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Abstract

The problem of determining high-accuracy minimum-time Earth-orbit transfers using low-thrust
propulsion is considered. The optimal orbital transfer problem is posed as a constrained nonlinear opti-
mal control problem and is solved using a variable-order Legendre-Gauss-Radau quadrature orthogonal
collocation method. Initial guesses for the optimal control problem are obtained by solving a sequence
of modified optimal control problems where the final true longitude is constrained and the mean square
difference between the specified terminal boundary conditions and the computed terminal conditions is
minimized. It is found that solutions to the minimum-time low-thrust optimal control problem are only
locally optimal in that the solution has essentially the same number of orbital revolutions as that of
the initial guess. A search method is then devised that enables computation of solutions with an even
lower cost where the final true longitude is constrained to be different from that obtained in the original
locally optimal solution. A numerical optimization study is then performed to determine optimal trajec-
tories and control inputs for a range of initial thrust accelerations and constant specific impulses. The
key features of the solutions are then determined, and relationships are obtained between the optimal
transfer time and the optimal final true longitude as a function of the initial thrust acceleration and
specific impulse. Finally, a detailed post-optimality analysis is performed to verify the close proximity
of the numerical solutions to the true optimal solution.

Nomenclature

a = Semi-major Axis, m
e = Eccentricity
f = Second Modified Equinoctial Element
g = Third Modified Equinoctial Element
ge = Sea Level Acceleration Due to Earth Gravity, m/s2

H = Optimal Control Augmented Hamiltonian
h = Second Modified Equinoctial Element
i = Inclination, deg or rad
(ir, iθ, ih) = Rotating Radial Coordinate System
J2 = Second Zonal Harmonic
J3 = Third Zonal Harmonic
J4 = Fourth Zonal Harmonic
k = Fifth Modified Equinoctial Element
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L = Sixth Modified Equinoctial Element (True Longitude), rad or deg
m = Mass, kg
n = Mean Motion
Pk = Legendre Polynomial of Degree k
p = First Modified Equinoctial Element (Semi-Parameter), m
Re = Radius of the Earth, m
T = Thrust, N
t = Time, s or d
u = Control Direction
ur = Radial Component of Control
uθ = Tangential Component of Control
uh = Normal Component of Control
∆ = Spacecraft Specific Force, m·s−2

λ = Optimal Control Costate
µ = Optimal Control Path Constraint Lagrange Multiplier
µe = Earth Gravitational Parameter, m3·s−2

ν = True Anomaly, deg or rad
Ω = Longitude of Ascending Node, deg or rad
ω = Argument of Periapsis, deg or rad

1 Introduction

Low-thrust propulsion systems are typically characterized by high specific impulses and small initial thrust
accelerations (thrust-to-initial-mass) on the order of O(10−4) m·s−2. The use of low-thrust propulsion
has been studied extensively for orbital rendezvous, orbit maintenance, orbit transfer, and interplanetary
space mission applications. While the efficiency of low-thrust propulsion is highly appealing, the resulting
trajectory design problem is particularly challenging to solve. For example, the high specific impulse of
a low-thrust engine combined with the small engine specific force leads to computational challenges due
to the long duration of the orbital transfer. In addition, the trajectory design problem is particularly
problematic when the initial and terminal orbits are widely spaced resulting in a trajectory that requires a
large number of orbital revolutions in order to complete the transfer. Then, even if a solution is obtained,
it is highly likely that the trajectory is not the global optimal solution.1

Low-thrust trajectory optimization has been the subject of much previous research. In Refs. 1–8
numerical optimization techniques were used for to optimize interplanetary space trajectories. In Ref. 9 a
variation of parameters approach was employed to solve a minimum-fuel time-fixed rendezvous problem,
while in Ref. 10 Pontryagin’s minimum principle11,12 was used to determine the optimal thrust acceleration
for an orbit maintenance study. In Ref. 13 optimal control theory was used to solve minimum-time, circle-
to-circle, constant thrust orbit raising and simple graphical and analytical tools were used that related
vehicle design parameters to orbit design parameters. In addition, a variety of approximation methods
have been developed to overcome the computational challenge associated with the large number of orbital
revolutions typical of a low-thrust orbital transfer. One of the most common approximation techniques is
orbital averaging where simple approximations are derived to express incremental changes in the orbital
elements for each orbital revolution. Using orbital averaging, in Ref. 14 the problem of minimum-fuel power-
limited transfers between coplanar elliptic orbits was studied, while in Ref. 15 near-optimal, minimum-time
low-Earth orbit (LEO) to geostationary orbit (GEO) and geosynchronous transfer orbit (GTO) to GEO
transfers were examined. In addition, in Ref. 16 a parameterized control law was employed together
with orbital averaging in order to solve three common near-optimal, minimum-time Earth-orbit transfers.
More recently, in Ref. 5 an orbital averaging approach was developed in conjunction with hybrid control
formulations to solve LEO to GEO and GTO to GEO transfers. Next, in Ref. 17 a 100-revolution LEO
to GEO coplanar transfer was solved using direct collocation paired with a Runge-Kutta parallel-shooting
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scheme, while in Ref. 18 a single shooting method was combined with a homotopic approach to solve a
minimum-fuel transfer from a low, elliptic, and inclined orbit to GEO. In order to increase accuracy over
orbital averaging techniques, in Ref. 19 sequential quadratic programming (SQP) was used with direct
collocation to solve a minimum-fuel low-thrust near-polar Earth-orbit transfer with over 578 revolutions.
In Ref. 20 an anti-aliasing method utilizing direction collocation was developed to obtain solutions to simple
low-thrust trajectory optimization problems. Finally, in Ref. 21 a minimum-time LEO to high-Earth orbit
(HEO) transfers was solved using direct collocation with a single specific impulse value.

While a great deal of progress has been made in low-thrust trajectory optimization, much of this work
focuses on determining near-optimal solutions and very little work has been done to verify the optimality
of the solutions obtained. The contribution of this research is on determining high-accuracy solutions to
minimum-time low-thrust trajectory optimization problems for a wide-range of initial thrust accelerations
and specific impulse values. Specifically, in this paper a variable-order Gaussian quadrature orthogonal
collocation method22–29 is used to determine minimum-time optimal trajectories of two common low-thrust
Earth-orbit transfers. As a result, solutions to the optimal control problem are obtained without having to
replace the equations of motion with averaged approximations over each orbital revolution such as in using
an orbital averaging technique. Using the aforementioned collocation method, an initial guess generation
method is used together with a simple search method to determine the solution that has the lowest cost
amongst a range of locally optimal solutions. Numerical solutions are generated for a range of initial thrust
acceleration values and specific impulse values that are typical of a low-thrust propulsion system. Then, in
a manner similar to that of Ref. 21, regression analyses are performed to determine the transfer time as a
function of the initial thrust acceleration and the specific impulse and to determine the final true longitude
as a function of the transfer time. From these regressions it is possible to estimate the transfer time and
final true longitude for different initial thrust accelerations and specific impulses without having to re-solve
the optimal control problem. A post-optimality analysis is then performed to verify the optimality of the
solutions obtained in this study.

This paper is organized as follows. Section 2 describes the minimum-time low-thrust orbit transfer
trajectory optimization problem solved in this research. Section 3 describes the direct collocation method
used to solve the optimal orbital transfer problem. Section 4 describes the numerical results obtained
in this study and includes a post-optimality analysis to verify the optimality of the solutions obtained.
Finally, Section 5 provides conclusions on this work.

2 Low-Thrust Earth-Orbit Transfer Optimal Control Problem

Consider the problem of transferring a spacecraft from an initial Earth-orbit to a final Earth-orbit using
low-thrust propulsion. The objective is to determine the minimum-time trajectory and control that transfer
the spacecraft from the specified initial orbit to the specified terminal orbit. The low-thrust optimal control
problem for the orbit transfer is now described.

2.1 Equations of Motion

The dynamics of the spacecraft, modeled as a point mass, are described using modified equinoctial elements
together with a fourth-order oblate gravity model and a continuous thrust propulsion system. The state of
the spacecraft is comprised of the modified equinoctial elements (p, f, g, h, k, L)30 together with the mass,
m, where p is the semi-parameter, f and g are modified equinoctial elements that describe the eccentricity
of the orbit, h and k are modified equinoctial elements that describe the inclination of the orbit, and
L is the true longitude. The control is the thrust direction, u, where u is expressed in rotating radial
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coordinates as u = (ur, uθ, uh). The differential equations of motion of the spacecraft are given as
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(1)

where
q = 1 + f cosL+ g sinL, r = p/q,

α2 = h2 − k2, s2 = 1 +
√
h2 + k2.

(2)

In this research, time is replaced as the independent variable in favor of the true longitude, L, because L
provides a more intuitive understanding of the transfer. Since the spacecraft moves from an orbit close to
the Earth to GEO, more true longitude cycles will be completed in a given amount of time near the start
of the transfer than will be completed near the terminus of the transfer. Using the true longitude as the
independent variable, the differential equation for L is replaced with the differential equation

dt

dL
=

1

FL
= F−1

L ≡ Gt, (3)

while the remaining six differential equations for (p, f, g, h, k,m) that describe the dynamics of the space-
craft are given as

dp

dL
= F−1

L Fp ≡ Gp,
df

dL
= F−1

L Ff ≡ Gh,
dg

dL
= F−1

L Fg ≡ Gg,
dh

dL
= F−1

L Fh ≡ Gh,
dk

dL
= F−1

L Fk ≡ Gk,
dm

dL
= F−1

L Fm ≡ Gm.

(4)

Next, the spacecraft acceleration, ∆ = (∆r,∆θ,∆h), is modeled as

∆ = ∆g + ∆T , (5)

where ∆g is the gravitational acceleration due to the oblateness of the Earth and ∆T is the thrust specific
force. The acceleration due to Earth oblateness is expressed in rotating radial coordinates as

∆g = QT
r δg, (6)
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where Qr =
[
ir iθ ih

]
is the transformation from rotating radial coordinates to Earth-centered inertial

coordinates and whose columns are defined as

ir =
r

‖r‖ , ih =
r× v

||r× v|| , iθ = ih × ir. (7)

Furthermore, the vector δg is defined as

δg = δgnin − δgrir (8)

where in is the local North direction and is defined as

in =
en − (eTn ir)ir
||en − (eTn ir)ir||

(9)

and en = (0, 0, 1). The oblate earth perturbations are then expressed as

δgr = −µe
r2

4∑
k=2

(k + 1)

(
Re
r

)k
Pk(sinφ)Jk, (10)

δgn = −µe cosφ

r2

4∑
k=2

(
Re
r

)k
P
′
k(sinφ)Jk, (11)

where Re is the equatorial radius of the earth, Pk is the kth-degree Legendre polynomial, P
′
k is the derivative

of Pk with respect to sinφ, and Jk represents the zonal harmonic coefficients for k = (2, 3, 4). Next, the
thrust specific force is given as

∆T =
T

m
u. (12)

Finally, the physical constants used in this study are given in Table 2.

Table 2: Physical Constants.

Quantity Value

ge 9.80665 m · s−2

µe 3.9860047× 1014 m3 · s−2

Re 6378140 m

J2 1082.639× 10−6

J3 −2.565× 10−6

J4 −1.608× 10−6

2.2 Boundary Conditions and Path Constraints

The boundary conditions for the orbit transfer are described in terms of both classical orbital elements
and modified equinoctial elements. The spacecraft starts in either a near circular inclined low-Earth orbit
(LEO) or a geostationary transfer orbit (GTO) at time t0 = 0. The initial orbit is specified in terms of
classical orbital elements31 as

a(L0) = a0, Ω(L0) = Ω0,

e(L0) = e0, ω(L0) = ω0,

i(L0) = i0, ν(L0) = ν0,

(13)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the longitude of the ascending
node, ω is the argument of periapsis, and ν is the true anomaly. Equation (13) can be expressed equivalently
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in terms of the modified equinoctial elements as

p(L0) = a0(1− e2
0), h(L0) = tan(i0/2) sin Ω0,

f(L0) = e0 cos(ω0 + Ω0), k(L0) = tan(i0/2) cos Ω0,

g(L0) = e0 sin(ω0 + Ω0), L0 = Ω0 + ω0 + ν0.

(14)

For both cases considered, the spacecraft terminates in a geostationary orbit (GEO). The GEO terminal
orbit is specified in classical orbital elements as

a(Lf ) = af , Ω(Lf ) = Free,

e(Lf ) = ef , ω(Lf ) = Free,

i(Lf ) = if , ν(Lf ) = Free.

(15)

Equation (15) can be expressed equivalently in terms of the modified equinoctial elements as

p(Lf ) = af (1− e2
f ),(

f2(Lf ) + g2(Lf )

)1/2

= ef ,(
h2(Lf ) + k2(Lf )

)1/2

= tan(if/2).

(16)

Finally, during the transfer the thrust direction must be a vector of unit length. Thus, equality path
constraint

‖u‖2 = u2
r + u2

θ + u2
h = 1 (17)

is enforced throughout the orbital transfer.

2.3 Optimal Control Problem

The goal of this study is to determine solutions to the following constrained nonlinear optimal control prob-
lem. Determine the trajectory (p(L), f(L), g(L), h(L), k(L),m(L), t(L)) and the control (ur(L), uθ(L), uh(L))
that minimize the cost functional

J = αtf , (18)

subject to the dynamic constraints of Eqs. (3) and (4), the initial conditions of Eq. (14), the terminal
conditions of Eq. (16), and the path constraints of Eq. (17). Finally, it is noted that α = 1/86400 is the
conversion factor from units of seconds to units of days.

3 Numerical Solution of Low-Thrust Optimal Control Problem

The minimum-time low-thrust optimal control problem described in this paper was solved using the optimal
control software GPOPS− II.29 GPOPS− II is a MATLAB software that transcribes the optimal control
problem to a nonlinear programming problem (NLP) that implements the variable-order Legendre-Gauss-
Radau quadrature collocation method described in Refs. 26,27, and 32 together with an hp adaptive mesh
refinement method (see Refs. 28, 33, and 34). In this study the NLP arising from the LGR collocation
method is solved using the open-source NLP solver IPOPT 35 with analytical first and second derivatives
obtained using the open-source algorithmic differentiation package ADiGator whose method is described in
Ref. 36. The remainder of this section is organized as follows. First, an approach is described for generating
initial guesses for solving the optimal control problem. Second, because the solutions obtained from the
NLP are only locally optimal, a motivation is provided for developing a simple search method to obtain
solutions that are closer to the global optimal. Finally, the developed simple search method is described
and is applied to the low-thrust trajectory optimization problem.
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3.1 Initial Guess Generation

In order to solve the low-thrust orbital transfer optimal control problem described in Section 2, it was
necessary to provide initial guesses from which the NLP solver would converge to a solution. Because this
research is focused on solving a problem whose solution will result in a large number of orbital revolutions,
the initial guess must itself contain a number of orbital revolutions that is reasonably close to the actual
number of orbital revolutions of the solution obtained by the NLP solver. In this paper, an initial guess
procedure was devised where a sequence of optimal control sub-problems were solved. The goal of each
sub-problem was to determine the state and control that transfer the spacecraft from the initial orbit to
the terminal conditions that minimize the following mean square relative difference:

J =

[
p(Lf )− pd

1 + pd

]2

+

[
f2(Lf ) + g2(Lf )− e2

d

1 + e2
d

]2

+

[
h2(Lf ) + k2(Lf )− tan2( id2 )

1 + tan2( id2 )

]2

. (19)

In other words, the objective of the optimal control sub-problem is to attain a solution that is as close in
proximity to the desired terminal semi-parameter, pd, eccentricity, ed, and inclination, id. Each sub-problem
is evaluated at most over one true longitude cycle using the terminal state of the previous sub-problem
as the initial state of the current sub-problem. The continuous-time optimal control sub-problem is then
stated as follows. Minimize the cost functional of Eq. (19) subject to the dynamic constraints of Eqs. (3)
and (4), the path constraint of Eq. (17), and the boundary conditions

p(r)(L
(r)
0 ) = p(r−1)(L

(r−1)
f ), p(r)(L

(r)
f ) = Free,

f (r)(L
(r)
0 ) = f (r−1)(L

(r−1)
f ), f (r)(L

(r)
f ) = Free,

g(r)(L
(r)
0 ) = g(r−1)(L

(r−1)
f ), g(r)(L

(r)
f ) = Free,

h(r)(L
(r)
0 ) = h(r−1)(L

(r−1)
f ), h(r)(L

(r)
f ) = Free,

k(r)(L
(r)
0 ) = k(r−1)(L

(r−1)
f ), k(r)(L

(r)
f ) = Free,

m(r)(L
(r)
0 ) = m(r−1)(L

(r−1)
f ), m(r)(L

(r)
f ) = Free,

L
(r)
0 = L

(r−1)
f , L

(r)
f ≤ L

(r−1)
f + 2π,

(20)

for r = 1, . . . , R where R represents the total number of true longitude cycles. The initial conditions for
the first cycle, when r = 1, are simply the initial conditions stated in Eq. (14). Once the desired terminal
conditions, as stated in Eq. (16), are obtained within a user specified tolerance, the sub-problem solutions
are then combined to form the initial guess. The initial mesh is comprised of intervals based on the total
number of true longitude cycles and an arbitrarily chosen number of collocation points assigned to each
interval.

3.2 Search Method to Assist in Obtaining Globally Optimal Solution

It is generally the case that gradient-based optimization methods converge to locally optimal solutions as
opposed to globally optimal solutions. In the case of the low-thrust orbital transfer problems solved in this
research, it was found that the optimal solution typically contained the same number of true longitude
cycles as that of the initial guess due to the fact that the initial guess was very close to satisfying the
terminal constraints. Thus, while the NLP solver converges with the initial guess provided, the solution
is usually not the global optimal. In order to obtain a solution with a number of true longitude cycles
different from that of the initial guess, the final true longitude was bounded within a specified cycle (that
is, to lie within a specified interval of 2π). By bounding the final true longitude, the NLP solver is forced
to deviate from the initial guess and potentially move closer to a global solution. Figure 1 shows the cost
obtained when the final true longitude is bounded as described above and when the final true longitude is
free for the GTO to GEO orbit transfer with (T/m0, Isp) = (4.00 × 10−4 m · s−2, 3000 s). It is seen from

7



Fig. 1 that the solution obtained using the provided initial guess with a free terminal true longitude does
not have the lowest cost solution. Instead, the lowest cost lies somewhere between 80 and 90 true longitude
cycles.

Based on the structure shown in Fig. 1, the following simple search method is used to identify the
approximate location of the globally optimal solution. First, an initial guess is generated as described in

Section 3.1 and the final true longitude that is obtained from this initial guess, denoted L
(0)
f , is the starting

point for the search method. An iteration on the final true longitude is then performed as follows, where

K is the iteration number and K = 0 corresponds to L
(0)
f . The optimal control problem is solved for a

final true longitude Lf ∈ [L
(K)
f − 2π, L

(K)
f ] = I(K)

l and the cost obtained from this solution is denoted

J
(K)
l . Next, in order to determine which direction to search for a lower cost solution, the optimal control

problem is solved again for a final true longitude Lf ∈ [L
(K)
f , L

(K)
f + 2π] = I(K)

r and the cost associated

with this solution is denoted J
(K)
r . The cycle that contains the lowest cost is then obtained using the

following iterative process:

• Set K → K + 1.

• Case 1 (minimum lies to the right of the initialization): If J
(K−1)
l > J

(K−1)
r , then set L

(K)
f =

L
(K−1)
f + 2π, I(K)

l = I(K−1)
r , J

(K)
l = J

(K−1)
r , and I(K)

r = [L
(K)
f , L

(K)
f + 2π]. Then solve the optimal

control problem again for Lf ∈ I(K)
r and the cost obtained is denoted J

(K)
r . Repeat until J

(K)
l < J

(K)
r .

The lowest cost is J
(K)
l with Lf ∈ I(K)

l .

• Case 2 (minimum lies to the left of the initialization): If J
(K−1)
l < J

(K−1)
r , then set L

(K)
f = L

(K−1)
f −

2π, I(K)
r = I(K−1)

l , J
(K)
r = J

(K−1)
l , and I(K)

l = [L
(K)
f − 2π, L

(K)
f ]. Then solve the optimal control

problem again for Lf ∈ I(K)
l and the cost obtained is denoted J

(K)
l . Repeat until J

(K)
r < J

(K)
l . The

lowest cost is J
(K)
r with Lf ∈ I(K)

r .

4 Results and Discussion

The GTO to GEO Earth-orbit transfer problem was solved using the following initial orbit:

a(L0) = 24443 km, Ω(L0) = 0 deg,

e(L0) = 0.725, ω(L0) = 0 deg,

i(L0) = 7 deg, ν(L0) = 0 deg,

(21)

while the LEO to GEO Earth-orbit transfer problem was solved using the following initial orbit:

a(L0) = 6656 km, Ω(L0) = 0 deg,

e(L0) = 0.001, ω(L0) = 0 deg,

i(L0) = 28.5 deg, ν(L0) = 0 deg.

(22)

Both the GTO to GEO and LEO to GEO Earth-orbit transfer problems were solved using the following
terminal orbit:

a(Lf ) = 42164 km, Ω(Lf ) = Free,

e(Lf ) = 0, ω(Lf ), = Free,

i(Lf ) = 0 deg, ν(Lf ) = Free.

(23)

The minimum-time GTO to GEO and LEO to GEO transfers were solved with initial thrust acceleration
values of T/m0 = (2.000, 1.000, 0.667, 0.500, 0.400, 0.333, 0.286, 0.250, 0.222, 0.200)×10−3 m·s−2 and specific
impulse values of Isp = (500, 1000, 3000, 5000) s.
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Figure 1: Locally optimal solutions obtained with free and bounded final true longitude vs. Lf/(2π) for
GTO to GEO transfer with (T/m0, Isp) = (4.00× 10−4 m · s−2, 3000 s).

The results of this study are divided into six sections. First, the key features of the GTO to GEO transfer
are described and analyzed. Second, the key features of the LEO to GEO transfer are examined. Third, the
relationship between the transfer time, initial thrust acceleration, and specific impulse is identified through
regression techniques. Fourth, regression techniques are utilized further to identify the relationship between
the final true longitude, transfer time, and specific impulse. Fifth, the coefficients of determination for the
previously defined relationships are shown to validate the fit of the regressions. Finally, a post-optimality
analysis of the solutions is provided to verify the optimality of the solutions obtained.

4.1 Key Features of Optimal GTO to GEO Transfers

Figure 2 shows a view in Earth-centered inertial Cartesian coordinates (x, y, z) of a typical optimal GTO to
GEO trajectory for the case (T/m0, Isp) = (3.33× 10−4 m·s−2, 3000 s). The optimal solution has a 7.78%
change in mass, a duration of 74 days, and nearly 103 orbital revolutions. It is seen from Fig. 3a that the
semi-major axis increases nearly linearly throughout the entire transfer, and this rate of increase varies
only slightly as a function of T/m0. Furthermore, Fig. 3b shows that the eccentricity decreases slowly near
the start of the transfer and decreases more rapidly starting from approximately one third of the way into
the transfer and beyond. Also, Fig. 3c shows that the inclination decreases at an approximately linear rate
throughout the entire transfer.
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Figure 2: GTO to GEO transfer trajectory for (T/m0, Isp) = (3.33× 10−4 m · s−2, 3000 s).
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Figure 3: a, e, and i vs. ν/(2π) for GTO to GEO transfer with various values of T/m0 and Isp = 3000 s.
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Further insight into the behavior of the optimal GTO to GEO transfers is obtained by examining the
control u = (ur, uθ, uh) along different segments of the optimal solution. The typical overall behavior of
u is shown in Fig. 4 for (T/m0, Isp) = (3.33 × 10−4 m·s−2, 3000) s. A closer examination of u reveals
that the following four segments identify the key features of the optimal control: (1) the first few orbital
revolutions of the transfer, (2) the region where ur ≈ 0, (3) the region where uh becomes −1, and (4)
the final revolutions of the transfer. First, the effect of the control on the optimal trajectory in the first
few orbital revolutions, can be explained via the following differential equations for the semi-major axis,
eccentricity, and inclination:37

da

dt
=

2e sin ν

nx
ur +

2ax

nr
uθ, (24)

de

dt
=

x sin ν

na
ur +

x

na2e

(
a2x2

r
− r
)
uθ, (25)

di

dt
=

r cos(ν + ω)

na2x
uh, (26)

where n is the mean motion and x =
√

1− e2. It is seen from Eq. (24) that the semi-major axis will increase
when the control points either in the positive uθ-direction, radially outward near ν = π/2 (halfway between
periapsis and apoapsis), or radially inward near ν = 3π/2 (halfway between apoapsis and periapsis).
Furthermore, this cyclic behavior of ur increases apoapsis and decreases periapsis when ν ∈ [0, π] and
decreases apoapsis and increases periapsis when ν ∈ [π, 2π]. Equivalently, thrusting radially in this manner
increases both the semi-major axis and the eccentricity. On the other hand, from Eq. (25) the eccentricity
will decrease when the control points either in the positive uθ-direction, radially inward near ν = π/2, or
radially outward near ν = 3π/2. It is seen from Fig. 5a that ur is positive near ν = π/2 and negative near
ν = 3π/2, while uθ ≈ 1 in both cases. Even though ur increases the semi-major axis, it simultaneously
increases eccentricity. This small effect of ur increasing eccentricity, however, is negated by the fact that u
lies predominantly in the positive uθ-direction, thereby resulting in an overall increase in semi-major axis
and decrease in eccentricity. Lastly, it is seen from Eq. (26) that di/dt is most negative when cos(ν+ω)uh
is most negative. Examining Fig. 6a, it is seen that uh is most positive and cos(ν + ω) = −1 when the
spacecraft is at apoapsis, thereby resulting in the largest negative slope in di/dt as seen in Fig. 6b.

Next, Fig. 5b shows u in the segment of an optimal GTO to GEO transfer where ur ≈ 0. For
every orbital revolution on the optimal solution beyond where ur becomes zero (that is, all values beyond
ν/(2π) = 38.5 as shown in Fig. 5b), u points radially inward near ν = π/2 such that apoapsis decreases and
periapsis increases when ν ∈ [0, π] and points radially outward near ν = 3π/2 such that apoapsis increases
and periapsis decreases when ν ∈ [π, 2π]. Thrusting radially in this manner decreases both the semi-major
axis and eccentricity. Although ur decreases the semi-major axis, the thrust direction lies predominantly in
the positive uθ-direction, thereby increasing the semi-major axis and decreasing the eccentricity. Finally,
because uh is most positive near ν = π and cos(ν + ω) = −1, the inclination decreases most rapidly near
apoapsis.

Next, Fig. 5c shows u in the segment of an optimal GTO to GEO transfer where uh drops to −1. It is
seen in this segment that ur continues to point inward near ν = π/2 and outward near ν = 3π/2, decreasing
both the semi-major axis and the eccentricity. Moreover, uθ no longer dominates the thrust direction,
reaching its most positive value at apoapsis and a gradually decreasing value at periapsis. Thrusting
in this manner in the ur- and uθ-directions raises periapsis when ν ∈ [0, π] and lowers apoapsis when
ν ∈ [π, 2π]. Consequently, the semi-major axis increases while eccentricity decreases. Lastly, from Fig. 6c,
uh attains its most negative value near ν = π and cos(ν + ω) = −1 and near ν = 2π and cos(ν + ω) = +1.
While the inclination continues to decrease significantly near apoapsis of the transfer, Fig. 6d shows that
di/dt is also negative near periapsis.

Finally, Fig. 5d shows u during the final few revolutions of an optimal GTO to GEO transfer. It is
seen that ur is negative near ν = π/2 and positive near ν = 3π/2, while uθ is positive near ν = 2π and is
negative near ν = π. Consequently, by thrusting in this manner periapsis increases and apoapsis decreases,
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thereby resulting in a larger semi-major axis and a smaller eccentricity. Finally, uh is negative near ν = 2π
and is positive near ν = π. Because the orbit is nearly circular near the end of the transfer, the rate at
which inclination decreases is essentially the same near periapsis and apoapsis.
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Figure 4: u vs. ν/(2π) for GTO to GEO transfer with (T/m0, Isp) = (3.33× 10−4 m · s−2, 3000 s).
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Figure 5: u vs. ν/(2π) for GTO to GEO transfer with (T/m0, Isp) = (3.33× 10−4 m · s−2, 3000 s).
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4.2 Key Features of Optimal LEO to GEO Transfers

Figure 7 shows a three-dimensional view in Earth-centered inertial Cartesian coordinates (x, y, z) of a
typical optimal LEO to GEO trajectory for the case (T/m0, Isp) = (3.33 × 10−4 m·s−2, 1000 s). The
optimal trajectory has a 44.73% change in mass, takes approximately 152 days, and contains nearly 1,023
revolutions. The semi-major axis and inclination for all values of T/m0 and Isp = 1000 s are shown in
Figs. 8a and 8b, respectively. It is seen that the semi-major axis increases at a slower rate at the beginning
of the transfer and increases more rapidly towards the end of the transfer. The inclination decreases at a
slower rate at the beginning of the transfer and decreases more rapidly towards the end of the transfer.
The eccentricity is roughly zero throughout the entire transfer.
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Figure 7: LEO to GEO transfer trajectory with (T/m0, Isp) = (3.33× 10−4 m · s−2, 1000 s).
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Figure 8: a and i vs. L/(2π) for LEO to GEO transfer using various values of T/m0 and Isp = 3000 s.
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The structure of the optimal LEO to GEO transfers is examined in greater detail by studying the
components of the control along the optimal solution. The typical overall behavior of the control u =
(ur, uθ, uh) is shown in Fig. 9 for (T/m0, Isp) = (3.33 × 10−4m·s−2, 1000 s). As expected, ur stays near
zero, whereas uθ and uh are non-zero throughout the entire transfer. Greater insight into the structure
of the optimal control is now obtained by examining the control near the start and the terminus of the
transfer. Figure 10b shows u as a function of ν near the start of the transfer (where ν = L − Ω − ω ≈ L
because L, ω, and Ω, are approximately zero). It is seen from Fig. 10b that uθ points in the positive
uθ-direction to increase the semi-major axis (see Eq. (24)), while uh attains its most positive value near
apoapsis and its most negative value near periapsis to decrease the inclination (see Eq. (26)). Near the
terminus of the transfer, ν = L−Ω−ω ≈ L+3π/2 since Ω approaches an approximate value of −3π/2 (see
Fig. 10a) and ω is assumed to be zero. Fig. 10c shows u as a function of ν near the end of the transfer where
it is seen that uθ points in the positive uθ-direction and uh attains its most positive value near apoapsis
and its most negative value near periapsis. Thus it is clear throughout the LEO to GEO transfer that the
optimal thrust direction increases the semi-major axis and decreases the inclination while the eccentricity
remains relatively unchanged near zero.
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Figure 9: u vs. L/(2π) for LEO to GEO transfer with various values of T/m0 and Isp = 1000 s.
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Figure 10: Ω vs. L/2π and u vs. ν/(2π) for LEO to GEO transfer with (T/m0, Isp) = (3.33 × 10−4 m ·
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4.3 Estimation of Minimum-Time Transfer Time

A key feature of the results is the ability to estimate the optimal transfer time as a function of initial
thrust acceleration and specific impulse. Figure 11 shows the final time of the orbit transfer as a function
of the specific impulse for each of the initial thrust acceleration values examined. For each value of T/m0,
tf increases slightly as Isp increases in a manner similar to that of a power function

tf = AIBsp + C, (27)

where the coefficients A, B, and C are functions of T/m0 because each value of T/m0 has an associated
power function expression for tf in terms of Isp. The coefficients A, B, and C are determined as follows.
Figures 12a and 12b show the coefficient A as a function of T/m0 for the GTO to GEO and LEO to GEO
transfers, respectively. It is seen that the relationship between A and T/m0 has the form

A = a1(T/m0)b1 , (28)

where a1 and b1 are constant coefficients. Figures 12c and 12d show the coefficient B as a function of T/m0

for the GTO to GEO and LEO to GEO transfers, respectively. Because B has no significant change as a
function of T/m0, it is assumed that B is constant, and for any particular orbital transfer this constant
is the average value of B over all values of T/m0 and Isp for that transfer. Figures 12e and 12f show the
coefficient C as a function of T/m0 for the GTO to GEO and LEO to GEO transfers, respectively. It is
seen that the relationship between C and T/m0 is given as

C = a2(T/m0)b2 , (29)

where a2 and b2 are constants. Therefore, the estimated transfer time, t̂f , can be written as a function of
both Isp and T/m0 and is given as

t̂f = a1(T/m0)b1(Isp)
B + a2(T/m0)b2 . (30)

Values for the coefficients a1, b1, B, a2, and b2 are shown in Table 3. Equation 30 makes it possible to
estimate the final transfer time, tf , for values of Isp that are different from those obtained in this study
without having to re-solve the optimal control problem.
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Figure 11: tf vs. Isp.
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Table 3: Regression coefficients for t̂f .

Transfer a1 b1 B a2 b2
GTO to GEO -1.3849 -0.9766 -0.8745 0.0253 -1.0018

LEO to GEO -2.0361 -1.0005 -0.6757 0.0701 -1.0000

4.4 Estimation of Minimum-Time Final True Longitude

Another key feature of the results is the ability to approximate L(tf ) as a function of the final transfer
time and specific impulse. Figure 13a shows Lf as a function of tf . It is seen for each value of Isp that
L(tf ) increases linearly as a function of tf , that is,

Lf = Dtf + E, (31)

where D and E are functions of Isp. Expressions for coefficients D and E are determined as follows.
Figures 14a and 14b show the coefficient D as a function of Isp for the GTO to GEO and LEO to GEO
transfers, respectively. It is seen that as Isp increases, D decreases in a manner similar to that of an
exponential function

D = a3e
b3Isp + c3, (32)

where a3, b3, and c3 are constant coefficients. Figures 14c and 14d show the coefficient E as a function of
Isp for the GTO to GEO and LEO to GEO transfers, respectively. Is is seen that as Isp increases, E is
small. For example, E is no more than half a true longitude cycle for both the GTO to GEO and LEO to
GEO transfers. Consequently, E is treated as a constant and for any orbital transfer, this constant is the
average value of E over all values of T/m0 and Isp for that transfer. Using the derived expressions for the
coefficients D and E, Lf can be written as a function of both Isp and tf and is given by

L̂f =
(
a3e

b3Isp + c3

)
tf + E (33)

where a3, b3, c3, and E are the regression constants and L̂f denotes the estimate of Lf . Values for the
regression constants are shown in Table 4. Together with Eq. 30, Eq. 33 makes it possible to quickly
estimate Lf at points for which the results were not obtained.

Table 4: Regression coefficients for L̂f .

Transfer a3 b3 c3 E

GTO to GEO 0.0949 -0.0020 1.4006 0.3110

LEO to GEO 3.0633 -0.0021 6.3653 -0.1633

4.5 Coefficient of Determination to Assess Quality of Regressions

To demonstrate the quality with which the regression models for t̂f and L̂f fit the observed data, the
coefficients of determination, R2, are calculated.38 The coefficient of determination is a value between 0
and 1, where a value of unity indicates a perfect fit. The coefficient of determination for t̂f is calculated
as follows. Let tfi and t̂fi be the observed and predicted values, respectively, of the ith value of tf . Then,
the sum of the squares of the error, denoted S, is calculated as

S =
n∑
i=1

(
tfi − t̂fi

)2
. (34)
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Next, let Syy denote the total sum of squares

Syy =
n∑
i=1

(
tfi − t̄f

)2
, (35)

where t̄f is the mean of the observed values of tf . Finally, the coefficient of determination is calculated
using

R2 = 1− S

Syy
. (36)

The coefficient of determination for L̂f is calculated in a similar manner to t̂f . All coefficients of determi-
nation are shown in Table 5, where it is seen that R2 is close to unity in all cases.

Table 5: Coefficient of determination R2 for t̂f and L̂f .

Transfer t̂f L̂f
GTO to GEO 0.999950 0.999898

LEO to GEO 0.999984 0.999981
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Figure 12: Regression coefficients A, B, and C vs. T/m0.
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Figure 13: Lf/(2π) vs. tf .
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4.6 Post-Optimality Analysis

It is known from previous research (see Refs. 26 and 27) that the first-order optimality conditions of the
nonlinear programming problem arising from discretization of a continuous optimal control problem via the
LGR collocation method are a discrete approximation of the first-order calculus of variations optimality
conditions of the optimal control problem. Moreover, the costate of the optimal control problem can
be obtained via a simple linear transformation of the Lagrange multipliers of the NLP arising from the
LGR collocation. In addition to the equivalence between the NLP and calculus of variations optimality
conditions, it has also been proven that the solution obtained using the variable-order (hp) LGR collocation
method converges exponentially (that is, the state, control, and costate associated with the LGR collocation
method all converge) at the convergence rate given in Ref. 39. Consequently, by solving the NLP arising
from the LGR collocation method on an appropriate mesh, an accurate approximation to the solution
of the optimal control problem is obtained to both the primal variables (that is, the state and control)
and the dual variable (that is, the costate). Therefore by solving the variable-order LGR NLP on a
sufficiently accurate mesh, it is possible to verify the extremality of the solutions without having to solve
the Hamiltonian boundary-value problem that arises from the calculus of variations. In other words, by
obtaining the solution to the variable-order LGR NLP on an appropriate mesh the optimality of the solution
can be verified without having to resort to solving the optimal control problem using an indirect method.

In this study the proximity of the numerical solutions to the true optimal solutions is investigated by
examining various aspects of the first-order calculus of variations conditions. In this analysis the first-
order variational conditions are presented in terms of the classical orbital elements (as opposed to the
modified equinoctial elements which were used to solve the optimal control problem), where the first-
order optimality conditions are obtained in terms of the classical orbital elements as follows. First, the
discrete approximation of the costate in terms of the modified equinoctial elements are obtained using the
transformation of the NLP Lagrange multipliers as described in Refs. 26 and 27 (where it is noted that
GPOPS− II performs this costate computation after the NLP is solved). Next, the costate approximation
in terms of the modified equinoctial elements obtained from the LGR collocation method is transformed
to the costate in terms of classical orbital elements using the relationship between the modified equinoctial
element costate and the classical orbital element costate as derived in the Appendix. Then, using the
fact that the costate is the sensitivity of the cost with respect to the state along the optimal solution, the
costate in terms of classical orbital elements at the initial time is also approximated by solving the optimal
control problem at a perturbed initial orbital element and taking the ratio of the change in cost to the
change in the orbital element of interest (for example, if it is interested in computing the costate associated
with the eccentricity, then the ratio of the change in the cost to a perturbation in the eccentricity at the
initial point is computed).

The costates associated with the classical orbital elements of interest were verified by resolving the
problem with a small perturbation in the initial semi-major axis, initial eccentricity, and initial inclination.
For a perturbation in the initial semi-major axis, the change in cost from the optimal cost is approximated
as

Jδ ≈ J∗ +

[
∂J

∂a(L0)

]
∗

(
aδ(L0)− a∗(L0)

)
(37)

where Jδ and J∗ denote the cost on the perturbed and optimal solutions, respectively. Therefore, the
estimated semi-major axis costate at L = L0 is approximated by[

∂J

∂a(L0)

]
∗
≈ Jδ − J∗
aδ(L0)− a∗(L0)

=
∆J

∆a
(38)

which is then compared to the derived costate value, λ∗a(L0). For a perturbation in the initial eccentricity
or initial inclination, the estimated costate value is calculated in a similar manner (that is, replace the
semi-major axis, a, with either the eccentricity, e, or the inclination, i, in Eqs. (37) and (38)). In this
analysis, the perturbations in the initial semi-major axis, initial eccentricity, and initial inclination were
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∆a = 1000 m, ∆e = 0.0001 and ∆i = 0.00017453 rad (= 0.01 deg), respectively. Tables 6a and 6b show
the costate approximations (λ∗a(L0), λ∗e(L0), λ∗i (L0)) alongside the ratios of the cost to the perturbations,
(∆J/∆a,∆J/∆e,∆J/∆i) in the orbital elements for the GTO to GEO case with T/m0 = 2.22 × 10−4

m·s−2 and for the LEO to GEO case with T/m0 = 4.00 × 10−4 m·s−2. For both cases the LGR costate
approximations closely match the estimated change in cost due to a perturbation in the classical orbital
element of interest, and the costate approximations are consistent with the expected behavior (for example,
increasing the initial semi-major axis for either orbit transfer decreases the cost, while increasing the initial
eccentricity increases the cost). Moreover, it is seen that perturbing the initial eccentricity significantly
increases the cost for the GTO to GEO case but increases the cost much less for the LEO to GEO case.
Also, in all cases increasing the initial inclination increases the cost. Finally, in all cases the magnitude of
cost sensitivity increases as the specific impulse increases. This last result is consistent with the fact that
the efficiency of the engine increases as the specific impulse increases.

As a further verification of the close proximity of the numerical solutions to the true optimal solution,
the final column of Tables 6a and 6b show the maximum absolute value of Hu ≡ ∂H/∂u = (Hur ,Huθ ,Huh)
on L ∈ [L0, Lf ], that is, Tables 6a and 6b show

max
L∈[L0,Lf ]

(|Hur |, |Huθ |, |Huh |),

where H is computed as given in the Appendix using the costate approximation obtained from the LGR
collocation method as described in Ref. 27. Because the control lies on the interior of the allowable control
set for the problem studied in this paper, it is known theoretically that Hu is zero along the optimal
solution. Commensurate with this known value of Hu, Tables 6a and 6b show that Hu is extremely small,
further substantiating the close proximity of the numerical solution to the true optimal solution.

Table 6: Post-optimality results for GTO to GEO and LEO to GEO transfers.

(a) GTO to GEO post-optimality results for T/m0 = 2.50 × 10−4 m·s−2.

Isp λ∗a(t0) ∆J/∆a λ∗e(t0) ∆J/∆e λ∗i (t0) ∆J/∆i max
L∈[L0,Lf ]

(|Hur |, |Huθ |, |Huh |)

500 -1.84×10−6 -1.84×10−6 77.78 77.81 17.45 17.47 2.65×10−9

1000 -2.31×10−6 -2.30×10−6 97.58 97.70 21.92 21.98 3.33×10−10

3000 -2.39×10−6 -2.39×10−6 108.74 108.69 24.45 24.47 2.20×10−10

5000 -2.75×10−6 -2.75×10−6 116.72 116.78 26.24 26.27 2.22×10−10

(b) LEO to GEO post-optimality results for T/m0 = 4.00 × 10−4 m·s−2.

Isp λ∗a(t0) ∆J/∆a λ∗e(t0) ∆J/∆e λ∗i (t0) ∆J/∆i max
L∈[L0,Lf ]

(|Hur |, |Huθ |, |Huh |)

500 -4.73×10−6 -4.72×10−6 0.14 0.14 36.75 36.75 1.53×10−10

1000 -8.56×10−6 -8.53×10−6 0.40 0.40 66.57 66.58 1.67×10−10

3000 -1.30×10−5 -1.29×10−5 0.59 0.59 99.20 99.22 1.42×10−10

5000 -1.38×10−5 -1.37×10−5 0.63 0.57 107.06 107.04 2.08×10−10
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5 Conclusions

The problem of high-accuracy low-thrust minimum-time Earth-orbit transfers has been studied. The
optimal orbital transfer problem is posed as a constrained nonlinear optimal control problem. It is solved
using a variable-order Legendre-Gauss-Radau (LGR) quadrature orthogonal collocation method paired
with a search method that helps the NLP solver determine the best locally optimal solution. A numerical
optimization study has been conducted to determine optimal trajectories and controls for a range of initial
thrust accelerations and constant specific impulses. The key features of the solutions have been identified
and relationships have been obtained that relate the optimal transfer time to the optimal number of
true longitude cycles as a function of the initial thrust acceleration and specific impulse. Finally, a post-
optimality analysis has been performed that verifies the optimality of the solutions that were obtained in
this study.
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6 Appendix

In this Appendix we derive expressions for the components of the costate of the optimal control problem

given Section 2 in terms of the components of the costate in terms of the modified equinoctial elements.

First, the augmented Hamiltonian, H, of the minimum-time optimal control problem described in Section

2 is given in terms of the differential equations in modified equinoctial elements as

H = λpGp + λfGf + λgGg + λhGh + λkGk + λmGm + λtGt − µ(u2
r + u2

θ + u2
h − 1), (39)

where (λp, λf , λg, λh, λk, λm, λt) is the costate associated with the differential equations of Eqs. (3) and (4)

and µ is the Lagrange multiplier associated with the path constraint of Eq. (17). The Hamiltonian can be

expressed equivalently in terms of the classical orbital elements as

H = λaGa + λeGe + λiGi + λΩGΩ + λωGω + λmGm + λtGt, (40)

where (Ga, Ge, Gi, GΩ, Gω) define the right-hand sides of those components of the equations of motion

given in Eqs. (3) and (4) that correspond to the dynamics for the orbital elements a, e, i, Ω, ω, that is,

da

dL
= Ga,

de

dL
= Ge,

di

dL
= Gi,

dΩ

dL
= GΩ,

dω

dL
= Gω.

(41)

Because the components of the costate λm and λt are the same using either modified equinoctial elements

or orbital elements and the control is the same in both formulations, the Hamiltonian given in either (39)

or (39) can be replaced with the reduced Hamiltonian,

Hr = λpGp + λfGf + λgGg + λhGh + λkGk,

= λaGa + λeGe + λiGi + λΩGΩ + λωGω.
(42)
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Next, the relationship between the modified equinoctial elements and the classical orbital elements are

given as

a = a(p, f, g) =
p

1− f2 − g2

e = e(f, g) =
√
f2 + g2

i = i(h, k) = tan−1

(
2
√
h2 + k2

1− k2 − h2

)

Ω = Ω(h, k) = tan−1

(
k

h

)

ω = ω(f, g, h, k) = tan−1

(
gh− fk
fh+ gk

)
.

(43)

The expressions for da/dL, de/dL, di/dL, dΩ/dL, and dω/dL are then given in terms of modified equinoctial

elements as

da

dL
=
∂a

∂p

dp

dL
+
∂a

∂f

df

dL
+
∂a

∂g

dg

dL
=
∂a

∂p
Gp +

∂a

∂f
Gf +

∂a

∂g
Gg,

de

dL
=
∂e

∂f

df

dL
+
∂e

∂g

dg

dL
=
∂e

∂f
Gf +

∂e

∂g
Gg,

di

dL
=
∂i

∂h

dh

dL
+
∂i

∂k

dk

dL
=
∂i

∂h
Gh +

∂i

∂k
Gk,

dΩ

dL
=
∂Ω

∂h

dh

dL
+
∂Ω

∂k

dk

dL
=
∂Ω

∂h
Gh +

∂Ω

∂k
Gk,

dω

dL
=
∂ω

∂f

df

dL
+
∂ω

∂g

dg

dL
+
∂ω

∂h

dh

dL
+
∂ω

∂k

dk

dL
=
∂ω

∂f
Gf +

∂ω

∂g
Gg +

∂ω

∂h
Gh +

∂ω

∂k
Gk.

(44)

Substituting (44) into (42), the reduced Hamiltonian can be expressed as

Hr = λa

[
∂a

∂p
Gp +

∂a

∂f
Gf +

∂a

∂g
Gg

]
+ λe

[
∂e

∂f
Gf +

∂e

∂g
Gg

]
+ λi

[
∂Ω

∂h
Gh +

∂Ω

∂k
Gk

]
+ λΩ

[
∂Ω

∂h
Gh +

∂Ω

∂k
Gk

]
+ λω

[
∂ω

∂f
Gf +

∂ω

∂g
Gg +

∂ω

∂h
Gh +

∂ω

∂k
Gk

] (45)

and rearranged to yield

Hr =

[
λa
∂a

∂p

]
Gp +

[
λa
∂a

∂f
+ λe

∂e

∂f
+ λω

∂ω

∂f

]
Gf +

[
λa
∂a

∂g
+ λe

∂e

∂g
+ λω

∂ω

∂g

]
Gg

+

[
λi
∂i

∂h
+ λΩ

∂Ω

∂h
+ λω

∂ω

∂h

]
Gh +

[
λi
∂i

∂k
+ λΩ

∂Ω

∂k
+ λω

∂ω

∂k

]
Gk

= λpGp + λfGf + λgGg + λhGh + λkGk.

(46)
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Equating terms in (46) leads to the following system of five linear equations that relate (λa, λe, λi, λΩ, λω)

to (λp, λf , λg, λh, λk): 

λp

λf

λg

λh

λk


=



∂a
∂p 0 0 0 0

∂a
∂f

∂e
∂f 0 0 ∂ω

∂f

∂a
∂g

∂e
∂g 0 0 ∂ω

∂g

0 0 ∂i
∂h

∂Ω
∂h

∂ω
∂h

0 0 ∂i
∂k

∂Ω
∂k

∂ω
∂k





λa

λe

λi

λΩ

λω


(47)

Assuming that the system matrix 

∂a
∂p 0 0 0 0

∂a
∂f

∂e
∂f 0 0 ∂ω

∂f

∂a
∂g

∂e
∂g 0 0 ∂ω

∂g

0 0 ∂i
∂h

∂Ω
∂h

∂ω
∂h

0 0 ∂i
∂k

∂Ω
∂k

∂ω
∂k


is invertible, Eq. (47) can be solved to obtain (λa, λe, λi, λΩ, λω).
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