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Abstract A space mission design methodology is presented, where initial and final orbits
are connected through segments of periodic orbits. After a discretization of the solution space,
the problem of mission design is transformed into an equivalent combinatorial optimization
problem. Specifically, a graph is constructed that represents periodic orbits connected by
the execution of impulsive maneuvers. A low computational complexity algorithm for this
transformation is introduced. An efficient combinatorial optimization algorithm that solves
the shortest path problem is described. Subject to the initial discretization of the solution
space, an optimal sequence of coastal arcs is determined for a low total Delta-V mission.
Finally, the proposed methodology is applied to the design of a hypothetical Saturn–Titan
system mission.

Keywords Mission design · Periodic orbits · Circular restricted three body problem ·
Combinatorial optimization · Coastal arcs

1 Introduction

Finding periodic orbits for the three body problem has been the subject of intensive research
for many decades (Markellos 1974a; Robin and Markellos 1980; Hénon 1997, 2005; Lam
and Whiffen 2005; Dutt and Sharma 2011, among others). Modern computers that offer large
main memories, high central processing unit frequency and parallel processing, allow massive
computation of orbits. At the same time, algorithmic improvements targeting computational
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effectiveness have been introduced (Russell 2005; Tsirogiannis et al. 2009). Space mission
designs based on libration point related orbits have led to successful real world missions
(Dunham and Farquhar 2003; Hechler and Cobos 2003; Broschart et al. 2009), while a num-
ber of such orbits has also been suggested as candidates for future missions (Grebow et al.
2006; Hill et al. 2006; Lindegren et al. 2007; Folta and Lowe 2008). Mainly invariant man-
ifolds have been used for mission designs utilizing techniques that deal with zero cost, or
different energy, transfers (Gómez and Masdemont 2000; Koon et al. 2000, 2002; Gómez
et al. 2004; Parker and Born 2008; Mingotti et al. 2009; Pergola et al. 2009; Davis et al.
2010, 2011). Alternatively, halo and Lissajous orbits have been utilized (Howell and Hiday-
Johnston 1994). Chains of complex periodic orbits in the planar circular restricted three-body
problem using the invariant manifolds of unstable orbits, are studied by Parker et al. (2010).

In this paper coastal arcs along periodic orbits are connected through impulsive maneu-
vers, aiming to a low total Delta-V (DV ) mission. Initially, a discretization of the solution
space produces a set of periodic orbits that could offer coastal arcs to the mission. These orbits
are connected through inexpensive transfers for a network to be formed. A simplified version
of primer vector theory (PVT, Lawden 1963) is used in order to estimate single-maneuver
connections of members of the base set so as to form a potential network. It is not expected
that a single pair of periodic orbits will fulfill the mission needs. A number of periodic orbits
need to be connected so as to transfer (spacecraft) from initial orbit to goal orbit. Aiming to
a low total DV cost, an optimal sequence of coastal arcs along periodic orbits is determined.
This is an optimal sequence only for the initial discretization of the solution space and is
computed via a combinatorial optimization algorithm on the network. Thus, the proposed
methodology consists of three steps: discretization, graph construction and combinatorial
optimization.

The paper is organized as follows: Section 2 presents the discretization of the solution
space. In Section 3 the transformation of the solution space to an equivalent graph is intro-
duced. Section 4 describes a low computational complexity algorithm which finds the optimal
sequence of coastal arcs. Equivalence and optimality of solution is discussed. Application
of the methodology to a hypothetical mission design is demonstrated in Section 5. Finally
Section 6 outlines advantages, disadvantages and limitations of the present methodology.

2 Discretization

In this methodology a set of periodic orbits form the base set of coastal arcs. The circu-
lar restricted three body problem (CRTBP) possesses an infinity of periodic orbits which
are grouped into infinite mono-parametric families. This provides an immense number of
possible coastal arcs that can be connected leading to low energy missions. This pluralism
provides a variety of orbits that traverse a wide range of locations and have different shapes.
A discretization of this huge solution space through sampling of families and orbits is needed.

The necessary discretization is obtained by sampling a wide area of the initial conditions
space in order to compute members of many different families. For the case of CRTBP such
a methodology has been introduced in Markellos et al. (1974b) and improved by Russell
(2005) and Tsirogiannis et al. (2009) for symmetric periodic orbits with respect to Ox axis
and/or Oxz plane. At the node points of an orthogonal grid on the initial conditions space,
the equations of motion are numerically integrated. Combining the information at the nodes
of the grid, exact periodic orbits are computed. This is an effective procedure and has been
used for computing millions of periodic orbits. Both planar and three-dimensional symmetric
orbits can be computed. By using methods described by Markellos and Halioulias (1977)
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Fig. 1 Graph construction for a simple base set (where mvi , i = 1 . . . 5 indicate the maneuvers’ positions)

and Hénon (2005), non-symmetric planar orbits can also be computed. Of course, any other
method for computing families of periodic orbits can be used in combination with the above
methods (e.g. numerical continuation, see Doedel et al. 2003). Inserting all kinds of orbits
(symmetric and non-symmetric, two-dimensional and three-dimensional) into the base set,
is advantageous and can probably lead to low DV transfers due to large numbers of possible
inexpensive connections between orbits and suitable coastal arcs.

The base set of periodic orbits can be formed according to the mission objectives and
constraints. The vast knowledge on families of periodic orbits obtained in the last fifty years,
combined with information on the connectivity properties of the resulting graph, should
provide guidelines on how to adapt-organize the discretization procedure.

3 Graph construction

In this section the transformation of the base set into a undirected weighted-edge graph, is
described.1 This abstraction of the orbits of the base set, adopted as candidates for inexpen-
sive connections, is suitable for combinatorial optimization which will reveal the optimal
sequence of coastal arcs for the mission under design. In this graph the base set of periodic
orbits corresponds to set V of the vertices. A weighted-edge wi j is adopted when the vertices
i, j (periodic orbits) can be connected to each other inexpensively with an estimated cost
DV . Briefly, the transformation into a graph proceeds as follows. Firstly, an unique natural
number is associated to each periodic orbit of the base set, up to its cardinality. For each
member orbit x , the subset of the base set is found, whose orbits have the property that x can
transfer to them with an estimated cost DV less than a threshold. When such a transfer from
orbit x to orbit y exists, the edge xy is added to the edge set E . Moreover, the estimated cost
wxy of this transfer is added to the edge-weights set W . When this procedure is completed
for all base set orbits, the graph G is constructed.

In Fig. 1 a hypothetical base set is plotted. This small set provides a simplified example of
the above procedure. Hohmann transfer orbits have been chosen in this example, because of
the simplicity of their shapes. For the needs of this illustration, allowed transfers are assumed
to have a maximum cost DVmax which excludes transfers to and from orbit 5. Under this
DVmax constraint, orbit 1 transfers to orbit 3 by executing an impulsive maneuver at point

1 Background material on graph theory and spatial data structures is given in the electronic supplementary
material of this paper.
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Fig. 2 Sampling an orbit

mv1 with cost DV = w13. An estimation of the transfer cost is needed, not the exact DV .
The reverse transfer, from orbit 3 to 1, holds with the same estimated cost because orbits are
periodic. This equality of the estimated cost, complying with the assumption of the undirected
graph, is based on the constraint that the absolute value of the velocity vector difference of
appropriately selected neighboring points of the two orbits is not allowed to exceed DVmax .
The remaining inexpensive transfers (with DV < DVmax ) are: 2 � 3 with cost w23, 1 � 4
with cost w14 and 2 � 4 with cost w24. The constructed graph G is shown in Fig. 1. It is
seen that the Hohmann transfers of this example, are represented on graph G in a consistent
way: paths {1, 3, 2} or {1, 4, 2} could be followed in order to transfer from orbit 1 to 2. Here,
all allowed transfers correspond to orbits that have common points. This is not a mandatory
requirement. In general allowed transfers apply to pairs of orbits that approach each other
closely in phase space.

Primer vector theory, besides its elegant mathematical formulation, has a physical mean-
ing which is clearly stated by Marec (1979): “The optimal thrust acceleration . . . points
towards a neighboring moving point being subjected to the same gravitational field and same
thrust acceleration as the moving (spacecraft).” The procedure adopted here for estimating
the DV s is based on this concept of PVT. Two problems have to be solved: “neighbor-
ing moving points” are to be found (problem 1), and those among them must be selected
which are “being subjected to the same gravitational field and same thrust acceleration
as the moving (spacecraft)” (problem 2). These problems are dealt with, in this paper, as
follows.

Firstly, the equations of motion are numerically integrated for the base set member orbits
using a high accuracy method such as Dormand and Prince (1978). For each member orbit
a number of sample points on the orbit path is stored (see Fig. 2). All phase space coordi-
nates (position and velocity components) are stored for the sample points. This sampling is
not limited to planar symmetric periodic orbits, but it is applied to three dimensional and
non-symmetric orbits, too.

This data set has millions or billions of six-dimensional points. Solving problem 1 for such
a huge data set is challenging. Any brute force attempt would require long execution times
making it impractical. It is obvious that a suitable data structure is required to solve problem
1. kd-tree (Bentley 1975) solves efficiently the problem: “Given a point pi = {xi , yi , zi }
where pi ∈ R

3, find these points that are in the neighborhood of pi , i.e. their euclidian
distance is less than r” with expected time complexity O(log2 N + F), where N is the total
number of points inserted into tree, and F is the number of points in the neighborhood of
Pi . Thus, problem 1 can be solved in low computational complexity by using a kd-tree (see
supplementary material entitled “Graphs, Shortest Paths and kd-trees” for details). Any other
spatial data structure, such as r-tree, could be used. The main advantage of kd-tree is its sim-
plicity. To the author’s knowledge kd-tree was firstly used in orbital mechanics by Davis
(2009).
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It must be pointed out that kd-tree is a main memory data structure, i.e. all data are stored
into random access memory (RAM) simultaneously. Even for a top-of-the-line computer,
a real world mission will exceed RAM capacity. Modern computational methodologies are
needed. kd-tree is suitable for modern computational paradigms such as parallel or distrib-
uted processing. A recent publication of Aly et al. (2011) shows that the construction of a
distributed kd-tree is algorithmically simple and can handle huge sets of spatial data effi-
ciently.

Problem 2 is a combination of two subproblems: “being subjected to the same gravita-
tional field” and “same thrust acceleration as the moving (spacecraft)”. The “being subjected
to the same gravitational field” subproblem is automatically satisfied–solved for neighboring
points by the construction phase of data points (samples) since they are numerical output
of the same equations of motion (CRTBP). The “same thrust acceleration as the moving
(spacecraft)” subproblem is approximately satisfied by setting a maximum DV threshold.
The reasoning behind this upper DV threshold is as follows. Neighboring points under the
same gravitational forces and being subjected to “same” thrust acceleration, are expected
to be those moving points which have their velocities similar too: thus DV smaller than a
threshold.

A formal description of the graph construction algorithm (including estimations of DV s)
is given in the appendix of the supplementary material of this paper. The adjacency matrix
M appearing in the algorithm has some special characteristics: (1) it is a sparse matrix, i.e.
the number of connected orbits (non-zero entries) is small, and (2) wi, j = w j,i (graph is
undirected) for i � j transfers. Thus M is symmetric (M = M�) and only its upper part is
required.

Equivalence of transformation

Graph construction entails an exhaustive search of all possible inexpensive transfers between
orbits of the base set. For every inexpensively connected pair of orbits (of graph construction
algorithm) the minimum estimated DVmin is registered as transferring cost and added as
edge-weight into the graph. The space flight beginning with the initial orbit and making a
number of transfers to other orbits of the base set, is projected (corresponds) to a path or
walk on the constructed graph. Moreover, if this tour of the spacecraft has an estimated total
cost DVtotal (for connecting a sequence of coastal arcs), then the projected path on the graph
has the same cost. Inversely, a path of the graph, corresponds to a number of maneuvers
that transfer the spacecraft form the initial orbit to the final one, because by construction the
algorithm 4 (see appendix of supplementary material) includes only allowed transfers i.e.
inexpensively connected orbits. Thus, to find the shortest path that connects the two vertices
(vini tial , v f inal ) of the graph is equivalent to finding the optimal sequence of coastal arcs
comprising the final mission from orbit labeled with vini tial , to orbit labeled with v f inal .
Graph construction algorithm, therefore, transforms the mission design problem to an equiv-
alent graph optimization problem. The optimal sequence (shortest path) of graph vertices,
bridging initial to final orbit will be adopted as an optimal sequence of coastal arcs for the
mission under the following working conditions: (1) the estimation of DVmin of each pair
is based on a simplified version of PVT which corresponds to a single impulsive maneuver
for velocity correction, and (2) the shortest path is implicitly depends on how dense is the
discretization of the solution space.
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4 Combinatorial optimization

Solving the equivalent shortest path problem for a weighted-edge graph with positive weights
using Dijkstra’s algorithm (Dijkstra 1959) is a computationally efficient procedure. The prin-
ciple behind this algorithm is a simple one: expand outward from the starting vertex s, steadily
extending the region of the graph in which distances and shortest paths are known. This growth
should be orderly, first incorporating the closest vertices and then moving on to those further
away. More precisely, when the “known region” is some subset R of vertices that includes s,
the next addition to it should be the vertex outside R that is closest to s. Let us call this vertex
v. It is identified by the following procedure: Consider u, the vertex just before v in the short-
est path from s to v. Since all edge weights are positive, u must be closer to s than v is. This
means that u ∈ R, otherwise it would contradict v’s status as the closest vertex to s outside
R. So, the shortest path from s to v is simply a known shortest path extended by a single
edge. Because there will typically be many single-edge extensions of the currently known
shortest paths, the shortest of these extended paths identifies v. All single-edge extensions
of the currently known shortest paths are tried so as to find the extended shortest path. Its
endpoint is claimed to be the next vertex of R. The above description is based on the “known
region” approach and was preferred because of its simplicity (Dasgupta 2006). A formal
description of the algorithm, that computes not only the cost of shortest path but also the
sequence of vertices forming this path, is given in the supplementary material of this paper.

The running time of Dijkstra’s algorithm depends on how it is implemented. An obvious
implementation of Dijkstra’s algorithm has running time O(|V |2). For, sparse graphs as in
the present methodology, a binary heap based implementation gives O((|V | + |E |) log |V |)
running time, while a Fibonacci heap based implementation achieves a running time of
O(|V | log |V | + |E |). Optimality of computed shortest path is guaranteed from Dijkstra’s
algorithm (see Dasgupta 2006 for a proof).

4.1 Refinement

The result of Dijkstra’s algorithm is a minimum cost path that starts at the initial vertex (orbit)
of the mission and ends at the goal vertex. This path is a sequence of orbits that are able to
offer coastal arcs to the mission. By graph construction every single edge corresponds to a
low DV transfer (less than a threshold). The spacecraft transfers from coastal arc segment to
coastal arc segment of this sequence and finally transfers to the goal orbit. This preliminary
design says nothing about the position of the necessary maneuvers. It simply defines the
skeleton on which the coastal arcs lay. A final refinement will be to place the necessary set of
maneuvers on the already computed skeleton of the mission. By construction of the graph,
valid transfers are those where at least parts of a pair of orbits have very close position and
velocity states. Based on this, the simplest approach for connecting each pair of periodic
orbits of the optimal sequence (segments of them), is to locate these points where the abso-
lute value of difference of velocity vectors is minimum. In the numerical example of this
paper this approach has been used. When a pair of orbits in the optimal sequence consists of
orbits that do not intersect (which is the most likely), a local differential corrector should be
applied such as the one described in Marchand et al. 2007. For a real world mission, where
each m/s of DV is essential, the output of graph based methodology could be considered as
a globally good set of coastal arcs (that can inexpensively be connected), each pair could be
further optimized locally by PVT (by adding multiple impulses and/or altering the position
of the maneuvers).

123



A graph based methodology

Fig. 3 Initial and final orbit of
mission. Units are
non-dimensional

5 Application: hypothetical mission design

In this section, a hypothetical mission in the Saturn–Titan system is presented. The objective
of this mission is to transfer from an initial non-periodic orbit around both primaries to a
periodic orbit that approaches Titan and remains in its region as shown in Fig. 3. Using graph
based methodology the optimal sequence of coastal arcs and the exact positions of maneuvers
connecting the segment of that sequence are computed.

For this mission the planar CRTBP is used as the base model. CRTBP models the motion
of a spacecraft under the influence of two massive bodies. The two bodies of mass m1 (the
primary) and m2 (the secondary) are assumed to be in circular orbit around their barycenter.
The reference frame, centered at the barycenter, rotates at the same rate as the orbital motion
of the two massive bodies which appear at rest on the x-axis. The equations describing the
coplanar motion of the spacecraft are:

ẍ − 2 ẏ = ∂�

∂x
, ÿ + 2ẋ = ∂�

∂y

where

� = 1

2

(
x2 + y2) + 1 − μ

r1
+ μ

r2

and r1 = √
(x + μ)2 + y2, r2 = √

(x + μ − 1)2 + y2 are the distances of the spacecraft
from the primary and secondary, respectively. The only parameter is μ = m2

m1+m2
. This system

admits an integral of motion known as the Jacobi integral:

C = 2� − (
ẋ2 + ẏ2) .

C being a constant characterizing any specific orbit. Szebehely (1967) presents the details
of derivation of the equations of motion. For this mission in the Saturn–Titan system, the
parameter value for μ as well as the constants for transformation to dimensional units have
been taken from Koon et al. (2008).

In the discretization phase, only planar symmetric periodic orbits, with respect to Ox
axis, are computed due to limitations of the available computer. A grid search as described
by Tsirogiannis et al. (2009) is applied, and the characteristics of the base set obtained are as
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Fig. 4 a, b The whole mission (only coastal arcs are shown). c–f Some details of the mission (thick lines are
used for coastal arcs along the periodic orbits). Units are non-dimensional

Table 1 Initial conditions of orbits that offer coasting arcs to the mission (non-dimensional)

x0 y0 ẋ0 ẏ0 T

−0.230927367988 1.127594747436 0.248974674735 −0.019360033032 −
0.811217086930 0.0 0.0 0.385632186785 17.072917497030

0.963203154297 0.0 0.0 0.127072498598 2.222278144964

0.960659638792 0.0 0.0 0.108930285864 5.783044487266

0.955951555166 0.0 0.0 0.108571495243 4.848977091564
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Table 2 Numerical data for maneuvers mv1 − mv4 (non-dimensional)

mvi /DVi x y ẋ ẏ

mv1 1.181040241172 0.145961174356 0.052593133380 −0.308763679857

DV1 0.036814503714 −0.029034073393

mv2 1.003620671932 0.043070992232 0.183756138917 −0.017286804024

DV2 −0.084038958792 0.004573187560

mv3 1.026538287526 0.029632901715 0.071834253549 −0.089233360968

DV3 −0.019688986364 0.009461036062

mv4 1.004901763277 −0.042553615510 −0.078758009777 −0.000312670502

DV4 0.003560879022 0.023728763478

follows. About 10,000 orbits belonging to different families of periodic orbits are included
(a subset of them being Lyapunov orbits, while the majority belongs to bifurcations of f and
g families, i.e. retrograde and direct satellites of the secondary), with up to 10 intersections
of x-axis and period up to 50 days. After sampling the members of the base set approximately
25 millions points are loaded into a kd-tree.

At the combinatorial optimization phase, a set of periodic orbits whose parts form the opti-
mal sequence of coastal arcs, is computed. This sequence is optimal only for the the current
discretization of the solution space (10,000 orbits). After a simple refinement for locating
the intersection points of orbits, the optimal sequence of coastal arcs shown in Fig. 4a, b, is
formed. Maneuvers for connecting these segments are named mv1 to mv4. For better illus-
tration of this mission, coastal arcs (thick line) are plotted on their periodic orbits (Fig. 4c–f).
Saturn and Titan are plotted with solid color circles preserving their radius ratio (60,268 and
2,576 km, respectively). The total time of the mission is 17.87 days. In Table 1 numerical data
for the orbits that participate in mission, are given. Exact numerical data for the maneuvers
are given in Table 2.

The estimated costs are DVmv1 = 0.2620 km/s, DVmv2 = 0.4703 km/s, DVmv3 =
0.1221 km/s, DVmv4 = 0.1341 km/s with total cost DVtotal = 0.9885 km/s. It must be
noted that this total cost is not suitable for a real mission such as Cassini. This is a hypothet-
ical mission based on a crude discretization due to hardware limitations. For a real mission a
larger base set of periodic orbits can be used and a proper set of initial-final orbit pair can be
selected. Also, for a real mission an extended model can be used such as the Sun–Saturn–Titan
model employed by Davis (2011).

6 Concluding remarks

This paper presents a methodology that uses combinatorial optimization for computing
an optimal sequence of coastal arcs for a space mission. A base set of periodic orbits,
that offers coastal arcs to the mission, is constructed after a discretization of the solution
space. Optimality of the sequence of coastal arcs is claimed for this specific discretiza-
tion. The problem is transformed into an equivalent combinatorial one, which is solved
using a low computational complexity algorithm. The methodology is independent of the
model problem. Few body problems can be handled in the same way after an appropri-
ate discretization step. Furthermore, different base sets of periodic orbits of different sys-
tems, e.g. Sun–Earth, Sun–Saturn and Saturn–Titan, can be combined, after a reduction
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of data into a common coordinate system. Another advantage is that any costal arc can
be transformed to a “parking” orbit, since it is a segment of a periodic orbit. Also, these
periodic orbits could be useful for missions that employ constellations of spacecraft. Con-
cerning the flexibility of the designed mission, if requirements change after the launch,
alternative paths can be determined in flight exploiting the network of the inexpensive
transfers.

At present form, this methodology includes only periodic orbits and optimizes total DV .
Thus, it can not be applied for time dependent reference models (unless the dependence is
periodic). In future research it will be investigated the use of non-periodic orbits (e.g. invariant
manifolds) as members of the base set, and the inclusion of time of flight into optimization
criteria. Finally, the problem of a low thrust graph based methodology, remains open. Such
a version of the methodology, based on ideas of Russell (2007) and Petropoulos and Russell
(2008), is a theme for future research.
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