

Challenges associated with deep space travel

The dynamics of the liner implosion are governed by the equation:

$$M_{L} \frac{d^{2}r}{dt^{2}} = \left(\frac{B_{in}^{2}}{2\mu_{0}} - \frac{B_{ext}^{2}}{2\mu_{0}}\right) 2\pi r w$$
(1)

where M_L is the liner mass, and w the liner width. During the liner acceleration very little flux leaks through the liner ($B_{in} << B_{ext}$. With B_{ext} approximately constant during acceleration, Eq. (1) is readily integrated. With the liner mass $M_L = 2\pi r_L w \delta \rho_{AL}$ where δ is the liner thickness, and ρ_{AL} the density of Aluminum, the liner velocity is:

$$v_{\rm L} = \left(\frac{r(t)}{2\mu_0 r_{\rm L}\delta\rho_{\rm A1}}\right) B_{\rm ext}^2 t = 125 \frac{\tau_{1/4}}{\delta} B_{\rm ext}^2$$
(2)

The energy within the FRC separatrix at peak compression is dominated by plasma energy that is in pressure balance with the edge magnetic field B_0 , so that one can write:

$$E_{k} = \frac{1}{2}M_{L} v_{L}^{2} = 3n_{0} k T_{0} \cdot \frac{4}{3} \pi r_{0}^{3} \varepsilon = \frac{B_{0}^{2}}{\mu_{0}} \pi r_{0}^{3} \varepsilon$$
(3)

Where the zero subscript indicates values at peak compression. The last expression in Eq. (3) reflects the reasonable assumption that $r_s \sim r_0$ and magnetic pressure balance $(2n_0kT_0 = B_0^2/2\mu_0)$. One has then for the energy gain from fusion produced in the FRC during the shell's dwell time at peak compression:

$$G = \frac{E_{\text{fus}}}{E_{\text{k}}} = 1.73 \times 10^{-3} \sqrt{\frac{M_{\text{L}}}{l_0}} B_0 = 4.3 \times 10^{-8} \sqrt{M_{\text{L}}} E_{\text{k}}^{11/8}$$
(4)

where I_0 (= $2r_0 \cdot \epsilon$) is the length of the FRC at peak compression. The last expression in Eq. (4) is obtained from adiabatic scaling laws for FRCs.

NIAC Spring Symposium

The Fusion Driven Rocket **Nuclear Propulsion through Direct Conversion of Fusion Energy**

Chicago, Illinois

March 12-14, 2013

Spacecraft Component	Mass (MT)	TRL	Mission Dependent	Fusion Dependent
Spacecraft structure	6.6	4	Х	
Propellant tank FRC Formation	0.1 0.2	5 4	Х	X X V
Energy storage Liner driver coils	1.2 1.8 0.3	2 7 3		X X X
Switches and cables	1.8	6		Х
Solar Panels	2.7	8	Х	Х
Thermal Management	1.3	5		Х
Nozzle	0.5	2		Х
Spacecraft Mass				
Crew habitat	61		X	
Propellant	57		X	X
Total Maga	400		V	V

