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Abstract: A closed-loop solution is presented for finite-thrust orbit transfers to any
circular-equatorial orbit, using Lyapunov stability theory. The model used is the
Kustaanheimo-Stiefel transformation of the two-body problem, where the unperturbed
equations of motion are equivalent to a simple harmonic oscillator. The guidance
scheme is performed in two maneuver phases: first, a matching of the target’s semi-
major axis by allowing the spacecraft to continuously thrust, and second, a matching
of inclination and eccentricity by means of thrust/coast maneuver phases. The control
algorithm is robust, computationally fast, can be used for both low- and high-thrust
problems.
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1. Introduction

The problem of computing finite thrust orbit transfers has been studied extensively
in the past [1, 2]. Much work has concentrated on optimal transfers [3, 4, 5]; however,
these solutions are computationally expensive and do not often result in closed-form
solutions. Some attention has been given to heuristic models to achieve orbit transfers
where feedback control laws are designed based on candidate Lyapunov functions,
but these use mostly singular perturbation theory in conjunction with Lagrange’s vari-
ational equations to establish suitable guidance laws [6, 7, 8]. In this paper, we take
advantage of Lyapunov theory to design guidance laws for three-dimensional orbit
transfers; however, the approach presented is quite novel due to the fact that not only
are there are no additional time-scale related approximations involved, but the result-
ing new controllers require significantly lower computation time to permit easy onboard
implementation.

To solve the orbit transfer problem, we work in a transformed model to design the
Lyapunov-based control laws. The model we use is the Kustaanheimo-Stiefel (KS)
regularization transformation of the two-body problem [9, 10]. The main idea behind
regularization is to transform both the position and time coordinates to a new model.
The position is transformed by expanding the 3D cartesian coordinates to a 4D formu-
lation and the time is transformed by means of a Sundman transformation. This model
has been mostly used in the past to deal with close-encounter-type problems [9, 11],
but has only been slightly exploited for orbit transfer problems. For example, in Ref. 12
this model is used to solve the minimum-time transfer between coplanar circular or-
bits using Lagrange multipliers. We have recently used an equivalent planar regu-
larized model to design guidance laws for both orbit-transfers and rendezvous prob-
lems [13, 14]. We expand on this planar work by allowing for out-of-plane change.
One of the advantages of working in these transformed coordinates is that the solution
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to the unperturbed equations of motion is that of a simple linear harmonic oscillator,
where the frequency of oscillation is a function of a, the semi-major axis of the orbit.

The problem is to design a closed-loop guidance scheme to perform an orbit trans-
fer from any three-dimensional closed orbit to any equatorial, circular orbit with a pre-
scribed semi-major axis (this requires matching three desired parameters: semi-major
axis a∗, eccentricity e∗, and inclination i∗). The spacecraft is allowed to thrust in three-
dimensions, where the thrust vector is given by a constant thrust magnitude T , and
two time-varying spherical angles, β and δ. The idea is to design these control laws
by using Lypaunov stability theory. This involves forming a quadratic artificial potential
function that is always monotonic (i.e., non-increasing), and minimum at our desired
final state. A detailed summary of Lyapunov-like algorithms previously developed is
presented in [15], however, these methods typically all require computing the time-
derivatives associated with Lagrange’s planetary equations and are restricted to low-
thrust engines. Petropoulos [6] has developed an algorithm using Lyapunov stability
to perform non-coplanar orbit transfers using a coast-thrust mechanism, but this al-
gorithm is restricted to low-thrust solutions only and has singularities at e = 0 and
i = 0.

In this paper, the convergence to the desired orbit is performed in two steps. The
first step involves converging the spacecraft orbit to the desired semi-major axis a∗ by
continuously thrusting, by using a Lyapunov analysis that gives rise to an asymptoti-
cally stabilizing control law. Once a∗ has been reached to within a specified tolerance,
the second step of the algorithm involves matching the desired eccentricity and incli-
nation (while always maintaining the specified target a∗). Note that while the guidance
schemes are designed in the transformed regularized coordinates, the results can
be explicitly characterized in the original coordinates; the transformation procedure
merely acts as an enabler for the design. The algorithms designed are robust to any
initial and final conditions, computationally fast, and can be used for both low- and
high-thrust problems.

The paper is organized as follows. In Section 2 we outline how to obtain the equa-
tions of motion in the regularized coordinates (KS variables). Section 3 focuses on
defining the different Lyapunov-like functions to converge to each of the three orbital
elements targeted. In Section 4 we summarize the full control sequence and show
several examples. Conclusions and future work in shown in Section 5.

2. Equations of Motion

The equations of motion of a spacecraft in a perturbed planar two-body model are

r̈ = − µ
r3
r + f (1)

where µ is the gravitational parameter of the central body, the position vector

r = [r1 r2 r3]
T

has magnitude r =
√
r21 + r22 + r23, and f ∈ R3 is the perturbing acceleration.

The main idea behind regularization is to transform both the position coordinates
and time coordinates to a new model [9, 11]. The planar regularization problem, also
known as Levi-Civita model, involves a mapping in the complex plane. However, this
same procedure is not possible in 3D. Kustaanheimo and Stiefel worked around this
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issue by creating a 4D formulation to arrive at the regularized model (known as the KS
transformation).

There are two main steps to convert Eq. 1 into the regularized model. First, a
change of position coordinates, and second, a time transformation. Following the
notation in Ref. [9], we begin with the first step.

1. Change of position coordinates:

Let the position vector in the KS model be

u = [u1 u2 u3 u4]
T ∈ R4 (2)

and define an expanded position vector

R =

[
r
r4

]
=


r1
r2
r3
r4

 ∈ R4 (3)

where r4 = 0. The transformation from u to R can be expressed in terms of the
following linear operator

L(u) =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 (4)

such that
R = L(u)u (5)

The position coordinates of R are therefore

r1 = u21 − u22 − u23 + u24
r2 = 2 (u1u2 − u3u4)
r3 = 2 (u1u3 + u2u4)
r4 = 0

(6)

which verifies the constraint that r4 = 0, since it is just a fictitious variable. The
magnitude of the position vector is

R = ‖R‖ = ‖r‖ =
√
r21 + r22 + r23

= u21 + u22 + u23 + u24
(7)

The linear operator L(u) has the following properties [9]:

(a) LT (u)L(u) = rI, where I is the identity matrix

(b) L′(u) = L(u′), where ′ denotes the time derivative

(c) L(u)v = L(v)u

(d) (u · u)L(v)v − 2(u · v)L(u)v + (v · v)L(u)u = 0, which only holds in 4D if
u4u

′
1 − u3u′2 + u2u

′
3 − u1u′4 = 0. This last constraint is necessary to ensure

r′4 = 0
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2. Perform Sundman transformation to change the time variable

The second step in the derivation involves introducing a velocity transformation
by performing a Sundman transformation,

Ṙ =
1

R
r′ ⇐⇒ dR

dt
=

1

R

dR

ds

Note, that ˙( ) = d
dt

( ), denotes the time derivative in r coordinates, whereas
( )′ = d

ds
( ) is the time derivative in u coordinates. Using properties 2 and 3 of the

linear operator L(u), the derivative of R in terms of u coordinates are

R′ =
d

ds
R =

d

ds
(L(u)u) = 2L(u)u′ (8)

such that

u′ =
1

2
LT (u)Ṙ ⇐⇒ Ṙ =

2

R
L(u)u′ (9)

By following the same steps as in the derivation of the planar regularized model,
which is outlined in Ref. [13, 14], the perturbed two-body equations of motion in Eq. 1
in the regularized form are

u′′ =
E

2
u +

1

2
RLT (u)F

E ′ = 2u′ · LT (u)F (10)
t′ = u · u

where the augmented perturbing acceleration vector is

F =

[
f
0

]
∈ R4 (11)

For implementation purposes it is convenient to introduce a new parameter

α =
1

a
(12)

where a is the semi-major axis of the orbit. The parameter α is related to the energy
E of an orbit through the relation E = −µ/(2a) = −(µ/2)α and its derivative α′ =
−(2/µ)E ′. Combining this into Eq. 10, results in the new equations of motion

u′′ = −µα
4
u +

1

2
RLT (u)F

α′ = − 4

µ
u′ · LT (u)F (13)

t′ = u · u
Note, that one of the components of u is arbitrary, since the transformation involves

a transformation from R3 to R4. Therefore, there is some freedom in the choice of initial
conditions, when transforming from r(t0) to u(s0) [9].

If r10 ≥ 0 If r10 < 0
u40 = 0

u10 =
[
1
2

(r10 + r0)
]1/2

u20 = 1
2

(
r20
u10

)
u30 = 1

2

(
r30
u10

)
u30 = 0

u20 =
[
1
2

(r0 − r10)
]1/2

u10 = 1
2

(
r20
u20

)
u40 = 1

2

(
r30
u20

)
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2.1. Unperturbed Equations of Motion
Note that in the case when there is no perturbing acceleration acting on the space-

craft, that is, F = 0, the equations of motion in Eq. 13 become de-coupled linear
harmonic oscillators and α′ = 0.

u′′ = −µα
4
u and α′ = 0 (14)

The analytical solution is known, with a frequency of oscillation ofW =
√
µα/4. There-

fore, during any coast phase, the analytical solution is always known and given by

u(s) = u0 cos (Ws) +
u′0
W

sin(Ws) (15)

2.2. Defining the Thrust Vector F
Suppose that the perturbation f in Eq. 1 now comes from a finite thrust engine,

with constant thrust magnitude T and specific impulse c. The acceleration magnitude
‖f‖ = T/m and m is the mass of the spacecraft at any point in time, which varies
according to ṁ = −T/c. We choose the acceleration vector direction to be defined in
a body-fixed frame of the spacecraft, with two spherical variable angles δ and β, such
that

f =
T

m

[
r̂′ sin β + d̂ cos δ cos β + ê sin δ cos β

]
∈ R3 (16)

where the unit vectors r̂′, d̂, and ê form a basis in the body-frame and are defined as

r̂′ = r′/‖r′‖
d̂ = d/‖d‖, where d = (r/‖r‖)× r′

ê = r̂′ × d̂

Note that the two varying angles δ and β are the design control inputs to reach the
desired orbit.

The augmented acceleration vector F implemented in Eq. 13 is then defined as

F =

[
f
0

]
=
T

m

[
R′

‖R′‖
sin β + D̂ cos δ cos β + Ê sin δ cos β

]
(17)

where

D̂ =

[
d̂
0

]
, Ê =

[
ê
0

]
, and R′ =

[
r′

0

]
,

Note that R′ is the natural representation of the system since r′4 = 0 from property 4
of the linear operator.

3. Lyapunov-Based Algorithms to Match Each Desired Orbital Element

The goal of this paper is to target a circular-equatorial orbit of any desired radius.
In order to do so, three orbital elements need to be matched: the semi-major axis a∗,
eccentricity e∗ = 0, and inclination i∗ = 0, where ∗ denotes the desired value. We define
the error between the current orbital elements and the desired ones as ea = a − a∗,
ee = e − e∗, and ei = i − i∗. The idea is to design the control algorithms by using
Lyapunov stability theory. This involves forming a quadratic artificial potential function
that is always monotonic (i.e., non-increasing), and minimum at our desired final state.
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3.1. Matching Semi-Major Axis
Suppose that the semi-major axis of the target orbit is given by a∗, and therefore,

its inverse is α∗ = 1/a∗. At any point in time (in s coordinates) the chaser spacecraft,
whose motion is governed by Eq. 13, has a semi-major axis a(s), and correspondingly
α(s) = 1/a(s). The difference between the current α(s) and the target α∗ is denoted
by eα = α− α∗. The quadratic candidate Lyapunov function

Vα =
1

2
e2α =

1

2
(α− α∗)2 (18)

is minimized when the semi-major axis of the chaser spacecraft matches the semi-
major axis of the target. The time-derivative of V along solutions of Eq. 13 is given
by

V ′α = eαe
′
α = (α− α∗)α′

By using the definition of the thrust vector F in Eq. 17, the value α′ becomes

α′ = − 4

µ
u′ · LT (u)F =

4

µ

(
LT (u)u′

)T
F

= − 2

µ

T

m
R′

T

[
R′

‖R′‖
sin β + L̂ cos β cos δ + ê cos β sin δ

]
= − 2

µ

T

m
‖R′‖ sin β

Note that R′ ·D̂ = 0 and R′ ·Ê = 0. Therefore, it is not necessary to have δ as a control
input for the semi-major axis matching section, but will become important in the next
sections. By choosing

β = sin−1(Keα) where K = 1/‖eα0‖ (19)

results in

α′ = − 2

µ

T

m
‖R′‖Keα (20)

which ensures that Vα is non-increasing.

V ′α = − 2

µ

T

m
Ke2α ≤ 0 (21)

Proposition 1. Let a spacecraft with a constant available maximum thrust T = Tmax
and initial mass m0 be on a closed orbit with initial semi-major axis a(s0) = a0. All
solutions governed by the force model in Eq. 13 with thrust vector in Eq. 17 converge
to any prescribed final semi-major axis a∗, with control angle β defined in Eq. 19,
regardless of the choice of control angle δ.

3.2. Matching Eccentricity
The eccentricity e of an orbit expressed in the KS variables is [9]

e2 = (1− rα)2 +
4

µ
α(u · u′)2 (22)
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To target a circular orbit e∗ = 0, a Lyapunov-candidate function (which is minimum
when e = 0) is

Ve =
1

2
(e− e∗)2 =

1

2
e2 ≥ 0 (23)

Note r′ = 2u · u′. The time derivative of Ve along solutions of Eq. 13 is

V ′e =
1

2

d

ds
e2 = rα2(u · u′) +

[
−r(1− rα) +

2

µ
(u · u′)2

]
α′ +

4

µ
α(u · u′)[u · u′′]

=
4

µ

[
1

2
α(u · u′)r [L(u)u]T +

(
r(1− rα)− 2

µ
(u · u′)2

)
[L(u)u′]

T

]
F

We now use the relations in Eq. 5 and 9 and the control law F in Eq. 17. Also note
that R · D̂ = 0, R′ · D̂ = 0, and R′ · Ê = 0. The time-derivative of Ve simplifies to

V ′e =
2

µ

T

m
‖R′‖

[(
r2α

‖R′‖2
− 1

µ

)
(u · u′)2 + r(1− rα)

]
sin β

+
2

µ

T

m
rα(u · u′)(R · Ê) cos β sin δ

If we assume that the semi-major axis of the chaser has been previously matched
to be that of the target (to within some specified tolerance) by using the control F with
β in Eq. 19, then sin β ≈ 0 and cos β ≈ 1. The time-derivative of the potential becomes

V ′e =
2

µ

T

m
rα(u · u′)(R · ê) sin δ (24)

which can be made negative semi-definite by choosing

δ =

{
sin−1(e) if (u · u′)(R · Ê) < 0

sin−1(−e) otherwise
(25)

Note we have defined this δ to only match the desired eccentricity and does not
take into account any inclination matching.

3.3. Matching Inclination
We now continue to derive a guidance scheme that will converge the inclination of

an orbit. The inclination is defined as

cos i =
hk
h

(26)

where hk is the k̂ component of the angular momentum vector h, and h = ‖h‖. The
angular momentum is expressed as h =

√
µa(1− e2). Because we are already match-

ing a∗ and e∗ by the thrusting protocol in the previous sections, the magnitude of the
desired h∗ will already be targeted. Also, because 0 ≤ i ≤ 180o, there is no ambiguity
or quadrant check necessary. Therefore, in order to achieve a desired i∗, is equivalent
to target a desired h∗k.

The angular momentum h = r× v. Therefore, the k̂ component is

hk = xẏ − yẋ =
[
x y

] [ 0 1
−1 0

] [
ẋ
ẏ

]
= rT

 0 1 0
−1 0 0
0 0 0

 ṙ (27)

7



In order to target h∗k, we need to express hk in the KS variables.

hk = [L(u)u]T Y

[
2

r
L(u)u′

]
=

2

r
uT
(
LT (u)YL(u)

)
u′

=
2

r
uTBu′ (28)

where

B = LT (u)YL(u) (29)

Y =

[
A 0
0 0

]
4×4

A =

[
0 1
−1 0

]
2×2

and 0 =

[
0 0
0 0

]
2×2

The matrix B is skew-symmetric, B = −BT

B =


0 a −b −c
−a 0 c −b
b −c 0 d
c b −d 0

 where

a = u21 + u22
b = u1u4 − u2u3
c = u1u3 + u2u4
d = u23 + u24

(30)

The time-derivative of hk is

h′k =
2

r

(
u′

T

Bu′ + uTB′u′ + uTBu′′
)

+
2

r3
(r · r′)uTBu′

=
2

r

[
−µ

4
αuTBu + u′TBu′ + uT (B′ − 2(u · u′)B)u′ +

r

2
uTBLT (u)F

]
Note that because B is skew-symmetric, for any vector x ∈ R4, xTBx = 0. Therefore,
the first two terms in h′k vanish. The third term in h′k, u

T (B′−2(u·u′)B)u′, also vanishes.
Therefore, the time-derivative of hk is

h′k = uTBLT (u)F = − (L(u)Bu) · F (31)

The quadratic candidate function

Vi =
1

2
e2h =

1

2
(hk − h∗k)2 (32)

is minimized when the inclination matches the desired inclination. For a desired equa-
torial orbit, h∗k = 1 and the other two component of the angular momentum will be zero.
The time-derivative of Vi,

V ′i = (hk − h∗k)h′k
= −(hk − h∗k) [(L(u)Bu) · F]

= − T
m

(hk − h∗k)
[
(L(u)Bu) ·

(
R′

‖R′‖
sin β + D̂ cos β cos δ + Ê cos β sin δ

)]
(33)

Note, that if the semi-major axis of the desired orbit has already been matched to
a∗ (to within a certain tolerance), the angle β ≈ 0. The time derivative

V ′i = − T
m

(hk − h∗k)
[
(L(u)Bu) ·

(
D̂ cos δ + Ê sin δ

)]
(34)
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At this point, the control angle δ in Eq. 25 has already been designed to match the
desired eccentricity e∗ = 0. In order to make V ′i ≤ 0, the only option is to begin a set of
thrust/coast arcs in the following manner

T =

{
Tmax if (hk − h∗k)

[
(L(u)Bu) ·

(
D̂ cos δ + Ê sin δ

)]
> 0

0 otherwise
(35)

This ensures not only that V ′i ≤ 0, but also V ′e ≤ 0. Therefore, both eccentricity and
inclination will converge to the desired e∗ = 0 and i∗ = 0.

Proposition 2. Let a spacecraft with a constant available maximum thrust T = Tmax
and initial mass m0 be on a closed orbit with an initial semi-major axis equal to the
desired one a0 = a∗. All solutions governed by the force model in Eq. 13 with thrust
vector in Eq. 17 converge to a circular-equatorial orbit with e∗ = 0 and i∗ = 0, when the
control angles are chosen as β in Eq. 19 and δ in Eq. 25, with the thrust/coast protocol
defined in Eq. 35.

Another option is to re-define δ to make
(
D̂ cos δ + Ê sin δ

)
in Eq. 34 lie in the same

direction as L(u)Bu, which will result in V ′i ≤ 0. Because the fourth component of
D̂ and Ê are null, we are only interested in aligning to the first three components of
L(u)Bu. We define the vector q as the first three components of (L(u)Bu)1:3. The
vector q can be written in two separate components: qd̂−ê, which lies in the plane
formed by d̂− ê, and qr̂′, which is perpendicular to this plane (i.e., lies in the direction
of r̂′). The time-derivative of Vi in Eq. 34 becomes

V ′i = − T
m

(hk − h∗k)
[
q ·
(
d̂ cos δ + ê sin δ

)]
= − T

m
(hk − h∗k)

[(
qd̂−ê + qr̂′

)
·
(
d̂ cos δ + ê sin δ

)]
= − T

m
(hk − h∗k)

[(
qd̂−êûd̂−ê

)
·
(
d̂ cos δ + ê sin δ

)]
where qd̂−ê = ‖qd̂−ê‖. By designing δ as

δ = tan−1
(
u2
u1

)
+ kiπ where ki =

{
0 if (hk − h∗k) ≥ 0
1 otherwise (36)

where

u1 = ûd̂−ê · d̂
u2 = ûd̂−ê · ê

results in V ′i ≤ 0.
The control protocol δ in Eq. 36 will ensure that the inclination converges to i∗ = 0;

however, we still need to match the eccentricity to e∗ by ensuring that V ′e ≤ 0 in Eq. 24.
In order to do so, we begin a set of thrust/coast arcs such that

T =

{
Tmax if (u · u′)(R · ê) sin δ < 0

0 otherwise (37)
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Proposition 3. Let a spacecraft with a constant available maximum thrust T = Tmax
and initial mass m0 be on a closed orbit with an initial semi-major axis equal to the
desired one a0 = a∗. All solutions governed by the force model in Eq. 13 with thrust
vector in Eq. 17 converge to a circular-equatorial orbit with e∗ = 0 and i∗ = 0, when the
control angles are chosen as β in Eq. 19 and δ in Eq. 36, with the thrust/coast protocol
defined in Eq. 37.

A comparison example between the algorithms in Proposition 2 and Proposition
3 is shown in Fig. 1, with initial and final conditions given in Tab. 11 using a thrust
Tmax = 20 N, Isp = 1, 000 s2, and initial spacecraft mass m0 = 1, 000 kg. Both the
initial and final orbits are identical in semi-major axis and eccentricity, but are offset in
inclination. The position coordinates have been dimensionalized to be 1DU = 42, 000
km, which is the value of a∗. Note, from Fig. 1(d-e), how neither the semi-major axis
nor eccentricity vary during the process. A comparison in flight time and propellant
used is shown in Tab. 2. The algorithm in Proposition 3 is faster in flight time (by 2.12
days), but uses more propellant (by 68.8 kg).

1
0

1 0.5 0 0.5

0.5

0

0.5

1  

y (DU)x (DU)

 

z 
(D

U
) Earth

Initial Orbit
Final Orbit
Prop. 2

(a) Trajectory Using Proposition 2

1
0

1 0.5 0 0.5

0.5

0

0.5

 

y (DU)x (DU)

 

z 
(D

U
)

Earth
Initial Orbit
Final Orbit
Prop. 3

(b) Trajectory Using Proposition 3

0 2 4
500

600

700

800

900

1000

Time (days)
m

 (k
g)

 

 

Prop. 3
Prop. 2

(c) Mass vs time

0 2 4

0.6

0.8

1

1.2

1.4

Time (days)

a 
(D

U
)

 

 

Final Orbit
Prop. 3
Prop. 2

(d) Semi-major axis vs time
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Figure 1: Orbit transfer from an initial orbit with a0 = 42, 000 km, e0 = 0.0, and i = 70.0o, to a final
orbit with a∗ = 42, 000 km, e∗ = 0.0, and i∗ = 0.0o using Tmax = 20 N , Isp = 1, 000 s, m0 = 1, 000 kg.
Comparison between control algorithms defined in Proposition 2 and Proposition 3.

1The orbital parameters, ω represents the argument of periapsis, and Ω is the right ascension of the
ascending node. For a circular-equatorial orbit, these two parameters are not defined, and therefore, it
is not necessary to target them.

2The specific impulse Isp is an engine parameter used to describe its efficiency. The exhaust velocity
c, which is used to calculate the fuel mass rate, is computed as c = gIsp, where g = 9.81 m/s2.
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Table 1: Initial and final orbital parameters for the example in Fig. 1
a (km) e i (o) ω (o) Ω (o)

Initial Orbit 42,000 0.00 70.00 – –
Final Orbit 42,000 0.00 0.00 – –

Table 2: Propellant used and flight time for the example in Fig. 1
Proposition 2 Proposition 3

Propellant(kg) 439.2 508.0
Flight Time (days) 5.46 3.34

4. Transfer to any Circular-Equatorial Orbit

We now combine the results from the previous section, to discuss the algorithm to
target a circular (e∗ = 0), equatorial (i∗ = 0) orbit with a prescribed semi-major axis a∗.
The algorithm is a combination of Proposition 1 and Proposition 31. The algorithm is
performed in two steps. First, a matching of the target semi-major axis a∗, by means
of using β in Eq. 19. Recall, that the other spherical angle δ does not affect the semi-
major axis convergence. For this reason, we choose δ as in Eq. 36, which does not
necessarily guarantee the negative semi-definiteness of V ′i , but will approach it as
a → a∗. The second step, once the semi-major axis is converged to the desired one
(to within a certain tolerance εa), involves converging the eccentricity and inclination
to e∗ = 0 and i∗ = 0, by means of using the same δ, but now a set of thrust/coast
solutions are implemented similarly to Eq. 37. The two steps are

1. s0 ≤ s ≤ si: Semi-Major Axis Matching

T = Tmax while |a(s)− a∗| > εa (38)

2. si < s ≤ sf : Inclination and Eccentricity Matching

T =

{
Tmax if (u · u′)(R · ê) sin δ < 0

0 otherwise (39)

with control angles

β = sin−1(Keα) where K = 1/‖eα0‖

δ = tan−1
(
u2
u1

)
+ kiπ where ki =

{
0 if (hk − h∗k) ≥ 0
1 otherwise (40)

Proposition 4. Let a spacecraft with a constant available maximum thrust T = Tmax
and initial mass m0 be on any closed orbit. All solutions governed by the force model
in Eq. 13 with thrust vector in Eq. 17 converge to a circular (e∗ = 0), equatorial (i∗ = 0),
orbit with a prescribed semi-major axis a∗, when the control angles β and δ are chosen
as in Eq. 40, with the thrust/coast protocol defined in Eq. 38-39.

1Note that combining Propositions 1 and 2 is also a viable option. The basis for our choice is that
most of the simulations run (albeit, not exhaustive), appear to be more optimal both in time and fuel
efficiency by using Propositions 1 and 3.
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An example simulation is shown in Fig. 2 with initial and final parameters given in
Tab. 3, Tmax = 1 N, Isp = 3100 s, and an initial spacecraft mass m0 = 300 kg. The
transfer sequence is performed in two steps: Seq.1 (shown in red) corresponds to the
thrust protocol in Eq. 38 and Seq. 2 (shown in black) corresponds to Eq. 39. The final
results of flight time and propellant are shown in Tab. 4 and compared to two other
closed-loop solutions, which are more optimal in both time and propellant than the
algorithm presented here1. One of these solutions is Edelbaum’s optimal analytical
solution for circle to circle transfers [16], which is derived assuming a constant accel-
eration magnitude and a low eccentricity (e << 0.1) during the transfer. The other
solution is Petropolous Q-Law [6], which is another closed-loop solution that uses Lya-
punov stability theory based on Lagrange’s planetary equation. The Q-Law, however,
is singular at i = 0 and e = 0, and therefore, cannot fully target these values.
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Figure 2: Orbit transfer from an initial orbit with a0 = 6, 700 km, e0 = 0.05, and i0 = 28.4o, to a final orbit
with a∗ = 42, 100 km, e∗ = 0.0, and i∗ = 0.0o using Tmax = 1 N , Isp = 3100 s, m0 = 300 kg.

1Results of these two methods are taken from an example in Ref. [15]
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Table 3: Initial and final orbital parameters for the example in Fig. 2
a (km) e i (o) ω (o) Ω (o)

Initial Orbit 6,700 0.05 28.40 0.00 0.00
Final Orbit 42,100 0.00 0.00 – –

Table 4: Propellant used and flight time for the example in Fig. 2
Control Law Proposed Edelbaum [16] Petropoulos [6]

Propellant (kg) 60.10 49.69 56.62
Flight Time (days) 21.43 17.48 19.92

Another example simulation is shown in Fig. 3 with initial and final parameters given
in Tab. 5, Tmax = 10 N, Isp = 3, 100 s, and an initial spacecraft mass m0 = 300 kg. The
position has been non-dimensionalized by 1DU = a∗ = 40, 000 km. The transfer takes
2.35 days and the final mass is mf = 254.3 kg.

Table 5: Initial and final orbital parameters for the example in Fig. 3
a (km) e i (o) ω (o) Ω (o)

Initial Orbit 20,000 0.7 40.00 20.00 0.00
Final Orbit 40,000 0.0 0.00 – –

5. Conclusion

In this paper we take on a new approach to the problem of orbit transfers by working
in a transformed model to design Lyapunov-based control laws. The model we use is
the KS regularization transformation of the two-body problem. One of the advantages
of working in these transformed coordinates is that the solution to the unperturbed
equations of motion is that of a simple linear harmonic oscillator, where the frequency
of oscillation is a function of a, the semi-major axis of the orbit.

We design a closed-loop guidance scheme for orbit transfer from any initial ellip-
tical orbit to any final circular-equatorial orbit utilizing a spacecraft with thrust-coast
capabilities. The convergence to the desired formation is performed in two steps. The
first step involves converging the spacecraft orbit to the desired semi-major axis a∗,
even though no other parameters are the desired ones at this point, by using a Lya-
punov analysis that gives rise to an asymptotically stabilizing control law. Once a∗ has
been reached to within a specified tolerance, the second step of the algorithm involves
matching the other two desired orbital parameters (eccentricity e∗ = 0 and inclina-
tion i∗ = 0), using the same control law as before, but with an added on/off switching
mechanism for coasting during certain intervals.

The algorithms designed is robust, computationally fast, and can be used for both
low- and high-thrust problems, though fuel or time-optimality is not guaranteed. Sev-
eral examples are given for various initial and final parameters as well as different
engine capabilities.
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Figure 3: Orbit transfer from an initial orbit with a0 = 20, 000 km, e0 = 0.7, and i0 = 40.0o, to a final orbit
with a∗ = 40, 000 km, e∗ = 0.0, and i∗ = 0.0o using Tmax = 10 N , Isp = 3100 s, m0 = 300 kg.

The next major step is to expand this guidance schemes to do any general three-
dimensional orbit transfer. This is done by matching five orbital parameters: semi-
major axis, eccentricity, inclination, argument of periapsis, and right ascension of the
ascending node.
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