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I. Introduction

E DELBAUM [1] analyzed in a famous paper the flight of a
spacecraft, capable of small thrust and moving on a low-

eccentricity orbit. Under these assumptions, the orbit remains almost
circular, and the optimal control laws to maximize changes of
the semimajor axis, eccentricity, and inclination are determined.
Edelbaum’s analysis evaluates the changes that can be obtained
during one revolution and the corresponding costs and is extended to
multiple-revolution transfers. In particular, Edelbaum considered
large simultaneous changes of the semimajor axis and inclination and
determined his famous equation to compute the ΔV for low-thrust
transfers between circular orbits with an inclination change [1].
Edelbaum’s work has inspired authors [2–6] who have

reformulated and extended his analysis, in particular, considering
the variable specific impulse, the presence of eclipses, or Earth-
oblateness perturbations. Optimal control laws that maximize
changes of the semimajor axis, eccentricity, or inclination can be
blended to obtain a prescribed orbit transfer [7–10] when a large
number of revolutions around the main body is performed, while
employing averaging techniques to evaluate the changes of the orbital
elements. When the mission length is short, methods based on
Edelbaum’s analysis become inaccurate, as it uses the average
changes that can be obtained during one revolution. As a matter of
fact, the rate of change of eccentricity and inclination depends on the
spacecraft position along its orbit, and the corresponding changes are
not linear functions of time spent and angle flown. In addition,
simultaneous changes of both the eccentricity and semimajor axis
may be required, and this case has not yet been addressed in the
literature; the relation between changes of the eccentricity and
semimajor axis has been investigated in [11–13], but only with the
purpose of orbit circularization in the presence of eclipses. For short
transfers, shape-based methods [14,15] are usually employed, but
difficulties, related to the unspecified thrust magnitude required by
this approach, may arise.
The present work is motivated by the requirement of obtaining a

fast and accurate cost estimation for electric propulsion transfers
between close orbits, i.e., when small changes of orbital elements are
required and the mission length is short (e.g., missions to near-Earth
asteroids and geocentric missions for propellant refurbishment and

debris removal). In these cases, existingmethods could be inaccurate,
and a new approach is presented here. Transfers between low-
eccentricity orbits with small changes of the orbital elements are
considered. Inclinations of the initial and final orbits are made small
by properly choosing the reference plane (e.g., the initial orbit plane),
but results have a general validity, as far as the inclination change is
small. A suboptimal control law is introduced in order to allow
for analytic integration of the differential equations that describe
the change of the orbital elements. The numerical solution of an
algebraic systemprovides the control law that is required to obtain the
prescribed orbit change and the corresponding cost, transfer time, and
angular length. Results are compared to the exact numerical solution,
which is obtained by means of an indirect optimization method.

II. Low-Eccentricity Low-Inclination Orbits

Gauss’s form of Lagrange’s planetary equations [16,17] expresses
the differential equations that describe the time derivatives of orbital
elements as functions of orthogonal components of the perturbing
acceleration, in this case, the thrust. A simplified form of the
equations is obtained in case of low eccentricity, that is, almost
circular orbits, and low inclination, as supposed byEdelbaum [1], and
derivatives of the semimajor axis a, eccentricity e, inclination i, right
ascension of the ascending nodeΩ, argument of the periapsis ω, and
longitude ϑ become

V
da

dt
� 2rAT (1)

V
de

dt
� 2 cos νAT � sin νAR (2)

V
di

dt
� cos�ω� ν�AW (3)

iV
dΩ
dt
� sin�ω� ν�AW (4)

V
dω

dt
� −V

dΩ
dt
� �2 sin νAT − cos νAR�∕e (5)

dϑ

dt
�

�����������
μ∕a3

q
� V∕r (6)

where thrust acceleration components in the radial AR (outward),
tangential AT (concurrent with the spacecraft motion), and out-of
plane AW (concurrent with the angular momentum) directions
are introduced; on almost circular orbits, radius is r ≈ a, velocity is
V ≈

��������
μ∕r

p
, and true anomaly ν is related to longitude as ϑ≈

Ω� ω� ν.
These equations are ill defined for small values of e and i, which

are instead of interest in the present case. A new set of variables,
similar to the equinoctial elements set [18] and more suited to
deal with the problem considered here, is adopted, and ex �
e cos�Ω� ω�, ey � e sin�Ω� ω�, ix � i cos Ω, iy � i sin Ω are
introduced; ex and ey are related to the change of the eccentricity
magnitude and rotation of the line of apsides; ix and iy concern the
change of the inclination magnitude and rotation of the line of nodes.
Also, longitude ϑ is used as the independent variable, replacing time.
Finally, angles between thrust projection on orbit plane and
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tangential direction (α) and thrust and orbit plane (β) are introduced,
and the thrust (T) acceleration components are written as

AR � �T∕m� sin α cos β AT � �T∕m� cos α cos β

AW � �T∕m� sin β (7)

where m is the spacecraft mass. The set of differential equations
becomes

da

dϑ
� 2r

T∕m
μ∕r2

cos α cos β (8)

dex
dϑ
� �2 cos ϑ cos α cos β� sin ϑ sin α cos β� T∕m

μ∕r2
(9)

dey
dϑ
� �2 sin ϑ cos α cos β − cos ϑ sin α cos β� T∕m

μ∕r2
(10)

dix
dϑ
� cos ϑ sin β

T∕m
μ∕r2

(11)

diy
dϑ
� sin ϑ sin β

T∕m
μ∕r2

(12)

dt

dϑ
�

����������
r3∕μ

q
(13)

Radius and thrust acceleration are considered to be constant in the
present analysis, with suitable average values for r andm; the angles
α and β are the problem control variables. In addition to the removal
of singularities, this set of variables has the additional advantage that
differential equations do not depend on state variables but are only
functions of the independent variable ϑ.

III. Edelbaum’s Optimal Control Laws

The problem considered here concerns the minimum-time all-
propulsive transfer between given orbits for fixed initial time (i.e.,
position on the starting orbit); prescribed changes of orbital elements
(that is, a, ex, ey, ix, and iy) are therefore to be obtained. The time
equation is actually neglected, and the equivalent minimization of the
transfer angular length is sought, as the angular velocity is considered
to be constant. A maximization problem is preferred, and −ϑf is
maximized, givenϑ0 (subscripts 0 andf indicate the starting and final
points, respectively). The theory of optimal control [19,20] can be
applied to determine the optimal control law. The Hamiltonian is
defined by associating an adjoint variable λ to each differential
equation,

H � A�λa2r cos α cos β� λex�2 cos ϑ cos α cos β

� sin ϑ sin α cos β� � λey�2 sin ϑ cos α cos β

− cos ϑ sin α cos β� � λix cos ϑ sin β� λiy sin ϑ sin β� (14)

where the nondimensional accelerationA � �T∕m�∕�μ∕r2� has been
introduced. Euler–Lagrange equations [19] state that the adjoint
variables λ are actually adjoint constants sinceH does not depend on
the state variables.
The optimal controls are obtained by nullifying the partial

derivatives of H with respect to α and β. It is useful to introduce the

quantities λe � �
�������������������
λ2ex � λ2ey

q
(the sign must be the same as λa) and

ϑe � tan−1�λey∕λex� with the quadrant chosen properly in order
to have λex � λe cos ϑe and λey � λe sin ϑe; in a similar way, λix �
λi cos ϑi and λiy � λi sin ϑi are defined. The optimal controls

maximize the Hamiltonian in agreement with Pontryagin’s
maximum principle, and α and β are determined from

cos α � 2�λar� λe cos�ϑ − ϑe��
Xα

sin α � λe sin�ϑ − ϑe�
Xα

(15)

cos β �
�����������������������������������������������������������������������������������������
4�λar� λe cos�ϑ − ϑe��2 � �λe sin�ϑ − ϑe��2

p
Xβ

sin β � λi cos�ϑ − ϑi�
Xβ

(16)

with X2
α � 4�λar� λe cos�ϑ − ϑe��2 � �λe sin�ϑ − ϑe��2 and X2

β �
4�λar� λe cos�ϑ − ϑe��2 � �λe sin�ϑ − ϑe��2 � �λi cos�ϑ − ϑi��2.
The Hamiltonian is homogeneous with respect to the adjoint

constants, which can be arbitrarily scaled by fixing thevalue of one of
them, without changing the control law. The problem is therefore
characterized by five unknowns (four adjoint constants and the final
longitude ϑf), whichmust be chosen in order to obtain the prescribed
changes of state variables a, ex, ey, ix, and iy.
Edelbaum [1] considered three special cases. The change of the

semimajor axis a corresponds to λex � λey � λix � λiy � 0, and
β � 0, and α � 0 (for positive λa andΔa) or α � π (when λa andΔa
are negative) are obtained, that is, the thrust is tangential. The change
of eccentricity occurs for λa � λix � λiy � 0, and thrust angles are
β � 0 and

α � tan−1��1∕2� tan�ϑ − ϑe�� (17)

with tan ϑe � Δey∕Δex. This optimal control law is very well
approximated [1] by constant-direction thrust with α � ϑ − ϑe. It
should be noted that the thrust direction must be approximately
perpendicular to the desired change of eccentricity vector.
Finally, the simultaneous change of a and i requires λex �

λey � 0, with α � 0 or π (depending on the sign of λa and Δa) and

β � tan−1
�
λi cos�ϑ − ϑi�

2λar

�
(18)

In this case, only a small penalty [1] occurs if constant-β thrusting is
used instead of the optimal control law; actually, β must change sign
every half-revolution, according to the sign of cos�ϑ − ϑi�. Edelbaum
has evaluated the ΔV for each case [1],

ΔV∕V� 0.5Δa∕r ΔV∕V ≈ 0.649Δe ΔV∕V��π∕2�Δi (19)

with the constant-β law used instead of the optimal one for the plane
change.
These control laws produce the expected results only when an

integer number of revolutions is performed; tangential thrust
produces only changes of a with β � 0 and changes of a and i with
the constant-β law, whereas thrusting according to Eq. (17) (or to the
approximate law α � ϑ − ϑe) with β � 0 only changes ex and ey.
These considerations do not hold when a fraction of a revolution
is performed, as tangential thrust also changes eccentricity, and
the control law of Eq. (17) also changes a, depending on the
instantaneous position along the orbit. Also, variables do not change
uniformly along the orbit, whereas Eq. (19) are based on averages
over one revolution.
In-plane thrusting modifies the semimajor axis and eccentricity.

The optimal thrust direction (i.e., α) results to be a compromise
between those required to change a only and e only; the latter, given
by Eq. (15) with λa � 0, depends on ϑe, which is determined byΔex
and Δey (it must be noted that vector Δe points toward ϑe when
λe > 0 and toward the opposite direction otherwise). For −π∕2 <
ϑ − ϑe < π∕2, the thrust to change eccentricity has a positive
component along the spacecraft velocity when Δa > 0 (that is,
positive λa and λe), and a negative one when Δa < 0; this part of the
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trajectory is therefore favorable for simultaneous changes of a and e.
In contrast, the portion of the trajectory with π∕2 < ϑ − ϑe < 3π∕2
results to be unfavorable. As a general rule, when a is increased,
thrusting is efficient for both changes of the semimajor axis and
eccentricity when ϑ is close to the direction to which the vector Δe
points and less useful on the other side. The opposite occurs when a
must be reduced.
When a long mission with many revolutions is performed, such as

the missions considered by Edelbaum, the contribution of the
periodical variations over one revolution can be neglected, and
Edelbaum’s formula can be (and actually are) adoptedwith very good
accuracy. Results may instead be misleading when short missions, as
those treated in the present Note, are analyzed, depending onwhether
the spacecraft flies in favorable or unfavorable zones when it moves
on the fraction of the revolution that exceeds the integer.

IV. Suboptimal Approximate Control Law

The problem considered in this Note concerns the transfer between
two orbits (subscripts 1 and 2) starting from a given initial position
ϑ0; small changes of the semimajor axis and small values of
eccentricity and inclination are considered. The following quantities
are defined as

Δa � a2 − a1 (20)

Δe �
�����������������������
Δe2x � Δe2y

q
�

�������������������������������������������������������
�ex2 − ex1�2 � �ey2 − ey1�2

q
(21)

Δi �
����������������������
Δi2x � Δi2y

q
�

����������������������������������������������������
�ix2 − ix1�2 � �iy2 − iy1�2

q
(22)

It should be noted that Δe and Δi do not represent changes of
eccentricity and inclination magnitudes only but also take changes of
ω and Ω into account.
Edelbaum did not treat the case of the simultaneous changes of a,

e, and i, but a simple way of estimating the transfer cost can be
obtained if the changes of a and e are considered to be independent
and obtained with perpendicular acceleration components, just as in
the case of a and i. With this assumption, the mission ΔV can be
estimated as the vectorial sum of the ΔV for the basic changes Δa,
Δe, and Δi. According to Eq. (19),

ΔV �
��������������������������������������������������������������
�kaΔa�2 � �keΔe�2 � �kiΔi�2

q
(23)

is assumed, where the cost coefficients [1]

ka �
Vavg

2aavg
ke � 0.649Vavg ki �

π

2
Vavg (24)

are evaluated using average values between the starting and final
orbits:

aavg � �a1 � a2�∕2 Vavg �
�����������
μ∕a0

p
(25)

This approximation implicitly assumes a linear change of the
variables along the orbit and can be considered as a direct extension
of Edelbaum’s analysis.
For short transfers, however, results are affected by the mutual

influence between a and e and by the nonlinear dependence of
variable changes on ϑ. In the following, a new approach to deal with
these issues will be described. The general optimal control problem
consists of obtaining prescribed changes of five state variables with
the shortest transfer. When the optimal control laws outlined in
Sec. III are used, Eqs. (8–13) are analytically integrable only in few
special cases; numerical integration is not attractive, as it is time
consuming, and a suboptimal control law that allows for analytical
integration is instead adopted. After the problem has been solved and

the transfer angular length Δϑ � ϑf − ϑ0 is obtained, the mission
time length, final mass, and ΔV are evaluated as

Δt�Δϑ∕�V∕r� mf�m0− �T∕c�Δt ΔV�Δt�T∕m� (26)

with proper average values for r, V (e.g., r � aavg, V � Vavg)
and m � �m0 �mf�∕2.
Only the coplanar case (Δix � Δiy � 0), which requires λix �

λiy � 0 and consequently β � 0, is considered in this Note. The
optimal control law for the in-plane thrust angle α, that is, Eq. (15),
takes different shapes, which are plotted in Fig. 1, according to
various values of λa∕λe. The optimal law is approximated to make
the differential system analytically integrable by assuming, for
−π ≤ ϑ − ϑe ≤ π,

α �
�

Λ�ϑ − ϑe� for λa; λe > 0

Λ�ϑ − ϑe� � π for λa; λe < 0
(27)

with 0 ≤ Λ ≤ 1 chosen properly in dependence of the ratio λa∕λe. It
should be noted that Λ � 0 corresponds to tangential thrusting,
whereas Λ � 1 corresponds to constant-direction thrusting.
When the approximate control law is used, the relevant equations

become, for positive λa and λe,

da

dϑ
� 2Ar cos�Λ�ϑ − ϑe�� (28)

dex
dϑ
� Af2 cos ϑ cos�Λ�ϑ − ϑe�� � sin ϑ sin�Λ�ϑ − ϑe��g (29)

dey
dϑ
� Af2 sin ϑ cos�Λ�ϑ − ϑe�� − cos ϑ sin�Λ�ϑ − ϑe��g (30)

The right-hand side terms change their sign for negative λa and λe.
With the help of trigonometric equivalences, Eqs. (29) and (30) are
rewritten as

dex
dϑ
��A∕2�f3 cos��1−Λ�ϑ�Λϑe��cos��1�Λ�ϑ−Λϑe�g (31)

dey
dϑ
��A∕2�f3 sin��1−Λ�ϑ�Λϑe�� sin��1�Λ�ϑ−Λϑe�g (32)

Equations (28), (31), and (32) are integrated from ϑ0 to ϑf, producing

Δa � 2Ar

Λ
fsin�Λ�ϑf − ϑe�� − sin�Λ�ϑ0 − ϑe��g (33)

∞

λ
a

, λ
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Fig. 1 Optimal thrust angle.

J. GUIDANCE, VOL. 37, NO. 3: ENGINEERING NOTES 1005

D
ow

nl
oa

de
d 

by
 U

C
 I

R
V

IN
E

 o
n 

Ja
nu

ar
y 

19
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.6
20

46
 



Δex�
3A

2�1−Λ�fsin��1−Λ�ϑf�Λϑe�− sin��1−Λ�ϑ0�Λϑe�g�

� A

2�1�Λ�fsin��1�Λ�ϑf −Λϑe�− sin��1�Λ�ϑ0−Λϑe�g (34)

Δey�
3A

2�1−Λ�f−cos��1−Λ�ϑf�Λϑe��cos��1−Λ�ϑ0�Λϑe�g�

� A

2�1�Λ�f−cos��1�Λ�ϑf−Λϑe��cos��1�Λ�ϑ0−Λϑe�g (35)

Special cases are Λ � 0, which gives

Δa � 2Ar�ϑf − ϑ0� (36)

and Λ � 1, which provides

Δex � �3A∕2��ϑf − ϑ0� cos ϑe
� �A∕2��sin�2ϑf − ϑe� − sin�2ϑ0 − ϑe�� (37)

Δey � �3A∕2��ϑf − ϑ0� sin ϑe

− �A∕2��cos�2ϑf − ϑe� − cos�2ϑ0 − ϑe�� (38)

To evaluate changes that correspond to one complete revolution
(subscript 2π),ϑ0 � ϑe − π andϑf � ϑe � π are used to obtain, after
simple passages exploiting trigonometric equivalences,

�Δa�2π �
4Ar

Λ
sin�Λπ� (39)

�Δex�2π �
�

3A

�1 − Λ� −
A

�1� Λ�

�
sin�Λπ� cos ϑe (40)

�Δey�2π �
�

3A

�1 − Λ� −
A

�1� Λ�

�
sin�Λπ� sin ϑe (41)

For Λ � 0, �Δa�2π � 4πAr and �Δex�2π � �Δey�2π � 0. For
Λ � 1, �Δa�2π � 0, �Δex�2π � 3Aπ cos ϑe, and �Δey�2π �
3Aπ sin ϑe; the change of the eccentricity magnitude is in this case
�Δe�2π∕A � 3π ≈ 9.4248, slightly lower than the optimal value
9.6888, corresponding to Eq. (17), taken from [1].
It must be remembered that Eqs. (33–35), (37), and (38) only hold

for both −π ≤ ϑ0 − ϑe ≤ π and −π ≤ ϑf − ϑe ≤ π. In other cases,
integrationmust be properly split to remainwithin these limits. Given
the orbital elements of initial and final orbits, three unknown
quantities, namely, Λ, ϑe, and ϑf, must be determined in order to
obtain the prescribed changes Δa, Δex, and Δey. An iterative
procedure, which is based on Newton’s method, is used to solve the
problem; tentative values for the unknowns are adopted, and the error
on the prescribed changes is evaluated. The tentative values are then
varied by a small quantity (e.g., 10−4) to evaluate the derivatives
of the errors with respect to the parameters, according to a finite-
difference scheme; error derivatives are then used to correct the
tentative values to take errors to zero.

V. Results

Missions toward near-Earth asteroids are considered to test the
proposed approach; the sun is the main body, and a circular initial
orbitwith 1 astronomical unit (AU) radius is assumed in the following
as the starting orbit. The initial orbit lies on the reference plane, and
the initial longitude is ϑ0 � 0. The spacecraft initial mass is 4000 kg,
and the thrust is 300 mNwith a 3000 s specific impulse. The mission
cost is estimated both with Eq. (23) and with Eq. (26), after the
transfer that uses the approximate control law has been computed and

Δϑ has been evaluated. These estimations are compared to the
optimal numerical solution,which is obtained bymeans of an indirect
optimization procedure [20,21] applied to the spacecraft motion
equations with two-body problem dynamics. The indirect method is
efficient and relatively fast, as roughly 15 s on a i7-2600 CPU at
3.40 GHz are required to obtain convergence to the optimal solution;
however, a suitable tentative solution is required, and an experienced
user’s interventionmay be required. On the contrary, the approximate
method requires on average 3∕1000 of a second, and convergence
(with 10−6 tolerance) does not require the user’s action; therefore, it is
well suited when a large number of transfers must be evaluated. In
exceptional cases, convergence to the required accuracy may not be
obtained, but the best estimation (i.e., the one corresponding to the
minimum error) is instead used.
Only the coplanar case (i1 � i2 � 0) is considered here. Results

for different coplanar transfers are shown in Figs. 2–4; ΔV is
normalized by using the circular velocity at 1AUas a reference value.
Changes of a only are initially considered, and results are shown in
Fig. 2. The spacecraft performs one revolution for Δa ≈ 0.21. The
basic Edelbaum solution, that is, Eq. (23), is very accurate around this
value but underestimates the transfer cost when the number of
revolutions is not an integer (the error reaches 50% for the shortest
transfers considered here); tangential thrusting cannot be used in
these cases, and the thrust must be misaligned to contrast the
undesired eccentricity change that the tangent thrust would produce.
The proposed modified approach is instead very accurate over the
whole range of values explored, with an overestimation of the cost
always below 3% except in one case in which it reaches 7%. The
larger cost with respect to the optimum is related to the use of the
approximate law β � Λ�ϑ − ϑe� instead of the optimal control law.
Figure 3 considers changes of eccentricity only, with constant a;

changes Δe � 0.05, 0.1, and 0.15 are evaluated, and transfer cost is
plotted as a function of the longitude of periapsis of the final orbit
Ω2 � ω2. Equation (23) does not consider effects of the orientation of
the line of apsides and therefore provides a constant cost. On the
contrary,Ω2 � ω2 remarkably influences the results, in particular, for
the smallest eccentricity change, which corresponds to transfers
about a half-revolution long. The use of Λ � 1 makes Δa return to
zero after the half-revolution for ϑe � 0 (and, in a symmetrical way,
for ϑe � π); constant-direction thrusting can therefore be adopted
whenΔe � 0.05 andΩ2 � ω2 is close to 0 or π, and the mission cost
is minimum; in these cases, Eq. (23) provides almost exactly the
correct cost. For different positions of the line of nodes, constant-
direction thrusting would also produce variations of the semimajor
axis after a half-revolution, and it is necessary to modify the control
law, increasing the mission cost. In these cases, the proposed
approximate solution provides an excellent estimation of the actual
ΔV (error always below 8%), correctly following the dependence on
the line of apsides position; on the other hand, Eq. (23) exhibits errors
that reach 30% for Ω2 � ω2 close to π∕2 and 3π∕2. For Δe � 0.1,

0
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Fig. 2 Change of semimajor axisΔa only,Δe � 0. Crosses represent the
exact solution, squares represent Eq. (23), and circles represent the
approximate solution.
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both Eq. (23) and the proposed approximation show a good behavior,
as, in this case, the transfer length becomes larger than 3∕4
of revolution and gets closer to 2π; errors are below 2% for
the approximate solution and below 8% with Eq. (23). The effect of
larger eccentricity influences the results for Δe � 0.15, and the
optimal solution takes advantage of the radius change during
the transfer; this behavior cannot be taken into account by the
approximate solutions; errors may reach 10% with the approximate
control law. On the other hand, errors are smaller with Eq. (23),
which fortuitously provides good results, as this formula usually
underestimates the transfer cost.
Simultaneous changes of a and e are considered in Fig. 4, and the

results of the previous case are confirmed. The approximate solution
proposed here correctly replicates the behavior of the optimal
solution, which is remarkably influenced byΩ2 � ω2; errors exceed
6% in just four cases but always remain below 10%. Equation (23)
only occasionally provides an accurate estimation of the actual cost.

VI. Conclusions

An approximate method for the evaluation of low-thrust transfers
between close, low-eccentricity orbits has been presented and
thoroughly tested. The method is based on Edelbaum’s analysis
and exploits an approximate control law that allows for an analytical
integration of the relevant differential equations. Numerical inte-
gration is therefore not required, and the evaluation of the transfer
costs is orders of magnitude faster with respect to the classical
optimization method and more precise with respect to the original

Edelbaum analysis when short transfers are considered. The method
could therefore be very useful when a large number of transfer
opportunities must be computed and compared to each other.
The proposed approximate solution provides an excellent

estimation of the transfer cost in the planar case, at least until the
eccentricity does not become too large. Improvements are instead
required to consider the peculiarities of three-dimensional transfers.
In the present analysis, the orbit transfer problem has been consid-
ered; the proposedmethodprovides an estimation of transfer time and
angular length and is therefore also suited to deal with rendezvous
missions, for which the phasing of the target object comes into play.
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