached. This issue is dealt with
in detail in Sec. IV by ensuring that the eccentricity stays below a
certain tolerance at all times.
In Sec. III.A, an upper bound on the time taken by the system to

achieve a prescribed error tolerance on the semimajor axis is derived.
This is done to give the user a maximum possible transfer time.
Sec. III.B follows, by a showing the results of the algorithm to reach a
desired semimajor axis.

A. Upper Bound on Total Transfer Time

An upper bound on the total propagation time sf to arrive at a
prescribed semimajor axis error tolerance ϵα is outlined here. We
achieve the desired tolerance when ϵα � eα�sf� � α�sf� − α�. The
procedure involves analytically integrating the time derivative of eα
and solving for time.
Because the control variable in Eq. (21) makes the time derivative

e 0α a direct function of eα, by integrating e
0
α, its solution over time is

given by

eα�s� � eα�s0� exp
�
−K1

Z
s

s0

A�σ�f�u�σ�; u 0�σ�� dσ
�

(23)

To integrate Eq. (23) and obtain an upper bound on sf, an upper
bound on A�s� and f�u�s�;u 0�s�� needs to be established.
First, the position can be bounded by rmin ≤ r�s� ≤ rmax. The

upper bound is found by solving for the minimum perigee radius
possible, rmin � �1∕αmax��1 − emax�. Recall E � −�μ∕2�α, and so
the integral of motion in Eq. (16) is also written as

C�s� � μ

2
� μ

8
α�u21 � u22� � �u 021 � u 022 � ≥

μ

8
αminr�s� ∀ s ≥ s0

therefore, the upper bound on r�s� is rmax � 4∕αmin. From the energy
equation in Eq. (13), it can be established that v ≥

��������������
�2μ�∕r

p
.

Therefore, the function

f�u; u 0� � 1

2
rv ≥

��������������
�rμ�∕2

p
≥

��������������������
�rminμ�∕2

p
and the parameterA�s� � T∕m�s� ≥ T∕m0 ∀ s ≥ s0. With these two
bounds and given a desired converged tolerance for α�,
jeα�sf�j � ϵα, Eq. (23) can be integrated to find

sf ≤ s0 �
m0

KT

�����������
2

rminμ

s
�ln�eα�s0�� − ln�ϵα�� (24)

In fact, an even tighter bound can be found on sf by noting that the
mass varies according to m 0 � −�T∕c�r. By integrating,

m�s� � m0 −
T

c

Z
s

s0

r�σ� dσ ≤ m0 −
T

c
rmin�s − s0�
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Using this fact to integrate e 0α in Eq. (23) yields

sf ≤
1

K2

�
exp

�
K1

K2

�ln�eα�s0�� − ln�ϵα��
�
−m0

�
(25)

where K1 � TK
��������������������
�μrmin�∕2

p
and K2 � −�T∕c�rmin. This is a

powerful result because it ensures that the transfer time will never
take longer than the result in Eq. (25); this is in spite of the fact that our
analysis is predominantly asymptotic in nature.
A similar approach can be taken to find a lower bound on the total

fuel mass m�sf� by integrating m 0 with a bound on r�s� ≤ rmax, but
due to the extreme conservatism inherent with the bounding process,
the utility of these estimates is not immediately obvious.

B. Example

An example trajectory under the gravitational pull of Earth
(μ � 398; 600 km3∕s2) using the control in Eq. (21), T � 200 N,
and Isp � 400 s is shown in Fig. 2. A desired final semimajor axis
a� � 10; 000 km is targeted from an initial circular orbit with
a0 � 7000 km. The integration of Eq. (19) is performed in
dimensionless units, to avoid buildup numerical errors caused by
eα � α − α�, which can be a very small number when working in
units of kilometers. The dimensionless units are distance unit
DU � a� � 10; 000 km, mass unitMU � m0 � 1000 kg, and time
unit TU, chosen such that μ � 1 DU3∕TU2. The trajectory in x, y
coordinates is shown in Fig. 2a, which has been transformed using
Eq. (5) from the u1, u2 results of the integration. The total transfer
time is 4.36 h, whereas using Eq. (25), a bound was found of 7.23 h.
Note that the semimajor axis has been met to within 1 km precision,
which corresponds to ϵα � 10−4, but this has resulted in the final
eccentricity reaching a value ef � 0.307. This leads to the next
section, which deals on how to target any desired orbit.

IV. Orbit Transfer Problem

As a motivation example, Sec. III dealt with a simple problem, in
which a desired semimajor axis was the only parameter targeted. We
now deal with amore complex and realistic problem, in which we are
interested in performing an orbit transfer to any bounded orbit. We
being in Sec. IV.A outlining the theory to perform an orbit transfer to

any desired circular orbit and continue in Sec. IV.B by explaining the
general orbit transfer to any elliptical orbit, with any relative
orientation. For both cases, the algorithm is performed in two steps:
first, amatching of the desired semimajor axisa� by a constant thrust,
followed by a matching of the remaining desired orbital elements, by
means of a thrust/coast protocol. The beauty of the full designed
algorithm is that the control law is exactly the same for both steps.
However, one of the reasons for matching the semimajor axis first is
because, when the transformation to the Levi-Civita model is
performed, a very nice and compact dynamic equation for the time
evolution of α 0 is obtained, which facilitates enormously the
derivation of the guidance law (see Sec. III).

A. Elliptical-to-Circular Orbit Transfer

An orbit transfer to any circular orbit requiresmatching two orbital
parameters: semimajor axis and eccentricity. The process of
matching the semimajor axis has been explained in the preceding
section. To target a specified eccentricity e� � 0 fromany initial orbit
with 0 ≤ e0 < 1, the first step is to express the eccentricity in the Levi-
Civita coordinates.
The angular momentum vector expressed in the direction k̂ normal

to the orbit plane is h � r × v � �x _y − y _x�k̂ and its magnitude

h � khk �
�
x

y

�T� 0 1

−1 0

��
_x

_y

�

� �L�u�u�T
�

0 1

−1 0

��
2

r
L�u�u 0

�
� 2�u1u 02 − u2u 01� (26)

Recall that α � 1∕a and the semilatus rectum p �
a�1 − e2� � h2∕μ. Therefore, the eccentricity can be written as

e2 � 1 −
α

μ
h2 � 1 − 4

α

μ
�u1u 02 − u2u 01�2 (27)

The difference between the current eccentricity e�s� and the desired
one e� is denoted by ee � e�s� − e�. The quadratic candidate
Lyapunov-like function
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Fig. 2 Semimajor axis matching using control (21), where DU � 10;000 km andMU � 1000 kg.
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W � V �W1

where V is given by Eq. (20) and

W1 �
1

2
e2e �

�
1

2
− 2

α

μ
�u1u 02 − u2u 01�2

�
(28)

isminimizedwhen the spacecraft is in a circular orbit, e� � 0 and has
the desired semimajor axis a�. The time derivative in s coordinates of
W1 along solutions of Eq. (19) is given by

W 01 � ee 0

� −2
α 0

μ
�u1u 02 − u2u 01�2 − 4

α

μ
�u1u 02 − u2u 01��u1u 0 02 − u2u 0 01 �

� −α 0
h2

2μ
−
hα

μ
Ar3∕2�u1 sin�ϕ − θ∕2� − u2 cos�ϕ − θ∕2��

Assume that a spacecraft in an initial orbit with semimajor axisa0 and
eccentricity 0 ≤ e0 < 1 thrusts using the guidance scheme (21) from
0 ≤ s ≤ si until it reaches a desired semimajor axis α�si� ≈ α� (to
within a specified tolerance ϵα), but the eccentricity e�si� ≠ e�. At
this point, the second part of the orbit transfer begins, from
si ≤ s ≤ sf, where the quadratic potential W1 in Eq. (29) is again
minimized when e�sf� � e� � 0. In our definition, convergence on
eccentricity is met when ee � je − e�j ≤ ϵe, Choosing the same
control law as in Eq. (21), and since eα ≈ 0,

ϕ � −λ� θ∕2� sin−1�Keα� ≈ −λ� θ∕2

The time derivative ofW1 with control (21) is

W 01�
2AKh2

μ2

�������������������������
r�u 021 �u 022 �

q
�α−α��

� Ahαr3∕2

μ
�������������������
u 021 �u 022

p �u1u 01�u2u 02�≈
Ahαr3∕2

μ
�������������������
u 021 �u 022

p �u1u 01�u2u 02� (29)

W 01 is regulated to ensure thatW1 is nonincreasing by choosing

S1 � �u1u 01 � u2u 02� < 0 (30)

The orbit transfer is performed in the following way:
1) Semi-Major Axis Matching from s0 ≤ s ≤ si:

A�s� � �T∕m while jα�s� − α�j > ϵα (31)

2) Eccentricity Matching from si ≤ s ≤ sf:

A�s� �
�
�T∕m if S1 < 0

0 otherwise
while je�s� − e�j > ϵe (32)

Note, that the approximation of ϕ ≈ −λ� θ∕2 is used only to
define the switching function S1, which determines when to thrust or
coast. However, in the algorithm, the full expression for ϕ, defined in
Eq. (21), is used. This ensures not only that W 01 ≤ 0, but in fact
W 0 ≤ 0, and so αwill also get closer to the desired α� even during the
eccentricity matching section.
In some cases, S1 can be small in magnitude, and, because of the

approximation that eα ≈ 0, importance still needs to be given to W 01
[before the approximation was made in Eq. (29)]. When transferring
to an orbit with a lower semimajor axis than the initial one, �α −
α�� ≤ 0 ∀ s ≥ s0; therefore, we ensure W 01 < 0 as long as S1 < 0.
However, when transferring to a higher semimajor axis,
�α − α�� ≥ 0, and so it is necessary to ensure that the first term in
W 01 never becomes larger in magnitude than the second one, which is
ensured as long as

α − α� >
2r

2 − rα
jS1j; when S1 < 0

Also, when performing the semimajor axis matching, especially if
using a high enough thrust, the eccentricity might become large
enough to where the orbit is unbounded. This can be dealt with by
adding a check point, where, during the semimajor axis matching
section, the eccentricity is not allowed to get larger than a specified
emax < 1. If at some point in time s � stemp, the eccentricity
e�stemp� � emax, the second part of the algorithm will circularize the
orbit by temporarily freezing the desired semimajor axis term to
α� � α�stemp�. Once the orbit has been circularized (e ≈ 0), the
scheme in Eqs. (31) and (32) can be restarted again, until the desired
convergence is met in both α� and e�.
Proposition 2:Let a spacecraft with a constant availablemaximum

thrustT and initial massm0 be on a closed orbit with a semimajor axis
a0 and an eccentricity 0 ≤ e0 < 1. All solutions governed by the force
model (19) with control (21) and switching algorithm (31) and (32),
with a specified emax constraint, converge to a final circular orbit with
semimajor axis a� and eccentricity e� � 0.
Proof: The first part of the algorithm involves matching a desired

semimajor axis, which occurs once α�si� ≈ α�. This has been proven
in Proposition 1. The eccentricity convergence occurs because the
quadratic potential in Eq. (29) is radially unbounded, decrescent, and
its time derivativeW 01 ≤ 0 by the choice of control ϕ and switching
scheme (32). The proof is based on the fact that, due to the thrust
protocol,W1 becomes a convergent sequence, which will inevitably
make ee → 0 as time progresses.
Suppose S1�s� < 0 ∀s ≥ si. In this case, W 01 < 0 ∀s ≥ s0, which

leads to W1 → 0 as s → ∞. For our convergence definition, this is
met at a finite value sf when ee�sf� ≤ ϵe. Suppose, on the other hand,
that S1�s� > 0 for some si ≤ s < s1, in which case, thrusting is turned
off by choosing A � 0 and the analytical solution is given by the
sinusoidal function in Eq. (17), with a frequency of oscillation
W �

�����������������
�μα��∕4

p
. The function S1, which is a product of the

analytical position and velocity solutions, also becomes a sinusoidal
function, and so it cannot remain above zero for an indefinite amount
of time (in fact, this amount of time has been computed and is given in
the Appendix). During this process, the potential functionW1�si� �
W1�s1� becauseW 01 � 0.When S�s1� < 0, the thruster is turned back
on by A � T∕m, until S1 crosses the origin again at time s2, at which
pointW1�s2� < W1�s1�. The coast/thrust process is repeated again as
many times as necessary to reach the desired convergence tolerance
ϵe; therefore, W1�si� � W1�s1� > W1�s2� � W1�s3� > W1�s4� ≫
W1�sf� � 1

2
ϵ2e. □

It is interesting to note that a different guidance law can be
designed to match both the semimajor axis a� and eccentricity e� in
just one step, rather than in two steps as is designed here. This can be
achieved by coupling the candidate Lyapunov functions for both the
semimajor axis and eccentricity, W � V �W1, and designing the
control law ϕ to makeW 0 ≤ 0. Even though this solution might give
more feasible results in terms of fuel, we have designed the guidance
scheme in two steps because we are able to use the same control law
thatmatches the semimajor axis tomatch any circular orbit (or even to
match any general orbit, as will be shown in the next subsection).
The orbital parameters of the example transfer shown in Fig. 3 are

given in Table 1. The convergence is performed using the guidance
scheme (21) and switching function (31) and (32). The initial
spacecraft mass is m0 � 1000 kg, the engine parameters are T �
10 N and Isp � 3000 s. The results have been scaled usingDU � a�
andMU � m0. The transfer takes 9.72 days and consumes 193 kg of
its mass in fuel (Fig. 3e). Note that the tolerance at which the
semimajor axis matching is stopped is ϵα � 0.1, at which point it is
clear that a ≠ a�; however, during the eccentricity matching, the
semimajor axis continues to converge to the desired value, due to the
fact that the exact same guidance control is used for this section. The
time history of the thrust direction is shown in Fig. 3b: It is tangential
to the velocity during the first part of the transfer and becomes
perpendicular to the velocity as the orbit becomes circularized. The
switching functionS1 in Eq. (30) is shown in Fig. 3f beginning at time
t � 4.94 days, once the eccentricity matching portion begins. Note
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that, at this time, S1 > 0 and, therefore, a coasting phase begins.
Around day 8 of the transfer, the switching function S1 gets close to
zero and its time derivative becomes small. When this occurs, it is
convenient to coast (even if S1 < 0), until S1 reaches a minimum, at
which point the thrust is turned back on. This is done to avoid
chattering and is explained in full detail in Sec. V.
Another low-thrust solution is shown in Fig. 4. In this case, the

simulation is a circle-to-circle transfer from a0 � 6978 km to af �
42; 164 km using T � 1 N and Isp � 3000 s. In this guidance
solution, the only required control is to match the desired semimajor
axis, because the thrust is low and the eccentricity stays small
throughout the transfer. This solution is compared with Edelbaum’s
optimal analytical solution for circle-to-circle transfers [22], which is
derived assuming a constant acceleration magnitude and a low
eccentricity (e≪ 0.1) during the transfer. The comparison is shown
in Table 2. We also use our algorithm in this example to show that a
perturbed model due to J2 [23] is still robust (see comparison in
Table 2). As expected, the perturbed model takes longer and uses
more propellant; however, because the control law is updated based
on the current state, it still converges to the desired orbit.

B. Elliptical-to-Elliptical Orbit Transfer

In this section, we discuss the process to target any desired
elliptical orbit, with a specified semimajor axis a�, eccentricity
0 ≤ e� < 1, and argument of periapsis (AOP) w�. Without loss of
generality, targeting these three orbital elements is equivalent to
targeting a� and the two components of the eccentricity
vector e� � �e�x ; e�y �T.
The eccentricity vector [24] in Levi-Civita coordinates is given by

e � 1

μ

��
v2 −

μ

r

�
r − �r · v�v

�

� 1

μr
��4u 0 · u 0 − μ�L�u�u − 4�u · u 0�L�u�u 0� (33)

which can be simplified even further by components to

ex �
1

r

�
4

μ
�u21u 022 − u22u 021 � − �u21 − u22�

�
(34)

ey � −αu1u2 −
4

μ
u 01u

0
2 (35)

Their respective time derivatives can be algebraically found to be
(after extensive simplification)

a) x vs y b)   vs time

c) a vs time d) e vs time

e) m vs time f) S1 vs time during e match

Fig. 3 Eccentricity (Ecc) matching using control (21) and the switching scheme (31) and (32), with parameters in Table 1.

Table 1 Initial and final orbital
parameters for the example in Fig. 3

Initial orbit Final orbit

Semimajor axis, km 6878 42,164
Eccentricity 0.6 0.0
Mass, kg 1000 807.1
Time Of Flight, days — — 9.72
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e 0x �
4A

��������������������������
r�u 021 � u 022 �

p
μ

�u21 sin�ϕ� λ − θ∕2�

− r sin λ cos�ϕ − θ∕2�� (36)

e 0y �
2A

��������������������������
r�u 021 � u 022 �

p
μ

�2u1u2 sin�ϕ� λ − θ∕2�

− r cos�ϕ − λ − θ∕2�� (37)

The quadratic potentialW � V �W2, where V is given by Eq. (20)
and

W2 �
1

2
�e − e��T�e − e�� (38)

is minimized when the semimajor axis and both components of the
eccentricity vector are matched. In our definition, convergence on
eccentricity is met when

eex � jex − e�x j ≤ ϵe and eey � jey − e�y j ≤ ϵe

Again, assume that the semimajor axis matching portion occurs from
s0 ≤ s ≤ si until eα � jα�si� − α�j ≤ ϵα, specified by the user.
Choosing the same control law as in Eq. (21), and since �α − α�� ≈ 0,

ϕ � −λ� θ∕2� sin−1�Keα� ≈ −λ� θ∕2

The time derivative of the Lyapunov-like functionW2 is

W 02 � e 0x�ex − e�x� � e 0y�ey − e�y�

� 2Ar1∕2
��������������������
u 021 � u 022

p
μ

�
2Ku1�u1eex � u2eey�eα

−
r

u 021 � u 022
�2u 01u 02eex � �u 02 − u 021 �eey�

�

≈ −
2Ar3∕2

μ
��������������������
u 021 � u 022

p �2u 01u 02eex � �u 022 − u 021 �eey � (39)

The convergence to the desired e�x and e�y to ensure W 02 ≤ 0 is
performed by thrusting with an acceleration magnitude A � T∕m
when

S2 � 2�ex − e�x�u 01u 02 � �ey − e�y��u 022 − u 021 � > 0 (40)

The full orbit transfer is performed in the following way:

1) Semimajor Axis Matching from s0 ≤ s ≤ si:

A�s� � �T∕m while jα�s� − α�j > ϵα (41)

2) Eccentricity and AOP Matching from si ≤ s ≤ sf:

A�s� �
�
�T∕m if S2 > 0

0 otherwise
(42)

The same emax constraint is placed on this algorithm, as was done
in Sec. IV.A, to ensure that the orbit does not become unbounded.
Proposition 3:Let a spacecraft with a constant availablemaximum

thrustT and initial massm0 be on a closed orbit with a semimajor axis
a0, eccentricity 0 ≤ e0 < 1, and argument of periapsis ω0. All
solutions governed by the force model (19) with control (21) and
switching function (41) and (42), with an emax constraint, converge to
a final orbit with semimajor axis a�, eccentricity 0 ≤ e� < 1, and
argument of periapsis ω�.
Proof: The proof follows identically as in Proposition 2, the only

difference being that the switching scheme is now given by S2 in
Eq. (40), and the coast time is again analytically solved for in the
Appendix. □

An example orbit transfer about Earth is shown in Fig. 5 using
control (21) and the switching scheme (41) and (42), with T � 50 N,
Isp � 1000 s s, and initial and final orbital parameters given by
Table 3. The results have been scaled using DU � a� and
MU � m0 � 1000 kg. The trajectory in x-y coordinates is shown in
Fig. 5a, which has been transformed using Eq. (5) from the u results
of the integration (shown in Fig. 5b). The time history of the thrust
direction is shown in Fig. 5c: It is tangential to the velocity during the
first part of the transfer and becomes perpendicular to the velocity as
convergence to the desired orbit is achieved. The semimajor axis a,
eccentricity e, and argument of periapsis ω over time are shown in
Figs. 5f–5h.
To emphasize the different coasting/thrusting phases, a plot of the

switching function S2 in Eq. (40) over time is shown, beginning at the
time when the eccentricity (Ecc) and AOP matching section begins.
Notice that, as the orbital parameters converge closer to the desired
ones,S2 → 0, and careful attention needs to be given towhen to thrust
or coast. The assumption was made that eα ≈ 0; however, as S2
becomes smaller in magnitude, the approximation in Eq. (39) might
not be not valid anymore to ensureW 02 < 0 during the thrusting phase.
Therefore, once jS2j ≤ ϵ, it is necessary to ensure that thrusting
happens only when the bracketed term before the approximation was
made inW 02 is negative.

a) Trajectory x vs y b) Semimajor axis a vs time c) Eccentricity e vs time

Time Time

   [22] [22]

Fig. 4 Comparison of algorithm using control (21) with Edelbaum’s analytical low-thrust optimal solution [22].

Table 2 Comparison of a low-thrust solution orbit transfer with results shown in Fig. 4

Transfer time, days Propellant mass used, kg Final eccentricity

Edelbaum [22] (unperturbed) 51.89 141.34 0.0091
Lyapunov (unperturbed) 57.47 168.70 0.0048
Lyapunov (J2 perturbation) 57.49 168.90 0.0050
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V. Rendezvous

This section deals with how to achieve rendezvous with a target
spacecraft, that is, to converge to its same position and velocity at the
same time.No restrictions are placed on the initial separation between
the chaser and the target. We define the candidate Lyapunov function
tominimize the error difference in both position and velocity between
the chaser and the target

Z � μ

2
α�eTueu � 2eTu 0eu 0

� μ

2
α��e2u1 � e2u2� � 2�e2u 0

1
� e2u 0

2
� (43)

where the target parameter α� � 1∕a�, and the errors in position and
velocity are defined as

eu � u − u� eu 0 � u 0 − u 0� (44)

where the target’s state is u� � �u�1 ; u�2 � and u 0� � �u 0�1 ; u 0�2 �. Note
Eq. (43) is in fact a measure of the total energy for the harmonic
oscillator describing the target’s trajectory expressed in the Levi-
Civita coordinates.

The time derivative (in s coordinates) of Z is

Z 0 � μα�eTueu 0 � 4eTu 0eu 0 0 � μα��eu1eu 01 � eu2eu 02�

�4eu 0
1

�
−
μ

4
α�eu1 −

μ

4
eαu1 �

Ar3∕2

2
cos�ϕ − θ∕2�

�

�4eu 0
2

�
−
μ

4
α�eu2 −

μ

4
eαu2 �

Ar3∕2

2
sin�ϕ − θ∕2�

�
� −μeα�eu 0

1
u1 � eu 0

2
u2�

� 2Ar3∕2�eu 0
1
cos�ϕ − θ∕2� � eu 0

2
sin�ϕ − θ∕2�� (45)

If we assume that the semimajor axis of the chaser has been
previously matched to be that of the target (to within some specified
tolerance) by using the control in Eq. (21), eα � α − α� ≈ 0.
Choosing this same control law,ϕ ≈ −λ� θ∕2, the time derivative of
the potential becomes

Z 0 � −μeαeTu 0u�
2Ar3∕2�������������������
u 0

2

1 � u 0
2

2

q �u 01u 0�2 − u 02u 0�1 �

≈
2Ar3∕2��������������������
u 021 � u 022

p �u 01u 0�2 − u 02u 0�1 � (46)

Defining the switching function

S3�s� � u 01u 0�2 − u 02u 0�1 (47)

we ensure Z 0 < 0 by thrusting such that A � T∕m whenever S3 < 0.
The full algorithm is

a) x vs y b) u1 vs u2

c)   vs time

f) a vs time g) e vs time

d) m vs time e) S2 vs time during e and     matchω

ωh)     vs time

Fig. 5 Orbit transfer using control (21) and the switching scheme (41) and (42), with parameters in Table 3.

Table 3 Initial and final orbital
parameters for the example in Fig. 5

Initial orbit Final orbit

Semimajor axis, km 10,000 20,000
Eccentricity 0.3 0.6
AOP, deg 0.0 90.0
Mass (kg) 1,000 447.4
Time Of Flight (days) — — 2.28
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1) Semimajor Axis Matching from s0 ≤ s ≤ si:

A�s� � �T∕m while jα�s� − α�j > ϵα (48)

2) Position and Velocity Matching from si ≤ s ≤ sf:

A�s� �
�
�T∕m if S3�s� < 0

0 otherwise
(49)

Note that the first term in Z 0 [before the approximation was made
in Eq. (46)] depends not only on eα ≈ 0, but also on eTu 0 → 0 for
s ≥ si. Therefore, the product of both terms that are already close to
zero will tend to zero to even a higher order of degree.
The switching scheme in Eq. (49), even though it is theoretically

valid, for implementation purposes is not convenient. There is a point
during the coast phase, once α ≈ α�, where the analytical harmonic
oscillator solutions of both spacecraft have roughly the same
amplitude. Therefore, the switching function oscillates at a constant
amplitude, and it can become nonnegative for all time, S3�s� ≥ 0
∀ s ≥ si. This would imply that the thrusters would never come back
on, so that the chaser would never rendezvous with the target. During
a coast phase, the analytical behavior of S3�s� is known (solved for in
the Appendix), which lets us determine if in fact S3�s� ≥ 0 for all
time. In this case, one possible solution is to let the thrusting
acceleration be A � −T∕m when S3�s� is at a maximum. This will
enable S3�s� to cross zero again, while ensuring that eu → 0 and
eu 0 → 0 as time progresses. The caveatwith lettingA � −T∕m is that
it results in the semimajor axis diverging from its desired value [as can
be seen by the time-derivative ofV in Eq. (22)] if the same control law
is used [Eq. (21)]. However, a simple change in sign

ϕ � −λ� θ∕2 − sin−1�Keα�; K � 1∕jeα0 j > 0 (50)

allows for both semimajor axis convergence as well as rendezvous
during this thrust phase. Therefore, the new switching scheme for the
position and velocity matching section is written as
2) Position and Velocity Matching from si ≤ s ≤ sf:

A�s� �
�
�T∕m if S3�s� < 0;ϕ given by Eq: �21�
−T∕m otherwise;ϕ given by Eq: �50� (51)

Another issue encountered with the switching function in Eq. (49)
during the implementation is that, as the chaser gets closer to the
target, S3�s� → 0 as time progresses. In fact, if at some time sii > si,
u 01 � u 0�1 , andu 02 � u 0�2 , the switching function S3�sii� ≡ 0. Once the
amplitude of S3 is within a small tolerance [amp�S3� ≤ ϵS3 ], any
infinitesimal change in time s results in a change of sign S3�s�. This
leads to chattering and, therefore, full convergence is not possible to
achieve. Aviable and effective solution is to implement the switching
function by allowing for coast arcs even when S3�s� < 0, but only
once the magnitude of the error in the velocity is below a specified
tolerance. The continuation of the guidance scheme in Eq. (51) is
written as
2i) Avoid chattering: If amp�S3� ≤ ϵS3 for sii ≤ s ≤ sf

A�s� �

8>><
>>:
0 if S3�s� ≥ 0and increasing

−T∕m if S3�s� ≥ 0and decreasing;ϕgiven by Eq: �50�
0 if S3�s� < 0and decreasing

T∕m if S3�s� < 0and increasing;ϕgiven by Eq: �21�
(52)

The full algorithm is now given by Eqs. (48), (51), and (52). Notice
that the chattering avoidance entails having the coast arcs in Eq. (52)
occur until S3 reaches either a maximum or minimum, at which point
the thrusters are turned back on. Avisualization of the behavior of S3
is shown in Fig. 6d, which aids in the understanding of the thrust/
coast arcs.

a) Position x vs y

b) Semimajor axis a vs time c) Mass m vs time d) Switch function S3 vs time

e) Position and velocity error vs time

Fig. 6 Rendezvous of a chaser with a target with initial conditions given in Table 4 using T � 5 N and Isp � 3000 s.
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Proposition 4:Let a spacecraft with a constant availablemaximum
thrust T and initial massm0 be on a closed orbit with initial position
u�s0� and velocity u 0�s0�. All solutions governed by the force model
(19)with control (21) and (50), and switching function (48), (51), and
(52) converge to a rendezvous solution of its target spacecraft, by
matching its position u��sf� and velocity u 0��sf�.
Proof: The proof follows identically as in Proposition 2; the only

difference being that the switching scheme is now given by S3 in
Eq. (47), and the coast time is analytically solved for in the
Appendix. □

A rendezvous example is shown in Fig. 6, with two spacecraft
(s∕c) that orbit the Earth, μ � 398; 600 km3∕s2, with initial orbital
elements given in Table 4, initial chaser massm0 � 1000 kg, a low-
thrust T � 5 N, and Isp � 3000 s. The integration of the equations
of motion is performed in dimensionless units, which are distance
unit DU � a� � 42; 164 km, mass unitMU � m0 � 1000 kg, and
time unit TU, chosen such thatμ � 1DU3∕TU2. The trajectory in x-y
coordinates is shown in Fig. 6a, which has been transformed using
Eq. (5) from the u results of the integration. The semimajor axis
matching portion of the algorithm [Eq. (48)] is propagated until
eα ≤ 0.1, and during the second part of the algorithm, the
convergence inα ismet tomachine precision (Fig. 6b). The switching
function S3 in Eq. (47) is plotted over time in Fig. 6d. Note that it is
only once the semimajor axis has been met to the desired tolerance
that it is important to know the behavior of S3. The difference in
magnitude of the position (Pos) and velocity (Vel) over time between
the chaser and target are shown in Fig. 6e. Note that the target has
been reached to within 10−4 DU of precision in position and 10−4

DU/TU in velocity.

VI. Conclusions

In this paper, the authors take on a new approach to the problem of
orbit transfers and rendezvous by working in a transformed model to
design Lyapunov-based control laws. The model they use is the
classical Levi-Civita regularization transformation of the planar two-
body problem. The advantage of working in these transformed
coordinates is that the solution to the unperturbed equations of
motion is that of a simple linear harmonic oscillator, where the
frequency of oscillation is a function of a, the semimajor axis of
the orbit.
The authors solve twomain problems in this paper. In the first one,

a closed-loop guidance scheme was designed for a coplanar orbit
transfer from any initial elliptical orbit to any final specified elliptical
orbit using a spacecraft with thrust–coast capabilities. The second
problem solved is to achieve rendezvouswith a target spacecraft, that
is, to match both components of position and velocity. The
convergence to the desired formation for both problems is performed
in two steps. The first step involves converging the spacecraft orbit to
the desired semimajor axis a�, even though no other parameters are
the desired ones at this point, by using a Lyapunov analysis that gives
rise to an asymptotically stabilizing control law. Once a� has been
reached to within a specified tolerance, the second step of the
algorithm involves matching the other desired orbital parameters,
using the same control law as before, but with an added on/off
switching mechanism for coasting during certain intervals. The other
advantage of working in the Levi-Civita coordinates is that, because
the analytical solution is known during the coast phases, using
Lyapunov stability, it is possible to determine analytically the exact
time at which the thrusters should be turned back on. The algorithms
designed are robust, computationally fast, and can be used for both

low- and high-thrust problems, though fuel- or time-optimality is not
guaranteed. Several examples are given for various initial and final
parameters as well as different engine capabilities for both the orbit
transfer and rendezvous problems.
One of the powerful results of this work is that the guidance law is

designed based only on matching the desired semimajor axis. With
the same control law that matches the semimajor axis, the authors are
able tomatch any desired orbit or rendezvous with a target, by adding
thrust/coast arcs. However, the two convergence sectionsmay indeed
be combined virtue of selecting a different Lyapunov candidate
function and redesigning the control law. This option will be studied
in the authors’ future work, because they are interested in designing
control laws that will be closer to the fuel-optimal solution. Also, the
authors would like to determine at which point during the orbit it is
optimal to begin thrusting. One of the possible answers is to examine
the time derivative of the candidate Lyapunov functions and
determine at which point their slope is maximum, which will aid in
converging to closer optimal solutions.
The next major step is to expand the orbit transfer and rendezvous

algorithms to the three-dimensional model using the Kustaanheimo–
Stiefel coordinate transformation, which transforms the state vector
from Cartesian space into a four-dimensional space, similar to the
Levi-Civita model.

Appendix: Determination of Coast-to-Thrust
Switching Times

The analytical solution of the switching functions Si, where i � 1,
2, 3 in Secs. IV and V are solved for here. These functions are of
importance because the exact amount of coast time is found by
analytically solving for the roots of the function Si.

A1 Switching Function S1 for Circular Orbit Transfers

The switching function S1 defined in Eq. (30) is a function of the
product of the position u [whose analytical solution is given by
Eq. (17)] and the velocity u 0 [whose solution is found by directly
taking the derivative of Eq. (17)]. Assume the frequencyof oscillation
is given byW �

������������
−E∕2

p
�

���������������
�μα�∕4

p
at some point in time s0. The

roots of S1 are found by solving

S1 � u1u 01 � u2u 02
� C1 sin�Ws� cos�Ws� � C2�cos2�Ws� − sin2�Ws�� � 0

(A1)

where

C1 � −W�u210 � u
2
20
� � 1

W
�u 0210 � u

02
20
� C2 � �u10u 010 � u20u

0
20
�

and u10 , u20 , u
0
10
, and u 020 are the initial conditions at s0. The roots of

the equations are given by

scross1 � �
1

W
tan−1

�
1

2

�C1 �
���������������������
C2
1 � 4C2

2

p
C2

�
(A2)

which correspond to the times at which the function S1 changes sign
and therefore gives the time at which the thrusters should be turned on
again after a coasting period.

A2 Switching Function S2 for General Orbit Transfers

The roots of the switching function S2 defined in Eq. (40) are
solved for, again assuming that the frequency of oscillation is given
by W �

���������������
�μα�∕4

p
at some point in time s0:

S2 � 2�ex − e�x �u 01u 02 � �ey − e�y��u 022 − u 021 �
� C1 sin�Ws� cos�Ws� � C2 sin

2�Ws� � C3 cos
2�Ws� � 0

(A3)

Table 4 Initial orbital
elements of the chaser and target

for the example in Fig. 6

Orbital elements Target Chaser

a0, km 42,164 10,000
e0 0.00 0.70
ω0, deg 0.00 0.00
ν0, deg 0.00 −50.00
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where

C1 � 2�−�ex − e�x��u10u 020 � u
0
10
u20�

� �ey − e�y��u10u 010 − u20u
0
20
��W

C2 � �2�ex − e�x�u10u20 � �ey − e�y ��u220 − u
2
10
��W2

C3 � �2�ex − e�x�u 010u
0
20
� �ey − e�y ��u 0220 − u

02
10
��

and ex and ey are defined in Eq. (34) and (35). The roots of the
equations are given by

scross2 � �
1

W
tan−1

�
1

2

�C1 �
�������������������������
C2
1 − 4C2C3

p
C2

�
(A4)

which correspond to the times at which the function S2 changes sign.

A3 Switching Function S3 for Rendezvous

The roots of the switching function S3 in Eq. (47) are found by
assuming that the chaser’s semimajor axis has already converged to
the target’s α�s� � α�:

S3 � u 01u 0�2 − u 02u 0�1
� C1 sin�Ws� cos�Ws� � C2 sin

2�Ws� � C3 cos
2�Ws� � 0

where

C1 � ��u20u 0�10 − u10u
0�
20
� � �u 020u

�
10
− u 010u

�
20
��W

C2 � �u10u�20 − u20u
�
10
�W2

C3 � �u 010u
0�
20
− u 020u

0�
10
�

and u0, u
0
0 are the initial conditions at s0 of the chaser and u

�
0 , u

0�
0 are

the initial condition of the target. The roots of the equations are given
by

scross3 � �
1

W
tan−1

�
1

2

�C1 �
�������������������������
C2
1 − 4C2C3

p
C2

�
(A5)

which correspond to the times at which the function S3 changes sign
and therefore gives the time atwhich the thrusters should be turned on
again after a coasting period.
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