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Disaggregated spacecraft systems distribute the functionality of traditional

monolithic spacecraft across several platforms. This dissertation addresses some of

the technical challenges associated with a disaggregated attitude determination system

(ADS), where the disaggregated ADS is defined by a chief spacecraft, with relative

and inertial attitude sensors, and multiple deputy spacecraft, with only inertial attitude

sensors or no sensors at all.

A tracking controller and reference signal kinematics are developed for the chief to

track the deputies and measure their relative attitude states. These measurements are

used in the formulation of a disaggregated implementation of the extended Kalman filter

(EKF) for inertial attitude estimation. The disaggregated EKF produces multiple inertial

attitude state estimates of the chief and deputies. Euclidean state and attitude state data

fusion are reviewed and used to develop a generalized attitude data fusion law based

on the attitude error vector. To avoid numerical complexities associated with constrained

attitude parameterizations, minimal vectorial attitude parameterizations are investigated

for data fusion. The accuracy of the vectorial parameterizations is assessed, and it is

shown that the classical Rodrigues parameters are a sufficient parameterization for

minimal attitude data fusion, but that higher-order Rodrigues parameters can be used

to improve the accuracy. The minimal parameterizations are applied to data fusion laws
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using the shadow parameters of the vectorial parameterizations, as well as a local error

representation.

A greedy tasking algorithm is also developed. This algorithm makes use of the

current covariance information of the deputies to task the chief to track deputies and

measure their relative states. Characterizations of the size of the state-error covariance

matrix are investigated in simulation based on the trace, matrix norms, and differential

entropy. Simulation results show that for measurement sharing, greedy tasking can

improve upon the accuracy of the chief and deputies using a fixed tasking strategy.

Furthermore, Monte Carlo results show that the greedy tasking algorithm is mostly

insensitive to the covariance metric.

This manuscript concludes with numerical simulations of two attitude resource

sharing scenarios: (i) between a chief and a single deputy and (ii) between a chief and

two deputies. These simulations demonstrate that attitude resource sharing can be used

to increase the attitude knowledge of a deputy equipped with low performance attitude

sensors and also improve the accuracy of the attitude knowledge of all spacecraft

(including the chief) when all spacecraft are equipped with similar sensors.
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CHAPTER 1
INTRODUCTION

Spacecraft design is primarily driven by the time, cost, and risk to launch mass

to orbit and the cost of developing sophisticated spacecraft and payloads that must

survive and operate within the harsh orbital environment. In 2002, this cost averaged

between $5000/lb to $10000/lb for launch to low Earth orbit (LEO) [1]. Due to these

factors, spacecraft can cost upwards of several billions of dollars and take years to

develop. As a result, traditional monolithic spacecraft are designed to be risk averse.

For the purpose of this discussion, risk is defined as the product of the probability of a

failure occurring and the loss in value if a failure occurs. Since the cost of monolithic

spacecraft is implicitly high, they are conservatively designed in order to minimize the

probability of failure. Reducing the probability of failure is accomplished by incorporating

redundancies and over-engineering at the system and subsystem level. Additionally,

the cost and time necessary to develop traditional spacecraft can be prohibitive for

responsive missions, where to objective is to respond to a changing mission demand

as fast as possible. However, recent research and development of small spacecraft

technology and disaggregated space architectures are addressing the challenges

of timely and cost-effective mission development. These smaller spacecraft cannot

replace all of the capability of monolithic spacecraft, but they do have the potential to

complement their larger counterparts and provide new capability.

Small spacecraft definitions vary based on size, weight, and power (SWaP) as well

as cost [2]. In the context of this paper, small spacecraft are classified based on mass.

Mass is a good surrogate description because it inherently drives the spacecraft form

factor, available power, and cost. Small spacecraft typically vary from mini-satellites (<

500 kg) down to pico-satellites (< 1 kg). However, recent research is further pushing

mass boundaries into the femto-satellite regime (< 100 g) sometimes referred to as a

“satellite-on-a-chip” [3], as well as all the way down to spacecraft with dimensions as
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fine as interplanetary dust and mass on the order of milligrams [4]. All classes of small

spacecraft are being investigated for their potential for shorter development times and

improved capability over traditional spacecraft for certain mission types – commonly,

distributed sensing.

Complementing small spacecraft technology is the advent of disaggregated

spacecraft architectures. These architectures make use of several smaller spacecraft to

produce a capability traditionally provided by a monolithic spacecraft. The disaggregated

spacecraft is an evolution of the fractionated spacecraft, which spatially distributes

some or all of the spacecraft bus elements that are physically connected within a

traditional monolithic spacecraft in order to achieve a new capability. The difference in

disaggregation and fractionation is subtle, in that the individual nodes in a disaggregated

architecture contain all of the spacecraft bus elements, but instead distribute the

spacecraft to achieve a capability. Whereas, the fractionated spacecraft spatially

distributes a traditional spacecraft’s bus elements. Although this difference exists, many

of the benefits of fractionated spacecraft are equivalent to those for disaggregated

spacecraft. It is important to note that the disaggregated concept is newer than the

fractionated concept, and thus there is less information available than for fractionated

systems. The fractionated literature is reviewed below, but is introduced with the

intention to motivate a disaggregated approach. As such, fractionated and disaggregated

spacecraft will be used interchangeably for the remainder of this work.

The first benefit to be studied for fractionated space architectures, and thus

disaggregated architectures, was flexibility [5]. Flexibility is defined as the “ability

of the system to be modified to do jobs not originally included in the requirements

definition” and the conclusion of that study was that if flexibility is valued high enough,

then a fractionated system may be preferred over a traditional monolithic system.

Other properties that demonstrate the benefits of fractionated architectures are

responsiveness, maintainability, and scalability. Responsiveness is the “ability to
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meet changing requirements or conditions quickly, which corresponds in the framework

to a short- or medium-term adaptation to any change in requirements or conditions”,

maintainability is the “ability of a system to be kept in an appropriate operating

condition”, and scalability is the “ability of a system to maintain its performance

and function, and retain all its desired properties when its scale is increased greatly

without having a corresponding increase in the system’s complexity” [6]. However, the

conclusion of Mathieu’s thesis was that industry had no incentive to pursue fractionated

space architectures. Hence, the first customer would have to be the government.

Subsequently, in 2007 the Defense Advanced Research Projects Agency (DARPA)

began investigating fractionated space architectures. At DARPA, Brown [7, 8] used

a value-centric design methodology to quantitatively demonstrate the benefits of

fractionated systems for robustness to subsystem failures, and responsiveness and

adaptability to evolving mission requirements. However, to date, zero fractionated

spacecraft missions have flown and several challenges exist in the development

of the necessary capability before the first missions can be flown. More recently,

disaggregated spacecraft have been under investigation by the United States Air Force

with all of these potential benefits in mind for the space-acquisition process [9].

Disaggregated spacecraft systems, like fractionated spacecraft, rely on resource

sharing, inter-satellite network protocols and communication, cluster flying, and

distributed computing [10]. In this context, a resource is defined as any element or

capability that can be transferred from one spacecraft to another. The possible sharable

resources correspond directly with the spacecraft’s subsystems and payload. The

relevant subsystems include, power generation and distribution, attitude determination

and control, orbit determination and control, communications, thermal management,

and command and data handling. Mission specific payload resource examples include,

observational sensors and high-bandwidth downlink communications. Resource sharing

is the act of transferring resources between spacecraft and is the focus of this research.
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1.1 Resource Sharing

Resource sharing creates several new challenges with respect to traditional

self-contained space systems. Specifically, monolithic space assets contain subsystems

that are physically connected and that can perform all necessary functions directly

on-board. Therefore, an optimized set of hardware and software are on-board to meet

the mission requirements. For example, a mission that needs precision pointing will be

met with a spacecraft design that has an on-board sensor suite to determine attitude

and actuators for controlling attitude. However, when resource sharing is required,

either by hardware and software failure or by design, the spacecraft must still be able

to generate the necessary resources, exchange those resources and coordinate the

actions of the disaggregated capability to respond to mission requirements. These

functional requirements motivate the need for hardware that can facilitate the sharing of

resources and algorithms that can efficiently coordinate the spacecraft to allocate and

distribute the resources to accomplish the required tasking.

Guo conducted a survey of the current state-of-the-art in fractionated space

resource sharing for several of the bus elements [11]. This survey focused on architectures,

networking, wireless communication, distributed computing, and wireless power transfer.

The fractionated architecture for mission planning and system capability has been

analyzed using value-centric design tools [8] as well as agent-based systems theory

[12]. The technology readiness level (TRL) for many of the bus elements are shown in

Figure 1-1A. Space-based wireless communication and networking have the highest

TRL, which is intuitive as these two elements are the most fundamental to fractionated

spacecraft, because they are required for every other capability. Intra-spacecraft

wireless communication, taking place between components within a spacecraft, has

been demonstrated on orbit with the Space Shuttle and International Space Station

at bandwidths up to 900 MHz. Inter-spacecraft wireless communication, taking place

between spacecraft in a network, has been demonstrated with radio frequency (RF) as
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well as LASER. LASER has the advantage of being lower power and high bandwidth,

and in 2008 was used on the TerraSAR-X spacecraft to transmit at a data-rate of

5.6 Gbps. The case for wireless power transfer for fractionated space systems was

presented by Turner [13]. Since then, the technology for wireless power transfer has

been under development and the efficiency of these systems, specifically through

microwave beaming, is proving the viability of power resource sharing [14]. However,

wireless power transfer has only been demonstrated on the ground.
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Figure 1-1. Fractionated elements technology readiness level. A) TRL radargram
(adapted from [11]). B) NASA technology readiness level [15].

Some spacecraft bus elements were absent from Guo’s survey, as they are less

mature. For example, actuation is also a viable resource to share. In the past decade,

active magnetic control has been under investigation for formation flying missions using

Coulomb forces [16] and active magnets [17, 18], and has has also been studied in the

context of resource sharing [19]. This technology is still at the theoretical level.

The last bus element of interest, and the focus of this research, is the sharing of

sensor measurements for distributed attitude determination and control systems. O’Neill

performed high level analysis on the effect of fractionation on pointing-intensive missions
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to show that decoupling pointing-intensive subsystems from the other subsystems could

reduce mass and cost [20]. This reduction in mass can also potentially improve the

attitude maneuverability of a spacecraft as shown in Figure 1-2. This figure shows an

example spacecraft with a fixed actuator that is typical in size for a nano-satellite. As the

sensor-to-vehicle mass fraction is reduced, the slew rate can potentially be increased

while consuming the same power. Due to physical constraints imposed by the optical

bench of many attitude sensors, the mass fraction of these sensors is greater for smaller

spacecraft than for traditional monolithic spacecraft. That is, for a monolithic spacecraft a

star tracker is relatively small, however for a small satellite, such as a 1U CubeSat, a star

tracker can take up considerable mass and volume [21]. A similar increase in slewing

performance could be seen by increasing the size of the actuators, but at the expense

of increased inertia. The point remains that there may be benefit from an attitude control

perspective. However, the theory and implementation for resource sharing are still at a

low TRL. A summary of the resource sharing elements with key technologies is provided

in Table 1-1.
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Figure 1-2. Potential benefit of the reduction in mass of a small satellite

Terminology for attitude is now introduced. The terms “inertial”, “absolute”,

“relative”, “external”, and “internal” are often associated with attitude. In the context

of this research, inertial attitude refers to the orientation of a spacecraft with respect to
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Table 1-1. Resource sharing technologies for the spacecraft subsystems
Subsystem Technologies Functions
Communications wireless-link, networking transmitting and receiving data
Electronic Power System microwave beaming transmitting and receiving power
Attitude Determination relative attitude sensors attitude estimation and data fusion
Propulsion coulomb control orbital maneuvering
Command and Data Handling parallel computing, client-server information processing

an inertial reference. Sensors that provide information about inertial attitude are referred

to as inertial attitude sensors, in which examples include sun sensors, magnetometers,

and star trackers. Relative attitude refers to the orientation of a spacecraft with

respect to another spacecraft or non-inertial reference. Similarly, sensors that provide

information about relative attitude are referred to as relative attitude sensors, in which

examples include radio frequency, vision-based sensors, and laser communication. One

last sensor that deserves attention is the rate gyroscope, which is an inertial sensor that

measures the angular velocity in body coordinates.

Resources can also be differentiated by their finiteness. A finite resource is defined

as any resource that when transferred is changed on both the sharing and receiving

spacecraft. Examples of finite resources include power, communications downlink, and

position and attitude actuation. Studies have examined finite resources in fractionated

spacecraft from an agent-based perspective [22] and applied game theory [12] to the

resource allocation problem. On the other hand, a non-finite resource is defined as any

resource that when transferred to a receiving spacecraft remains unchanged on the

sharing spacecraft. Examples of non-finite resources include sensor measurements or

other data. It is important to note that the transfer of non-finite resources may require

the utilization of finite resources, such as power or fuel. An illustrative example is

resource sharing of sensor measurements. Depending on the hardware utilized, sensor

measurements may require changes in attitude or position (relying on power and/or

propellant) as well as inter-satellite communications, which consume power.

Attitude sensor measurements are a non-finite resource that are necessary to

determine and control the spacecraft’s attitude. It has been shown that in disaggregated
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systems there is a confluence of navigation, communications, and control for position

control [23]. This same confluence naturally extends to disaggregated attitude

determination systems (ADSs). Additionally, Blackmore proved that observability in

a distributed attitude determination system requires a relative sensor path from the

spacecraft back to an absolute sensor [24]. Therefore, in order to share inertial attitude,

relative attitude sensors are necessary to create the relative state path from an inertial

attitude sensor. Missions with relevancy to relative state sensing and resource sharing

are detailed in the following section.

1.2 Relevant Missions

There are two predominant hardware technologies that must exist to enable on-orbit

attitude resource sharing. The first is an inter-satellite communications link. This

communications link enables coordination and data-sharing within the network. The

second enabling hardware is relative state sensors. Relative state sensors have heritage

in missions ranging from rendezvous and docking to space-based interferometry, and

although these mission types do not require resource sharing, they provide valuable

insight into the resource sharing mechanism. Relevant missions for relative state

sensing technologies in flight demonstration, as well as proposed fractionated systems,

are discussed in Subsections 1.2.1–1.2.4

1.2.1 Rendezvous and Docking Missions

Rendezvous and docking (RND) involves the far and close approach from one

spacecraft to another, as well as the physical linking of the two spacecraft. RND

missions rely heavily on the determination of relative attitude and position states for

the approach trajectory and docking pose [25]. The sensors utilized for RND missions

are only applicable to proximity operations. For example, at larger distances radio

frequency (RF) sensors are too noisy to be utilized for high accuracy attitude knowledge.

Similarly, vision-based sensors suffer at large distances, because the incident light will

coalesce and the object will appear as a single point.

22



Early systems, such as the Russian Kurs, utilized RF signals in a target-chaser

configuration to perform RND [26]. More recent missions have used visible spectrum

signals measurements for relative state sensing. The Spacecraft for the Univer-

sal Modification of Orbits/Front-end Robotics Enabling Near-term Demonstration

(SUMO/FREND) was a technology demonstration spacecraft designed to service or

modify the orbits of other spacecraft. The FREND package utilized computer vision

and pose estimation techniques for autonomous RND [27]. XSS-10 [28] and XSS-

11 [29] were spacecraft designed to perform resident space object (RSO) inspection

and rendezvous maneuvers using relative navigation sensors. XSS-10 utilized the

visible camera system (VCS) for relative state sensing. XSS-11 combined an active

LIDAR sensor with a visible camera and star tracker system. The DART spacecraft was

designed to use the advanced video guidance sensor (AVGS) for RND. The AVGS was

designed to track retro-reflector fiducials on another spacecraft for relative state sensing,

but suffered a ‘’soft-collision‘’ that resulted in a depletion of all of its propellant and was

unable to demonstrate the mission objectives [30]. Orbital Express was the follow-on to

DART and consisted of two spacecraft, ASTRO and NextSat. The spacecraft utilized

the AVGS and successfully demonstrated RND maneuvers [26]. The Autonomous

Transfer Vehicle (ATV) was a European Space Agency (ESA) designed spacecraft that

used videometer and telegoniometer as relative state sensors to dock and resupply the

International Space Station (ISS) [31]. The formation autonomy spacecraft with thrust,

relnav, attitude, and crosslink (FASTRAC) used relative global position signal (GPS)

measurements for relative navigation [32].

Several spacecraft have demonstrated relative attitude and position measurements

through a variety of sensors in close proximity. These missions have helped pave

the way for disaggregated attitude determination systems, because they provide the

requisite relative state sensing path. However, these technologies must be matured or

extended to provide the necessary relative state precision to be suitable for resource
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sharing missions. It is assumed that this technology will continue to mature and

ultimately complement this research for practical implementation.

Figure 1-3. Illustration of the Orbital Express rendezvous and docking mission [33]

1.2.2 Space-based Interferometry

The StarLight mission is a proximity formation flying interferometry mission that

makes use of the Autonomous Formation Flying (AFF) sensor [34]. Similar to the

Russian Kurs proximity sensor, the AFF utilizes RF signals to measure relative states

to moderate precision. A laser metrology system takes over for the AFF to yield the

precision necessary for interferometry.

The proposed Laser Interferometer Space Antenna (LISA) mission uses a

distributed spacecraft platform to create a large aperture antenna for sensing gravitational

waves at low frequencies [35]. Specifically, three identical spacecraft form a 5 million

km equilateral triangle formation with stringent requirements on relative position and

attitude. Due to the large astronomical distances involved, LISA requires inter-satellite

communication with the Deep Space Network (DSN) and precise relative state

knowledge and control between the interferometer platforms. For this mission, star

trackers are not accurate enough to maintain relative attitude to the required precision.

LISA utilizes quad laser detectors for direction sensing to the other spacecraft in the
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formation. This laser is used as a tracking input for the controller in order to maintain

precise relative attitude.

1.2.3 Satellite Networks

Existing satellite networks have already demonstrated inter-satellite networking

and communication. These capabilities are the most fundamental to disaggregated

spacecraft architectures, as all other disaggregated capabilities rely on them. Two

examples of resource sharing in communications networks are the Tracking and Data

Relay Satellite System (TDRSS) [36] shown in Fig. 1-4A and Iridium constellation

[37] shown in Fig. 1-4B. These systems were designed to relay data via inter-link

communications to other spacecraft and the ground and have established heritage in

wirelessly connected satellite constellations and basic data sharing.

A B

Figure 1-4. Resource sharing in communications networks. A) Illustration of the TDRSS
constellation [38]. B) Illustration of the Iridium constellation [39]

1.2.4 System F6

A fractionated mission that was pursued by the Defense Advanced Research

Projects Agency (DARPA) is System F6 (Future, Fast, Flexible, Fractionated, Free-Flying

Spacecraft). The value-case for fractionated space architectures was made by Brown

in 2006 [10]. Subsequently, in 2007, DARPA began pursuing fractionated space

architectures through System F6. System F6 is an instantiation of the fractionated

spacecraft architecture paradigm shift proposed by Brown, with the goal to provide
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evidence of the value of fractionation through flight demonstration of multiple fractionated

capabilities. Of particular interest to this research, is the idea of a fractionated attitude

determination system. Fractionated attitude has been suggested as a mechanism

for increased robustness without requiring significant addition in hardware. Shown

in Figure 1-5, fractionated attitude was identified as a demo mission for System F6

fault tolerance at the cluster level, where if a star tracker fails in the network it may be

replaced through resource sharing [40]. As part of the DARPA System F6 project,
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Figure 1-5. Illustration of System F6 cluster-level fault tolerance [40]

Orbital Sciences Corporation developed Pleiades [41], which was a pilot study for a

notional fractionated spacecraft system. The system architecture for this mission was

a LEO Earth-observation science mission with distributed imagers. The system was

fractionated at multiple levels including the imager, communications downlink, data

storage, and data processing.

1.3 Problem Statements

Resource sharing has been identified as a critical capability necessary for

disaggregated spacecraft systems. At a high level, this is a localization problem, as

studied in the simultaneous localization and mapping literature [42], and more recently
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using relative attitude localization [43, 44]. The objective of any attitude determination

system is to estimate the attitude of the spacecraft as accurately as possible. As a

result, a natural attitude-based objective for the disaggregated system is to minimize the

uncertainty in the attitude estimation, summed across the network. That is,

min
n∑

i=1

(∫ T

0
‖ei‖dt

)
, (1–1)

where ei is the attitude state error for the i th spacecraft, n is the total number of

spacecraft, and T is the time-horizon of interest.

The resource sharing process is summarized in Figure 1-6, where the control

of information is sought. Specifically, information is generated through sensing and

incorporated to the state knowledge through estimation. All information sources are

then combined to improve knowledge across the disaggregated system. Finally, the next

information source is chosen. This process relies on four key functions, including:

1. Inter-satellite communication

2. Estimation of inertial attitude using relative attitude sensor measurements

3. Fusion of multiple information sources

4. Decision algorithms for distribution of attitude resources

Of these four challenges, inter-satellite communication is assumed to exist. The last

three are addressed in this work (see: Section 1.4).

Two definitions for the attitude resource are explored in this research:

1. Attitude measurements originating from the chief’s sensors, which are shared
directly with the deputies

2. Processed attitude estimates, which are shared between the chief and deputies

When processed estimates are shared, data fusion is the tool used for combining

multiple sources of information.

Consider the general spacecraft network shown in Figure 1-7, where the chief

represents a node with a relative attitude sensor and the deputies are nodes in the
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Figure 1-6. Fundamental functions for the attitude resource sharing process

network without relative attitude sensing, and potentially without attitude sensing,

altogether. This network can either describe a formation-flying system, where the

relative position and attitude of the spacecraft are to be controlled, or a constellation,

where the spacecraft have some common objective, but do not rely on maintaining their

relative states. The challenges in estimation, data fusion, and sensor tasking for attitude

resource sharing are now focused into three problem statements with related research

questions.

1.3.1 Problem 1: Inertial Attitude Estimation in a Disaggregated System

Relative attitude sensors are used to directly estimate the relative attitude between

a chief and its deputies [45, 46]. The inertial attitude of a deputy can be produced by

local inertial sensors. Alternatively, the composition of relative attitude of the deputy

with respect to the chief and inertial attitude of the chief can be used to generate new

knowledge about the deputies inertial attitude. Taking this into consideration, a relevant

research question is, “how can inertial attitude be estimated in a disaggregated system

through the use of relative and inertial attitude sensors?”
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Figure 1-7. Attitude resource-sharing architecture

1.3.2 Problem 2: Attitude Data Fusion

Information transfer between the chief and deputies is accomplished via the

wireless link in Figure 1-7. Attitude resource sharing requires that attitude measurements

or estimate be shared between spacecraft through this link. In the case of shared

attitude estimates, multiple sources of the same information are generated, as relative

and inertial attitude can be composed to describe the inertial attitude of another

spacecraft. Data fusion seeks an optimal combination of information to produce a

best estimate when information dependency is uncertain, as is the case with covariance

intersection [47, 48], or dependency is known, as in the case of correlated track fusion

[49]. To generate a fused estimate, data fusion algorithms optimize the combination of

multi-sensor information by minimizing a cost function, which is a problem dependent
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measure of the error between the state estimates and the fused state. For typical

applications, the fusion error is a measure of the Euclidean distance. However attitude

belongs to the space of special orthogonal matrices, SO(3), which describes the relative

orientation between two coordinate systems, and thus a Euclidean distance error is

inappropriate for attitude. Therefore, the problem of fusing multiple attitude information

sources requires an alternative definition of the fusion error. Two research questions that

are addressed in this research are:

1. How can existing data fusion algorithms be extended to attitude states?

2. What is a fast and accurate attitude parameterization for data fusion?

1.3.3 Problem 3: Sensor Tasking

The third objective of this research is to develop algorithms for tasking sensors to

allocate and distribute attitude resources within a spacecraft network. The primary focus

of this objective is to investigate networks consisting of fractionated ADS distributed

across a chief spacecraft and multiple deputies. To achieve the best performance, for

a particular cost function, the sensor will ideally be tasked for the infinite horizon. The

resulting tasking is the solution to a stochastic optimal control problem.

A well known stochastic optimal control problem is the Linear Quadratic Gaussian

(LQG) controller. The LQG controller has a closed-form solution due to the properties

of separation and certainty equivalence. The separation property states that the

optimal controller and estimator are solved separately [50, 51]. That is, the criterion

for determining the control is independent of the estimation and vice versa. Certainty

equivalence states that an optimal deterministic controller is equivalent to the same

control law replaced by optimal estimated states [52]. For example, under very specific

assumptions, the Linear Quadratic Gaussian (LQG) control law solves the deterministic

Linear Quadratic Regulator (LQR) and optimal Linear Quadratic Estimator (LQE)

independently via their corresponding Riccati equations [53]. However, for dynamic

attitude sensor tasking, where the objective is to minimize the pointing error in the
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system, the controller actions are based on sensing objectives. This leads to the dual

effect where control not only affects the states but also the uncertainty in the states. This

is the converse of typical feedback control laws where sensor measurements are based

on controller objectives that only affect the state. Control for sensing is nontrivial and

results in an absence of the certainty equivalence property and a lack in separation of

estimation and control.

Due to a lack in separation and control, optimal solutions are computationally

expensive and do not scale well with larger networks (curse of dimensionality).

Therefore, the research question for sensor tasking is, “how can a sensor be tasked

to minimize the total attitude error in a disaggregated attitude determination system,

while also being computationally inexpensive, and scaling well with larger networks?”

1.4 Thesis Statements

To address the research questions presented in Section 1.3, the following describes

the thesis statements for estimation, data fusion, and sensor tasking as applied to

attitude resource sharing.

1.4.1 Thesis 1: On Inertial Attitude Estimation for Disaggregated Systems

Given inter-satellite communication, an extended Kalman filter for estimating inertial

attitude from relative and inertial attitude sensors in a disaggregated system can be

utilized while the linearization remains valid.

1.4.2 Thesis 2: On Minimal Attitude Parameterization Data Fusion

Existing data fusion methods on Euclidean state spaces can be extended to

the attitude state spaces of SO(3) using the parameterization independent attitude

error vector. Proper choice of a minimal attitude parameterization can lead to an

unconstrained, global, and nonsingular data fusion process.

1.4.3 Thesis 3: On Sensor Tasking for Attitude Resource Distribution

Greedy sensor tasking is robust for attitude resource distribution in disaggregated

spacecraft networks, as it avoids the planning process and the issues with separation in
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estimation and control. The primary factors to consider for the greedy decision algorithm

are the relative states with constraints and their respective uncertainties.

1.5 Dissertation Organization

This dissertation is divided into seven chapters and proceeds with the following

organization.

Chapter 2 introduces the fundamental spacecraft attitude parameterizations and

kinematics. Then attitude dynamics and control are introduced in the context of the

tracking problem to distribute resources. This chapter lays the groundwork for the

remainder of the dissertation.

Chapter 3 summarizes existing attitude sensors and attitude determination and

estimation results for inertial and relative attitude. This chapter concludes with the

development of an inertial attitude estimator for the chief to estimate the deputies

inertial attitude states via the relative attitude sensor. Using these results, the chief and

deputies produce multiple estimates of each spacecraft’s inertial attitude. This leads

to the next chapter on efficient methods of combining multiple sources of information –

data fusion.

Chapter 4 reviews existing attitude data fusion techniques and provides a general

framework for extending the theory of data fusion for Euclidean state spaces to

attitude states on SO(3). Minimal attitude parameterizations, namely the vectorial sets

introduced in Chapter 2, are developed to provide a global nonsingular unconstrained

parameterization for attitude data fusion. The accuracy of the minimal parameterizations

for data fusion are compared. This chapter concludes with a notional two-star-tracker

data fusion problem to provide further evidence for the first thesis statement on minimal

attitude parameterizations for data fusion.

Chapter 5 introduces the problem of sensor tasking for attitude resource sharing.

A greedy tasking algorithm for the capturing of relative state measurements from

the chief to the deputies is developed that addresses the issues of uncertainty
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minimization, computational tractability, and architecture scalability. The content of this

chapter supports the second thesis statement on sensor tasking for attitude resource

sharing.This chapter concludes with a four-spacecraft sensor tasking example to verify

the approach.

Chapter 6 presents an example resource sharing architecture, which combines

the results of Chapter 4 and Chapter 5. Particularly, two and three spacecraft formation

flying networks are simulated. Resource sharing is investigated for cases with coarse

and fine precision inertial attitude sensors with a high precision relative link. Data fusion

is based on the fourth-order Rodrigues parameters and the sensor tasking algorithm are

applied. Results are provided that indicate the validity of the approach and provide the

final evidence for the thesis of this dissertation.

Chapter 7 draws conclusions from the preceding chapters and makes recommendations

for future research.
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CHAPTER 2
SYSTEM DYNAMICS AND CONTROL

Attitude resource sharing in a disaggregated spacecraft system is based on the

rotational motion of each spacecraft and also on the parameterization used to describe

that motion. Resource sharing also relies on the composition of relative and inertial

attitude measurements. Therefore, an antecedent to resource sharing and sensor

tasking is a fundamental knowledge of inertial and relative attitude dynamics and

attitude parameterizations.

2.1 General Nomenclature

Scalars, vectors, and matrices on Rn are ubiquitously used throughout this work.

The nomenclature for these quantities is provided for clarity to the reader. Scalars are

written as lowercase letters (e.g., a). Vectors and column matrix representations of

vectors will be written in lowercase bold font (e.g., a). General matrices are written in

upper-case letters (e.g., A). Finally, the quaternions are written as the lowercase, q.

2.2 Rigid Body Kinematics

The motion of a single spacecraft can be treated as a rigid body, where the mutual

distance between the particles making up the spacecraft are invariable with a finite

mass. A single rigid spacecraft has six degrees-of-freedom – three for translation

and three for rotation. Note that non-rigid motion, by means of flexible or articulating

members, create additional degrees-of-freedom, but will not be investigated in this

research. From Chasle’s theorem, the most general displacement of a rigid body is the

translation along a line coupled with a rotation about that line [54]. It is thus pertinent to

define what is meant by translation and rotation.

Translational motion occurs when the displacement of all particles in the rigid body

follow parallel paths. Whereas, rotational motion occurs when there is a nonparallel path

followed by some particles in the rigid body. Therefore, at minimum, six coordinates
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are necessary to describe the motion of a spacecraft, that is, three coordinates for the

translation and three coordinates for the rotation.

For attitude applications there are two concepts which have many definitions in

the literature, and thus a clear definition is necessary in the context of this discussion

– that of the frame of reference, and the coordinate frame. The frame of reference

is where all distances and time are measured for the application of Newtonian and

Eulerian dynamics. As such, the frame of reference is non-accelerating and said to

be inertial. In practice, defining an exact frame of reference with physical significance

for measurements is impossible. Therefore, the frame of reference is chosen that is

approximately inertial with respect to the time horizon of interest and the distances

expected, such as to maintain the non-acceleration requirement. The second definition

is in regard to the coordinate frame. A coordinate frame is a set of basis vectors defined

by a plane and a direction in that plane, where the second direction is orthogonal to the

plane and the third direction follows from the right-hand rule; forming an orthonormal

set.

The definition of attitude is based in the representation of unit vectors defined by

coordinate frames. Attitude involves the description of the rotational degrees-of-freedom

of a rigid body and is defined as the relative orientation between two coordinate fames,

one of which is typically fixed to the rigid body. When dealing with spacecraft, of primary

concern is the orientation of a coordinate frame fixed to the rigid spacecraft with respect

to some other coordinate frame. Several of these coordinate frames are described in the

following section.

2.3 Coordinate Frames

As attitude describes the relative orientation between coordinate frames, it is

important to understand the definition of the frames that are typically encountered

in spacecraft applications. Starting with an inertial coordinate frame where the

fundamental laws of dynamics hold, the coordinate frames will be defined in the
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sequence originating with the inertial frame of reference and ending with the body,

whose motion is of interest.

2.3.1 Earth-Centered Inertial (ECI)

For Earth orbiting applications, a common inertial frame is the ECI frame. The frame

(FI), shown in Figure 2-1A, is defined by the orthonormal basis vectors {XI , YI , ZI}.

These directions are assumed to be fixed. However, due to the nutation of the Earth,

a direction specified to an inertial point in space (such as a star) will accelerate as the

originating point of the direction is fixed to the Earth. To rectify this invalidation of the

assumption, the J2000 frame considers the reference directions at a specific instance in

time. Specifically, the J2000 frame is defined by the equatorial plane, in which XI lies in

the plane and points in the direction from the center of the Earth to the first point of Aries

on January 1, 2000.

2.3.2 Earth-Centered Earth-Fixed (ECF)

The ECF frame is fixed to the Earth and is used to describe the rotation of the

Earth with respect to the ECI frame, given that the Earth rotates with an angular velocity

ωE/F = ωZF , where ω = 7.292115 × 10−5rad/s [55]. The ECF frame (FF ), shown in

Figure 2-1A, is defined by the orthonormal basis vectors {XF , YF , ZF}, where the XF lies

in the equatorial plane is measured by the Earth hour angle (EHA) relative to XI .

2.3.3 Hill (LVLH)

The Hill frame (FH), shown in Figure 2-1B, is an example of a local-vertical-local-horizontal

(LVLH) frame. It is the basis typically used for relative translational motion of multiple

spacecraft. It is defined by the orthonormal basis vectors, XH = r
‖r‖ , ZH = h

‖h‖ and

YH = ZH × XH , where r is the position vector from the center of the earth to the center of

mass of the spacecraft and h is the angular momentum vector of the orbit.

2.3.4 Perifocal (PQW)

The Perifocal frame (FP), shown in Figure 2-1B, is commonly used at an inertial

frame of reference for Earth orbital applications. It has has origin at the occupied focus
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of the conic section describing the orbital motion and is defined by the orthonormal basis

vectors P = e
‖e‖ , W = h

‖h‖ , and Q = W × P, where e is the eccentricity vector.

2.3.5 Body Frame (B)

The Body frame (FB), is defined by orthonormal basis vectors, {XB, YB, ZB}. This

frame is fixed to the spacecraft and used to describe the attitude of the spacecraft with

respect to the other coordinate frames described in this section. Typically, the frame

will originate at the center of mass of the spacecraft, which is convenient for attitude

dynamics. For the remainder of the discussion to follow, a star tracker is assumed to be

aligned with ZB and a relative attitude sensor is aligned with XB.

XI YI

ZF

YF

XF

ZI

A

XH

YHZH

P Q

W

r

B

Figure 2-1. Common coordinate frames. A) Inertial and Earth-fixed frames. B) Hill and
perifocal frames.

2.4 Attitude Parameterizations and Kinematics

Attitude can be defined as the mapping of vectors in one basis to another, such that

x ′ = Rx ,

where x ′ is a column matrix of the a vector represented in FE ′ coordinates, x is the

column matrix of that same vector represented in FE coordinates, and R ∈ SO(3) ⊆

R3×3 maps vectors from FE to FE ′. The parameterization of SO(3) is a classical

problem. Since attitude describes the three degrees-of-freedom of the spacecraft’s
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rotational motion, there are a minimum of three parameters that are necessary

to describe the spacecraft’s attitude. However, in general, the attitude matrix that

describes the mapping between two basis is non-Euclidean, belonging to the group of

special orthogonal matrices denoted by SO(3). There are a number of non-Euclidean

representations that parameterize the attitude. Through use of Brouwer’s theorem on

invariance of domain, Stuelpnagel showed that all minimal attitude parameterizations

contain singularities [56]. In fact, it was shown that it takes, at minimum, five parameters

to 1-to-1 globally parameterize SO(3). A solution to the existence of singularities is

to use redundant representations or ensure that that the minimal parameterization

singularity is outside of the attitude region of interest.

Since the choice of attitude parameters is non-unique, many attitude parameterizations

have been developed, each with specific advantages and disadvantages. An often cited

survey of the attitude parameterizations by Shuster is contained in Reference [57], which

was current up to 1993. A survey of those contained in Shuster’s paper, as well as a

description of more recent attitude parameterizations found by stereographic projections,

higher order Cayley transforms is described in Reference [58]. Finally, a generalization

of axis-angle derived parameterized, termed the vectorial attitude parameterizations,

as described in Reference [59]. A brief summary of the results from the literature is

provided in Sections 2.4.1–2.4.8.

There are many important characteristics to consider when choosing a parameterization,

such as the presence of singularities, number of parameters and imposed constraints,

computation of transcendental functions, and kinematic linearity. Ideally, a parameterization

should be globally-singularity free, minimal in number of parameters and constraints,

and linear without transcendental functions. However, since all minimal parameterizations

are singular, either singularities will be encountered with a finite rotation, or redundant

parameters must be utilized. The choice of parameterization is critical for the effectiveness

of attitude control, estimation, and data fusion algorithms, as are discussed in this work.
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The following subsections review several attitude parameterization with their

first-order kinematics and composition laws. Additionally, the second-order kinematics

are provided for the unit quaternion parameterizations, which is necessary for the

attitude tracking control law that enables the one spacecraft to track another.

2.4.1 Attitude Matrix

The foundation of attitude originates with a vector, x , expressed in two different

coordinate frames. Each coordinate frame is described by the orthonormal basis

vectors, such that FE = e1, e2, e3 and FE ′ = e′1, e′2, e′3 . The vector, x , represented in

each basis is

x = x1e1 + x2e2 + x3e3 = x ′1e′1 + x ′2e′2 + x ′3e′3

Therefore, in order to transform from basis FE to FE ′, the direction cosines defined by

the components

Rij = e′i · ej ,

parameterize the matrix, R. The column matrix representation of the vector x in FE ′, as

denoted by x ′ is computed through

x ′ = Rx .

The direction cosine matrix is equivalently termed the attitude matrix when discussing

the general proper orthogonal matrix [57]. Mathematically, this matrix is an orthogonal

transformation, belonging to the group SO(3). This transformation is preserving of the

vector’s length and orientation, that is,

RRT = I3×3,

where I3×3 is the identity matrix of appropriate dimension. Based on this defintion, R−1 =

RT . It is also proper, satisfying det (R) = +1. There are nine parameters necessary to

describe the attitude matrix, and hence, R contains six constraints. As a result, there

is a large redundancy in R, which comes at the cost of higher computational burden.
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However, the redundancy in R has the advantage of forming a globally unique and

singularity-free attitude parameterization that can be used for continuous singularity-free

control laws [60].

The composition of two sequential rotations R1 followed by R2 is,

R = R2R1. (2–1)

Rotations do not commute. As a convention, inertial attitude is termed to describe the

orientation between a rigid body and an inertial coordinate system. Whereas, relative

attitude is termed to describe the orientation between two non-inertial coordinate

frames. The relative attitude between two rigid bodies can be described through the

above attitude composition law as shown in Figure 2-2.

The rotations A and B represent the inertial attitude of FA and FB with respect

to the inertial reference, FI , respectively. Observing the direction of the rotations, the

relative attitude from FB to FA, is denoted by C and is equivalent to AT B, as seen in

Figure 2-2A. Whereas, Figure 2-2B depicts the relative attitude from FA to FB, and

is equivalent to CT = BT A. Therefore, the relative attitude is defined through attitude

compositions.

FI
FA

FB

A

BC

A

FI
FA

FB

A

BCT

B

Figure 2-2. Relative attitude compositions. A) FB to FA. B) FA to FB.
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Another important fact, is that infinitesimal rotations are characterized by the matrix

∆R = I3×3 − [∆φn×] , (2–2)

where n is the axis of rotation, ∆φ is an infinitesimal rotation about that axis. Note that

the [n×] notation represents the skew-symmetric matrix equivalent of the cross-product

operator, such that

[n×] =




0 −n3 n2

n3 0 −n1

−n2 n1 0




.

This fact will be exploited for the developments in Chapter 4 on data fusion. Using

the definition of the derivative and making use of the composition of rotations and the

definition of an infinitesimal rotation, the skew-symmetric matrix that is parameterized

by the angular velocity vector of the rotated frame with respect to the original frame in

rotated coordinates is

[ω×] = RṘT . (2–3)

Alternatively, given knowledge of the angular velocity, the attitude matrix kinematics are

given by

Ṙ = − [ω×] R,

which can be integrated to yield the attitude over time. Due to numerical truncation, six

constraints must be imposed to ensure R ∈ SO(3).

The second derivative of the attitude matrix is

R̈ = − ([ω̇×]− [ω×] [ω×]) R,

or alternatively the skew-symmetric matrix parameterized by the angular acceleration is

[ω̇×] = −R̈RT + [ω×] [ω×] .
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The second derivatives are developed for the attitude matrix and the unit quaternion in

anticipation of the the tracking controller described Section 2.7.

2.4.2 Euler Angles

A maximum of three angles is necessary to describe the attitude between two

arbitrary coordinate frames, FE and FE ′. The Euler angles are the angles through which

three consecutive rotations are made in sequence that form the composite rotation

describing the attitude between the two bases. Consider Euler angles, {θ1, θ2, θ3}, where

the fundamental rotations about directions {1, 2, 3} are described by

R(1, θ1) =




1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1




, R(2, θ2) =




cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2




,

R(3, θ3) =




cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1




.

Euler angle sequences are non-unique and can be categorized as symmetric and

asymmetric. Symmetric sequences, such as 3-1-3, have singularities at θ2 = ±nπ (n =

1, 2, 3, ...). Whereas, the asymmetric sequences, such as 3-2-1, have singularities at

θ2 = ±nπ/2 (n = 1, 3, 5, ...).

The attitude matrix parameterized by the 3-2-1 sequence of Euler angles is

R321(θ1, θ2, θ3) =




cθ1cθ2 sθ1cθ2 −sθ2

cθ1sθ2sθ3 − sθ1cθ3 sθ1sθ2sθ3 + cθ1cθ3 cθ3sθ3

cθ1sθ2cθ3 + sθ1sθ3 sθ1sθ2cθ3 − cθ1sθ3 cθ2cθ3




,

where cθ , cos θ and sθ , sin θ.
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Once again, considering the 3-2-1 sequence of Euler angles, the kinematics are



θ̇1

θ̇2

θ̇3




=
1

cθ2




0 sθ3 cθ3

0 cθ2cθ3 −cθ2sθ3

cθ2 sθ2sθ3 sθ2cθ3



ω

with inverse kinematics given by

ω =




−sθ2 0 1

cθ2sθ3 cθ3 0

cθ2cθ3 −sθ3 0







θ̇1

θ̇2

θ̇3




.

Clearly, the singularity manifests in the kinematics at θ2 = ±nπ/2 (n = 1, 3, 5, ...).

This fact holds for all asymmetric sequences. Although it was not explicitly shown, all

symmetric sequences have kinematic singularities at θ2 = ±nπ (n = 1, 3, 5, ...).

Euler angles form a minimal attitude parameterization and are amenable to

rapid computation with the caveat that transcendental functions, in the form of

sines and cosines, must be computed. However, they also suffer from singularities.

Singularities can be avoided by switching between symmetric and asymmetric Euler

angle sequences, but other minimal parameterizations exist that can also avoid

singularities, but without the transcendental functions required by the Euler angles.

2.4.3 Axis-Angle

Euler’s rotation theorem states, “a rotation about a point is always equivalent to

a rotation about a line through the point” [54]. Following from this theorem and the

previous development of the attitude matrix, the attitude matrix can be parameterized

by an axis and angle decomposition. Given a unit vector, n, directed along the axis of

rotation, and an angle φ through which the body is rotated, the attitude matrix can be

parameterized by an axis and the angle of rotation about that axis, which is expressed
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through the Euler-Rodrigues formula as

R(n,φ) = cosφI3×3 + (1− cosφ)nnT + sinφ[n×]. (2–4)

The axis-angle representation is a 4-parameter set that requires the computation of

transcendental functions. Additionally, this representation has a 2-to-1 correspondence

with the elements of the attitude matrix and is thus non-unique; that is, R(n,φ) =

R(−n,−φ). Using Eq. 2–3, the kinematics for the axis-angle representation are

ṅ =
1
2

(
I3×3 − cot

φ

2
[n×]

)
[n×]ω (2–5)

φ̇ = nTω

The inverse kinematics are given by

ω = φ̇n + sinφṅ − (1− cosφ) [n×] ṅ.

There is a singularity at φ = 0 and φ = ±2π. However, all singularities lie at the null

rotation state, which can be accounted for in the representation. This fact does pose

problems for stabilizing controllers, as the cotangent function is ill-conditioned near

the singularity points, which are the typical desired equilibria of a stabilizing controller.

(FIND REFERENCE)

The second order kinematics are

n̈ =
(

1
2

[ṅ×] +
1
4

csc2 φ

2
(
nnT − nT nI3×3

))
ω − 1

2
cot

φ

2
(
nnT − nT nI3×3

)
ω̇ (2–6)

φ̈ = ṅTω + nT ω̇,

and the second order inverse kinematics are

ω̇ = φ̈n + φ̇ [(1− cosφ) I3×3 − sinφ [n×]] ṅ + [sinφI3×3 − (1− cosφ) [n×]] n̈
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2.4.4 Euler Symmetric Parameters (Unit Quaternions)

An extension to the axis-angle representation is made by defining q , sin φ
2 n and

q4 , cos φ
2 . These new parameters make up a four-parameter set which have equivalent

algebra to Hamilton’s quaternion. The unit quaternion, q = [qT , q4]T is a once redundant

parameterization that must satisfy the constraint

qT q + q2
4 = 1.

The unit quaternion parameterizes the attitude matrix as

R(q) = (q2
4 − qT q)I3×3 + 2qqT − 2q4[q×]. (2–7)

The kinematics of the unit quaternion are bilinear such that

q̇ =
1
2
Ξ(q)ω =

1
2
Ω(ω)q

where

Ξ(q) =




q4I3×3 + [q×]

−qT


 , Ω(ω) =



− [ω×] ω

−ωT 0




The inverse kinematics are nonlinear and given by

ω = 2ΞT (q)q̇

The unit quaternion eliminates the transcendental functions found in the axis-angle

representation and results in a singularity-free and bilinear kinematic description. As

a result the unit quaternion is the parameterization of choice for many modern attitude

estimation and control algorithms. However, the unit quaternion is preserving of the

2-to-1 nature of the axis-angle representation and is thus subject to issues such as

“wind-up” in feedback controllers. Therefore, care must be taken in application of the unit

quaternion [60].
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2.4.5 Classic Rodrigues Parameters (CRPs)

The parameters of the Euler symmetric parameters can be combined to form the

classic Rodrigues parameters (CRPs), also known as the Gibbs vector, which are

defined by

ρ ,
q
q4

= tan
φ

2
n.

This combining of parameters is analogous to a projection of the quaternion 4-sphere

onto a 3-dimensional hyperplane as discussed in Subsection 2.4.7. The attitude matrix

parameterized by the CRPs is

R(ρ) =
1

1 + ρTρ
{(1− ρTρ)I3×3 + 2ρρT − 2[ρ×]}

The kinematics for the CRPs are given by

ρ̇ =
1
2
(
I3×3 + [ρ×] + ρρT)ω

and the inverse kinematics by

ω =
2

1 + ρTρ
(I3×3 − [ρ×]) ρ̇

The CRPs are an unconstrained minimal parameterization that avoid the computation

of transcendental functions, but also introduce a singularity at φ = ±π. In addition, the

CRPs are 1-to-1 for φ ∈ (−π, +π). However, this nonsingular range is quite limiting for

unconstrained rotations and there is no escaping the singularities due to their 1-to-1

nature.

2.4.6 Modified Rodrigues Parameters (MRPs)

For many applications, a singularity at φ = ±π, as present with the CRPs, may

not be acceptable. The modified Rodrigues parameters (MRPs) shift this singularity to

φ = ±2π, by defining

σ ,
q

1 + q4
= tan

φ

4
n
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The attitude matrix expressed with the MRPs is

R(σ) = I3×3 +
8[σ×]2 − 4(1− σTσ)[σ×]

(1 + σTσ)2

The kinematics for the MRPS are given by

σ̇ =
1
4
[(

1− σTσ
)

I3×3 + 2 [σ×] + 2σσT ]ω

and inverse kinematics are

ω =
4

(1 + σTσ)2

[(
1− σTσ

)
I3×3 − 2 [σ×] + 2σσT ]

The mathematical singularities present in the MRPs can be overcome by switching

to the shadow set, defined by

σs ,
−q

1− q4
,

when a singularity is near. The shadow set results from the 2-to-1 non-uniqueness of

the MRP representation. That is, the MRPs and their shadow set represent the same

attitude, but encounter singularities at different orientations, where the MRP is valid for

φ ∈ (−2π, +2π) and the shadow set for φ ∈ (0, +4π).

2.4.7 Stereographic Orientation Projections (SOPs)

Stereographic projections are a geometric technique for projecting a unit sphere

onto a plane. A projection point is chosen on the surface of the unit sphere as well as

a projection plane. All points on the unit sphere are then mapped to this plane. This

idea has been extended to develop new attitude parameterizations by projection of the

4-dimensional sphere that is formed by the constraint surface of the unit quaternion,

onto the 3-dimensional hyperplane. This concept was first used by Marandi and

Modi to develop the MRPs [61] as seen in Figure 2-4B. Schaub extended this work to

develop the symmetric stereographic orientation parameters (SSOPs) and asymmetric
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stereographic orientation parameters (ASOPs) [62]. The SSOPs are defined by

ζ =
q

q4 − a
,

where the constant, a, dictates the location of the singularity and is defined by

a = cos
φs

2
.

The ASOPs do not have such a compact form, as the geometric singularity depends on

both the axis and angle.
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Figure 2-3. Stereographic projections (adapted from [62]). A) Symmetric stereographic
projections. B) Asymmetric stereographic projections.

The CRPs and MRPs are subsets of SSOPs having a projection point along the

q4 axis. It is clear from Figure 2-4A that the CRPs are singular at Φ = ±π, where the

projection of point q = [0, 0, 0,−1]T on the three-sphere representing the quaternion

unity constraint is at infinity on the CRP hyperplane. Similarly, from Figure 2-4B, it is

clear that the MRP is singular at Φ = ±2π. Other parameters can be developed using

stereographic projections
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Figure 2-4. Common stereographic projections (adapted from [58]). A) Stereographic
projection of CRPs. B) Stereographic projection of MRPs.

2.4.8 Generalized Cayley Transformation

The Cayley transform provides a mapping from the group of skew-symmetric

matrices, so(3), to the special orthogonal matrices, SO(3). As the attitude matrix

belongs to SO(3), this mapping has significance for attitude representations. The Cayley

transform is defined as

R(Q) = (I3×3 −Q)(I3×3 + Q)−1 = (I3×3 −Q)−1(I3×3 + Q),

where Q is a skew-symmetric matrix. By letting Q = [ρ×], the Cayley transform

generates the CRPs. From this observation and the development of the MRPs, Tsiotras

used complex analysis with conformal mappings to motivate the extension of the Cayley

transform to higher orders with the generalized Cayley transform, given in Eq. 2–8

[63]. These higher order transforms were shown to parameterize the attitude matrix

and expand the singularity-free region of applicability of the CRP and MRP attitude

parameterizations.

R(Q) = (I3×3 −Q)n(I3×3 + Q)−n
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Therefore, the second order Cayley transform (n = 2) with Q = [σ×] yields the MRPs.

An example higher-order parameterization was developed with the 4th order Cayley

transform (n = 4) using Q = [τ×], where

τ ,
q

1 + q4 ±
√

2(1 + q4)
= tan

φ

8
n.

This fourth order parameterization places the singularities at ±4π. However,

Cayley-based parameterizations of order n ≥ 3 have disadvantages in the kinematical

description, where the differential equation is no longer defined by a second-order

polynomial expression, as is the case with the CRPs and MRPs.

2.4.9 Vectorial Attitude Parameterizations

Recently, the family of minimal attitude parameterizations known as the vectorial

attitude parameterizations [59] were introduced and subsequently characterized with

respect to a nonlinearity and singularity index [64]. This generalization of minimal

attitude parameterization was used to generate a family of attitude control laws to shape

the transient performance of the nonlinear attitude dynamics [65]. With the exception of

the Euler angles, all of the minimal parameterizations reviewed in this section belong to

a larger class of attitude parameters known as the vectorial attitude parameterizations.

The vectorial attitude parameterizations follow from Euler’s rotation theorem and have

the form,

r = r (φ) n, (2–8)

which map the axis of rotation, n, and angle of rotation, φ, through the generating

function, r (φ), to construct a family of minimal attitude parameterizations. Two important

families of vectorial attitude parameterizations are the sine and tangent families, defined

as

rs,m = ks sin
φ

2m
(2–9)
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and

rt ,m = kt tan
φ

2m
, (2–10)

respectively, where ks and kt are scaling coefficients and m is the order. All orders

of the Rodrigues parameters belong to the tangent family, such that the higher-order

Rodrigues parameters are defined by Eq. 2–10 when kt = 1. Whereas the higher-order

sine parameters (HOSPs) are defined by Eq. 2–9 when ks = 1. However, an arbitrary

number of vectorial parameterizations exist – of which, examples based on higher-order

azimuthal projections were defined in Reference [64].

As described in [64], the generating function r (φ) will produce attitude parameterizations

belonging to two singularity classes based on whether the generating function is locally

bi-Lipschitz continuous within φ ∈ [−π, +π]. Class I parameterizations are not locally

bi-Lipschitz continuous within φ ∈ [−π, +π] and thus have unavoidable kinematic

singularities within φ ∈ [−2π, +2π]. These parameterizations are the most prohibitive

for control, estimation, and data fusion when unconstrained motion is encountered.

Classic examples of Class I parameterizations are the first-order sine and tangent

vectorial parameterizations, which for ks, kt = 1 are referred to as the orthographic

parameters (OPs) and classical Rodrigues parameters (CRPs), respectively. Class

II parameterizations are locally bi-Lipschitz continuous within φ ∈ [−π, +π] and

thus have avoidable singularities for all rotation angles through use of the shadow

parameterizations. Shadow parameterizations are constructed through the projections

based on the two-to-one nature of the quaternion. The use of the shadows produces

a globally-singularity free parameterization. Examples of Class II parameterizations

are the second-order sine and tangent parameterizations, which for ks, kt = 1 are

known as the Lambert parameters (LPs) and modified Rodrigues parameters (MRPs),

respectively. One other parameterization of note is the rotation vector, also known as
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the equidistant orientation parameters (EOPs), which is a parameterization defined

∀φ ∈ R− {0} (i.e., all points on the real line except zero).

A summary of several vectorial attitude parameterizations is given in Table 2-1, with

definitions for the generating function and associated parameterization of the attitude

matrix and singularity class. In this table, the fourth-order Rodrigues parameters (FRPs)

are an example of the general HORPs.

Table 2-1. Several generating functions and the vectorial parameterization of SO(3)
Name r r (φ) R(r )
EOPs φ φ cosφI3×3 − sinφ

φ [φ×] + (cosφ−1)
φ2 φφT

CRPs ρ tan φ
2

1
(1+ρ2)

((
1− ρ2

)
I3×3 − 2 [ρ×] + 2ρρT

)

MRPs σ tan φ
4

1
(1+σ2)2

((
1− 6σ2 + σ4

)
I3×3 − 4

(
1− σ2

)
[σ×] + 8σσT

)

FRPs τ tan φ
8

{[
(1+τ2)4−32(1−τ2)2τ2

]
I3×3−8(1−τ2)(1−6τ2+τ4)[τ×]+32(1−τ2)2

ττ T
}

(1+τ2)4

HORPs ρm tan φ
2m (I3×3 − [ρm×])m (I3×3 + [ρm×])−m , (m > 2)

OPs η sin φ
2

(
1− 2η2

)
I3×3 − 2

(
1− η2

) 1
2 [η×] + 2ηηT

LPs λ sin φ
4

(
1− 8λ2 + 8λ4

)
I3×3 − 4

(
1− 2λ2

) (
1− λ2

) 1
2 [λ×] + 8

(
1− λ2

)
λλT

Description of the shadow parameterizations resulting from stereographic

projections of the unit quaternion onto the tangent plane have been discussed in detail

in [62, 63]. These results were generalized for the vectorial attitude parameterization by

Tanygin [64], in which the left shadow parameters are defined by r (φ + 2π) and the right

shadows by r (φ − 2π). Furthermore, using these shadows, a global nonsingular attitude

representation, r̃ is defined by

r̃ =





r (φ + 2π)n, φ ∈ (π, 2π]

r (φ)n, φ ∈ [−π, +π]

r (φ− 2π)n, φ ∈ [−2π,−π)

(2–11)

It is important to note that although the higher-order Rodrigues parameters and

higher-order sine parameters will have further bifurcations leading to many shadow

sets, only the shadows described above are necessary as they span φ ∈ [−2π, +2π],

which is all that is necessary due to the periodic invariance of attitude.
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Taking the time-derivative of Eq. 2–8 yields

ṙ = ṙ (φ)n + r (φ)ṅ, (2–12)

where ṙ (φ) = (∂r/∂φ)φ̇. Applying the known relationships for the axis-angle representation

time-derivatives, φ̇ and ṅ [57], to Eq. 2–12, leads to the forward kinematics form

ṙ = G(r )ω, (2–13)

where G(r ) is the forward kinematical Jacobian, which is in general a nonlinear

function of r . A table of several forward kinematical Jacobian matrices are provided

in Reference [64]. However, for data fusion, the inverse kinematics Jacobian is of

interest, which relates the angular velocity to the time-derivative of the parameterization

through

ω = H(r )ṙ

where H(r ) = G−1(r ) is the inverse kinematical Jacobian. The kinematics and

inverse kinematics for various orders of the Rodrigues parameters have already been

summarized in Sections 2.4.5-2.4.8.

Table 2-2 provides a summary of the inverse kinematical Jacobian for all of the

vectorial attitude parameterizations described in Table 2-1. This table will be extensively

used in the developments in Chapter 4, where proper choice of attitude parameterization

for data fusion is based on the linearity of the inverse kinematics Jacobian.

2.5 Summary of Attitude Parameterizations

Table 2-3 summarizes the properties of the attitude parameterizations presented

in Section 2.4. The properties of interest are whether the parameterization is global,

unique, constrained, nonlinear, or contains singularities. Global refers to its ability

to describe all attitudes and related kinematic conditions and is directly tied to the

presence of singularities. Uniqueness refers to whether the parameterization is 1-to-1
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Table 2-2. Inverse kinematics Jacobian for several vectorial attitude parameterizations
Name r H(r )

EOPs φ sinφ
φ I3×3 − (1−cosφ)

φ2 [φ×] + 1
φ2

[
1− sinφ

φ

]
φφT

CRPs ρ 2
(1+ρ2) (I3×3 − [ρ×])

MRPs σ 4
(1+σ2)2

[(
1− σ2

)
I3×3 − 2 [σ×] + 2σσT

]

FRPs τ 8
(1+τ2)4

[(
1− τ2

) (
1− 6τ2 + τ4

)
I3×3 − 4

(
1− τ2

)
[τ×] + 2

(
5− 2τ2 + τ4

)
ττ T

]

HORPs ρm
2ρ

ρm(1+ρ2) I3×3 − 2ρ2

ρ2
m(1+ρ2) [ρm×] +

[
2m

ρ2
m(1+ρ2

m) −
2ρ

ρ3
m(1+ρ2)

]
ρmρ

T
m

OPs η 2

(1−η2)
1
2

[(
1− η2

)
I3×3 −

(
1− η2

) 1
2 [η×] + ηηT

]

LPs λ 4

(1−λ2)
1
2

[(
1− 2λ2

) (
1− λ2

)
I3×3 − 2

(
1− λ2

) 3
2 [λ×] +

(
3− 2λ2

)
λλT

]

with attitude matrix. Constraints refer to the redundancy in the parameterization with

respect to the rotational degrees-of-freedom. Nonlinearity describes the form of the

kinematical differential equations, where “Transc.” refers to transcendental functions and

“Poly.” refers to polynomials of at least order two. Finally, singularity refers to the type

of singularity, where “Geo.” refers to the singularity being of geometric origin, in which

not all attitudes can be described by the parameterization, “Kin.” refers to kinematic

singularities, in which the parameterization or angular velocity escapes to infinity in finite

time at certain attitudes, and “Null state” refers to singularities where the null state does

not exist for the parameterization.

Table 2-3. Properties comparison of several attitude parameterizations
Name Symbol Global Unique Const. Nonlinearity Singularity
Attitude Matrix R Yes Yes 6 Linear Nonsingular
Euler Angles (θ1, θ2, θ3) No No 0 Transc. Kin.
Axis-Angle (n,φ) No No 1 Transc. Null state
Quaternions q Yes No 1 Linear Nonsingular
EOPs φ No No 1 Transc. Null state
CRPs ρ No Yes 0 Poly. Geo./Kin.
MRPs σ No No 0 Poly. Geo./Kin.
FRPs τ No No 0 Poly. Geo./Kin.
HORPs ρm No No 0 Poly. Geo./Kin.
OPs η No Yes 0 Poly. Geo./Kin.
LPs λ No No 0 Poly. Geo./Kin.
HOSPs ηm No No 0 Poly. Geo./Kin.

The attitude matrix is the only unique global nonsingular description of attitude.

However, nine parameters are necessary in its description. The unit quaternion reduces
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the number of parameters down to four and is still globally nonsingular with linear

kinematics. However, it still requires a single constraint and is non-unique. The unit

quaternion properties are sufficient for many applications in attitude estimation and

control as described in Section 2.7 and Chapter 3, respectively. However, in Chapter 4,

minimal parameterizations will be utilized for fast and efficient attitude data fusion

algorithm development, due to their unconstrained nature.

2.6 Attitude Dynamics

Focus is now turned towards attitude dynamics and control. The rotational motion

of rigid spacecraft is governed by Euler’s Second Law of Motion. This law states that

the time-rate-of-change of the angular momentum of a rigid body, H, about the center of

mass (or an inertial point), point c, is equivalent to the net external torque, τ , acting on

the body. That is,

Ḣc = τ (2–14)

In general, the external torque in orbit will consist of the control input, as well as

disturbance torques originating from environmental factors and non-environmental

factors. Examples of environmental factors solar pressure, aerodynamic drag, magnetic

interactions, and inertia-induced gravity gradients. An example non-environmental factor

is mass ejection [66].

Equation 2–14 is a vector expression. When the vectors are represented in body

coordinates, the attitude dynamics equations are

Jω̇ = τ − [ω×]Jω

where J is the constant inertia matrix, ω is the angular velocity of the body relative to the

inertial frame, and [ω×]Jω is referred to as the gyroscopic torque.

Given knowledge of the spacecraft inertia as well as the environmental effects, the

attitude dynamics can be used as a plant model for the design of a control input to affect
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the attitude motion. Designing a control input to track another spacecraft for attitude

resource sharing is the focus of Section 2.7.

2.7 Attitude Tracking Control

Up to this point in the discussion, attitude parameterizations have been reviewed

that describe the relative orientation of a coordinate frame fixed to a spacecraft with

respect to another frame of interest. Additionally, attitude dynamics have been reviewed

that describe the evolution of the spacecraft’s rotational motion. Utilizing these results,

the next section is concerned with controlling the rotational motion of a spacecraft to

accomplish some mission specific objective. Specifically, attitude control is necessary

for attitude resource sharing, as it allows one spacecraft to point a sensor at another

spacecraft to capture measurements about the observed spacecraft’s states. In

the discussion that follows, coordinate frames are developed to describe a desired

orientation for resource sharing and a nonlinear control law is developed to ensure that

the desired signal is tracked.

2.7.1 Desired Coordinate Frames

An attitude tracking controller requires knowledge of the kinematics of a reference

quaternion trajectory with derivatives up to second order. The following section defines

several important reference vectors and their associated natural coordinate system.

The reference vectors are then used to derive an associated coordinate frame. Finally,

the kinematic relationships for each of these coordinate frames are developed. Unless

otherwise specified, it is assumed that the primary pointing direction is aligned with the

XB and, if necessary, a secondary pointing direction is aligned with the ZB. Additionally,

unless otherwise specified, all derivatives, denoted by ˙( ) are assumed to be inertial.

This assumption is valid in most cases, as most reference vectors are known in inertial

coordinates and therefore can be differentiated directly without the need to introduce

further coordinate transformations.
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2.7.1.1 Relative spacecraft sharing frame (SH)

The primary objective of attitude resource sharing is transform of attitude information

between two spacecraft. Therefore, the objective is to track an attitude trajectory that

points the chief’s relative attitude sensor at a neighboring deputy to capture relative

attitude information. This pointing direction is defined by the relative position vector.

In the context of this section, the relative position vector is denoted by ρ, which is a

standard convention. However, it should not be confused with the CRPs in the broader

discussions in other chapters. To uniquely define the basis triad, a secondary pointing

vector will remain general and is denoted by Λ. Projections ensure the orthogonality

of this basis. For example, the primary goal is to sense another spacecraft, but the

secondary objective may be to have an orthogonal face of the spacecraft that is

sun-pointing. In that case, if Λ is defined as the position vector from the body to the

sun, rB/�, then the Zsh will be as close to sun-pointing while pursuing the primary

objective which is defined by the Xsh pointing along the relative position vector. This

definition also maintains the orthogonality of the bases vectors. Therefore, the sharing

frame, shown in Figure 2-5A, is defined by the orthonormal basis vectors, {Xsh, Ysh, Zsh},

where

Xsh =
ρ

‖ρ‖ , Ysh =
Λ× Xsh

‖Λ× Xsh‖
, Zsh = Xsh × Ysh.

2.7.1.2 Ground target frame (T)

The ground target frame (FT ), shown in Figure 2-5B, is defined by the orthonormal

basis vectors, {Xt , Yt , Zt}. A Cartesian coordinate system is attached to T and aligned

with the basis vectors defined by

Zt =
υ

‖υ‖ , Yt =
Zt × Λ

‖Zt × Λ‖ , Xt = Yt × Zt (2–15)

where υ is the position vector from the center of mass of the chief to the ground target

point. If the mission of the spacecraft is to track ground targets but periodically share
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measurements with another spacecraft flying in formation, then choosing Λ = ρ, ensures

the chief’s attitude is as near to the secondary sharing objective as possible, while

satisfying the primary objective.

Recall from Eq. 2–15 that the target quaternion is defined by the relative target

vector υ and a mission-dependent vector that closes the triad. By choosing the

mission-dependent vector to be the relative position vector from chief to deputy, ρ,

the spacecraft will track the target while also minimizing the slew to share. Since υ is

measured in inertial coordinates, the matrix

Rt = [Xt Yt Zt ]T . (2–16)

defines the attitude matrix from the inertial coordinates to the target coordinates. The

process outlined in Reference [57] is used for converting the attitude matrix in Eq. 2–16

to the quaternion relating the target frame to the inertial frame. Therefore, the target

quaternion, qt , is known.

The reference attitude trajectory is defined by the basis vectors

Zt =
υ

(υTυ)1/2 , Yt =
[Zt×]ρ

(([Zt×]ρ)T ([Zt×]ρ))
1/2

, Xt = [Yt×] Zt

XB

YB

ZB

Zsh

Xsh

Ysh

⇢

⇤

A

XB

YB

ZB

⇤

YtXt

Zt�

B

Figure 2-5. Tracking coordinate frames. A) Body and sharing frames. B) Body and target
frames.
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2.7.2 Desired Quaternion Kinematics

The attitude matrix was constructed from a set of time-varying basis vectors. By

differentiating these vectors, the derivatives of the attitude matrix can be constructed.

Then, the derivatives of the attitude parameterization of interest can be backed out and

used in the controller synthesis.

2.7.2.1 Relative spacecraft sharing frame kinematics

It assumed that all unit vectors and their derivatives are known in inertial coordinates.

If this is not the natural description, then transformations must be substituted into these

expressions. Therefore, the sharing frame basis vectors are

Xsh =
ρ

(ρTρ)
1/2

, Ysh =
[Λ×] Xsh(

([Λ×] Xsh)T ([Λ×] Xsh)
)1/2

, Zsh = [Xsh×] Ysh.

Since the unit vectors are represented in inertial coordinates and define by desired

coordinate frame, they naturally form the attitude matrix defined by

Rsh = [Xsh Ysh Zsh]T ,

which transforms vectors represented in inertial coordinates to sharing frame coordinates.

Taking the time-derivative of the basis vectors yields

Ẋsh =
(
ρ̇ρT − ρρ̇T

ρTρ

)
Xsh

Ẏsh =

[([
Λ̇×
]

Xsh + [Λ×] Ẋsh
)

([Λ×] Xsh)T − ([Λ×] Xsh)
([
Λ̇×
]

Xsh + [Λ×] Ẋsh
)T

([Λ×] Xsh)T ([Λ×] Xsh)

]
Ysh

Żsh =
[
Ẋsh×

]
Ysh + [Xsh×] Ẏsh,
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which can be used to produce the derivative of the attitude matrix. Taking the second

derivative of the unit vectors leads to

Ẍsh =
(
ρ̇ρT − ρρ̇T − 2ρ̇TρI3x3

ρTρ

)
Ẋsh +

(
ρ̈ρT − ρρ̈T

ρTρ

)
Xsh

Ÿsh =
1

([Λ×] Xsh)T ([Λ×] Xsh)

{[([
Λ̇×
]

Xsh + [Λ×] Ẋsh
)

([Λ×] Xsh)T − ([Λ×] Xsh)
([
Λ̇×
]

Xsh

+ [Λ×] Ẋsh
)T − 2

([
Λ̇×
]

Xsh + [Λ×] Ẋsh
)T

([Λ×] Xsh) I3x3

]
Ẏsh +

[ ([
Λ̈×
]

Xsh + 2
[
Λ̇×
]

Ẋsh

+ [Λ×] Ẍsh
)

([Λ×] Xsh)T − ([Λ×] Xsh)
([
Λ̈×
]

Xsh + 2
[
Λ̇×
]

Ẋsh + [Λ×] Ẍsh
)T
]

Ysh

}

Z̈sh =
[
Ẍsh×

]
Ysh + 2

[
Ẋsh×

]
Ẏsh + [Xsh×] Ÿsh,

which can be used to construct the second derivative of the attitude matrix.

2.7.2.2 Ground target frame kinematics

Note: If the relative position vector is measured directly, it will be known in body

coordinates. In this case, the relative position vector must be transformed to inertial

coordinates for this analysis. Alternatively, if differences in inertial position are utilized,

no additional modification is necessary. Also, the target vector, υ, is derived from a

given target position in inertial coordinates and the absolute position of the spacecraft,

known inertially. Therefore, the target vector and its derivatives are all known in inertial

coordinates. Using this knowledge, the inertial derivatives are formulated as

Żt =
(
υ̇υT − υυ̇T

υTυ

)
Zt

Ẏt =

[
(
[
Żt×

]
ρ + [Zt×] ρ̇)([Zt×]ρ)T − ([Zt×]ρ)(

[
Żt×

]
ρ + [Zt×] ρ̇)T

([Zt×]ρ)T ([Zt×]ρ)

]
Yt

Ẋt =
[
Ẏt×

]
Zt + [Yt×] Żt

and the derivative of the attitude matrix is

Ṙt = [Ẋt Ẏt Żt ]T .
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The second derivative of the bases vectors is

Z̈t =
(
υ̇υT − υυ̇T − 2υ̇TυI3x3

υTυ

)
Żt +

(
ϋυT − υϋT

υTυ

)
Zt

Ÿt =
1

([Zt×]ρ)T ([Zt×]ρ)
{[

(
[
Żt×

]
ρ + [Zt×] ρ̇)([Zt×]ρ)T − ([Zt×]ρ)(

[
Żt×

]
ρ + [Zt×] ρ̇)T

− 2(
[
Żt×

]
ρ + [Zt×] ρ̇)T ([Zt×]ρ)I3x3

]
Ẏt +

[
(
[
Z̈t×

]
ρ + 2

[
Żt×

]
ρ̇ + [Zt×] ρ̈)([Zt×]ρ)T

−
(
[Zt×]ρ)(

[
Z̈t×

]
ρ + 2

[
Żt×

]
ρ̇ + [Zt×] ρ̈)T ]Yt

}

Ẍt =
[
Ÿt×

]
Zt + 2

[
Ẏt×

]
Żt + [Yt×] Z̈t

and the second derivative of the attitude matrix is

R̈t = [Ẍt Ÿt Z̈t ]T .

Recall that the second derivative of ρ can be computed from the Clohessy-Wiltshire-Hill

(CWH) equations and transformed to inertial coordinates. A brief review of the CWH

equations is given in Section 2.7.3.

Using attitude matrix and its derivatives, the corresponding angular velocity and

derivative of angular velocity for the target, required by the controller, can be computed

as

[ωd×] = −ṘtRT
t

[ω̇d×] = −R̈tRT
t − ṘtṘT

t

2.7.3 Clohessy-Wiltshire-Hill (CWH) Equations

Since the tracking signal for resource distribution utilizes information about

the relative position vector, this section reviews the description of relative position.

Determining the relative motion and its derivatives when both satellites have knowledge

of their inertial position and derivatives results from a differencing in their respective

states. However, if relative position is measured onboard the spacecraft, then the

description of motion takes place in a non-inertial coordinate system. Under these
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conditions, there are many relative motion formulations, which make varying assumptions.

The most common relative motion equations are the Clohessy-Wiltshire-Hill (CWH)

equations [67, 68]. The CWH equations assume that the one spacecraft is bounded to

a circular orbit and that all other spacecraft are in close proximity with respect to their

distance from the Earth. Other relative motion formulations exists that relax the circular

orbit requirements. The most studied is the Tschauner-Hempel equations [68, 69]. That

formulation, however makes use of the true-anomaly domain to obtain closed-form

solutions. In practice, the true anomaly must still be mapped to the time domain solving

Kepler’s Equation, which has no closed-form solution [70]. The assumptions for the

CWH equations to hold will always be valid for the interest of this research, but the

circular assumption can be relaxed to make use of the results for general elliptical

motion of the chief.

Given the chief follows a circular orbit and the deputies are in close proximity to the

chief, the CWH equations describes the motion of the relative position vector in LVLH

coordinates. The CWH equations are shown in state-space form, in Eq. (2–17),



ẋ

ẏ

ż

ẍ

ÿ

z̈




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0







x

y

z

ẋ

ẏ

ż




(2–17)
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The state transition matrix (STM) of the CWH equations has an analytic form, due to its

linear time-invariant structure, and is expressed as

Φ(t , t0) =




4− 3cnt 0 0 snt/n 2(1− cnt )/n 0

−6(nt − snt ) 1 0 −2(1− cnt )/n 4snt/n − 3t 0

0 0 cnt 0 0 snt/n

3nsnt 0 0 cnt 2snt 0

−6n(1− cnt ) 0 0 −2snt −3 + 4cnt 0

0 0 −nsnt 0 0 cnt




,

where n is the mean motion of the chief orbit, and cnt , cos(nt) and snt , sin(nt). The

state transition matrix representation of the CWH equations is

x(t) = Φ(t , t0)x0 = Φ(t − t0)x0

given the initial state x0 = [x0, y0, z0, ẋ0, ẏ0, ż0]T .

If using the CWH equations, the relative position vector expressed in LVLH

coordinates must be transformed to inertial coordinates and differentiated accordingly.

Therefore, the attitude matrix from LVLH to inertial coordinates and its derivatives will

enter into the desired kinematical representation.

After transforming the relative position and its derivatives into inertial coordinates,

substitution into the desired attitude kinematic expressions yields a trajectory that can be

tracked to point a relative sensor along the relative position vector.

2.7.4 Attitude Tracking Controller Derivation

The primary objective of the chief is to point its relative attitude sensor along the

relative position vector joining itself with the deputy. This objective is satisfied when

the body frame is aligned with the desired frame with zero relative angular velocity.

Therefore the control objective is to drive the error quaternion, qe = [qT
e , q4e]T , defined by

Eq. 2–18, to the identity quaternion [0, 0, 0, 1]T and the error angular velocity, defined by
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Eq. 2–19, to zero.

qe = q ⊗ q−1
d (2–18)

=
[
Ξ(q−1

d ) q−1
d

]
q

ωe = ω − RB/Dωd , (2–19)

The error states require qd , which is the quaternion used to represent a desired

orientation, ωd , which is the desired angular velocity, and RB/D, which is the attitude

matrix from desired to body coordinates.

The attitude tracking controller must generate a stabilizing control input that drives

the error quaternion and error angular velocity, asymptotically to the identity quaternion

and zero, respectively. Given a state x , Lyapunov’s second method, also known as

the “direct method”, states that the existence of a Lyapunov candidate function (LCF)

satisfying the following conditions

1. V (0) = 0

2. lim‖x‖→∞ V (x) =∞

3. V (x) > 0, ∀ x − {0}

4. V̇ (x) < 0 ∀ x − {0}

is sufficient to prove global asymptotic stability (GAS) to the equilibrium state, provided

only one equilibrium state exists. Due to the 2-to-1 nature of the quaternions, MRPs,

and other non-unique attitude parameterizations, the attitude tracking feedback

controller using these representations can only be locally asymptotically stable (LAS).

That is, there are two equilibria for the system. Additionally, attitude states are bounded

and thus the Lyapunov function cannot be radially unbounded. However, due to the

persistence of excitation, the trajectory will never remain trapped in the undesired
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equilibrium state and all other attitude initial conditions will asymptotically approach the

desired equilibrium.

A LCF is constructed in Eq. 2–20 that is both positive definite and radially

unbounded. The choice of K as a scalar multiple of inertia matrix follows from the

discussion in Reference [71].

V =
1
2
ωT

e K−1Jωe + (1− q4
2
e), (∀K > 0) (2–20)

By taking the inertial derivative of V in Eq. 2–20, the Lyapunov derivative,

V̇ = ωT
e K−1(τ − [ω×] Jω − JṘB/Dωd − JRB/Dω̇d + Kq4eqe) (2–21)

can be shown to be negative definite with the control input

τ = [ω×] Jω + JṘB/Dωd + JRB/Dω̇d − Kq4eqe − Cωe, (∀C > 0). (2–22)

Therefore, the controller in Eq. 2–22 ensures that all of the sufficient conditions for

Lyapunov stability [72] are met and the system is asymptotically stable except for the

special case when ωe = 0 and q4e = 1. Although the special case is unlikely due to

perturbations, causing a persistence of excitation, the quaternion feedback control input

is non-unique and provisions should be made when using this controller if that case is

expected. Also, note that this control law requires that the desired quaternion is twice

differentiable.

2.8 Summary

The requisite theory for attitude parameterizations, kinematics, dynamics, and

control were developed in this chapter. The attitude parameterizations were compared

based on their advantages and disadvantages with respect to several important

properties. Specifically, the attitude matrix was shown to be without any deficiency

in uniqueness or singularity, but at the expense of high redundancy and number of

constraints. The quaternion is highly regarded due to its linearity and lack of singularity
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and single redundancy. However, caution must be given to its non-uniqueness and

proneness to wind-up in attitude control, as well as enforcement of its constraint. Finally,

the vectorial attitude parameterizations were reviewed, as they are unconstrained and

can be made to be globally nonsingular through use of their shadow sets.

Attitude resource sharing requires the chief to point a relative attitude sensor at

its deputies to measure their relative states. In order to accomplish this objective, the

second-order kinematics of the desired attitude were formulated to generate a reference

trajectory for tracking control. A nonlinear tracking controller was derived through

Lyapunov’s direct method that made use of the unit quaternion parameterization and

attitude matrix. These results are critical for sharing attitude information between the

chief and deputies.
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CHAPTER 3
DISAGGREGATED ATTITUDE ESTIMATION

The goal of inertial attitude estimation in a disaggregated system is for each

spacecraft in the network to estimate the entire state of the network using only local

information. In the disaggregated estimation scheme, the chief makes use of the relative

attitude sensor to capture vector measurements to the deputy of interest. In addition,

the chief estimates its inertial attitude. This chapter develops the theory for the chief to

estimate a deputy’s inertial attitude. In addition, the theory is presented for the deputy

to estimate its inertial attitude, but using an augmented state vector to account for the

other spacecraft in the network. Thus, the chief and deputies use the same state vector

and the attitude estimation for the disaggregated system yields multiple estimates of

the inertial states of the chief and each deputy, along with their cross-correlations. This

method is beneficial when all information is combined through data fusion.

This chapter first reviews basic results in estimation and Kalman filtering. The

remainder of the chapter is divided into two main sections. In the first of these sections,

inertial attitude sensors and estimation are surveyed and reviewed. In the second of

these sections, the extended Kalman filter equations for the disaggregated attitude

estimation scheme are derived.

3.1 General Nomenclature

In this chapter, compact notation is needed to describe the measurement quantities

and the state estimates. Particularly, unit vectors describing a direction are the primary

measurements necessary for attitude systems, where the direction is specified by

a line segment connecting two points. The frame in which those points are known

is important as well as the basis in which that vector is represented. The notation

for vector measurements is AãB/A,i |k , where a is the vector, the tilde represents a

measured quantity, the left superscript denotes the frame that a is represented, and

the right subscript states that the i th-vector originates from a point fixed in in FA and
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ends in a point fixed in FB at time index k . For parameterized attitude states, the

notation is x̂−B/A|k , where x is the attitude state, the hat designates the quantity is a state

estimate, the right superscript denotes the pre- or post-update status, and the right

subscript states that the attitude is from FB to FA at time index k . The time index is

often dropped, but included when relevant to the discussion. For the attitude matrix, the

notation is RB/A, where the right subscript states that R transforms vectors represented

in FA to FB. Finally, the following equivalency will be used extensively,

RB/A = R(x̂−B/A).

3.2 Inertial Attitude Sensors

Attitude sensors are devices that measure quantities used to determine attitude.

Inertial attitude sensors measure vectors represented in the body frame, which with

mathematical models of the vectors represented in the inertial frame are related through

the inertial attitude matrix. Most attitude sensors measure angles that are used to

determine a direction, and thus these sensors produce unit vector measurements.

However, there are sensors that measure full vector information, that is, magnitude and

direction. Also note, without loss of generality, the sensor frame and body frame are

assumed to be aligned.

In the following section, measurement models, inertial reference models, and

error sources are described for three typical inertial attitude sensors. Sun sensors and

magnetometers are typically small, low power, sensors used for low precision attitude

measurements. These sensors will be referred to as coarse attitude sensors. It is

important to note that higher accuracy versions of these sensors exist, but typically at

the expense of large SWaP. Star trackers are fine precision attitude sensors, which are

typically higher in SWaP than the coarse sensors. Therefore, star trackers are ideally

suited for attitude resource sharing in precision pointing applications.
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3.2.1 Sun Sensors

Let the direction from the spacecraft to the sun be denoted by s, and referred to

as the sun vector. Sun sensors measure the sun vector with respect to the body frame,

sB . Given a mathematical model of the inertially represented sun vector, sI , the inertial

attitude matrix relates the measured and modeled sun vector through

Bs = RB/I
Is.

A sun sensor measures the sun vector with a measurement model given by

Bs̃ = RB/I
Is + ηs,

where ηs is white zero-mean Gaussian noise. The random noise in a sun sensor is

a result of several factors such as, Earth and Lunar albedo, reflections, surface area

deviations, and temporal variations in the sun’s electromagnetic radiation output [73, 74].

The inertial model for the sun vector is given as a function of the Julian date, which

specifies the ecliptic longitude of the sun, λe and the obliquity of the ecliptic, ε [55]. The

inertial sun vector is given by

Is =




cosλe

cos ε sinλe

sin ε sinλe




.

3.2.2 Magnetometers

Let the magnetic field vector at a particular position be denoted by m. Unlike the

sun vector direction, which is a unit vector, the measured magnetic field vector is a true

vector with magnitude and direction and must be normalized, which yields Bm. Given

a mathematical model of the normalized inertially represented magnetic field vector,

Im, the inertial attitude matrix relates the measured and modeled magnetic field vector
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through

Bm = RB/I
Im.

A three-axis magnetometer (TAM) measures the magnetic field vector with a

measurement model given by

Bm̃ = RB/I
Im + ηm,

where ηm is white zero-mean Gaussian noise. The random noise in the TAM is a result

of internal magnetic and electric fields. In addition, errors that exist in the inertial model

can be included in the measured noise. The presence of internal fields typically limits

the use of magnetometers to lower orbits, as the strength of the field follows an inverse

cube law with distance from the source. Systematic error sources such as sensor

misalignment can exist, but can be accounted for through calibration.

Several inertial magnetic models exists, ranging from a low-order magnetic dipole

model to high-order spherical harmonics models. One example is the World Magnetic

Model (WMM) [75]. The WMM is a 12th-order spherical harmonics model that includes

core and surface effects as well as linear secular variations. The magnetic dipole model

is given by

Im =
R3
⊕H0

r 3

[
3
(
dT r

)
r

r 2 − d

]
,

where R⊕ is the radius of the Earth, H0 is the magnetic field intensity computed from

the first order coefficients of the WMM at the date and time of interest, r is the orbital

position vector in inertial coordinates, and d is the direction of the dipole axis in inertial

coordinates. The magnetic dipole mode is used as the inertial reference for all magnetic

field vector simulations in this work.

70



3.2.3 Star Trackers

Star trackers, like sun sensors, measure directions to inertially known points.

However, measurements of stars differ from the sun in that they can be approximated

as inertially fixed points in space. Thus, the inertial representation star directions are

independent of the spacecraft position.

Star trackers are highly accurate inertial attitude measuring devices, capable of

sub-arcsec accuracies. Unlike sun sensors and magnetometers, star trackers can

measure more than one reference vector. Star trackers take focal-plane measurements

with a photovoltaic sensor, and map those measurements to the inertial location

contained in an on-board star catalog. An example star tracker is shown in Figure 3-1A.

Figure 3-1B shows a pin-hole model for a star tracker capturing line-of-sight measurements.

The measurement model for the star tracker is

A

Pin-hole Optics

Focal Plane

ith Star

FI

FB

Star Measurement bi

B

Figure 3-1. Description of a typical star tracker. A) Star tracker hardware [76]. B) Star
tracker measurement.

I
b̃i = RB/I

Ibi + ηs,

where
B
b̃i is the measured direction of the i th-star in the body frame, RB/I is the attitude

matrix mapping inertial to body coordinates, Ibi is the cataloged direction of the i th-star
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in the inertial frame, and ηs is white zero-mean Gaussian noise that corrupts the

measurement. Focal plane measurements are modeled through the vector form of the

collinearity equations, such that

Bbi =
1√

f 2 + x2
i + y2

i




−xi

−yi

f




, Ibi =




bx ,i

by ,i

bz,i




where f is the focal length of the sensor and (xi , yi) are the coordinates of a measurement

on the focal plane, and (bx ,i , by ,i , bz,i) are the inertial coordinates of a star identified in the

catalog. Due to the narrow field-of-view of a typical star tracker, attitude accuracy about

the boresight direction is typically an order of magnitude larger than the transverse

directions [77].

Star trackers typically operate in two modes. The first mode is the attitude

acquisition or “lost-in-space” mode, where stars are associated through pattern

recognition algorithms with respect to a stored star catalog of known stars, which

yields bI i . The second mode tracks the already identified stars and increases accuracy

by filtering phenomenon such as star streaking using angular velocity information. For

the purposes of this discussion, it is assumed that the stars have already been identified

and processed. The virtual star tracker charge-coupled device (CCD) model described

in References [78, 79] is used in this research and shown in Figure 3-2. The geometry

is reviewed to provide a complete picture of the vector measurements originating from a

star tracker.

The vectors identifying the corners of the CCD as directed from the pinhole are

denoted by {S1, ... , S4}. These corner vectors represented in right ascension and
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declination coordinates are

ST
1 =




− sinϑ

cosϑ sin ε

cosϑ cos ε




, ST
2 =




sinϑ

cosϑ sin ε

cosϑ cos ε




, ST
3 =




sinϑ

− cosϑ sin ε

cosϑ cos ε




, ST
4 =




− sinϑ

− cosϑ sin ε

cosϑ cos ε




where ϑ is the right ascension and ε is the declination. These coordinates are related to

the field-of-view (FOV), denoted by ϑx and ϑy , as

ϑ =
ϑx

2
, cos2 ε =

cosϑx + cosϑy

cosϑx + 1

The normal directions to the CCD are

n12 =
S1 × S2

‖S1 × S2‖
, n23 =

S2 × S3

‖S2 × S3‖
, n34 =

S3 × S4

‖S3 × S4‖
, n41 =

S4 × S1

‖S4 × S1‖
.

A star vector, Sk , is measured by the sensor if all of the following conditions are

satisfied:

ST
k n12 < 0, ST

k n23 < 0, ST
k n34 < 0, ST

k n41 < 0.

Therefore, the virtual CCD is supplied with identified stars from pattern recognition and

tracking algorithms to determine if the star is consistent with the CCD geometry. Given

consistency, a measurement is captured, which is subject to errors sources such as

misalignments, sensor noise, and ambient light.

3.2.4 Rate Gyroscope

The rate gyroscope is a device used to measure angular rates of a rigid body with

respect to an inertial frame. Gyroscopes are often referred to as “inertial” sensors,

as they make use of the inertia properties of the device. However, gyroscopes do

not directly produce inertial attitude information. Instead, they integrate angular rate

measurements and make use of a reference initial condition to yield inertial attitude.

This makes the gyroscope a powerful tool for propagating inertial attitude with high
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Figure 3-2. Description of the geometry of focal-plane measurements using a virtual
CCD

accuracy. Farrenkopf’s gyroscope model is assumed [80], which is given by

ω = ω̃ − β − ηv (3–1)

β̇ = ηu, (3–2)

where β is the rate bias, ηv is zero-mean Gaussian white noise corruption, ηu is a

zero-mean white Guassian random variable that represents random walk in the drift

rate. The covariance statistics of the random variables for white noise corruption and the

random walk are given by, σ2
v I3×3 and σ2

uI3×3, respectively.

3.3 Deterministic Attitude Determination

Given vector measurements originating from the sensors described in Section 3.2,

the goal is to determine the spacecraft attitude relative to an inertial frame. Attitude

determination is relevant in the context of resource sharing because it allows the

spacecraft to initialize its attitude estimator. Adopting the terminology of Wertz [73],

attitude determination is either deterministic or optimal. The deterministic solution

is obtained when two non-parallel vectors are measured in one basis and are also
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known in another. The TRIAD algorithm [81] is a deterministic attitude determination

method, which constructs three orthonormal vectors using the familiar Gramm-Schmidt

orthogonalization process known from linear algebra. Optimal attitude determination

occurs when the system is overdetermined and is based in optimization theory and

use the statistical properties of the sensors. An survey of several existing attitude

determination algorithms is provided in Reference [82].

Deterministic attitude determination is defined when there are the minimum number

of vector measurements necessary to compute the inertial attitude. Black’s TRIAD

algorithm solves the deterministic attitude determination problem, given two nonparallel

unit vectors, Bb1 and Bb2 measured in the body and the corresponding unit vectors, Ib1

and Ib2, known in the inertial frame. The attitude matrix relates the body and inertial

representations through

Bb1 = RB/I
Ib1, Bb2 = RB/I

Ib2.

These vectors span a plane and overdetermine the system. Therefore, the TRIAD

method extracts the minimum information from to the two vectors to construct three

orthonormal vectors using the Gram-Schmidt orthogonalization process so that,

Bb′1 = Bb1, Bb′2 =
[Bb1×] Bb2

‖[Bb1×] Bb2‖
, Bb′3 = [Bb′1×] Bb′2

Ib′1 = Ib1, Ib′2 =
[Ib1×] Ib2

‖[Ib1×] Ib2‖
, Ib′3 = [Ib′1×] Ib′2.

Using the newly defined prime vectors, the attitude from the TRIAD algorithm is given by

RB/I =
3∑

i=1

Bb′i
(

Ib′i
)T

. (3–3)

Determining the attitude of a spacecraft from more than the minimum number of

vector measurements is known as optimal attitude determination [73]. Solving for RB/I

from vectors represented in two bases was originally posed by Wahba [83] as a batch
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least squares problem with cost function given by

J(RB/I) =
n∑

j=1

‖ Bbj − RB/I
Ibj‖2. (3–4)

In the decades that followed the publishing of Wahba’s problem, many solutions have

been developed. The first major breakthrough came with the parameterization of the

attitude matrix with the quaternion.

3.3.1 q-algorithm

Davenport’s q-algorithm [84] provides a solution to the Wahba problem by

parameterizing the attitude matrix with the Euler symmetric parameters and reducing the

minimization problem to the eigenvalue-eigenvector problem. By rewriting the Wahba

problem as

J(RB/I) =
n∑

j=1

(Bbj − RB/I
Ibj)T (Bbj − RB/I

Ibj). (3–5)

Expanding the right-hand side of the cost function shows that the only term dependent

on RB/I is −2
∑n

j=1
Bbj

T RB/I
Ibj . Therefore, the RB/I that minimizes J(RB/I) is found by

maximizing the gain function, so that

argmax
RB/I

g(RB/I) =
n∑

j=1

Bbj
T RB/I

Ibj .

This problem can be shown to be equivalent to

argmax
RB/I

g(RB/I) = tr (RB/IVW T ),

where W =
[

Bb1 · · · Bbn

]
and V =

[
Ib1 · · · Ibn

]
, due to the property of the trace

operator. A 3x3 matrix, B, known as the attitude profile matrix, can then be defined

such that B , WV T . The major breakthrough in the q-algorithm was the use of the

parameterization of the attitude matrix with the Euler symmetric parameters. Using

Eq. 2–7, the reduced gain function is

g(q) = (q2
4 − qT q)σ + qT Sq + 2q4zT q
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where

σ , tr (BT ), S , B + BT , and [z×] = BT − B.

This leads to the quadratic form

g(q) = qT Kq, (3–6)

where

K ,




S − σI3×3 z

zT σ




Since K is a symmetric matrix, it has all real eigenvalues and is diagonalizable.

Additionally, all eigenvalues can be shown to sum to zero.

Due to the quaternion unity constraint, this problem can be further posed as a

constrained optimization problem, where

max g(q) = qT Kq

subject to qT q − 1 = 0.

Using the method of Lagrange multipliers, an augmented gain function is given by

Kq = λq, (3–7)

which reduces to the classic eigenvalue-eigenvector problem. Substituting Kq into

Eq. 3–6, yields the most important result

g(q) = λ.

Therefore, the optimal attitude quaternion eigenvector is associated with the maximum

eigenvalue of K , such that

Kqopt = λmaxqopt .

Davenport used the power method [85] to determine the maximum eigenvalue, thus

yielding the optimal quaternion. Other methods for solving for the maximum eigenvalue
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exists, as well as other parameterizations of the attitude matrix, which have yielded fast

and nearly exact solutions to the Wahba problem.

3.3.2 Other Attitude Determination Algorithms

Newer developments in attitude determination, since the breakthrough of the

q-Davenport method, differ mainly in the parameterization of the attitude matrix and the

associated approximations or numerical methods used to solve Wahba’s problem with

that parameterization. Shuster’s QUaternion ESTimator (QUEST) algorithm [81, 86]

was the first fast approximate solution to the Wahba problem presented in Eq. 3–4 by

introducing the Gibbs vector parameterization and using λmax = 1 as an initial guess

for a Newton-Raphson solver to approximately determine the maximum eigenvalue of

the attitude matrix. This method proved to be highly accurate approximation that rapidly

converges to the optimal solution.

Other notable attitude determination techniques have been developed that span the

parameterizations of attitude. The quaternion-based methods follow a similar approach

to the q-algorithm but utilize other formulations for solving the eigenvector problem.

Singular Value Decomposition (SVD) [87] provides an exact solution to the eigenvector

problem but is computationally expensive. Other quaternion methods include, Filter

QUEST [88], REQUEST [89], Estimator of the Optimal Quaternion (ESOQ) [90]

and ESOQ2 [91], which provide closed-form solutions to the optimal attitude. A

direct attitude matrix method was developed in Fast Optimal Attitude Matrix (FOAM)

[92] that bypasses the parameterization to the quaternion altogether. EULER-2 and

EULER-n [93] parameterize the attitude matrix in Wahba’s problem using the axis-angle

representation. In the past decade, MRPs have become more popular as an attitude

representation and a solution to Wahba’s problem was found by parameterization with

the MRPs by Modified Rodrigues Attitude Determination (MRAD) [94]. An elegant

solution was recently found, called Optimal Linear Attitude Estimator (OLAE) [95], which

used the Cayley transform to transform Wahba’s problem into a least squares problem
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without having to solve the eigenvector problem. Most recently, the Cayley transform

was applied to construct a higher-order method called the Cayley Attitude Technique

[96].

There are many attitude determination techniques to choose from for resource

sharing applications. Most of which seek an efficient solution to an eigenvalue-vector

problem. However, the main purpose of attitude determination in this context is to

initialize the attitude estimator, which is the focus of the next section.

3.4 Kalman Filter Review

Although attitude determination techniques are capable of determining the attitude

directly from vector measurements, filtering the measurements can lead to significant

improvements in accuracy [97]. Attitude estimation typically relies on Kalman filtering

and thus a brief review of important properties of the Kalman filter are discussed.

All state information is measured or derived from measurements obtained with

a sensor or from a system model. Measurements are never perfect and are subject

to noise. Additionally, all models of a system are simplifications of physical reality,

where unmodeled effects are termed perturbations. As a result, state information is

never precisely known from measurements nor from models. State estimation is the

process of determining system states from noisy measurements and perturbed models.

An estimate is simply an approximation of the state given imperfect knowledge. An

estimator is a mapping that takes in measurements and perturbed system dynamics and

outputs an estimate of the system state. The most applied sequential estimator is the

Kalman filter, which is a recursive optimal filter and one-step predictor.

Attitude resource sharing is intimately connected to the uncertainty in the attitude

states of the chief and deputies. Uncertainty arises due to imperfect knowledge of a

system state or process. Probability theory serves as the basis of handling uncertainty

in this research. There are many methods of determining attitude based on vector
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measurements. However, given knowledge of the uncertainty in the system and sensor

measurements, better performance can be achieved through filtering.

Before presenting the Kalman filter equations, it is necessary to introduce several

important properties of the system noise. The origin of sensor noise is similar to that

of perturbations in a system dynamics model, where noise results from unmodeled

effects in the sensor. Noise can either be correlated in time or uncorrelated in time,

where white noise is uncorrelated in time and colored noise is correlated in time. In

addition to correlation, the statistics of noise can be described by many probability

density functions. All of the noise terms in this discussion will be modeled as Gaussian,

as necessary for the optimality of the Kalman filter. The probability density function for

a Gaussian random variable is fully described by its mean and covariance. Another

property of interest is the linearity of the state evolution of the system. The Kalman

filter is only optimal for linear systems, but this conflicts with the reality that most

physical systems exhibit nonlinearity. Table 3-1 provides a summary of the assumptions

necessary for the optimal Kalman filter.

Table 3-1. Assumptions for application of the Kalman filter
Characteristic Assumption
Observability The system states of interest must be observable
System Dynamics Linear
Noise Gaussian zero-mean probability density functions

White noise sequences (independence in time)
Independence of process and measurement noise

Given that all of the assumptions in Table 3-1 are true, the Kalman filter is the

recursive state estimator and one-step predictor, which converges to the optimal state

estimates under all meaningful metrics (e.g., mean squared error, mode, median, or

variance) and achieves the Cramer-Rao lower bound [97–99].

Consider the continuous linear systems dynamics given by

ẋ(t) = F (t)x(t) + G(t)w (t),
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where x(t) is the state of the system, F (t) is the state matrix, G(t) is the process noise

input matrix, and w (t) is the process noise. The statistics of the process noise are given

by

E [w (t)] = 0, E
[
w (t)w (t)T ] = Q(t)δ(t − τ ), (3–8)

where δ(t − τ ) is the Dirac delta function and E [·] is the expectation operator. The linear

measurement model is given by

y(t) = H(t)x(t) + v (t),

where y (t) are the measurements, H(t) is the observation matrix, and v (t) is the white

zero-mean sensor noise with statistics given by

E [v (t)] = 0, E
[
v (t)v (t)T ] = V (t)δ(t − τ ). (3–9)

Since F (t) and G(t) are time-varying functions, the state transition matrix (STM) is

the solution to the following differential equation

∂

∂t
Φ(t , t0) = F (t)Φ(t , t0), Φ(t0, t0) = In×n,

For time invariant systems, the STM is given by

Φ(t , t0) = eF (t−t0).

For the remainder of discussions, it is assumed that the time step is sufficiently small

for the STM to be accurately approximated by the matrix exponential. Additionally, the

model above is for continuous linear systems, however in this research, all systems

will be assumed to be discrete as implemented on-board a spacecraft where a natural

discretization occurs with the regular sampling of the rate gyroscope.
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The continuous dynamics can be discretized to yield

xk+1 = φkxk + Υkwk , (3–10)

where φk is the discrete state transition matrix and Υk is the discrete process noise

matrix. Similarly, the discrete measurement model is given by

yk = Hkxk + vk , (3–11)

where vk ∼ (0, Rk ). The discrete state transition matrix is given by

Φk = eF (tk )∆t), (3–12)

where

∆t = tk+1 − tk . (3–13)

However, the discrete process noise covariance matrix, Q, requires the difficult

computation of the integral given by

Q =
∫ tk+1

tk

eF (τ )(tk+1−τ )G(τ )Q(τ )GT (τ )eF T (τ )(tk+1−τ )dτ (3–14)

A good discussion on the discretized process noise covariance matrix is found in

Reference [97], where the main numerical result comes from Reference [100]. A brief

solution is provided.

First, the augmented matrix, A, is formed by

A =



−F (tk ) G(tk )Q(tk )G(tk )

0 F T (tk )


∆t .

It was shown in Reference [100] that taking matrix exponential of A produces the

discrete state transition matrix and process covariance matrix exactly for time invariant
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systems, such that

eA =



B11 Φ−1

k Q

0n×n ΦT
k


 ,

where B11 is not used any further. For time-varying systems, this solution is accurate

for sufficiently small time steps. However, for small enough time steps the STM can be

approximated with the following first-order models for the state-transition matrix given by

Φ = In×n − F (tk )∆t (3–15)

and the process covariance matrix computed by

Qk = G(tk )Q(tk )GT (tk )∆t . (3–16)

A rigorous derivation of the discrete Kalman filter can be found in References [98,

99]. The discrete Kalman filter contains several steps. The first step is the initialization

of the filter, where the initial states and covariance are assumed based on knowledge

of the problem of interest. Next the gain is computed. The Kalman gain is the driving

force behind the optimality of the filter and balances uncertainty in the dynamics process

and the measurement system. Next the states and covariance are updated using the

computed gain which modifies the innovation to correct the predicted state from the prior

information. Finally, the states and covariance are propagated (one-step prediction)

to the next time step to be updated by future measurements. The final results of the

Kalman filter are summarized in Table 3-2. Note, the state covariance matrix is denoted

by P and defined by

P = E
[
xxT ] . (3–17)

83



Table 3-2. Discrete Kalman filter
Initialize

x̂(t0) = x̂0, P(t0) = P0

Gain
Kk = P−

k HT
k (x̂−

k )
[
Hk (x̂−

k )P−
k HT

k (x̂−
k ) + V

]−1

Update
P+

k =
[
In − Kk Hk (x̂−

k )
]

P−
k

x̂+
k = x̂−

k + Kk
[
ỹk − hk (x̂−

k )
]

Propagate
P−

k+1 = Φk P+
k Φ

T
k +Qk

x̂−
k+1 = Φk x̂+

k

The Kalman filter is an important tool for linear systems, but the attitude system

dynamics are nonlinear. Therefore, the Kalman filter cannot be directly applied.

Handling this nonlinearity is the domain of the extended version of the Kalman filter.

3.5 Extended Kalman Filter

Consider the continuous nonlinear system that is affine in the process noise such

that,

ẋ(t) = f (x(t)) + g(t)w (t),

where f (x(t)) is a nonlinear function of the states and g(t) is a nonlinear process noise

function. The measurement model is given by

y(t) = h(x(t)) + v (t),

where h(x(t)) is a nonlinear function of the states.

For nonlinear systems, such as the evolution of attitude for a rigid body, the Kalman

filter does not produce the optimal estimate. However, there are modifications to the

Kalman filter for nonlinear systems, such as the extended Kalman filter (EKF) [101, 102]

and the unscented Kalman filter [48], as well as Monte Carlo-based methods [103],

that seek a “pseduo-optimal” estimate. The extended Kalman filter was first applied
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by Schmidt to the problem of inertial navigation in the 1960s [101], and satisfies the

estimation requirements for the following developments.

Some aspects of the system nonlinearity are maintained in the extended Kalman

filter, whereas other aspects require a linearization about the current state estimate

– not to be confused with a linearization about the true state. A summary of the

modifications to the Kalman filter is provided in Table 3-3.

Table 3-3. List of modifications to the Kalman filter for the extended Kalman filter
Step Modification
Gain Sensitivity matrix is formed from a linearization of the measurement function about

the current state estimate
Update The nonlinear measurement function is used in the innovation
Prediction One-step predictor utilizes the nonlinear system dynamics
Propagation Covariance propagation utilizes the Jacobian of the nonlinear system dynamics about

the current state estimate

The extended Kalman filter follows the same steps as described for the Kalman

filter, but with the modifications in Table 3-3 using the linearizations of the state matrix

and observation matrix given by

F (t) =
∂

∂x(t)
f (x(t))|x̂(t)− (3–18)

and

H(x̂−k ) =
∂h
∂x
|x̂−k . (3–19)

3.6 Extended Kalman Filter for Inertial Attitude Estimation

Attitude estimation has a long history, in which many of the major results were

surveyed in Reference [104]. Like the differences seen in attitude determination,

the structural differences in attitude estimation center around the choice of attitude

parameterization. The primary challenges created by attitude states are associated with

the multiplicative nature of error, attitude singularities, and enforcement of constraints.

The unit quaternion is a popular parameterization for attitude estimation due to its many

favorable properties (refer to Table 2-3). However, when carrying all components of the
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quaternion, the unity constraint causes the state error covariance matrix to be singular.

This is expected, as the states are no longer independent. If the state estimate and

the true state are sufficiently close, then the attitude error state can be reduced to the

3-state attitude error vector.

In Reference [104] it was also shown that without loss of generality, the attitude

EKF is assumed to make use of a rate gyroscope, which serves as a surrogate for a

system dynamics model. Farrenkopf’s gyroscope model is assumed, which includes a

rate bias, white noise, and random walk in the drift rate. The states of interest for inertial

attitude estimation are the unit quaternion, qB/I , relating the attitude from the body to

inertial frame and the gyro bias, β. In this section, the subscripts on the quaternion will

be dropped, such that the attitude state is simply q. Therefore, the error state utilized in

the extended Kalman filter are the attitude error vector, δα, and the bias error, ∆β.

The EKF requires an initialization of the quaternion estimate, q̂, as well as the

gyroscope bias, β, and the state error covariance, P. The initial quaternion estimate

should be as close as possible to the true quaternion, due to the linearization, and can

be obtained from any of the attitude determination techniques described in Section 3.3.

An accurate initial estimate maintains the linearity of the approximation and ensures that

the filter will not diverge due to nonlinearities. The gyroscope bias can be measured

on the ground prior to launch, but will typically be altered during launch and require

updating. The derivation for the sensitivity matrix and discrete propagation are reviewed

in the next section.

3.6.1 Sensitivity Matrix Derivation

Vector measurements take the form of

B
b̃i = R(q) Ibi + Bυi ,
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where the estimated measurement is given by

B
b̂−i = R(q̂−) Ibi .

The sensitivity is given by the difference between the unknown truth and the estimated

measurement, such that

B∆b = Bb − B
b̂−

= R(q) Ibi − R(q̂−) Ibi .

From Eq. 2–2, the composition relating the true quaternion parameterized attitude matrix

and the estimated state attitude matrix yields

R(q) = (I3×3 − [δα×]) R(q̂−).

The final form of the sensitivity equation for a single measurement is

B∆b =
[(

R(q̂−) Ibi

)
×
]
δα,

where the components of the attitude error are given by δα = [e1, e2, e3]T . Therefore, the

sensitivity matrix for N vector measurements of the combined quaternion and bias state

vector is

Hk (x̂−k ) =




[(
R(q̂−) Ib1

)
×
]

03×3

...
...

[(
R(q̂−) IbN

)
×
]

03×3




.

These vector measurements have no sensitivity with respect to the bias. However, the

bias is observable as a result of the coupling between the quaternion rates and the

angular velocity.
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3.6.2 Discrete Propagation Derivation

The last step on discrete propagation warrants further description. Using a power

series approximation, the kinematic quantities are propagated by

ω̂+
k = ω̃k − β̂+

k (3–20)

q̂−k+1 = Ω̄(ω̂+
k )q̂+

k , (3–21)

where

Ω̄(ω̂+
k ) =




cos (1
2‖ω̂+

k‖∆t)I3×3 −
[
ψ̂+

k×
]

ψ̂+
k

−ψ̂+T
k cos (1

2‖ω̂+
k‖∆t)




and

ψ̂+
k =

sin
(

1
2‖ω̂+

k‖∆t
)
ω̂+

k

‖ω̂+
k‖

.

The covariance is propagated by

P−k+1 = ΦkP+
kΦ

T
k + GkQkGT

k ,

where

Gk =



−I3×3 03×3

03×3 I3×3




Φ =



Φ11 Φ12

Φ21 Φ22


 ,
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and

Φ11 = I3×3 − [ω̂×]
{sin (‖ω̂‖∆t)}

‖ω̂‖ + [ω̂×] [ω̂×]
{1− cos (‖ω̂‖∆t)}

‖ω̂‖2

Φ12 = [ω̂×]
{1− cos (‖ω̂‖∆t)}

‖ω̂‖2 − I3×3∆t − [ω̂×] [ω̂×]
{‖ω̂‖∆t − sin (‖ω̂‖∆t)}

‖ω̂‖3

Φ21 = 03×3

Φ22 = I3×3,

and

Qk =



(
σ2

v∆t + 1
3σ

2
u∆t3

)
I3×3 −

(
1
2σ

2
u∆t2

)
I3×3

−
(

1
2σ

2
u∆t2

)
I3×3

(
σ2

u∆t
)

I3×3


 .

A summary of the steps for the attitude EKF process is provided in Table 3-4.

3.6.3 Example Inertial Attitude EKF with a Magnetometer and Sun Sensors for
Low Precision Pointing

An example coarse sun sensor and magnetometer-based extended Kalman filter

was modeled and simulated using the initial state information given in Table 3-5, the

time parameters in Table 3-6 and the initial state estimate information in Table 3-7.

The spacecraft is placed in a low Earth orbit at approximately 400km altitude, where

the magnetic field is strong, but also more uncertain, where the magnetometer has a

standard deviation of 1◦. The sun sensors are assumed to avoid eclipse throughout the

simulation and have a standard deviation of 0.1◦.

The sun vector model and dipole model described in Section 3.2 serve as the

known inertial models for the measured vectors. Sun sensors and a magnetometer

produce two vectors, which is the minimum necessary for three-axis attitude determination.

The orbital period for this orbit is approximately 90 minutes. Figure 3-3 shows that

due to the periodicity of the orbital motion, the sun vector and magnetic field vector

periodically become nearly collinear twice per orbit, due to the symmetry of the magnetic

field. When the measurements are near the collinear configuration, the error increases
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Table 3-4. Inertial attitude extended Kalman filter
Initialize

x̂(t0) = x̂0 =
[
q̂T

0 , β̂T
0

]T
, P(t0) = P0

q̂(t0) = q̂0, β̂(t0) = β̂0

Gain
Kk = P−

k HT
k (x̂−

k )
[
Hk (x̂−

k )P−
k HT

k (x̂−
k ) + V

]−1

Hk (x̂−
k ) =




[(
R(q̂−) Ib1

)
×
]

03×3

...
...[(

R(q̂−) IbN

)
×
]

03×3




Update
P+

k =
[
I3×3 − Kk Hk (x̂−

k )
]

P−
k

∆x̂+
k =

[
δα̂+T

k ∆β̂+T
k

]T
= Kk

[
ỹk − hk (x̂−

k )
]

ỹk =




Bb1
...

BbN


, hk (x̂−

k ) =




R(q̂−) Ib1
...

R(q̂−) IbN




q̂+
k = q̂−

k + 1
2Ξ(q̂−

k )δα̂+
k

β̂+
k = β̂−

k + ∆β̂+
k

Propagate
P−

k+1 = Φk P+
k Φ

T
k + Gk Qk GT

k

q̂−
k+1 = Ω̄(ω̂+

k )q̂+
k

ω̂+
k = ω̃k − β̂+

k

Table 3-5. State initializations for coarse sensor inertial attitude simulations
Parameter Value Units
Inertia:
J diag (300, 100, 200) kg ·m2

Initial States:
r0 [6778.1 0.0162 0.0080]T m
v0 [0.0000 6.6411 3.8342]T m/s
q0 [0 1 0 0]T –
ω0 [−0.003 0.002 0.004]T rad/s

Table 3-6. Time parameters for coarse sensor inertial attitude simulations
Parameter Value Units
Time:
∆tup 1 s
∆tprop 0.1 s
T 225 min
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Table 3-7. State estimate initializations and sensor characteristics for coarse sensor
inertial attitude simulations

Parameter Value Units
State Estimate:
q̂0 [0 1 0 0]T –
β0 10 deg/hr
σv 10

√
10× 10−7 rad/s1/2

σu 10
√

10× 10−10 rad/s3/2

as seen in Figure 3-5. Additionally, due to the angular velocity of the spacecraft shown

in Figure 3-4, in this case resulting from torque-free motion, the error in each axis

exhibits oscillatory behavior at the frequency of the angular velocity, as information

is continuously passing between the body axes, given the slowly evolving vector

measurements with the orbital motion. In these simulations, the attitude is estimated

to sub-degree accuracy as evidenced by the 3-σ bounds in Figure 3-5.
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Figure 3-3. Magnetic field and sun vector collinearity for an example inertial attitude EKF
with a magnetometer and sun sensors

3.6.4 Example Inertial Attitude EKF with a Star Tracker for High Precision
Pointing

An example star tracker inertial attitude EKF was modeled and simulated in

MATLAB [105]. These simulations make use of the star tracker model discussed in

Section 3.2. The star catalog accompanying Reference [97, 106] was used with a star

magnitude threshold of six. In these simulations the FOV of the star tracker is 6◦, thus

there is much less information available for rotations along the boresight, and less

opportunity to observe stars far away from the boresight due to the narrow FOV. A
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Figure 3-4. True body angular velocity for an example inertial attitude EKF with a
magnetometer and sun sensors
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Figure 3-5. Quaternion error for an example inertial attitude EKF with a magnetometer
and sun sensors

maximum of six stars were assumed to be able to be processed when measurements

were taken. The star tracker model assumes that the star association problem has

already been solved. The initial position and velocity states are slightly deviated from

the previous example and the spacecraft states are summarized in Table 3-8. Initial

state estimates are given in Table 3-9. The same time parameters listed in Table 3-6

were used in these simulations. In general, the accuracy of a star tracker will improve

as the number of stars identified increases. Figure 3-6 depicts the number of stars

available over the simulation, where it is assumed that the maximum number of stars
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Table 3-8. State initializations for fine precision inertial attitude simulations
Parameter Value Units
Inertia:
J diag (300, 100, 200) kg ·m2

Initial States:
r0 [6778.1 0 0]T km
v0 [0 6.6412 3.8343]T km/s
q0 [1 0 0 0]T –
ω0 [0.001 0.001 0.001]T rad/s

Table 3-9. State estimate initializations for fine precision inertial attitude simulations
Parameter Value Units
State Estimate:
q̂0 [1 0 0 0]T –
β0 0.1 deg/hr
σv

√
10× 10−7 rad/s1/2

σu
√

10× 10−10 rad/s3/2

is 6. From Figure 3-7, the error exhibits spikes when the number of stars is reduced.

Another well known fact that is observed, is that measurements contain less attitude

information about the sensor boresight than the transverse axes. That is, a line-of-sight

measurement parallel with the boresight direction provides no information about

the rotation about that axis. The star tracker is capable of producing highly accurate

arc-second level accuracy, which is orders of magnitude better than the sun sensors and

magnetometer-based attitude estimation shown in Figure 3-5. Arc-seconds will serve as

the primary measure of attitude error in this work, where 1◦ = 3600arc − second .
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Figure 3-6. Available star vectors for an example inertial attitude EKF with a star tracker
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Figure 3-7. Quaternion error for an example inertial attitude EKF with a star tracker

3.7 Relative Attitude Sensors

Recall that attitude describes the orientation from one frame with respect to another.

Relative attitude is concerned with the orientation of a frame fixed to a spacecraft with

respect to a frame fixed to another spacecraft (or other non-inertial frame). Therefore,

relative attitude sensors provide the capability to measure quantities that can be

related back to relative attitude. All relative attitude sensors measure quantities that

provide direction information. Examples of relative attitude sensors that provide a single

direction are relative global positioning system (GPS) signals [107, 108] and various

electromagnetic sensing devices such as radio frequency [26, 109]. An example of

a relative attitude sensor capable of measuring multiple directions is vision-based

navigation (VISNAV). This VISNAV sensor serves as the primary relative attitude sensor

in this research and is discussed in more detail below.

Multi-direction relative attitude sensors are analogous to star trackers for inertial

sensing. VISNAV sensors measure the direction to multiple fiducial points on an object

of interest to determine relative attitude and position as shown in Figure 3-8. The chief

uses detection optics and a focal-plane detector that are designed to differentiate

received signals from the deputy’s optical fiducials to determine multiple line-of-sight

94



vectors. An example system of this nature is described in Reference [110], which

requires the spacecraft to be in close proximity. Due to the close proximity requirement,

relative attitude and relative position are coupled.

Chief

VISNAV

Deputy

Optical
Fiducials

Figure 3-8. Notional depiction of a VISNAV measurement

VISNAV utilizes similar hardware to a star tracker. However, differentiating fiducials

is not a pattern recognition problem like the star tracker, but instead it is a problem of

physically differentiating the fiducial by the emitted signals. Given this differentiation,

directions to the fiducials are captured with a focal-plane detector and modeled using

the virtual CCD described in Section 3.2. Since the fiducial locations are known in

deputy coordinates, knowledge of the relative position provides enough information for

the line-of-sight vectors to be determined as shown in Figure 3-9. The measurement

model for VISNAV sensor is

C
b̃D/C,i = RC/D

DbD/C,i + ηvis,

where
C

b̃D/C,i is the measured direction of the i th-fiducial in the chief frame, RC/D is

the attitude matrix mapping deputy to chief coordinates, DbD/C,i is the direction of the

i th-fiducial in the deputy frame, and ηvis is white zero-mean Gaussian noise corrupting

the measurement. Focal plane measurements are modeled through the vector form of
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Figure 3-9. Description of the VISNAV sensor geometry

the collinearity equations, such that

C
b̃D/C,i =

1√
f 2 + x2

i + y2
i




−xi

−yi

f




DbD/C,i =
1√

(Xi − Dρx ,i)2 + (Yi − Dρy ,i)2 + (Zi − Dρz,i




Xi − Dρx ,i

Yi − Dρy ,i

Zi − Dρz,i




,

where (Xi , Yi , Zi) are the known fiducial locations in deputy coordinates, (xi , yi) are the

focal plane coordinates of the fiducial measurement, Dρi is the relative position vector

between the chief and deputy, and f is the focal length of the VISNAV sensor. The

VISNAV sensor will serve as the relative attitude sensor for the remainder of this work.

A limitation of the VISNAV sensor is that it only provides precise measurements

in close proximity. As the distance between the sensor and fiducials increases, the

fiducial approach a coalesced point source, which contains no attitude information.

Therefore, utilization of this sensor is limited to close-proximity applications, such as
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distributing-sensing formation-flying missions. It is also assumed that adaptive optics

are implemented to alter the focal length of the VISNAV sensor and the intensity of light

emitted from the fiducials as a function of range.

3.8 Deterministic Relative Attitude Determination

In the general case, where relative position is unknown, several methods have

been devised to determine relative position and attitude simultaneously from the

VISNAV measurements. The first approach uses a Gaussian Least Squares Differential

Correction (GLSDC) process [110] to iteratively determine relative position and attitude.

This method suffers from sensitivity to initial condition errors and is less computationally

than other methods. The next approach bypasses attitude determination and utilizes

filtering to directly converge upon the states [111]. However, although this method is

robust to errors in initial conditions, it requires convergence before a suitable relative

attitude estimate is obtained.

Two methods for relative attitude and position determination were presented in

Reference [112]. The first method, Linear Algebra Resection Approach (LARA), creates

a homogeneous system of equations and finds the solution to the relative attitude

and position problem as the left eigenvector associated with the minimum singular

value of the homogeneous equations. Through a null-space argument, this case

imposes a restriction that at minimum, 6 fiducials must be visible. This is prohibitive in

application. The second approach, First Attitude Free Approach (FAFA), recasts the

combined relative position and attitude problem into a nonlinear system of equations

parameterized solely by the relative position. The resulting equation is an 8th-order

polynomial with roots yielding the relative position. After isolating the real solutions of

this polynomial, the relative attitude is solved for using any of the many attitude-only

determination techniques, such as QUEST or OLAE. Although this technique is

fairly robust, it still requires numerical iteration. The final approach utilizes position

triangulation to determine distances to the fiducials [113]. These distances then provide
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enough information to determine attitude independently of position. Finally, the attitude

estimate is used to determine the relative position.

Contrary to the general case of relative attitude and position determination, if

relative position is already known, then the Wahba problem can be solved to determine

relative attitude. This will be the case that is assumed in this work, as the focus is on

attitude resource sharing and not on the general case of translations and rotations.

3.9 Inertial Attitude Estimation in a Disaggregated System

For the attitude estimator for disaggregated spacecraft, the goal is to have each

spacecraft in the network maintain an estimate of the inertial attitude of all spacecraft

in the network, but only using local measurements. The chief is capable of measuring

its inertial attitude as well as the relative attitude to the deputies. The deputies are

only capable of capturing vector measurements to estimate their inertial attitude. To

accomplish this, the chief utilizes an inertial sensor, such as a star tracker, and a relative

sensor, such as VISNAV.

In the case of a single chief and n deputies, the state vector is

x =
[
qT

C , qT
D1

, ... , qT
Dn

,βT
C ,βT

D1
, ... ,βT

Dn

]T

and the error state is

∆x =
[
δαT

C, δαT
D1

, ... , δαT
Dn

,∆βT
C ,∆βT

D1
, ... ,∆βT

Dn

]T
.

The difference with the EKF for disaggregated spacecraft with respect to the standard

inertial attitude EKF is in the derivation of the sensitivity matrix and the state and

covariance propagation.

3.9.1 Sensitivity Matrix Derivation

Consider the case of the chief measuring the relative attitude states of the i th-deputy

and its local states. It is assumed that the relative position vector between the chief

and i th-deputy is known and any uncertainty therein is added as process noise in the
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dynamics model. Therefore, the j th-vector in deputy coordinates is mapped to chief

coordinates through the relative attitude matrix, such that

CbDi/C,j = R(qDi/C) DbDi/C,j .

Alternatively, instead of mapping the known deputy represented vectors through the

relative attitude matrix, the attitude composition law produces the equivalent forms

CbDi/C,j = R(qC)RT (qDi )
Di bDi/C,j

and

C
b̂−Di/C,j = R(q̂−C )RT (q̂−Di

) Di bDi/C,j .

The sensitivity equation is once again the difference between the true and estimated

measurement, such that

C∆b = CbDi/C,j −
C

b̂−Di/C,j

= R(qC)RT (qDi )
Di bDi/C,j − R(q̂−C )RT (q̂−Di

) Di bDi/C,j .

From Eq. 2–2, the composition relating the true quaternion parameterized attitude matrix

and the estimated state attitude matrix yields

R(qC) = (I3×3 − [δαC×]) R(q̂−C )

and

R(qDi ) =
(
I3×3 −

[
δαDi×

])
R(q̂−Di

),
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for the chief and deputy, respectively. Therefore,

C∆b = (I3×3 − [δαC×]) R(q̂−C )RT (q̂−Di
)
(
I3×3 +

[
δαDi×

]) Di bDi/C,j − R(q̂−C )AT (q̂−Di
) Di bDi/C,j

= R(q̂−C )RT (q̂−Di
)
[
δαDi×

] Di bDi/C,j − [δαC×] R(q̂−C )RT (q̂−Di
) Di bDi/C,j

− [δαC×] R(q̂−C )RT (q̂−Di
)
[
δαDi×

] Di bDi/C,j . (3–22)

Neglecting the higher-order terms in Eq. 3–22 results in the first order model of the

sensitivity equation,

C∆b =
[(

R(q̂−C )RT (q̂−Di
) Di bDi/C,j

)
×
]
δαC − R(q̂−C )RT (q̂−Di

)
[

Di bDi/C,j×
]
δαDi . (3–23)

The sensitivity matrix for a single VISNAV measurement on-board the chief is

HC(x̂−) =
[[(

R(q̂−C )RT (q̂−Di
) Di bDi/C,j

)
×
]
−R(q̂−C )RT (q̂−Di

)
[

Di bDi/C,j×
]

03×3 03×3

]
.

The sensitivity matrix for a single VISNAV measurement on-board the chief follows

directly from the two-spacecraft derivation, except that the column deputy sensitivity

corresponds with the measured spacecraft. Suppose the i th-deputy is measured by the

VISNAV sensor, then the sensitivity matrix is

HC(x̂−) =
[[(

R(q̂−
C )RT (q̂−

Di
) Di bDi/C,j

)
×
]

03×3(i−1) −R(q̂−
C )RT (q̂−

Di
)
[

Di bDi/C,j×
]

03×3+6n−3i

]
.

Therefore, for N star and M fiducial measurements, the chief sensitivity matrix is

HC(x̂−) =




[(
R(q̂−

C ) Cb1

)
×
]

03×3(i−1) 03×3 03×3+6n−3i

...
...

...
...

[(
R(q̂−

C ) CbN

)
×
]

03×3(i−1) 03×3 03×3+6n−3i[(
R(q̂−

C )RT (q̂−
Di

) Di bDi/C,1

)
×
]

03×3(i−1) −R(q̂−
C )RT (q̂−

Di
)
[

Di bDi/C,1×
]

03×3+6n−3i

...
...

...
...

[(
R(q̂−

C )RT (q̂−
Di

) Di bDi/C,M

)
×
]

03×3(i−1) −R(q̂−
C )RT (q̂−

Di
)
[

Di bDi/C,M×
]

03×3+6n−3i




.

This sensitivity matrix is no larger in rows than the two-spacecraft case. However,

there can be many more columns, where the number of columns grows at a rate
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of 6 + 6(n + 1), where n is once again the number of deputies. Most importantly,

due to linearity and superposition, Murrell’s algorithm can be used to process each

measurement sequentially.

Similarly, the i th deputy sensitivity matrix with L inertial vector measurements is

HDi (x̂
−) =




03×3 03×3(i−1)

[(
R(q̂−Di

) Di b1

)
×
]

03×3+6n−3i

...
...

...
...

03×3 03×3(i−1)

[(
R(q̂−Di

) Di bL

)
×
]

03×3+6n−3i




.

As the deputy can only obtain local inertial measurements, the sensitivity matrix has

columns of zeros for the chief state and biases.

3.9.2 Discrete Propagation Derivation

Consider the continuous-time error state dynamics to be used in a disaggregated

estimation scheme for the n-deputy case, such that

∆ẋdc = Fda∆xdc + Gdawdc

where

Fda =




− [ωc×] 03×3 −I3×3 03×3 03×3 03×3

03×3 − [ωd ,1×] 03×3 −I3×3 03×3 03×3

... . . . . . . . . . . . . ...

03×3 03×3 03×3 − [ωd ,n×] 03×3 −I3×3

03×3 03×3 03×3 03×3 03×3 03×3

...
...

...
...

...
...

03×3 03×3 03×3 03×3 03×3 03×3




,
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Gda =




−I3×3 03×3 03×3 03×3 03×3 03×3

03×3
. . . 03×3 03×3 03×3 03×3

03×3 03×3 −I3×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3
. . . 03×3

03×3 03×3 03×3 03×3 03×3 I3×3




,

The continuous-time process noise covariance matrix is given by

Qda = diag
(
σ2

C,v I3×3,σ2
D1,v I3×3, ... ,σ2

Dn,v I3×3,σ2
C,uI3×3,σ2

D1,uI3×3, ... ,σ2
Dn,uI3×3

)
(3–24)

The discrete solutions for the state transition matrix and process covariance matrix are

also found through Eq. 3–15 and Eq. 3–16, respectively. Finally, each of the quaternion

and bias states are propagated through Eq. 3–21 and Eq. 3–20, respectively.

The chief and deputy each individually estimate the entire state of the two

spacecraft network. The chief has the potential for full observability of the system

states. Whereas, the deputy only has observability over its own states (i.e., the deputy

quaternion and bias). For instance, without combining information from the chief

estimates, the deputies knowledge of the chief inertial attitude will always diverge.

Table 3-10 summarizes the EKF to be used in the disaggregated system for attitude

resource sharing. However, for the deputy to make use of the knowledge of its states

from the chief, data fusion is required. A benefit of this data fusion, is that the chief also

stands to gain in performance through the data fusion process. Results are developed

in Chapter 4. If the time step is small enough, then the computational complexity of

the propagation only increases with the order of matrix multiplication. However, if the

small-time-step approximation does not hold, then the matrix exponential must be

computed, which is computationally expensive for large state sizes. Therefore, this

approach is only for smaller networks of spacecraft requiring resource sharing.
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Table 3-10. Extended Kalman filter for inertial attitude estimation in a disaggregated
system

Initialize
x̂(t0) = x̂0 =

[
qC |T0 , qD1 |T0 , ... , qDn |T0 ,βC |T0 ,βD1 |T0 , ... ,βDn |T0

]T
, P(t0) = P0

Gain
Kk = P−

k HT
k (x̂−

k )
[
Hk (x̂−

k )P−
k HT

k (x̂−
k ) + R

]−1

Chief: HC(x̂−) =

=




[(
R(q̂−

C ) Cb1

)
×
]

03×3(i−1) 03×3 03×3+6n−3i

...
...

...
...[(

R(q̂−
C ) CbN

)
×
]

03×3(i−1) 03×3 03×3+6n−3i[(
R(q̂−

C )RT (q̂−
Di

) Di bDi/C,1

)
×
]

03×3(i−1) −R(q̂−
C )RT (q̂−

Di
)
[

Di bDi/C,1×
]

03×3+6n−3i

...
...

...
...[(

R(q̂−
C )RT (q̂−

Di
) Di bDi/C,M

)
×
]

03×3(i−1) −R(q̂−
C )RT (q̂−

Di
)
[

Di bDi/C,M×
]

03×3+6n−3i




Deputies: HDi (x̂
−) =




03×3 03×3(i−1)

[(
R(q̂−

Di
) Di b1

)
×
]

03×3+6n−3i

...
...

...
...

03×3 03×3(i−1)

[(
R(q̂−

Di
) Di bL

)
×
]

03×3+6n−3i




Update
P+

k =
[
I6n×6n − Kk Hk (x̂−

k )
]

P−
k

∆x+ =
[
δα+T

C , δα+T
D1

, ... , δα+T
Dn

,∆β+T
C ,∆β+T

D1
, ... ,∆β+T

Dn

]T
= Kk

[
ỹk − hk (x̂−)

]

Chief: ỹC =




Cb1
...

CbN
CbDi/C,1

...
CbDi/C,M




, hC(x̂−) =




R(q̂−
C ) Cb1
...

R(q̂−
C ) CbN

R(q̂−
C )RT (q̂−

Di
) Di bDi/C,1

...
R(q̂−

C )RT (q̂−
Di

) Di bDi/C,M




q̂+
C |k = q̂−

C |k + 1
2Ξ(q̂−

C |k )δα̂+
C |k , β̂+

C |k = β̂−
C |k + ∆β̂+

C |k

Deputies: ỹDi =




Di b1
...

Di bL


, hDi (x̂

−) =




R(q̂−
Di

) Di b1
...

R(q̂−
Di

) Di bL




q̂+
Di
|k = q̂−

Di
|k + 1

2Ξ(q̂−
Di
|k )δα̂+

Di
|k , β̂+

Di
|k = β̂−

Di
|k + ∆β̂+

Di
|k

Propagate
P−

k+1 = Φk P+
k Φ

T
k +Qk

Chief: Deputies:
q̂−

C |k+1 = Ω̄(ω̂+
C |k )q̂+

C |k q̂−
Di
|k+1 = Ω̄(ω̂+

Di
|k )q̂+

Di
|k

ω̂+
C |k = ω̃C |k − β̂+

C |k ω̂+
Di
|k = ω̃Di |k − β̂+

Di
|k
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3.9.3 Notes on Disaggregated Attitude Estimation

The disaggregated approach requires that the gyro measurements be shared over

a wireless link at the regular sampling interval for discrete propagation. However, in

Reference [104] it was noted that although the largest numerical burden in the attitude

Kalman filter occurs with the computation of the transition matrix and the contribution

of the process noise to the state covariance matrix, this computation can take place

at much larger time scales than the state propagation. Therefore, each deputy can

locally propagate their states at the frequency of their local gyro updates without being

burdened so heavily by the process noise computations.

The approach taken in this section should only be used for smaller formation

flying networks, where communication is available when required. Modifications will be

necessary to the formulation if larger networks and irregular communication is expected.

3.10 Summary

Inertial and relative attitude determination and estimation were surveyed. Inertial

attitude is determined by solving the Wahba problem. There are many solutions to

this problem, such as the popular QUEST algorithm. However, other methods such as

ESOQ-2 and OLAE have been shown to provide faster computational solutions. Due to

the nonlinear nature of attitude estimation, the Extended Kalman Filter for quaternion

kinematics was surveyed. Next, relative attitude determination was surveyed. Due to the

coupled nature of relative attitude and position, relative attitude determination is more

complex than inertial attitude determination. However, closed-form solutions do exist.

In the last part, the EKF for disaggregated spacecraft was developed. To the author’s

knowledge, this is the first derivation and application of relative attitude sensors used

to directly estimate the inertial states of multiple spacecraft. These equations have

application to spacecraft seeking improved inertial attitude estimates through attitude

resource sharing. The multiple estimates originating from the EKF for the disaggregated

system are the inputs for data fusion algorithms.
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CHAPTER 4
ATTITUDE DATA FUSION

Data fusion has been developed to optimally combine multiple state estimates

in disaggregated systems, where the states have typically been Euclidean in error.

More recently, results have been developed for attitude data fusion, which account

for the multiplicative nature of attitude compositions. This chapter reviews existing

results in data fusion for Euclidean and attitude states. Contributions are made in the

parameterization of attitude for data fusion and particularly in the characterization of

error created by using a minimal attitude parameterization for fast attitude data fusion.

This chapter is divided into three parts. In the first part it is shown that many

existing data fusion algorithms can be represented in terms of the fusion error, which

is the error between the individual state estimates and the fused state. Based on the

fusion error representation, it is shown that existing Euclidean state data fusion laws

can be generalized to attitude states through the loss function perspective with the

attitude error vector serving as the fusion error state. The second part derives a form

of the attitude error vector using the vectorial attitude parameterizations and discusses

the benefits of these minimal attitude parameterizations for data fusion. The third part

investigates the vectorial shadow parameterizations and local error representations for

fast and accurate attitude data fusion.

4.1 Data Fusion Overview

In the discussions that follow, resource sharing is assumed to be represented with

a star graph where the chief spacecraft is connected to each of the deputy spacecraft,

but the deputies are only linked to the chief. This configuration is shown in Figure 4-1.

This type of connectivity is justified by the fact that better inertial attitude estimation is

sought through resource sharing, and thus the only additional knowledge provided to

the deputies is garnered through the relative attitude link on the chief and the improved

knowledge of the chiefs garnered from the deputies. There could be multiple chiefs, but
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this case is not considered, although it only requires a minor extension to the EKF for

disaggregated systems formulation presented in Chapter 3.

D1

C

Dn

D2

D4

D3

Dn-1

Figure 4-1. Star graph representation for attitude resource sharing

Given a star graph network, there are several important characteristics that

dictate the algorithms and performance of resource sharing. A summary of important

characteristics for data fusion is given in [114]. A taxonomy for fusion characteristics

for the resource sharing problem is shown in Table 4-1. This is not meant to be an

exhaustive list, as aspects such as imperfect, conflicting, and spurious data will not be

considered. However, these properties can be extended to the present discussion.

Table 4-1. Resource sharing data fusion and system architecture taxonomy
Characteristic Description Options
Processing Framework location of data fusion Centralized, Decentralized
Data Correlation state estimate dependency Correlated, Uncorrelated
Connectivity graph structure of network Full, Star
Temporal structure variation in the graph edges Dynamic, Static
Directivity one-way or two-way communication Symmetric, Asymmetric
Data processing form of information sources Pre-processed, Raw data

Of these characteristics, the data fusion problem considered in this research is

the decentralized star graph with correlated states, static graph edges, symmetric

communication, and pre-processed information. It should be noted, that although the

communications network is static, the relative attitude connectivity is time varying and

based on the tasking.

4.2 Data Fusion Review

Data fusion is a problem that has arisen due to interest in multi-sensor systems,

either on-board a single platform or distributed across a network of platforms. Data
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fusion exploits the known dependency in the information sources, as is the case with

Kalman filtering [98], or seeks an optimal combination of information to produce a best

estimate when information dependency is uncertain, as is the case with covariance

intersection [47, 48]. To generate a fused estimate, data fusion algorithms optimize the

combination of multi-sensor information by minimizing a cost function, which is some

measure of the error between the state estimates and the fused state. For non-attitude

applications with unconstrained states, the fusion error is a measure of the Euclidean

distance. However, attitude belongs to the space of special orthogonal matrices, SO(3),

and thus a measure of error through the Euclidean distance is not appropriate.

The author has observed that the properties of the data fusion algorithm are

inherited from the attitude parameterization. Recent advances in attitude data fusion

algorithms have made use of the unit quaternion [46, 115, 116] and the modified

Rodrigues parameters (MRPs) [117, 118] to parameterize the attitude error vector.

However, both of these parameterizations pose difficulties in the data fusion solution.

The unit quaternion parameterization is constrained, which must be handled in the

data fusion optimization explicitly through the use of Lagrange multipliers. Solving

the constrained optimization problem adds additional numerical complexity for

low-dimensional systems and becomes burdensome for high-dimensional systems.

Alternatively, the MRP parameterization, which is from a larger class of minimal attitude

parameterizations known as the vectorial attitude parameterizations, is unconstrained

but has singularities at ±2π requires a singularity avoidance algorithm. A singularity

avoidance method that transforms the global MRP data fusion problem to a local

representation, where a solution is ensured to be singularity free has been proposed

in [118]. After the data fusion occurs, the solution is then transformed back to the

global MRP parameterization, where it is then further transformed back to the original

parameterization utilized in the attitude estimation or control algorithms. To improve

upon this prior art in attitude data fusion, recent results in the minimal vectorial attitude
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parameterization are applied to the parameterization of the attitude error vector. Due

to the periodic invariance of attitude, the data fusion parameterization only requires

singularities not be present for φ ∈ [−2π, +2π]. The vectorial parameterizations are

known to produce parameters with two distinct singularity classes. Of these two classes,

one permits a shadow parameterization, which are used to produce an unconstrained,

globally nonsingular parameterization of the attitude error vector. Additionally, it is shown

that the parameterization determines the accuracy of the data fusion process.

4.3 Data Fusion and the Error State

One classic data fusion problem is that of linear systems with two independent

Gaussian information sources – typically, a dynamic process model and a measurement

model. The optimal weighted combination of the independent dynamics process and

measurement models is generated by the Kalman filter. However, when the information

sources are known to be dependent or the correlation is unknown, the Kalman filter

can no longer be directly applied [119]. This class of problem is encountered in

multi-sensor systems and a variety of data fusion algorithms have been created to

generate consistent estimates that are optimal in the sense of some relevant cost

function. The solution to both of these data fusion problems are a function of the

Euclidean distance between the state estimates and the fused state.

4.3.1 Euclidean Fusion Error State

Consider the set of pairs, (x̂i , Pi), that describes the mean and covariance of

multiple sources of a system state. The objective of any data fusion system is to

optimally combine the state estimates, x̂i to generate a new fused state, x̂f , such that

x̂f = fx (x̂1, ... , x̂n) ,

with approximate covariance of the fused state given by

Pf = fP (P1, ... , Pn) .
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Here, the function, fx , is the state fusion law and fP is the covariance approximation law.

The covariance approximation must be consistent to ensure that it never underestimates

the uncertainty in the system, which could lead to divergence. Therefore, the goal of

data fusion is to optimally and consistently combine multiple sources of information. In

terms of the second moment, consistency is satisfied when

Pf − P̄f ≥ 0,

which designates the difference is a positive semi-definite matrix, and P̄f is the actual

covariance of the fused state and Pf is an approximation for the fused state covariance

that is consistent with any cross correlation between the state estimates. Clearly, a

consistent fused state covariance exists if the cross-correlation is known. Furthermore,

consider the class of data fusion laws that can be rewritten in terms of the fusion error,

such that

0 = fx (∆x̂1, ... ,∆x̂n) , (4–1)

where ∆x̂i = x̂ − x̂i ∈ Rn and x̂ is any possible value of the fused state. For this class of

problems, the fusion law is recast as the minimization of a loss function, J, such that

x̂f = arg min
x̂

J (∆x̂1, ... ,∆x̂n) .

The first-order optimality condition for this optimization problem is

0 =
dJ (∆x̂1, ... ,∆x̂n)

d x̂
.

From the chain rule of differentiation, the optimality condition is

0 =
n∑

i=1

(
∂∆x̂T

i

∂x̂

)
∂J (∆x̂1, ... ,∆x̂n)

∂∆x̂i
.

However, the data fusion Jacobian formed from the partial derivatives of the fusion

error state with respect to the fusion state is the identity matrix, and thus the optimality

109



condition is

0 =
n∑

i=1

∂J (∆x̂1, ... ,∆x̂n)
∂∆x̂i

.

For x̂ ∈ Rn, the original fusion law is recaptured from this minimization. However, for

states that parameterize SO(3), the fusion law is altered based on the derivative of the

error state with respect to the attitude parameterization.

4.3.2 Attitude Fusion Error State

In order to apply data fusion algorithms to states parameterized in SO(3), the

attitude error state must be well understood. A general discussion of attitude error

was discussed in Chapter 2 and is now specialized in the context of data fusion. The

attitude fusion error state is representative of the rotation from the individual attitude

state estimates to the fused attitude state. From Eulers rotation theorem which states

a rotation about a point is always equivalent to a rotation about a line through the point

[54], SO(3) can be parameterized by an axis and the angle of rotation about that axis,

which is expressed through the Euler-Rodrigues formula given in Eq. 2–4.

The attitude error vector is derived from the attitude composition law as described in

Eq. 2–1. For a general composition of attitudes,

R′ = δRR,

where the original attitude, R, is transformed by δR, to produce the final attitude R′.

Since {R, δR, R′} ∈ SO(3) and RRT = I3×3, then

δR = R′RT . (4–2)

Of interest, is a vector form of the composition law. For transformations associated

with small angular displacements, the Euler-Rodrigues formula becomes

δR = I3×3 − [∆φn×] +O
(
‖∆φn‖2) .
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When ∆φ is sufficiently small, higher order terms can be neglected and

δR = I3×3 − [δα×] .

Therefore, the attitude error vector is

[δα×] = I3×3 − R′RT . (4–3)

The attitude error vector can then be defined through the axis and angle by

δα = ∆φn.

Clearly, the attitude error vector is parameterization independent as it is a function of the

composition of RR′ ∈ SO(3). Therefore, the choice of parameterization of the attitude

error vector will define the suitability for data fusion.

Let s ∈ R3 be any minimal attitude parameterization of R. Now, applying the attitude

error vector to the fusion error state formulated in Section 4.3, yields

ŝf = arg min
ŝ

J (δα̂1, ... , δα̂n) . (4–4)

The loss function approach to attitude data fusion was first introduced to extend

application of the covariance intersection law to attitude states [115]. The loss function

perspective for Euclidean states produces the same fused state as the original

fusion law. However, for minimal attitude parameterizations that are follow from the

Euler-Rodrigues formula, (φ, n) and (−φ,−n) represent the same attitude. Differentiating

the quadratic loss function ensures that the fused attitude is invariant to this non-unique

choice.

Following the derivation of the Euclidean states, the first-order optimality condition

for attitude loss function minimization is

0 =
dJ (δα̂1, ... , δα̂n)

d ŝ
.
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From the chain rule of differentiation, the optimality condition is

0 =
n∑

i=1

(
∂δα̂T

i

∂ŝ

)
∂J (δα̂1, ... , δα̂n)

∂δα̂i
. (4–5)

Unlike the case for Euclidean states, the data fusion Jacobian will not, in general, be the

identity matrix. Therefore, both the data fusion Jacobian and representation of the error

state modify the data fusion law with respect to the original formulation for Euclidean

states. These modifications are parameterization dependent and have an impact on the

characteristics and accuracy of the resulting attitude fusion law. That is, the accuracy of

the attitude error vector approximation will influence the error in the fusion law.

In summary, this section demonstrated that the loss function approach as originally

developed for the covariance intersection algorithm with quaternion parameterization

[115] and later applied to the MRP parameterization [117, 118], applies to any data

fusion law and attitude parameterization, given that the fusion law can be written in

terms of the fusion error, as described in Eq. 4–1. Section 4.4 demonstrates how typical

data fusion algorithms can be rewritten in terms of the fusion error and then adapted to

attitude error states utilizing any parameterization of the attitude error vector.

4.4 Unknown Cross-Correlation Data Fusion Algorithms

The problem of data fusion with unknown correlation is common in decentralized

multi-sensor systems where information is shared across the network. Two algorithms

for data fusion with unknown cross-correlation will be extended to attitude problems via

the loss function and the fusion error. The first is the covariance intersection (CI) fusion

law, which has already been written in terms of the loss function of the attitude error

vector in [115] and related to the work on quaternion averaging [120]. The second is the

ellipsoid intersection (EI) fusion law, which offers a less conservative approach to data

fusion with respect to the covariance intersection algorithm, where consistency has been

demonstrated in simulation [121–123].
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4.4.1 Covariance Intersection

Consider the set of state estimate pairs (x̂i , Pi), which describe the first and second

moments of the random variable, x , with an arbitrary probability density function. The

covariance intersection (CI) fusion law yields a fused estimate, which is a convex

combination of the state estimates. Figure 4-2 represents the a notional example of the

covariance intersection results for a two-dimensional system. Figure 4-2A shows the

fused state covariance ellipse for the 1-σ bound on the state error centered at zero for

the original state estimates and covariance intersection solution, denoted by E0,P1, E0,P2,

and E0,PCI , respectively. with minimum cost as well as a suboptimal choice of weightings.

As expected, the fused state covariance ellipse lies outside of the original state estimate

covariance ellipses. Figure 4-2B demonstrates how the CI fused state is a compromise

between the original state estimates.
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Figure 4-2. Notional covariance intersection uncertainty ellipse comparison A)
Covariance intersection (centered at zero). B) Covariance intersection
(centered at mean).

The CI data fusion method is general for n sensors and is given by the fusion law

x̂CI = PCI

n∑

i=1

γiP−1
i x̂i
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and covariance approximation law

P−1
CI =

n∑

i=1

γiP−1
i .

The weightings, γi , must sum to one, where any convex combination satisfies the

covariance intersection fusion law, as demonstrated by the dotted line in Fig. 4-2A.

Alternatively, the dashed line in Fig. 4-2A represents a more appropriate choice

of weightings as evidenced by the smaller size in comparison to the arbitrary CI

estimate. In this case, the weightings are optimally determined with respect to a

minimization criterion, typically the trace or determinant of the information form of

the fused covariance, to produce a fused result that is consistent with all possible

cross-correlations between the state estimates.

The state fusion law is rewritten in terms of the fusion error as

0 =
n∑

i=1

γiP−1
i ∆x̂i ,

which is the result of minimizing

JCI(∆x̂1, ... , xn) =
n∑

i=1

γi∆x̂T
i P−1

i ∆x̂i .

Adapting this loss function to attitude yields,

JCI(δα̂1, ... , δα̂n) =
n∑

i=1

γiδα̂
T
i P−1

i δα̂i , (4–6)

with the corresponding optimality condition,

0 =
n∑

i=1

γi

(
∂δα̂T

i

∂ŝ

)
P−1

i δα̂i . (4–7)

The choice of the unit quaternion or MRPs, as has already been applied to CI, only

change the parameterization Jacobian and attitude error vector form described in

Eq. 4–5. It is important to note that Eq. 4–7 is general for any attitude parameterization

applied to the CI fusion law. This fact is utilized in the example presented in Section 4.8.2.
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4.4.2 Ellipsoid Intersection

Unlike the CI fusion law, which presumes a form for the fusion law with no regard

to the mutual information (read: correlation), the Ellipsoidal intersection (EI) fusion law

explicitly characterizes mutual information before deriving the fused state. In this form,

the state estimates are decomposed into exclusive and mutual information, such that

the unknown mutual information covariance is determined as the maximum possible

correlation belonging to the enclosure of the union of the state estimate covariances, as

shown in Fig. 4-3. Therefore, by construction, the approximate fused covariance matrix

for the EI fusion law will always be less than or equal to the size of that derived from the

CI fusion law.
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Figure 4-3. Notional ellipsoidal intersection uncertainty ellipse comparison A) Ellipsoidal
intersection (centered at zero). B) Ellipsoidal intersection (centered at
mean).

The derivation of the EI fusion law follows from the discussion above, which yields

x̂EI = PEI

(
2∑

i=1

P−1
i x̂i − Γ−1γ

)
(4–8)

P−1
EI =

(
P−1

1 + P−1
2 − Γ−1) ,

where γ and Γ are the mutual mean and covariance, respectively. Since the mutual

mean and covariance are unknown, consistency is assured if the largest possible
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correlation is considered. This is the essence of the EI fusion law. The maximum mutual

information covariance is found through the following convex optimization problem,

Γ = arg max
Υ∈Rn×n

n∑

i=1

λq(Υ)

subject to E0,P1 ∪ E0,P2 ⊆ E0,Υ,

where E0,Pi are the covariance ellipsoids of the state estimates and E0,Υ is the covariance

ellipsoid for the unknown mutual information between the state estimates and the mutual

mean. This is analytically found by solving for the joint diagonalization of P1 and P2

to produce P1 = In×n and P2 = D2 through the eigen-decomposition on D−
1
2

1 S−1
1 (P1 +

P2)S1D−
1
2

1 . Clearly this transformation on P1 yields In×n. The eigen-decomposition of the

transformation on P2 is

D−
1
2

1 S−1
1 P2S1D−

1
2

1 = S2D2ST
2 .

Thus, the maximum mutual information is found analytically through

Γ = S1D
1
2
1 S2DΓST

2 D−
1
2

1 ST
1 , (4–9)

where

DΓ =





max ([D2]ij , 1), if i = j

0, if i 6= j

The mutual mean is potentially singular by construction, but can be avoided with the

following approximation

γ =
(
P−1

EI − Γ−1 + 2ηIn×n
)−1 [(

P−1
EI − P−1

2 + ηIn×n
)

x̂1 +
(
P−1

EI − P−1
1 + ηIn×n

)
x̂2
]

, (4–10)

where η = 0 if any eigenvalue of Pj , resulting from the joint diagonalization of Pi and Pj

yielding Pi = I, has magnitude slightly larger than one, or else η = ζ, where ζ is some

small perturbation [123].
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Given the EI fusion law and following the development of the error state loss

function, the EI fusion state is found by minimizing the following loss function

JEI(∆x1,∆x2,∆xγ) =
1
2

2∑

i=1

∆xT
i P−1

i ∆xi −
1
2
∆xT

γ Γ
−1∆xγ,

where ∆xi , x̂EI − xi and ∆xγ , x̂EI − γ. As was the case with the CI fusion law, it

is important to view the system from this perspective, as attitude compositions are not

purely additive. For attitude states, the loss function becomes

JEI(δα̂1, δα̂2, δα̂γ) =
1
2

2∑

i=1

δα̂T
i P−1

i δα̂i −
1
2
δα̂T

γ Γ
−1δα̂γ.

The optimality condition for the EI fusion law is

0 =
2∑

i=1

(
∂δα̂T

i

∂ŝ

)
P−1

i δα̂i −
(
∂δα̂T

γ

∂ŝ

)
Γ−1δα̂γ (4–11)

Therefore, the EI fusion law for attitude states can be determined by first finding the

maximum mutual information through Eq. 4–9 and Eq. 4–10, and then making use of the

optimality condition in Eq. 4–11 to algebraically solve for the EI optimal fused state.

4.4.3 Summary of Data Fusion Laws for Attitude States

Modification of existing data fusion laws that were originally derived for Euclidean

states has demonstrated the applicability of these same fusion laws for states that

parameterize SO(3). The CI and EI fusion laws, were shown to have the appropriate

form to be viewed from the loss function perspective. Next, Section 4.5 will review the

quaternion parameterization for data fusion and the challenges associated with its

redundancy. Then, the vectorial parameterization of the attitude error vector and the

generation of the vectorial parameterization Jacobian are discussed in Section 4.6 in

regard to their application to data fusion.
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4.5 Review of the Unit Quaternion for Data Fusion

The Euler-Rodrigues symmetric parameters are described by the unit quaternion,

q =
[
qT

v , q4
]T , and defined by the axis and angle of rotation through

qv = sin
φ

2
n

q4 = cos
φ

2
,

where qv and q4 are the vector and scalar portion of the quaternion, respectively. The

unit quaternion parameterization for attitude is given by

R(q) =
(
q2

4 − qT
v qv

)
I3×3 − 2q4 [qv×] + 2qvqT

v .

The unit quaternion is a popular attitude parameterization due to it being globally-singularity

free with the bilinear kinematics

q̇ =
1
2
Ξ(q)ω =

1
2
Ω(ω)q

where

Ξ(q) =




q4I3×3 + [qv×]

−qT
v




Ω(ω) =



− [ω×] ω

−ωT 0


 .

However, a major drawback of the unit quaternion for data fusion is that it requires

the constraint,

q2
4 + qT

v qv = 1,

be satisfied. The attitude matrix parameterized by the unit quaternion and associated

quaternion kinematics maintain the constraint by construction and are only subject to

numerical precision errors, which can be managed through brute-force normalization.

118



Recall the general optimization problem for attitude data fusion in Eq. 4–4. When

δα is formulated with a constrained attitude parameterization, the optimization problem

must be modified to satisfy the equality constraints. The new optimization problem is

given by

minimize J (δα̂1, ... , δα̂n)

subject to g(s)− c = 0, (4–12)

where g is the constraint function and c is the constraint value. This optimization

problem can be solved through the method of Lagrange multipliers [124]. Various

algorithms for solving the constrained optimization problem with the method of Lagrange

multipliers have been implemented for the quaternion data fusion problem [115, 116].

However, the addition of the unity constraint adds algorithmic and numerical complexity

with respect to the unconstrained optimization problem. This motivates the use of

minimal attitude parameterizations for attitude data fusion.

4.6 Vectorial Attitude Parameterization

The parameterization of the attitude error vector dictates the characteristics of

the attitude data fusion problem as a consequence of Eq. 4–5. The unit quaternion

parameterization requires that a single constraint be satisfied, which generates

additional complexity with respect to an unconstrained optimization problem. It is well

known that all minimal attitude parameterizations are unconstrained, but also singular for

particular attitudes. Singularities can manifest through either of geometric or kinematic

origin. Geometric singularities are a result of the description of attitude, in which certain

orientations cause the parameters to increase to infinity. Kinematic singularities are a

result of the motion of attitude, in which small changes in angular velocity correspond to

a escape of the parameterization derivative to infinity in finite time, and vice versa. Both

of these singularity types can cause issues for data fusion.

119



For systems with unconstrained rotational motion, the presence of kinematical

singularities poses difficulties for attitude control, estimation, and data fusion. Due

to the singularities present in all minimal attitude parameterizations, the constrained

unit quaternion parameterization performs well for attitude control [125–127] and

estimation [103, 104]. In this research it is assumed that the unit quaternion is used

for control and estimation. Alternatively, it is known that certain minimal attitude

parameterizations, such as the MRPs and higher order Rodrigues parameters (HORPs),

can also be used to produce global singularity-free kinematics by making use of

the shadow parameterizations [62, 63]. Furthermore, data fusion only requires the

attitude parameterization be free of kinematical singularities for the range of rotations,

φ ∈ [−2π, +2π], due to the periodic invariance of attitude. However, data fusion need

not utilize the same parameterization as that which is utilized in the estimation and

control algorithms, as the quaternions produce a constrained optimization problem for

data fusion. To circumvent this problem, vectorial parameterizations of the attitude error

vector are investigated to generate fast and accurate attitude data fusion laws.

4.7 Parameterized Attitude Error Vector

The vectorial attitude parameterizations and their kinematics discussed in

Section 4.6 are now used to derive the attitude error vectors. The attitude composition

law provides a measure of change in attitude from one configuration to another.

Parameterizing the attitude composition law with the general vectorial parameterization

yields

δR (δα) = R
(
r ′
)

RT (r ) . (4–13)

Therefore, given two attitudes, represented by r ′ and r , the attitude error on SO(3) is

exactly given by Eq. 4–13. Although this expression is exact, the goal is to develop a

parameterized attitude error representation as required by the data fusion optimality

condition in Eq. 4–5. When the principal rotations are small, the attitude error vector
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can be represented accurately by a linear model for Eq. 4–13. Small rotations are a

valid assumption, as attitude estimation is assumed to produce estimates satisfying the

small-angle assumption – even with coarse attitude sensors.

4.7.1 First-Order Model of Attitude Error Vector

Recall that the attitude error vector defined in Eq. 4–3 is parameterization

independent. One approach to formulating the attitude error vector is through sequential

compositions on SO(3) when parameterized through the general attitude s on R3. To

simplify expressions, higher-order terms are neglected when the attitude error vector is

assumed to be small. Alternatively, consider the general nonlinear kinematics given in

Eq. 2–13, which are derived through infinitesimal rotations. A Taylor series expansion

with respect to time yields

r (t) = r (t0) + ṙ (t0)∆t +
1
2!

r̈ (t0)∆t2 + · · · .

For small time steps and using Eq. 2–13, a linear model is

r (t) = r (t0) + G(r (t0))ω(t0)∆t .

If over the time step ∆t , the condition, δα(t0) = ω(t0)∆t , is locally satisfied, then the

Taylor series approximation is given by

r (t) = r (t0) + G(r (t0))δα(t0).

Therefore, the truncated approximation for the attitude error vector is

δα(t0) = G−1(r (t0)) (r (t)− r (t0)) .

Making use of the inverse kinematic form and removing the time index, the approximate

model is

δα = H(r )
(
r ′ − r

)
. (4–14)
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This approximation will serve as the representation of the attitude error vector for data

fusion.

4.7.2 Data Fusion Jacobian

The inverse kinematics are now shown to be intimately tied to attitude data fusion.

An exact definition of the parameterization Jacobian is related to the angular velocity,

where one relevant definition of the angular velocity is

ω =
dδα
dt

,

where the corresponding differential relationship is

dδα = ωdt .

Similarly, the parameterization time-derivative is defined by

ṙ =
dr
dt

,

which has the differential relationship

dr = ṙdt .

It should be noted that these are exact differential relationships. Therefore, the forward

and inverse kinematics, as represented through differentials, are

dr = G(r )dδα,

and

dδα = H(r )dr ,

respectively, and thus,

dδα
dr

= H(r ).
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As a result, the Jacobian required by the data fusion optimality condition in Eq. 4–5, is

simply the transpose of its inverse kinematical Jacobian. That is,

dδαT

dr
= HT (r ).

The inverse kinematic Jacobian is singular for all minimal vectorial attitude parameterizations.

What is important, is that for the Class II parameterizations (which, recalling from

Chapter 2, are bestowed with a shadow set), the kinematical singularities can be

avoided.

4.7.3 Attitude Error Vector Approximation Accuracy

Choice of parameterization of the attitude error vector should avoid geometric

singularities associated with conversion between the unit quaternions and kinematic

singularities associated with changes in the parameterization. In Reference [64] it was

shown that the accuracy of propagation for the vectorial attitude parameterizations

is related to the kinematical condition number, κ, which relates errors in angular

velocity to errors in the time-derivative of the parameterization. Furthermore, it was

shown that the MRPs have the lowest kinematical condition number when switching

between the shadow parameterization and thus are the most accurate vectorial attitude

parameterization for propagation.

The general change in attitude was defined in Eq. 4–2. For data fusion, the attitude

error vector defined for small rotations is provided for general compositions in Eq. 4–3.

For the vectorial parameterizations, the first-order approximation of the attitude error

vector was derived in Eq. 4–14. The accuracy of the first-order approximation of the

attitude error vector is characterized by the difference in the true value of the attitude

error matrix with respect to the attitude matrix parameterized by the approximate attitude

error vector, over the range φ ∈ [−2π, +2π]. An appropriate measure in the difference is
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the Euclidean distance, J , such that the error is defined by

J = ‖δR(r , r ′)− R(δr )‖f (4–15)

where ‖ · ‖f represents the Frobenius matrix norm. The quantity δr is related to δα

though a scaling. For instance, for the MRPs, the scaling is four, whereas for the FRPs

this scaling is eight. The choice of attitude parameterization is based on the objective to

minimize this additive error, however other objective functions such as the multiplicative

eigenangle error exhibit the same trends. As a result, parameterizations that exhibit

linear behavior for φ ∈ [−2π, +2π] are ideal for data fusion. Consider the case of

the classical Rodrigues parameters (CRPs), ρ, and respective higher orders of the

Rodrigues parameters, such as the third-order Rodrigues parameters (TRPs) and

fourth-order Rodrigues parameters (FRPs), τ . Figure 4-4A demonstrates that the higher

order Rodrigues parameters increase in linearity with the order of the parameterization.

This fact of linearity follows directly from the repeated half angle formulation of the

higher-order Rodrigues parameters, where the tangent function is nearly linear for small

angles. In the limit, the higher-order Rodrigues parameters represent the principal

rotation vector, which is an exactly linear function of φ, by definition. To compare the
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Linear model comparison. B) Linear model residual.
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linearity of the parameterizations, a least squares minimization was performed to fit

a first-order model using data points originating from half of the nonsingular range of

the set. A residual is defined as the difference between the parameterization and the

first-order model. From Fig. 4-4B, the residual shows that each order of the Rodrigues

parameter begins to exhibit decay to singularity at the principal rotation associated

with half of the singularity angle. For example, the CRPs begin to diverge at ±π/2, the

MRPs at ±π, and so on. However, the shadow parameterizations offer relief from these

nonlinearities for m ≥ 2. By making use of the switching surface cosφ/2 = 0 (i.e., q4 = 0)

to switch between the shadow parameterizations, the vectorial attitude parameterization

will exhibit the most linear relationship possible for that set. This is due to the symmetry

of the parameter about φ = 0, such that the aforementioned switching surface ensures

the symmetric set is furthest from singularity. This implies that the principal rotation

remains as small as possible for that parameterization. Figure 4-5 shows the effects

of principal rotation angle and attitude error angle on the linear approximation when

switching between the shadow parameterizations for the attitude error vector for the

modified Rodrigues parameters and the fourth-order Rodrigues parameters. The MRPs

represent the state-of-the-art for unconstrained attitude data fusion. In this graph, the

attitude error angle is depicted by a positive constant principal rotation angle offset, ∆φ,

such that

σ = tan
φ

4
n

σ′ = tan
φ + ∆φ

4
n

and

τ = tan
φ

8
n

τ ′ = tan
φ + ∆φ

8
n.
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The exact error composition on SO(3), δR(r ), is computed through Eq.4–13 with the

parameterized attitude matrix found in Table 2-1. The first-order approximation of the

composition is computed through Eq. 4–14 using the parameterized inverse kinematical

Jacobian in Table 2-2. Note, the ordinate in Fig. 4-5 is scaled logarithmically, due to the

investigation of multiple orders of magnitude for the attitude error angle (in radians). The

curves for φ ∈ [−π, +π] are generated using the listed parameters and their shadows

are used for φ ∈ (−2π,−π) ∪ (+π, +2π) . The first observation from Fig. 4-5 is that since
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Figure 4-5. Attitude error vector approximation accuracy for the MRPs and FRPs

both the MRPs and FRPs permit a shadow parameterization, both sets have errors

that asymptotically approach zero at φ = {0,±2π}. This is expected, as the shadow

parameterization is well defined when the original set is ill-conditioned.

The next observation is that the switching condition, q4 = 0, provides a very robust

law for description of the attitude error vector. This fact is illustrated by the peak in error

observed at φ = ±π. Since the peak occurs at the intersection of the parameterization

with its shadow set, the error is minimal with this switching condition. That is, any other

switching point would result in a larger peak error at this intersection. However, as the

order of the attitude error increases, the switching law described by q4 = 0 is suboptimal,
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as illustrated by the jump discontinuity in the error at φ = π for ∆φ = {1} radians.

The gray line in the magnified circled region in Fig. 4-5 demonstrates that at large

angle errors, the switching condition could be adjusted to reduce the error in the

approximation. However, large errors invalidate the linearization small angle assumption

used in the formulation of standard data fusion and state estimation algorithms. In these

cases, modifications to the switching law will improve the error, but more importantly

the data fusion and estimation algorithms must be reformulated to account for the

nonlinearity in the attitude dynamics process. The fact remains that for small errors, the

switching law q4 = 0 is very accurate and robust and thus preferred for data fusion under

typical conditions.

The final and particularly powerful observation is that the FRPs produce an

attitude error vector which is nearly an order of magnitude more accurate than the

MRPs at the peak error associated with ±π. Both the MRPs and FRPs are subject

to small polynomial error sources as indicated by their respective attitude matrix

parameterizations. The higher-order polynomial for the FRPs approximates a linear

function in φ as evidenced by Fig. 4-4. This improvement in accuracy is consistent for

all orders of attitude error (see the legend in Fig. 4-5). It is important to note that as

the attitude error grows, the linear approximation error begins to approach the order of

the attitude error itself. Whereas, for small attitude errors, the linear approximation

is several orders of magnitude smaller, and only has a small affect on the fusion

process. However, from an accuracy standpoint, for all cases the FRPs are a preferable

parameterization for data fusion in comparison to the MRPs. It is expected that as the

order of halving in the tangent increases for the higher-order Rodrigues parameters,

that the linear approximation will be more accurate for φ ∈ [−2π, +2π]. However, there

may be increasing numerical complexity as the order increases. In the limit, the Cayley

transform produces the rotation vector, which is completely linear in φ. However, the

kinematics are ill-conditioned at φ = 0. These observations are illustrative of the benefit
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of using the higher-order Rodrigues parameters for the attitude error vector, with the

caveat that a trade-off does exist with respect to numerical complexity.

4.7.4 Unit Quaternion Transformation

Section 4.7.3 showed that minimal attitude parameterizations are suited for data

fusion as they are unconstrained and can be made to be highly linear for φ ∈ [−2π, +2π].

However, the unit quaternion still has large utility for control and estimation. This

section provides the details for converting to and from the unit quaternion. Particularly,

if the state estimates originate from the unit quaternion, then when using the vectorial

parameterization for data fusion, it is necessary to transform back and forth between

the vectorial attitude parameterizations and the unit quaternion. Table 4-2 provides a

summary the forward and inverse transformations.

Table 4-2. Transformations for vectorial attitude parameterizations and the unit
quaternion

Name r r (q) qv (r ) q4 (r )

EOPs φ 2 tan−1 qv
q4

sin φ
2

φ
φ cos φ

2
CRPs ρ qv

q4

1

(1+ρ2)
1
2
ρ 1

(1+ρ2)
1
2

MRPs σ qv
1+q4

2
(1+σ2)σ

(1−σ2)
(1+σ2)

FRPs τ qv

1+q4+
√

1+q4

4(1−τ2)
(1+τ2)2 τ

(1−6τ2+τ4)
(1+τ2)2

OPs η qv η
(
1− η2

) 1
2

LPs λ 2

(1+q4)
1
2
qv 2

(
1− λ2

) 1
2 λ 1− 2λ2

4.8 Minimal Attitude Parameterization Data Fusion

Class II vectorial attitude parameterizations are minimal, unconstrained, and

nonsingular when paired with their shadow parameterizations. These properties make

them ideal for parameterization of the attitude fusion error vector. In this part, a general

approach to attitude data fusion using the shadow parameterization switching law is

presented. These results are then discussed with respect to the CI and EI fusion laws

introduced earlier in Sections 4.4.
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4.8.1 Shadow Switching Data Fusion Process

It is assumed that the data fusion process begins with quaternion estimates and

that Class II vectorial parameterizations are utilized for the fusion process to avoid

solving for the constrained optimization. Since the Class II parameters have shadows,

denoted by rS, singularity avoidance can thus be accomplished by switching to the

shadow set using a switching law.

Insight into the switching law can be gained from an understanding of MRP-based

attitude control. The MRP switching condition for attitude control is typically chosen

to be σTσ = 1 [62]. This condition is equivalent to switching at the unit sphere where

σ = −σS. The implication of this switching law is that the attitude parameterization is

always bounded by unit magnitude, which is desirable for tuning the resulting controller.

However, in general the switching surface takes the form

σTσ = cσ, (4–16)

where cσ is an arbitrary real constant. Just like the case for control laws, the fusion

law for the vectorial attitude parameterizations is based on the desire to bound the

norm of r , which results in an analogous switching condition to that of MRP-based

attitude control. However, the boundedness in this case ensures that data fusion will be

numerically stable, such that small changes in the parameterization are indeed reflective

of small angle changes in the attitude.

Assuming that the parameterization for estimation and control is the unit quaternion,

the data fusion switching condition for the MRPs in Eq. 4–16 is equivalent to the

switching surface on the unit quaternion,

q4 = cq,

where cq is an arbitrary real constant. Switching at the unit sphere for the MRP, given by

cσ = 1, is equivalent to the quaternion switching surface at cq = 0. Therefore, the choice
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for vectorial attitude parameterization, r , of the fusion attitude error vector is given by

r =





r , if q4 ≥ 0

rS, if q4 < 0
,

which is unconstrained and globally nonsingular. Additionally, this choice of cq ensures

the data fusion will occur at the maximum distance from singularity, where the distance

is defined through attitude composition. The implications are that this switching condition

will produce the most accurate representation for data fusion, as the parameterization

will remain the most linear as demonstrated in Fig. 4-5.

From the above discussion, a summary of the vectorial parameterizations fusion

law with shadow parameterization switching is provided in the following algorithm:

Algorithm 1 provides an unconstrained global nonsingular data fusion process which

Algorithm 1 Vectorial attitude parameterization data fusion with shadow switching
1: procedure GENERAL FUSION PROCESS(q̂i )
2: Construct the set of quaternion estimates, q̂i , to be fused and ensure that quaternion vector por-

tions point in the same direction
3: Transform the quaternion state estimates to the vectorial parameterization by arbitrarily testing the

first quaternion estimate in the set using the following switching condition:
4: if q̂4,i ≥ 0 then
5: transform all quaternion estimates to their respective vectorial estimate, r̂ using the r (q) column

in Table 4-2
6: else if q̂4,i < 0 then
7: transform all quaternion estimates to their respective shadow vectorial estimate, r̂S, using

Eq. 2–11
8: end if
9: Solve for the fused state from the optimality condition in Eq. 4–5, which for the CI and EI algo-

rithms are computed through Eq. 4–7 and Eq. 4–11, respectively.
10: Transform the fused state back to the unit quaternion parameterization using the q(r ) and q4(r )

columns in Table 4-2
11: end procedure

can be applied to the unknown correlation CI and EI algorithms. In fact, this process is

general to any attitude data fusion law satisfying the loss function form in Eq. 4–1. An

example of this process utilizing the FRPs applied to the CI fusion law is discussed in

the next section.
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4.8.2 Example: FRP Covariance Intersection with Shadow Switching

Recall the form of the loss function for the covariance intersection algorithm,

Eq. 4–6 and the attitude error vector parameterized by the FRPs given in Table 2-2.

Using these definitions, the FRP parameterized covariance intersection loss function is

JCI(τCI) =
n∑

i=1

γi (τCI − τ̂i)
T HT (τ̂i)P−1

i H(τ̂i) (τCI − τ̂i) .

Following from Eq. 4–7, the CI FRP optimality condition is

0 =
n∑

i=1

γiHT (τ̂i)P−1
i H(τ̂i) (τCI − τ̂i)

T .

Solving the linear system of equations for τ̂CI , yields the fused attitude given by

τCI =

(
n∑

i=1

γiHT (τ̂i)P−1
i H(τ̂i)

)−1 n∑

i=1

γiHT (τ̂i)P−1
i H(τ̂i)τ̂i .

The required inverse is for a 3 × 3 matrix and is guaranteed to exist. Existence follows

since P−1
i exists by construction, the similarity transform, HT (τ̂i)P−1

i H(τ̂i), produces the

same eigenvalues as P−1
i , and the matrix to invert results from a convex combination of

HT (τ̂i)P−1
i H(τ̂i) with

∑n
i=1 γi = 1.

4.9 Vectorial Attitude Data Fusion with the Local Error Approach

An alternative to the shadow switching method is the local error approach

developed in Reference [118]. This method has the benefits of built-in singularity

avoidance as well as superb kinematic conditioning. The local error is the result of

computing the error quaternion with respect to a reference quaternion. Following the

notation of Reference [118], the derivation is for the local error is summarized. Let the

quaternion estimate be denoted by q̂i , the reference quaternion as q̄, and the fused

quaternion as qf . The fused quaternion can be related to the quaternion estimates by a

small quaternion error, δq, such that

qf = δqi ⊗ q̂i . (4–17)
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An alternative definition of the fused quaternion is to use deviations from the reference

trajectory, δq̄, such that

qf = δq̄ ⊗ q̄. (4–18)

The reference trajectory and quaternion estimate are related by

q̄ = ∆qi ⊗ q̂i

and thus

∆qi = q̄ ⊗ q̂−1
i , (4–19)

where ∆qi is once again small. Combining the definitions of Eq. 4–17, Eq. 4–18, and

Eq. 4–19, the errors are related by

δq̄ = δqi ⊗∆q−1
i

and through attitude compositions

δqi = δq̄ ⊗∆qi . (4–20)

Now defining the vectorial parameterization of the quantities in Eq. 4–20, the first-order

model of the attitude error vector using the local error approach is

δαi = H(r∆qi )(rδq̄ − r∆qi ),

where r∆qi is the vectorial parameterization of ∆qi and rδq̄ is the vectorial parameterization

os δq̄. Algorithm 2 summarizes the data fusion method using the local error approach.

Figure 4-6 depicts the approximation error centered about the identity state out to

5π/180rad . The FRPs still produce an order of magnitude improvement over the MRPs

using the local error approach. However, even at 5π/180rad error, the approximation

error is multiple orders of magnitude lower than the fusion error. Therefore, the local
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Algorithm 2 Vectorial attitude parameterization local error data fusion algorithm
1: procedure GENERAL LOCAL ERROR DATA FUSION PROCESS(q̂i )
2: Construct the set of quaternion estimates, q̂i , to be fused and ensure that quaternion vector por-

tions point in the same direction
3: Construct the set of local quaternion error state estimates with respect to a reference quaternion

using Eq. 4–19
4: Transform the local quaternion error state estimates to the vectorial parameterization
5: Solve for the fused state from the optimality condition in Eq. 4–5, which for CI and EI algorithms

are computed through Eq. 4–7 and Eq. 4–11, respectively
6: Transform the fused local error state to the local quaternion error using the qv (r ) and q4(r ) columns

in Table 4-2
7: Transform the fused local quaternion error state back to an absolute fused quaternion using the

inverse of the reference quaternion
8: end procedure

error approach is approximately equal no matter the minimal parameterization. Based

on this observation, it can be argued that in fact the CRPs should be utilized as the best

parameterization for minimal data fusion, as they are more computationally efficient than

the MRPs and FRPs. The local error representation ensures that the CRPs will stay far

away from their singularity at ±π.
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Figure 4-6. Attitude error vector approximation accuracy for the MRPs and FRPs using
the local error representation

Taking into account the robustness of the local-error approach to the attitude

parameterization, Figure 4-7 demonstrates that although the CRPs are an order
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of magnitude worse than the MRPs and two orders of magnitude worse than the

FRPs, due to the local error representation, they are still more than adequate for

precision attitude applications and add only negligible error for coarse attitude

estimation. However, the choice is with the designer of the to balance the accuracy

of the parameterization vs the computational expense.
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Figure 4-7. Attitude error vector approximation accuracy with the CRPs using the local
error representation

Intuitively, the reference quaternion should be chosen to minimize the distance

with respect to the identity quaternion. This choice ensures that whichever minimal

parameterization is chosen will be the highest accuracy for that parameterization.

This leads directly to the quaternion averaging solution mentioned in Reference [118].

However, using the local error approach makes the solution very insensitive to the

choice of the reference trajectory, and as a result the reference trajectory can be chosen

to be any of the state estimates without a noticeable loss in performance.

4.10 Comments on Attitude Data Fusion

Throughout this research, several new observations were made in the study of

attitude data fusion. Several notes related to attitude parameterizations and fusion laws

are provided in the following subsections.
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4.10.1 A Note on MRP Singularities and Shadow Switching

In Reference [117], singularity avoidance was described for a global MRP approach

using a similar switching condition as was described in this section. Additionally, a

local MRP approach was presented and further expounded upon in Reference [118],

which did not require use of the shadow parameterizations. In Reference [117], both

of these methods were shown to be more numerically efficient than existing quaternion

data fusion laws. Additionally, the global switching law was demonstrated to be more

numerically efficient than the local MRP singularity avoidance method. This efficiency

difference is a result of the local error approach necessitating additional transformations

to and from the original attitude parameterization as well as the potential need for

quaternion averaging to ensure the fusion error remains small.

Although the global MRP switching was shown to be more efficient in Reference [117],

it is stated in Reference [118] that data fusion near the unit sphere will cause issues with

a global MRP data fusion routine utilizing shadow switching. In particular, it is stated

that additive corrections to the fused attitude may result in an erroneous switching of

the MRP to its shadow parameterization. Although it is true for all conditions other than

on the unit sphere, that when the MRP is inside the unit sphere the shadow MRP is

outside the unit sphere, it is not true that the MRP always remains inside of the unit

sphere. By continuity, the MRP will be greater than one for all φ > π and unbounded at

the singularity existing at ±2π. MRP continuity near the quaternion unit sphere is shown

in Fig. 4-8, where the arrows point in the direction of change with increasing φ, such

that as q moves to q′, σ moves to σ′. The equivalent antipodal attitude of −q moves to

−q′, as σS moves to σS′. Both the MRP and the shadow move continuously through the

perimeter of the unit sphere along the projection plane. Thus, when the MRP is located

on the unit sphere at qi = +1 then the shadow MRP is also on the unit sphere, but at

qi = −1, where the converse of this statement is also true. Therefore, assuming that all

of the vector portions of the quaternions point in the same direction, the MRP could only
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erroneously be fused as a shadow MRP if the state estimate and the fused state have a

fusion error of 2π. This is a clear violation of the small angle assumption that was used

in the construction of the MRP composition law and attitude error vector description. As

a result, the MRP switching law provides a globally nonsingular approach to data fusion.

These same arguments hold for the other Class II vectorial attitude parameterizations.
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Figure 4-8. Justification for data fusion at the quaternion unit sphere using the shadow
parameterizations

4.10.2 A Note on the Minimization Criterion for the CI Attitude Fusion Law

The CI fusion law is equivalent to a one-dimensional minimization problem, where

the minimization criterion is typically chosen to be the trace or determinant of the

information form of the approximate fused covariance matrix. This minimization criterion

is thus problem dependent. The focus of this study is for attitude data fusion, and thus

the performance metric for attitude estimation and data fusion is the pointing accuracy.

One definition for the pointing accuracy is

Jpointing =
√

e2,

where e is the error of the estimate with respect to the true state. In simulation, the

performance of the data fusion law can be evaluated with respect to a truth model to
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determine the true error in the system. However, the state error cannot be directly

characterized for physical systems unless the state is known exactly, which in that case

precludes the need for data fusion and estimation. Therefore, a good surrogate for the

pointing accuracy of unbiased estimates is the state-error covariance matrix, which

corresponds to uncertainty bounds on the error of the state estimate with respect to the

unknown truth. From this alternative definition, the pointing accuracy is given by

Jpointing =
√

tr (PCI).

Since the square root is monotonic, the trace is an equivalent minimization criterion to

the square root of the trace. As such, the goal of data fusion should be to minimize

the trace of the fused covariance matrix. Thus, there is an equivalence with the

application-specific data fusion performance and the minimization criterion of the

covariance intersection algorithm. In Reference [115], the trace was shown empirically

to be the optimal CI minimization criterion for attitude applications. However, the CI

minimization criterion follows directly from the fact that the evaluation criterion for

attitude is the pointing accuracy, which was just shown to be equivalent to minimizing

the trace of the state-error covariance matrix. This informal proof demonstrates that for

attitude applications, one should always minimize the trace for the CI fusion law.

4.10.3 A Note on Covariance Intersection and Ellipsoidal Intersection

On the surface, it would appear that a drawback for utilizing the EI fusion law is

that it is only applicable to the fusion of two states, whereas the CI fusion law can be

computed for any number of state estimates. However, sequential fusion with the EI

fusion law can be accomplished, where the states are iteratively fused together in

sequence. This same methodology has been implemented for the CI fusion law and

shown numerical and optimality improvements [128].
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4.10.4 A Note on Attitude Data Fusion with Appended State Vectors

For most attitude estimation applications, other parameters are typically jointly

estimated alongside the attitude. The results developed in this chapter demonstrate

an improved approach to parameterizing the attitude error vector for fusing attitude

information. However, all of these results are equally valid for cases with appended state

vectors that are inclusive of Euclidean states, such as biases and misalignments.

4.11 Two Star Tracker Data Fusion Example

Consider the case of two star trackers outfitted on one spacecraft. The first star

tracker is assumed to be aligned with the spacecraft body z-axis and the second

star tracker is aligned with the body x-axis. Both star trackers are equal in capability.

Each star tracker processes their local measurements and develops an estimate for

the spacecraft’s attitude. The simulation parameters for the star tracker example in

Section 3.6.4 are used in these simulations for the initial state and state estimate

parameters. Figure 4-9 provides the error results for the star tracker simulations. The

error for the first star tracker is shown in Figure 4-9A, where it is verified that rotations

about the boresight, parallel to the body z-axis, have the largest error. Similarly, for

the second star tracker, Figure 4-9B exhibits the same behavior, but the boresight is

parallel to the body x-axis. Using the FRP data fusion law, Figure 4-9C demonstrates

the benefits of data fusion with the state estimates are of similar accuracy. In this case,

the fused attitude combines the excellent error performance of the x-axis using the first

star-tracker and the z-axis using the second star tracker.

The performance improvements are further shown in Figure 4-10, which shows a

comparison in pointing error when using either of the star trackers individually versus the

fused pointing error. The fused state estimate is much less sensitive to sensor effects

originating from either sensor, as typically the other sensor will provide any information

that is unavailable at a particular instance in time.
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Figure 4-9. Example two star tracker data fusion using the FRPs and shadow
parameters. A) Star tracker 1 error without data fusion. B) Star tracker 2
error without data fusion. C) Fused star tracker error.
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Figure 4-10. Pointing error comparison of two star trackers with and without data fusion

Figure 4-11A demonstrates the approximation error that exits with the MRPs during

the converging phase of the filter. During convergence, the error is still high and the

approximation error actually causes the fused estimate to be larger in error than either

of the individual state estimates. However, when using the local error representation as

is done in Figure 4-11B, the effect of the approximation is mitigated and the fused state

exhibits the benefits of the data fusion process.
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Figure 4-11. Comparison of star tracker data fusion with MRP shadow parameter and
local error representation. A) MRP fusion with shadow switching B) MRP
fusion with local error representation
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4.12 Summary

A general framework for extending Euclidean state data fusion laws to attitude

states was presented in this Chapter. The vectorial attitude parameterizations served as

a framework for generating minimal unconstrained attitude data fusion laws. First-order

approximations of the attitude error vector were shown to be more accurate for

higher-order Rodrigues parameters with respect to the modified Rodrigues parameters

and classical Rodrigues parameters. It is interesting to note that when the HORPs were

developed, Tsiotras stated, “It still remains, however, to determine the applicability of

these higher order parameters in realistic attitude problems” [63]. This chapter has

shown that the HORPs are a highly accurate parameterization for minimal attitude data

fusion.

Given the description of the attitude error vector accuracy, two methods were

investigated for attitude data fusion. The first method makes use of the shadow set for

the Class II vectorial parameterizations to provide an unconstrained global nonsingular

parameterization for data fusion. However, it is noted that the attitude error vector

accuracy is highest when centered around the null attitude state. Therefore, the local

error representation was adopted to improve the accuracy for data fusion. Based on the

results of the local-error, for infinitesimal rotations, data fusion is invariant to the minimal

attitude parameterization, as all sets are infinitesimally linear. Even for relatively large

attitude errors (several degrees), the attitude error vector linear approximation error is

orders of magnitude less than the fusion error. Therefore, the CRPs are the parameter

of choice for fast attitude data fusion. If a small improvement in accuracy is desired

(fractions of a percent), then higher-order parameterizations can be used.

Recalling the first thesis statement on data fusion in Section 1.4, this chapter

presented facts were to extend existing data fusion methods on Euclidean state spaces

can be extended to the attitude state spaces. It was also seen that by choice the

combination of choosing an appropriate minimal attitude parameterization, along with
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the local error representation, leads to a family of fast unconstrained global nonsingular

attitude data fusion laws.
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CHAPTER 5
STOCHASTIC GREEDY SENSOR TASKING

This chapter is concerned with how to most effectively task the chief to capture

and share relative attitude measurements with respect to the deputies to minimize the

attitude error of the deputies. First the sensor tasking problem is introduced, which is

followed by the introduction of fixed and greedy tasking algorithms. Metrics are then

investigated for the greedy tasking approach. Simulations are performed to the fixed

tasking algorithm with the greedy tasking algorithm. In addition, several metrics are

compared, and Monte Carlo analysis is used to provide a statistical comparison of the

tasking metrics.

5.1 Sensor Tasking Overview

In a deterministic setting, a tasking problem typically involves the solution to

a traveling salesman problem, where using the analogy, a salesman must visit a

prescribed set of houses in the shortest path. There are many solutions to this problem,

one of the most well known and classic approaches being the Hungarian Algorithm

[129]. The traveling salesman problem suffers from the curse of dimensionality and often

requires heuristics and problem dependent algorithm modifications for larger networks.

Unlike the traveling salesman problem, the sensor tasking problem takes on a

modified structure, where each target may need to be visited more than once and

the edge weightings are based on the performance metric of interest, which may be

stochastic in nature. Therefore, sensor tasking requires a modified solution approach.

In the desired solution, the sensor follows a path of least resistance to distribute

measurements or information to a set of deputies, while minimizing fuel and time.

However, the objectives of uncertainty minimization and traditional control objective

minimizations are confounded. In the event that the objective is to minimize the pointing

error in the system, the controller actions are based on sensing objectives. If the

objective is to minimize fuel and time, the control is only as good as the certainty in the
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state estimates. Therefore, the control and tasking objectives are inseparable. Optimal

solutions to problems with this structure are computationally expensive and suffer from

the curse of dimensionality.

Others have investigated similar problems. An information-based approach to

sensor tasking for decentralized control of vehicles constrained to planar motion and

tasked with information gathering was developed in Reference [130]. The performance

objective of the sensor tasking problem was evaluated by information measures. One

question that is addressed in this chapter is, “are information-theoretic measures

appropriate for attitude sensor tasking?” The work in Reference [130] was concerned

with systems where information changes continuously with the dynamic states of

a network of vehicles, such that a continuous control input on the vehicle causes a

continuous information change. Sensor tasking for attitude resource sharing is also

concerned with the problem of information gathering. However, in the framework

under study, information is only gained when the relative attitude sensor is capturing

measurements, which can require significant time steps to slew to the sharing

orientation. Therefore, for a small look-ahead time, relative attitude may not be available

during the slew, and thus no new information is gathered.

Optimal sensor tasking using information metrics has also been applied to

space-based sensors for the planar translational motion problem [131]. Tasking was

based on constraints with regard to range and field-of-view, and applied to the space

situational awareness. The tasking solution involved solving a discrete-time linear

programming problem. However, this decision-making did not consider the sensor

dynamics and coupling between the sensor states and the observations. Another planar

example used information metrics and applied them to a myopic (read: greedy) tasking

for space situational awareness (SSA) [132, 133]. Finally, an information receding

horizon approach to suboptimal sensor tasking was developed and demonstrated for

one-dimensional harmonic oscillators [134, 135]. Stochastic optimal control theory was
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used to pose the tasking problem as a partially observable Markov decision process

(POMDP), in which stochastic simulation was used along with a stochastic relaxation of

the deterministic tasking control. However, the method of Reference [134, 135] relies on

the assumption that information gains occur within the horizon of the control.

It was previously reported that the attitude uncertainty could be used for multi-objective

attitude resource sharing in a two-spacecraft scenario [136], where the spacecraft

motion has six degrees-of-freedom. The full six degrees-of-freedom case causes

additional complexity with respect to the planar solutions described in the aforementioned

references. This chapter extends the results of Reference [136] to improve pointing

performance for a general network of spacecraft in full 6-DOF motion by sharing attitude

measurements based on greedy tasking algorithms. For the disaggregated system

considered in this work, the chief decision is based on the deputy uncertainties.

5.2 Tasking Problem Statement

Consider a chief spacecraft, denoted by C , which is capable of measuring the

relative attitude of a deputy, denoted by D , but only when within the FOV of the relative

attitude sensor. In the case when the deputies lack inertial sensing, the information

from the chief is the sole source of inertial attitude knowledge. When the deputies have

inertial sensors, the shared resources may be used to improve the local state estimate

through data fusion as demonstrated in section 4.11. All spacecraft are equipped with

rate gyros for improved precision attitude propagation.

The structure of the sensor tasking problem results in two coupled control problems,

which are cascaded in an inner-outer loop framework. The inner control loop is a

discrete tasking control. The outer control loop is a continuous control input to command

the actuators to track a deputy to measure relative attitude. This is a control for sensing

problem. If optimality is sought in the infinite horizon (or some finite horizon), the

effect of the two control inputs is obfuscated by the coupling of estimation and control.

Estimation and control are inseparable due to the cascading of the control loops and
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their respective control objectives. The problem is then to design the tasking control and

dynamics control under these conditions.

In addition to the challenge of separation, optimal sensor tasking for continuous

dynamical systems with a sensing objective suffer from the curse of dimensionality, as

the number of paths in the dynamic programming problem grows unbounded with the

number of time steps and nodes in the sensor network.

5.3 Tasking Solution Methodology

In order to mitigate the issues with lack of separability in estimation and control

and the curse of dimensionality, a greedy sensor tasking approach is pursued in this

chapter. Greedy approaches are also referred to as myopic, as the logic behind these

approaches is near-sighted and only considers information immediately available for

making decisions [137]. Greedy logic only requires the current state of the system and

thus separates estimation and control for the tasking problem, where the discrete inner

tasking control loop feeds the outer dynamics control loop with the task. The outer

control loop results in tracking problem with control input designed to satisfy the inner

control loop task. Figure 5-1 shows the control loop in block diagram form with the

greedy approach. Given the Greedy tasking, a real-time feedback control law can be

Controller

System Estimator
States Measurements

Noise

Disturbances

Input

State EstimatesSensor
Tasking

Control
Objective

Figure 5-1. Stochastic tasking greedy control problem

used for guiding the chief spacecraft from one task to another and the estimators for all

spacecraft can be updated and propagated recursively. Finally, certainty equivalence
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holds and deterministic control laws can be used instead of stochastically synthesized

controllers.

Figure 5-2 demonstrates the proposed method for attitude resource sharing

in a disaggregated attitude determination system. The first step is to construct the

instantaneous network of spacecraft that are within the sensor constraints. Next, the

current states of each spacecraft are updated based on their available measurements.

The deputies then communicate their current state uncertainty back to the chief for

decision-making. Based on the provided information, the sensor generates a tasking

queue and chooses the highest priority task in the queue to pursue for resource

sharing. In order to share measurements, the chief spacecraft must reorient to point

the boresight of the relative attitude sensor along the relative position vector, in which

the desired quaternion kinematics for resource sharing were derived in Section 2.7.2.

Once the chief spacecraft is reoriented to the sharing configuration, measurements are

captured and attitude resources are shared over the communication link between the

deputy and chief. This process is repeated throughout the mission.
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Figure 5-2. Resource sharing process

5.4 Resource Sharing Assumption on Dynamics Time Constants

The time constant for filter divergence is assumed to be much larger than the time

constant for the attitude controller. These time constants are directly related to the gyro

precision and actuator sizing. This assumption ensures that a deputy without inertial

sensing will not diverge between the time it takes the chief to slew to point the relative
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attitude sensor at the deputy. If the deputy has an inertial sensor, this assumption is

unnecessary.

5.5 Tasking

Sensor management solutions are classified as fixed, greedy, or optimal. Fixed

strategies predefine a tasking order, thus ensuring regular resource sharing for all

deputies. However, a fixed-strategy cannot adapt to unexpected changes in system

conditions – potentially leading to poor system performance. Optimal tasking is at

the other extreme, where a performance index is optimized over a time horizon to

generate a schedule for the sensor to provide measurements to the deputies. However,

due to the inner control loop required to reorient the chief spacecraft pursue a task,

estimation and control are inseparable. Therefore, optimal tasking is computationally

challenging and not pursued in this research. In between these two tasking extremes

is the Greedy strategy, which makes use of the current knowledge of the system –

naturally separating estimation and control. The potential advantage over the fixed

strategy is that performance is considered, and the system can adapt to changes based

on the current information.

5.5.1 Baseline Tasking

This section describes an example fixed-tasking algorithm that is utilized as a

baseline. The strategy is referred to as the Round-robin strategy and is summarized in

Algorithm 3. Round-robin tasking is initialized by the set of deputies, D , the chief node,

C , and the communication range, D. In this flow, first the set of available deputies in the

network, DD, are determined based on the deputies in range of communication with the

chief, where the column matrix of communication range for the network is designated

by D and the current range of the j th − deputy is ρ. Next, the current states are updated

based on their current information available to the chief and each deputy. For this fixed

policy, the chief sequentially cycles through the available deputies. It is assumed that in

order to proceed with the next task, the sensor must first satisfy the current task. This
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requires that the sensor generates a tracking trajectory based on known relative state

kinematics and tracks the trajectory until the relative sensor is aligned with the relative

position vector and within the range constraint, D. When these conditions are met,

the chief measures the relative attitude of the tasked deputy and provides its sensor

measurements to the deputy for integration into the deputy estimator.

Algorithm 3 Fixed-cycle resource sharing
1: procedure ROUND-ROBIN TASKING(P0, D , C , D)
2: Construct tasking set, DD = {Dj |ρj < D(j)}, ∀j
3: Choose target cyclically, D∗ =

{
j + 1, j ≤ n
1, j > n , where D∗ ∈ DD

4: Generate tracking trajectory q∗i , for C to share with the tasked spacecraft, D∗

5: Track trajectory
6: if Tracking Error ≤ relative sensor constraint then
7: Update x̂−i |k to x̂+

i |k and P−i |k to P+
i |k

8: Fuse states, if necessary
9: Propagate states, x̂−i |k+1 and P−i |k+1

10: Goto Construct tasking set
11: else
12: Fuse states, if necessary
13: Propagate states, x̂−i |k+1 and P−i |k+1

14: Goto Track trajectory
15: end if
16: end procedure

5.5.2 Greedy Tasking

An alternative to the Round-robin strategy, and the focus of this chapter, is to

maximize a performance metric based on the current state uncertainty of the deputies.

For attitude-intensive missions, the uncertainty of interest is the pointing precision.

Therefore, the goal is minimize the attitude state-error covariance. For linear Gaussian

systems, the probability distribution describing the state error is fully captured by its

mean and covariance. Additionally, for unbiased estimators, the mean state error is

zero. Therefore, a complete description of the state error uncertainty is embedded in the

state-error covariance matrix.
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The greedy algorithm utilizes the same initialization as the Round-robin algorithm

and is equivalent to the fixed-strategy until the tasking decision is made. To make a

tasking decision, the chief gathers information on the deputy uncertainties, which is

assumed to be fully described by the state error covariance matrix, P−i |k . The chief

then generates a tasking priority. Following the choice of a task, the chief tracks the

tasked deputy until the deputy until a relative attitude measurement is available. With

the availability of a measurement, the deputy incorporates this new information into its

state estimate. The greedy tasking is described in Algorithm 4. This algorithm states

Algorithm 4 Uncertainty-based resource sharing
1: procedure GREEDY TASKING(P0, D , C , D)
2: Construct tasking set, DD = {Dj |ρj < D(j)}
3: From attitude estimator compute state mean and covariance, x̂−i |k , P−i |k
4: Compute uncertainty-based metric, Jj = f (P−j |k )
5: Choose next target such that, D∗ = arg maxj∈N Jj , where D∗ ∈ DD

6: Generate tracking trajectory q∗i , for C to share with the tasked spacecraft, D∗

7: Track trajectory
8: if Tracking Error ≤ relative sensor constraint then
9: Update x̂−i |k to x̂+

i |k and P−i |k to P+
i |k

10: Fuse states, if necessary
11: Propagate states, x̂−i |k+1 and P−i |k+1

12: Goto Construct tasking set
13: else
14: Fuse states, if necessary
15: Propagate states, x̂−i |k+1 and P−i |k+1

16: Goto Track trajectory
17: end if
18: end procedure

that the chief will share resources with the most uncertain deputy and reorient to provide

it with measurements. Once the information contained in the measurement is shared

and an update occurs, the uncertainty in that deputy will be reduced. If the uncertainty

is sufficiently reduced, the chief will be tasked with a different deputy. Therefore, the

sensor tasking adapts based on the information gained from acquiring measurements

and the information lost due to covariance propagation.
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The algorithm as it stands, places equal weighting on the uncertainty of each

spacecraft. However, if one spacecraft requires higher precision attitude knowledge,

any of these algorithms can be modified to incorporate a convex weighting relationship

in the tasking decision. The greedy tasking algorithm does not specify a performance

metric. Section 5.6 overviews several performance metrics that characterize the state

uncertainty.

5.6 Performance Metrics

There are several properties of interest when tasking the chief to capture relative

attitude measurements of the deputies. Ideally, a tasking algorithm will drive the error

in the system to its minimum and consume as little fuel and time as possible. However,

lack of separation and control make decisions based on fuel consumption and time

difficult to pursue. Therefore, only instantaneous states are available. Particularly, state

estimation provides a measure of the instantaneous uncertainty in the system. A logical

strategy then, is for the chief to provide measurements to the deputy with the highest

need at the present time. Defining the highest need based on the uncertainty motivates

a characterization of state uncertainty size.

The covariance matrix is a measure of the variance or spread in uncertainty

described by the probability density function of a random variable. Since the random

variable of interest is the error state of the system, the covariance matrix will provide

a comparative measure of uncertainty for all deputy attitude estimates; as they are all

centered at zero (assumed to be unbiased) with their respective variances. The higher

the variance, the less certain the deputy state knowledge. This implies that deputies

need for additional information is greatest. Therefore, higher variances correspond to

lower precision in the attitude knowledge.

The goal is to choose a metric that best captures the uncertainty of each spacecraft,

so that the chief spacecraft will prioritize its tasking to reduce the pointing error in

the maximum uncertainty deputy. In this section, the size of the covariance matrix
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is considered. There are several possibilities that exist for characterizing the size of

the uncertainty described by a probability density function. Norms provide a measure

of distance for vector spaces, which is specifically applicable to the vector space of

matrices defined over Rm×n. This section describes several metrics that are a function of

the covariance matrix. These metrics populate the uncertainty function, f (P−j |k ), int the

greedy tasking described in Algorithm 4.

Consider two elements, A and B, which are members of a set. A metric defines the

distance, d , between those two elements. More formally, a metric satisfies the following

properties [138]:

1. Positivity: d(A, B) ≥ 0, and d(A, B) = 0 ⇔ A = B,

2. Symmetry: d(A, B) = d(B, A),

3. Triangle inequality: d(A, B) + d(A, C) ≥ d(B, C).

5.6.1 Trace

The trace of a symmetric positive definite matrix A, denoted as tr (A), is the sum

of the diagonal elements of A and satisfies all conditions of a metric. When A is the

state-error covariance matrix, P−j |k , the trace sums the small error angle covariance in

all three rotational degrees of freedom. Therefore

f (P−j |k ) = tr (P−j |k ) (5–1)

provides a measure of the instantaneous total attitude uncertainty of a spacecraft.

5.6.2 Matrix Norms

Alternatively, matrix norms provide a measure of distance, where all norms on a

vector space are metrics. Norms are denoted by ‖ · ‖. Consider an n ×m matrix, A, with

the following properties [85, 139]:

1. Positivity: ‖A‖ ≥ 0 for A 6= 0 and ‖A‖ = 0 ⇔ A = 0

2. Scalar homogeneity: ‖αA‖ ≤ |α|‖A‖
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3. Triangle inequality: ‖A + B‖ ≤ ‖A‖ + ‖B‖

Additionally, the norm of a matrix will assume the property of sub-multiplicativity; that is,

‖AB‖ ≤ ‖A‖‖B‖. (5–2)

Norms are non-unique, but are equivalent in convergence for finite dimensional vector

spaces. Although equivalent in convergence, each norm provides a different measure

of size and thus can provide different measures of uncertainty. Three norms will be

explored.

The 1-norm is the maximum absolute value column sum of a matrix. Applied to a

state-error covariance matrix, the 1-norm provides a measure of the maximum total error

contributed by a single direction.

f (P−j |k ) = ‖P−j |k‖1 = max
j

n∑

i=1

|aij |. (5–3)

Due to symmetry of the state-error covariance matrix, the maximum absolute value row

sum, known as the∞-norm, is equal to the 1-norm and can be used interchangeably in

this application.

The 2-norm is the square root of the maximum eigenvalue of the matrix, P−j |Tk P−j |k ;

that is

f (P−j |k ) = ‖P−j |k‖2 =
√
λmax (P−j |Tk P−j |k ). (5–4)

This norm provides another measure of the maximum error direction, but due to the

product required by the determinant incorporates a multiplicative error effect.

Unlike the 1- and 2-norms, the Frobenius norm,

f (P−j |k ) = ‖P−j |k‖F =
√

tr (P−j |kP−j |Tk ), (5–5)

provides a measure of Euclidean distance for all terms in the state-error covariance

matrix relative to zero. Therefore, all terms are weighted equally when determining the
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size of the matrix. For the resource sharing problem, this norm states that each direction

and cross correlation term is equally important, and thus is measure of the total error in

the system. However, when relating the Frobenius norm to pointing, weight is given to

the cross-correlation terms, although they do not directly impact the attitude accuracy.

5.6.3 Differential Entropy

In attitude estimation, information is continuously gained and lost in a cycle

corresponding to measurement updates and propagation, respectively. Given knowledge

of the underlying probability distribution describing the random variable for the state

error, an important question is “how much information is contained in that random

variable?” Information theory, originally developed to understand communication link

efficiency, is finding many uses in modern engineering applications. In this context,

information theory is utilized to generate a metric for the state-error covariance matrix

size.

Information theory was introduced by Shannon [140] as a mathematical formulation

for communication link efficiency. Shannon formulated data transmission as a Markov

process and developed the quantity entropy, H, to describe how much information is

generated or lost by that process. Entropy was constructed with the following properties

[141]:

1. Hmax is the maximum entropy, which occurs with the sure event

2. H = 0 occurs when all events are equally possible (i.e., uniform density)

3. H(x , y ) ≤ H(x) + H(y ) (i.e., the triangle inequality holds)

Consider a discrete random variable, X , with probability mass function, p(x). The

entropy satisfies the above properties and is defined as

H(X ) = −
∑

x

p(x) log p(x). (5–6)

Shannon entropy describes the compactness of a random variable.
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For continuous random variables, the Shannon entropy is referred to as differential

entropy [141] and is defined as

H(X ) = −
∫

X
f (x)logf (x)dx . (5–7)

For Gaussian random variables, the differential entropy is

f (P−j |k ) = H(P−j |k ) =
1
2

log
[
(2πe)ndet(P−j |k )

]
, (5–8)

where det( ) denotes the determinant. Differential entropy provides a measure of the

volume of the smallest set containing most of the probability contained in a probability

density function. Therefore, the uniform distribution will have a maximum entropy,

because all values in the support set contain the same information. Whereas, the

sure event has minimum entropy. For all distributions between those two bounds,

entropy provides a measure of spread in the probability density function. As a result, the

differential entropy, as a function of the state-error covariance matrix, provides a natural

measure of uncertainty – albeit, it is not technically a metric.

5.7 Simulations

To test the tasking algorithms and performance metrics, a simulation framework

was constructed using the MATLAB software [105]. Models were constructed for

the orbital and attitude motion of multiple spacecraft flying in formation. Specifically,

simulations were conducted on a network consisting of four spacecraft, flying with

unconstrained 6-DOF motion. This network is comprised of a single chief spacecraft and

three deputies. The deputies are provided with varying fidelity rate gyros to demonstrate

the utility of the developed algorithms, such that deputy-1 is provided with the worst

gyro, with increasing precision up to deputy-3 – having a gyro that is equivalent to

the chief spacecraft. Algorithm 3 was used as baseline for comparison to the Greedy

approach described in Algorithm 4.
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5.7.1 Perfect Relative Attitude Sensor Assumption

In order to isolate the affects of the sensor tasking algorithms and limit the number

of variable parameters, it is assumed for the simulations that follow, that the relative

attitude knowledge is perfect. This simplification, eliminates the effects of estimation

and data fusion in a disaggregated system, and isolates the tasking performance. Using

this assumption, the shared star tracker measurements are transformed using the exact

relative attitude matrix, such that

Di b̃j = RT (qC/D) Cbj + RT (qC/D) Cυi , j = 1, 2, ..., N.

In this setting, measurements are shared directly to the deputies and utilized as if they

originated on-board the deputies. It should be emphasized that this assumption is only

in place to avoid confounding effects with relative attitude and data fusion. Also note,

this assumption will be relaxed in the full resource sharing simulations presented in

Chapter 6.

5.7.2 Simulation Initialization

Using the simulation testbed, the four-spacecraft scenario was investigated, with

inertial motion of the chief and relative motion of the deputies listed in Table 5-1.

Table 5-2 lists the control parameters for the Lyapunov controller derived in

Section 2.7.4 and specifically to populate the gains in the resulting controller in

Eq. 2–22. The saturation limit is indicative of the limit expected for the size of the

spacecraft. Simulations were performed for 225 minutes to ensure that the estimators

converged and performance was based on the steady-state behavior. The gyros operate

at a sampling frequency of 10 Hz and the star tracker on the chief is sampled every

second.

In order to demonstrate the performance of the algorithms discussed, each

spacecraft was provided with a different gyro performance specification, as the gyro

performance specifications control the information loss process in the attitude estimators
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Table 5-1. State initializations for tasking simulations
Spacecraft:
Js, J1, J2, J3 diag (300, 100, 200) kg ·m2

Chief Initial States:
rC |0 [6778.1 0 0]T km
vC |0 [0 6.6412 3.8343]T km/s
qC |0 [1 0 0 0]T –
ωC |0 [0.001 0.001 0.001]T rad/s
Deputy-1 Initial States:
ρD1 |0 [5 −10 15]T m
ρ̇D1 |0 [−0.0100 −0.0113 0]T m/s
qD1 |0 [0 1 0 0]T –
ωC |0 [−0.003 0.002 0.004]T rad/s
Deputy-2 Initial States:
ρD2 |0 [−10 5 25]T m
ρ̇D2 |0 [−0.0200 0.0226 0.0100]T m/s
qD2 |0 [0 0 1 0]T –
ωD2 |0 [0.001 0.003 −0.003]T rad/s
Deputy-3 Initial States:
ρD3 |0 [−15 −10 30]T m
ρ̇D3 |0 [0.0100 0.0339 −0.0200]T m/s
qD3 |0 [0 0 0 1]T –
ωD3 |0 [0.002 −0.001 0.003]T rad/s

Table 5-2. Control and time parameters for tasking simulations
Parameter Value Units
Time:
∆tup 1 s
∆tprop 0.1 s
T 225 min
Controller:
umax 5 Nm
K diag(20, 6.667, 13.333) –

C diag(140, 46.667, 93.333) –

presented in Chapter 3. The chief spacecraft propagates with a state-of-the-art gyro.

Deputy-3 utilizes an equivalent gyro to the chief, whereas deputy-2 propagates with

a lower performance gyro and deputy-1 propagates with the most biased and noisy

sensor. Table 5-3 provides details on the specific characteristics of the sensors and

Table 5-4 details the state estimate initialization. It should be noted that the chief is

assumed to slew at a rate slow enough for the accuracy of the sensor to hold, even

during the tasking maneuvers. Additionally, the field-of-view on the perfect relative
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attitude sensor is simulated with both a small and large field-of-view in the resulting

simulations.

Table 5-3. Sensor characteristics for tasking simulations
Parameter Value Units
Chief Star Tracker:
FOVstar 6 deg
σstar 1.67× 10−3 deg
Chief VISNAV:
FOVvis Varying deg
σvis 1.67× 10−3 deg
Chief Gyro: σC,v

√
10× 10−7 rad/s1/2

σC,u
√

10× 10−10 rad/s3/2

Deputy-1 Gyro:
σD1,v 10

√
10× 10−7 rad/s1/2

σD1,u 10
√

10× 10−10 rad/s3/2

Deputy-2 Gyro:
σD2,v 5

√
10× 10−7 rad/s1/2

σD2,u 5
√

10× 10−10 rad/s3/2

Deputy-3 Gyro:
σD3,v

√
10× 10−7 rad/s1/2

σD3,u
√

10× 10−10 rad/s3/2

Table 5-4. State estimate initializations for tasking simulations
Parameter Value Units
Chief Estimate:
q̂C |0 [1 0 0 0]T –
βC |0 0.1 deg/hr
Deputy-1 Estimate:
q̂D1 |0 [0 1 0 0]T –
βD1 |0 10 deg/hr
Deputy-2 Estimate:
q̂D2 |0 [0 0 1 0]T –
βD2 |0 5 deg/hr
Deputy-3 Estimate:
q̂D3 |0 [0 0 0 1]T –
βD3 |0 1 deg/hr

5.7.3 Single-run Results

The relative motion of the three deputies with respect to the chief follows from

the CWH equations and in shown in Figure 5-3. A three-dimensional view is shown in

Figure 5-3A, followed by orthographic projections in Figure 5-3B-5-3D. These figures

demonstrate that the relative motion is bounded and that the spacecraft are flying in

proximity for utilization of a VISNAV-like relative attitude sensor. The boundedness also

implies that the communication link is persistent.
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Figure 5-3. Relative position in the Hill frame. A) Three-dimensional B) X-Y projection.
C) X-Z projection. D) Y-Z projection

Figure 5-4 shows an attitude precision comparison of the Round-robin strategy to

the uncertainty-based greedy algorithms with varying performance metric for a single

225 minute simulation. Also recall that one second of arc is equal 1600th of a degree.

Each bar represents the root-mean-square (RMS) error over the simulation duration,

which was computed for each algorithm and their associated metrics. The bars are

divided in the pointing error contributed by the small rotations about each body axis. The

RMS was computed for the time period beginning after each estimator has converged

– in this case, chosen as 10 min. In these simulations a 10◦-FOV sensor is assumed.
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The weighted trace metric greedy allows the system designer to give more priority to a

specific deputy. In the weighted case, Deputy-1 was assumed to require more precision

than deputy-2 and deputy-3 with weighting W1 = 0.5, W2 = 0.25, and W3 = 0.25. That

is, deputy-1 was weighted twice as much as the other spacecraft. From Figure 5-4, the
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Figure 5-4. RMS error tasking performance comparison (relative sensor 10◦ FOV). A)
Chief. B) Deputy-1. C) Deputy-2. D) Deputy-3.

chief attitude error is an order of magnitude greater than the deputies. This is a direct

result of the sparsity of measurements available to the deputies in comparison to the

chief; that is, the chief measurements are divided amongst the deputies. Furthermore,

the slew between tasks results in no resource sharing in that time period.

Figure 5-4A shows that the chief is dominated by error rotations about the boresight

direction of the relative attitude sensor. This results from the fact that direction

measurements provide no information about rotations about a vector parallel to that

direction. This same behavior is not observed in the bar graphs describing the deputies
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in Figures 5-4B-5-4D. This is a result of the relative attitude mapping between the chief

and the deputies, where the boresight direction on the chief is mapped to a time-varying

direction on the deputy. The deputies motion are periodic due to the torque-free motion

assumed in their simulation. This periodicity results in the observed distribution of

uncertainty.

When comparing the tasking performance, the chief is mostly insensitive to the

tasking algorithm and performance metric. However, there are some indirect dynamic

affects from the varying attitude trajectories, which result from the tasking algorithms.

The attitude trajectory directly impacts the star field that is observable to the star tracker

at any point in time, and thus the accuracy of estimates derived from the star tracker.

Another observation is that the round-robin tasking algorithm yields low performance

for Deputy-1 and Deputy-2 but high performance for Deputy-3. Recall, that Deputy-3

contains the best gyro specifications, and thus loses information at a much lower

rate than Deputy-1 and Deputy-2. Using a round-robin approach, Deputy-3 obtains

measurements at an equal rate to the other deputies although it loses information at

a lower rate. However, more measurements for Deputy-3 reduced the measurements

available to Deputy-1 and Deputy-2. Table 5-5 tabulates the aggregated results of the

RMS pointing performance. Improvement in Deputy-3 comes at the cost of reduced

performance of the other deputies when utilizing an uncertainty-based greedy approach.

From these results, the trace and weighted trace metric yield the lowest aggregated

uncertainty. However, these results are for one simulation and for only one field-of-view.

Table 5-5. Aggregated Tasking Performance Comparison (Relative Sensor 10◦ FOV)
RMS Error (arcsec)

Round-robin Trace Weighted Trace Shannon Two-norm Frobenius
Chief 0.47 0.53 0.51 0.50 0.51 0.49
Deputy-1 12.28 8.55 5.99 8.36 8.57 8.53
Deputy-2 11.30 7.01 9.28 8.56 8.13 8.25
Deputy-3 6.00 5.61 5.80 5.66 4.85 7.50
Sum 30.05 21.69 21.58 23.08 22.05 24.77
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In addition to the simulation of a 10◦ FOV VISNAV sensor, simulations were also

performed for a 60◦ FOV VISNAV sensor. A larger FOV sensor results in less slewing

by the chief to provide measurements. Figure 5-5 provides a comparison. The general

behavior of this case is consistent with the smaller field-of-view sensor. However, there

are some differences. Specifically, the best tasking metric for each deputy has changed.

Additionally, Table 5-6 shows the performance metric producing the highest aggregate

pointing performance has changed. It is important to note that these simulations assume

perfect relative attitude measurements when the deputy is within the field-of-view

of the relative attitude sensor on the chief. Additionally, measurements are shared

instead of state estimate through data fusion. Therefore, the pointing performance

observations from the metric are confounded with the dynamic effects from the slewing

and the benefits of data fusion are not observed. However, based on the assumptions,

a significant improvement was observed in the aggregate accuracy when using the

greedy algorithm in comparison to the round-robin strategy. A Monte Carlo analysis is

performed in Section 5.7.4 to compare the affects of the tasking metric, statistically.

Table 5-6. Tasking performance comparison (relative sensor with 60◦ FOV) RMS error
(arcsec)

Round-robin Trace Weighted Trace Shannon Two-norm Frobenius
Chief 0.83 0.80 0.98 0.65 0.77 0.76
Deputy-1 7.17 4.59 3.63 4.84 3.86 5.16
Deputy-2 4.56 3.54 4.40 3.25 4.01 4.34
Deputy-3 1.65 3.08 3.99 2.76 3.19 2.71
Sum 14.21 12.01 13.00 11.50 11.83 12.97

5.7.4 Monte Carlo Analysis

A Monte Carlo analysis was performed to compare the uncertainty metric. One

hundred samples were drawn uniformly from the underlying probability distributions.

Figure 5-6 shows the time history of the attitude error of the chief and deputies for

all Monte Carlo samples. The first observation is that each of the deputies exhibits

oscillatory behavior in their error. These oscillations were observed to occur at the

frequency of the angular velocity of the spacecraft; that is, using the parameters in
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Figure 5-5. RMS error tasking performance comparison (relative eensor 60◦ FOV). A)
Chief. B) Deputy-1. C) Deputy-2. D) Deputy-3.

Table 5-1, the norm of the angular velocity of Deputy-1 through Deputy-3, is 5.39E − 3

rad/s, 4.36E − 3 rad/s, and 3.74E − 3 rad/s, respectively. Since the attitude motion

of the deputies is torque-free, angular momentum is conserved, and the norm of the

angular velocity is constant throughout the simulation. Another observation is that the

3-σ bounds do in fact bound the error with approximately 99.7% confidence; that is,

very few errors fall outside of the 3-σ bounds. This verifies that the filters are consistent,

even when measurements are sparse, such as the case for Deputy-3 in Figure 5-6D.

Finally, it can be seen that the tasking exhibits only a small variability with respect to the

Monte Carlo sampling. This variability is better elucidated in the box-and-whisker plot

shown in Figure 5-7. The box-and-whiskers plot visualizes the median, 25-th percentile,

75-th percentile, and minimum and maximum values of the Monte Carlo sampled

data. Overlayed on this chart are the RMS error sample points from the Monte Carlo
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A B

C D

Figure 5-6. Monte Carlo attitude error trajectories for a 10◦ FOV relative attitude sensor
using the trace metric. A) Chief. B) Deputy-1. C) Deputy-2. D) Deputy-3.

sampling, which are jittered for visualization. The mean and standard deviation are also

visualized by the red line and top and bottom of the blue region, respectively. Based

on this data, the one-norm metric had the lowest sample mean and variance in the

RMS error. Additionally, the 10◦-FOV data was more spread out than the 60◦-FOV data.

The relative motion is primary factor that was not removed in the experiments, but not

accounted for in the tasking. The difference in performance between the 10◦-FOV data

and 60◦-FOV data is a result of the relative translational motion of the chief with respect
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Figure 5-7. Monte Carlo sample data comparison of the RMS error

to the deputies. Therefore, modifications to the greedy tasking algorithm to account for

relative translational motion may improve the performance.

5.7.5 A Note on the Trace Performance Metric

As was the case in the note on data fusion (see Section 4.10.2), without the

effects of relative motion, the trace metric should provide the optimal metric for

uncertainty-based tasking in attitude problems, as pointing is defined through the

square root of the trace of the state-error covariance matrix. It is postulated that if the

relative motion dynamic effects were not present, this would have been observed in the

simulations. However, relative motion does factor into sensor tasking performance for

the attitude resource sharing problem. Although the one-norm produced better results

in the simulations presented, the improvements were marginal over the trace metric and

may be attributed to the relative motion.

5.8 Summary

Two new methods were presented in this Chapter. The first method utilized

information-guided greedy sensor tasking to overcome the issue with separation
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in estimation and control. The sensor-tasking problem for a disaggregated attitude

determination system was introduced. Optimal solutions to this problem were shown

to suffer from coupling in estimation and control. As a solution to this problem, greedy

tasking algorithms were developed. To drive the greedy algorithms, metrics based

on the state-error covariance matrix were introduced. Specifically, the matrix trace,

matrix norms, and differential entropy were used as a measure of the uncertainty in

each spacecraft. The sensor was then tasked with providing measurements to the most

uncertain spacecraft using Algorithm 4. With the Greedy tasking the system pointing

error was reduced considerably over the baseline Round-robin strategy of Algorithm 3.

Monte Carlo simulations were performed to determine the statistical significance in

performance between the different tasking metrics. Results showed that for a particular

field-of-view, all of the tasking metrics generated very similar results, but that the

one-norm was marginally better than the others for the particular scenarios simulated.

The main result of this chapter is that performance in attitude sensor tasking problems is

confounding between the effects of relative motion.
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CHAPTER 6
SPACECRAFT ATTITUDE RESOURCE SHARING SIMULATIONS

In this chapter, simulations are presented for several attitude resource sharing

scenarios. These scenarios are chosen to be representative of missions that could

benefit from attitude resource sharing. Simulations are divided into three parts. In the

first part, resource sharing in a two spacecraft network is considered. In this case, there

is no tasking decision required and the chief is assumed to always track the deputy.

Resource sharing with two spacecraft demonstrates the effect of data fusion on the

attitude accuracy of the chief and deputy. In the second part, resource sharing between

three spacecraft is considered. In this case, the chief tracks the two deputies following

a sequence resulting from the tasking algorithm. Results in this part demonstrate the

combined effect of data fusion and sensor tasking. In the last part, the greedy and

round-robin tasking algorithms are compared for the three spacecraft resource sharing

scenarios.

6.1 Simulation Initializations

For the two and three spacecraft scenarios, the initial states and state estimates are

initialized with the parameters in Table 5-1 and Table 5-4, respectively. The simulations

are performed for 225 minutes, which equates to approximately 2.5 orbits in the

assumed 400 km orbit of the chief. The deputies fly in bounded orbits around the

chief as shown in Figure 5-3. Table 6-1 lists the sensor characteristics for the attitude

sensors and rate gyroscopes.

For all simulations, attitude data fusion uses the FRP parameterization with local

error representation as applied to the covariance intersection fusion law, described in

Section 4.9. The first two parts assume greedy sensor tasking with the trace metric

and the last part provides a comparison of results with the round-robin strategy. The

following quantities will be presented to compare the performance and behavior of the

resource sharing simulations:
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Table 6-1. Sensor characteristics used in attitude estimate resource sharing simulations
Parameter Value Units
Star Tracker:
σstar 1.67× 10−3 deg
FOVstar 6 deg
VISNAV:
σvis 1.67× 10−3 deg
FOVvis 10 deg
Magnetometer:
σmag 1 deg
Sun Sensor:
σsun 0.1 deg
Chief Gyro:
σC,v

√
10× 10−7 rad/s1/2

σC,u
√

10× 10−10 rad/s3/2

Deputy-1 Gyro:
σD1,v 10

√
10× 10−7 rad/s1/2

σD1,u 10
√

10× 10−10 rad/s3/2

Deputy-2 Gyro:
σD2,v 5

√
10× 10−7 rad/s1/2

σD2,u 5
√

10× 10−10 rad/s3/2

Deputy-3 Gyro:
σD3,v

√
10× 10−7 rad/s1/2

σD3,u
√

10× 10−10 rad/s3/2

1. The small angle components of the attitude error vector, {e1, e2, e3}, with 3-σ
bounds for the chief and deputies with and without data fusion

2. Commanded tracking torque for the chief (controller from Eq. 2–22 and gains from
Table 5-2)

3. Angular velocity of the chief and deputies

4. Covariance intersection weights

For all cases, the angular velocity of the two-deputies result from torque-free

motion, and are provided in Figure 6-1.

6.2 Two Spacecraft Attitude Resource Sharing

With a single chief-deputy pair, resources are shared at the communication rate

once the chief has acquired the sharing attitude while tracking the desired control signal

described in Section 2.7.1. This case demonstrates attitude resource sharing with

data fusion without tasking. The disaggregated estimation scheme and EKF equations

provided in Table 3-10 are implemented for the chief-deputy pair. In this scenario,

simulations are conducted for the case when the deputy has local access to coarse
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Figure 6-1. Angular velocity resulting from torque-free motion for the deputies in all
simulated scenarios. A) Deputy-1. B) Deputy-2.

attitude using sun sensors and a magnetometer, and the case when is has local access

to a star tracker. The chief has local access to a star tracker and VISNAV sensor with

specifications listed in Table 6-1.

6.2.1 Two Spacecraft with Star Trackers Scenario

The attitude error trajectory for both spacecraft is shown in Figure 6-2. Comparing

the results of the chief error in Figure 6-2A with the deputy error in Figure 6-2B, shows

that without data fusion the deputy has a steady state error nearly twice as large as

the chief. This is a consequence of the deputy using a noisier gyroscope than the

chief. However, the incorporation of attitude resource sharing reduces the estimate

error in the boresight axis of each spacecraft. This is analogous to the two star tracker

case simulated at the end of Chapter 4. Since the chief always tracks the deputy,

the control torque and angular velocity operate at nominal tracking levels as seen

in Figure 6-3A-6-3B. Specifically, it can be seen that the period of these signals are
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consistent with the chief’s orbital motion, which recall was approximately 90 minutes.

Since both spacecraft have the same star tracker, but different gyros, Figure 6-4 shows

that in general the weightings are equal. However, there is a slight preference for the

chief information.
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Figure 6-2. Local and fused quaternion error for the two spacecraft star tracker scenario.
A) Chief. B) Deputy.

6.2.2 Two Spacecraft with Coarse Deputy Sensors Scenario

Figure 6-5 shows the attitude error in the chief and deputy for the case when data

fusion is used, as well as when attitude only local data is used. Since the chief has

significantly better sensing than the deputy, Figure 6-5A shows that for coarse deputy

sensing, the chief’s attitude error is invariant to attitude estimate resource sharing, but

the deputy error is improved by orders of magnitude, as seen in Figure 6-5B. Like the

two spacecraft with star trackers scenario, the chief tracks the deputy for the entirety of

the simulation. As a result, Figure 6-6 shows that the control input and angular velocity

are very small. In addition, the deputy never uses its local state estimate after the
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Figure 6-3. Chief attitude control for the two spacecraft star tracker scenario. A) Control
torque. B) Angular velocity.
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Figure 6-4. Covariance intersection weights for the two spacecraft star tracker scenario

sharing configuration is acquired by the chief, because the information from the chief

is always superior to information local to the deputy. This fact is evidenced by the CI

weightings in Figure 6-7.

In addition to the long-term behavior seen in the above figures, Figure 6-8 shows

a plot of a transient effect in the attitude error at the onset of data fusion. At the instant
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Figure 6-5. Two spacecraft local and fused quaternion error with coarse deputy attitude
sensing. A) Chief. B) Deputy.

the first relative attitude measurement is available, the estimate of the deputy on the

chief is very poor. However, vector measurements originating from the relative attitude

sensor are highly accurate. Therefore, application of the sensitivity matrix in Eq. 3–23 at

the first measurement has considerable error due to the error in RT (q̂−D ). Therefore, the

Kalman gain computation is based on the sensitivity matrix with first-order errors. This

causes the error to briefly grow and then decay after relative attitude measurements

begin lowering the error in the deputy inertial attitude, such that the sensitivity matrix

only exhibits second-order errors.

6.3 Three Spacecraft Attitude Resource Sharing

With more than one chief-deputy pair, the chief must decide which spacecraft

requires an improved state estimate by capturing relative attitude measurements. These

simulations implement attitude estimate resource sharing through data fusion and

sensor tasking. The simulations in this section combine many of the developments
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Figure 6-6. Chief attitude control for the two spacecraft coarse deputy attitude sensing
scenario. A) Control torque. B) Angular velocity.
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Figure 6-7. Covariance intersection weights for the two spacecraft coarse deputy
attitude sensing scenario

presented in this dissertation. Specifically, the EKF for a disaggregated ADS on

three spacecraft is implemented based on the general n-spacecraft extended Kalman

filtering equations for disaggregated ADS provided in Section 3.9. The FRP local error

covariance intersection algorithm is once again used. For tasking, the greedy tasking
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Figure 6-8. Effects observed at the onset of data fusion with precise and coarse sensors

algorithm derived for attitude measurement sharing in Chapter 5. With this framework,

simulations are conducted for the case when Deputy-1 has coarse inertial attitude

sensors, and the case when all spacecraft have star trackers. The chief and Deputy-2

use star trackers in both cases.

6.3.1 Three Spacecraft with Star Trackers Scenario

This case is analogous in structure to the two spacecraft with star trackers

scenario, except now the chief must track both deputies based on a tasking algorithm.

A juxtaposition of the attitude error for the three spacecraft is shown in Figure 6-9.

Figure 6-9A shows that data fusion for the chief only reduces the error in the boresight

axis when the chief has slowly evolving dynamics, which are represented by the spikes

in e3 for the local chief attitude error. The slowly evolving angular velocity of the chief
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is depicted in Figure 6-10B. Recall from Figure 6-1 that Deputy-1 and Deputy-2 have

comparably slow evolving attitude states. Due to these slowly evolving states, the local

estimate error rotations about the boresight axis as considerably larger than for the

transverse axes. However, attitude resource sharing significantly improves the errors

about the boresight direction of the star trackers. Errors about the transverse axes

are also reduced for both deputies, as their steady state values are higher than the

information provided by the chief, due to degraded gyro specifications with respect to

the chief. Figure 6-11 shows that the information from all spacecraft are used for data

fusion to improve their state estimates. Therefore, resource sharing benefited all three

spacecraft in the network, but especially the deputies, which had lower quality local

information available without resource sharing.

6.3.2 Three Spacecraft with Coarse Deputy-1 Sensors Scenario

In the last case, the chief and Deputy-2 are equipped with star trackers, and

Deputy-1 is equipped with coarse inertial attitude sensors. Figure 6-12 provides a

juxtaposition of the error in each spacecraft. Much of the behavior exhibited in the three

spacecraft with star trackers scenario applies to this case. However, it is observed

in Figure 6-12A, that data fusion has more of an affect on the chief than in the three

star tracker case. Although there is an improvement due to data fusion, the chief

performance is degraded with respect to the three star tracker case. Expectedly,

the error shown in Figure 6-12B for the local estimate of Deputy-1 is much greater

than for the three star tracker case. In this same figure, resource sharing significantly

reduces the error to comparable levels with the chief and Deputy-2. Similar behavior

is shown in Figure 6-12C for Deputy-2. Since Deputy-1 has such poor local sensing,

inclusive of a poor gyro, the chief is always tasked with Deputy-1, which results in the

low nominal control torque and angular velocity seen in Figure 6-13. In fact, these are

the exact profiles seen in the two spacecraft scenarios, since Deputy-1 is common to

the simulations. Furthermore, Figure 6-14 shows that outside of early transients, the
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Figure 6-9. Local and fused quaternion error for the three spacecraft star tracker
scenario. A) Chief. B) Deputy-1. C) Deputy-2

covariance intersection algorithm never used Deputy-1 information, instead relying on a

combination of information from the chief and Deputy-2 to generate the best results.
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Figure 6-10. Chief attitude control for the three spacecraft star tracker scenario. A)
Control torque. B) Angular velocity.
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Figure 6-11. Covariance intersection weights for the three spacecraft star tracker
scenario
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Figure 6-12. Local and fused quaternion error for the three spacecraft scenario with
coarse Deputy-1 sensing. A) Chief. B) Deputy-1. C) Deputy-2

6.4 Tasking Algorithm Comparison for Attitude Estimate Resource Sharing with
Data Fusion

Attitude resource sharing with data fusion does not exhibit the same behavior

as measurement sharing. This section compares the performance of the three
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Figure 6-13. Chief attitude control for the three spacecraft scenario with coarse
Deputy-1 sensing. A) Control torque. B) Angular velocity.
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Figure 6-14. Covariance intersection weights for the three spacecraft scenario with
coarse Deputy-1 sensing

spacecraft scenarios using the greedy and Round-robin tasking algorithms. Since
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the two spacecraft scenarios were treated as tracking problems, they do not fit within this

discussion.

As mentioned in the simulation descriptions, the three spacecraft scenarios

simulated in Section 6.3 made use of the greedy tasking algorithm with the trace

metric. In this section, results for the same three spacecraft scenarios are provided,

but with the Round-robin tasking strategy. For the three star tracker case, a comparison

of the 3-σ bound error for the local and fused state estimates is shown in Figure 6-15.

By comparing Figure 6-15A and Figure 6-15B, it is seen that the resource sharing

improvements are mostly insensitive to the tasking algorithm. There are some spikes

that are present with the greedy tasking error of the chief that are not present in the

results for the Round-robin strategy. The cause of these spikes are more evident in the

case of two star trackers and a coarse attitude sensor.

The tasking algorithm impacts the attitude error the most when the resulting

motion of the chief varies from rapid slewing to slow slewing. This is exactly the case

encountered for the three spacecraft scenario with the chief and Deputy-2 equipped

with star trackers and Deputy-1 equipped with coarse attitude sensors. Since Deputy-1

has coarse sensors and a lower precision gyro, Figure 6-13B showed that greedy

tasking results in a near stationary chief, whom is only tasked with tracking Deputy-1

for relative attitude sensing. Alternatively, the Round-robin tasking strategy causes

the chief to rapidly slew and track the deputies, alternating between the two after a

relative attitude measurement is captured. Figure 6-17 shows the angular velocity and

error for the chief using the greedy and Round-robin tasking algorithms. For periods

of low angular velocity, the boresight axis error grows until the chief begins to slew at a

higher rate. When the chief motion is nearly stationary, the attitude error in the boresight

direction achieves a higher steady-state error. Therefore, greedy tasking, which only

accounts for the state uncertainty of the deputies, does not properly account one of the

primary factors affecting the system performance. The resulting control torque for the
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Figure 6-15. Affect of tasking algorithm choice on the error bounds of a three spacecraft
scenario with fine precision sensing. A) Greedy tasking. B) Round-robin
tasking.

Round-robin strategy is given in Figure 6-18. The control torque has gone from a low

nominal tracking signal to aggressive slew maneuvering. Clearly, in this case, there is a

trade-off between the attitude accuracy and the control torque.

6.5 Observations on Spacecraft Attitude Estimate Resource Sharing

Resource sharing in a network of spacecraft with similar attitude sensor capability

improves the performance of all spacecraft when the relative attitude sensor is of

similar performance to the inertial sensors. This improvement is a direct result of

data fusion, which optimally combines multiple information sources to produce a best

estimate. In this case, the spacecraft are less sensitive to the tasking algorithm. In

these cases, greedy and Round-robin tasking will cause the spacecraft to switch

constantly amongst the spacecraft and consume considerable torque as was seen in the
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Figure 6-16. Affect of tasking algorithm choice on the error bounds of a three spacecraft
scenario with coarse Deputy-2 attitude sensing. A) Greedy tasking. B)
Round-robin tasking.

examples. However, the chief could instead pursue a non-sharing objective in addition to

pursuing relative attitude measurements periodically. The trade-offs for the chief would

be between attitude accuracy, control torque, and the amount of time pursuing other

non-sharing objectives.

When the deputies are provided with dissimilar sensing capability, the tasking

algorithm plays a larger role in the pointing performance of the spacecraft in the network

and the deputies rely more on the shared resource. In these cases, it was seen that the

chief motion was coupled with its uncertainty, which propagated to the uncertainty of

the other spacecraft through data fusion. In these cases, greedy tasking reduces the

amount of slewing by maintaining a fix on the deputy with the highest uncertainty, but

182



0 50 100 150 2000

0.02

0.04

0.06

Time (min)

An
gu

la
r V

el
oc

ity
N

or
m

 (r
ad

/s
)

0 50 100 150 200
0

2

4

6

Time (min)

3−
m

 B
ou

nd
 (a

rc
se

c)

 

 

Round−robin
Greedy

Bo
re

si
gh

t ! �e3

! �e3

Tasking and tracking

Deputies in the 
same direction

Figure 6-17. Effect of tasking on the Chief boresight attitude accuracy

0 50 100 150 200
−5

0

5

Time (Min)

U
1 (N

m
)

0 50 100 150 200
−1

0

1

Time (Min)

U
2 (N

m
)

0 50 100 150 200
−5

0

5

Time (Min)

U
3 (N

m
)

Figure 6-18. Chief attitude control for the three spacecraft scenario with coarse
Deputy-1 sensing using Round-robin tasking

at the expense of some error improvements experienced by more aggressive slewing.

The coupling between attitude error and slewing should be investigated further in future

studies.
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6.6 Summary

This chapter presented simulations on two and three spacecraft architectures,

where attitude state estimates were shared between the chief and deputies using data

fusion. From a performance perspective, shared state estimates using data fusion are

preferred to shared state measurements, where data fusion results in better utilization of

all the information available to the chief and deputies. When the deputies are equipped

with inertial attitude sensors comparable to the chief, all spacecraft benefit from attitude

resource sharing. However, this chapter concluded with the observation that when one

deputy has less accurate attitude sensors, slewing maneuvers by the chief can affect the

attitude accuracy performance of all spacecraft. Since the chief’s motion is confounded

with the tasking algorithm, the tasking algorithm will need to account for the dynamics

explicitly. One final remark on the simulations is that the results from this chapter verified

the many of the benefits of attitude resource sharing. Particularly, spacecraft equipped

with low-grade attitude sensors can see large attitude improvements and spacecraft

with high accuracy sensors can see performance greater than the specifications of that

individual sensor allow.
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CHAPTER 7
CONCLUSIONS

A new paradigm of spacecraft architectures is being investigated to provide

improvements in mission flexibility, responsiveness, and threat management. This

new paradigm is referred to as the disaggregated spacecraft system, where the

functionalities of a traditional monolithic space asset are disaggregated across several

smaller platforms consisting of a chief and multiple deputies. This research addressed

some of the technical challenges associated with the disaggregation of the attitude

determination system.

7.1 Revisiting the Research Questions and Thesis Statements

In Section 1.3.1 the problem was posed as to how to perform data fusion for

attitude states and what attitude parameterization should be used. It was hypothesized

in Section 1.4.1 that the attitude error vector could extend known data fusion laws

to attitude states and that appropriate parameterization of the can produce an

unconstrained global nonsingular attitude data fusion law. The developments in

Chapter 4 verified these hypothesis. In addition, it was shown that the accuracy of

attitude data fusion is based on the chosen attitude parameterization. The classical

Rodrigues parameters (CRPs) were shown to be a fast and sufficiently accurate

parameterization, whereas the higher-order Rodrigues parameters were shown to

improve the accuracy but at the expense of additional computations. In most instance,

the CRPs are the preferred parameterization for data fusion.

In Section 1.3.2 the problem of tasking the chief to share relative and inertial

attitude measurements was posed to minimize the attitude estimation error of the

deputies. It was hypothesized in Section 1.4.2 that greedy sensor tasking, as a function

of deputy covariance information, could be used to distribute resources and improve the

attitude accuracy of the deputies. The developments in Chapter 5 verified the hypothesis

for the case when measurements are shared from the chief to the deputies. Specifically,
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it was shown that greedy tasking could be used as a computationally inexpensive

method to improve the accuracy of a disaggregated ADS, in comparison to fixed

Round-robin tasking. In the resulting greedy tasking algorithm, metrics based on the

deputy covariance information were computed by the deputies and communicated to the

chief. The chief used the covariance metric in the tasking decision to share relative and

inertial attitude measurements. Monte Carlo simulations showed that the greedy tasking

algorithm was mostly insensitive to the covariance metric form. In Chapter 6 it was

observed that greedy tasking based solely on the deputy covariance information was

inefficient for shared attitude state estimates. In this case, it was seen that a coupling

exists between the chief dynamics and state uncertainty. Specifically, the attitude motion

causes a change in chief uncertainty that propagates to the deputies via data fusion. As

a result, the baseline Round-robin strategy improved the accuracy of the deputies by

exploiting this dynamic effect.

7.2 Future Work

This research made contributions in the areas of inertial attitude estimation, attitude

data fusion, and sensor tasking for disaggregated attitude determination systems. The

results from this research have also spawned new research directions in each of these

areas.

In the area of disaggregated inertial attitude estimation, the author recommends

exploration of the following topics:

• Investigate disaggregated attitude estimation that does not require each spacecraft
maintain estimates of the entire network

• Investigate intermittent communication for information transfer between the chief
and deputies

• Determine the factors influencing the accuracy of current relative attitude sensors
(to yield measurements as precise as a star tracker)

• Investigate other relative attitude sensors such as direction measurements
obtained through laser communications systems, which are not limited to the close
proximity requirement of the relative attitude sensor assumed in this manuscript
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In the area of attitude data fusion, the author recommends exploration of the

following topics:

• Implement the attitude error state in an ellipsoidal intersection algorithm and
compare the results with the covariance intersection algorithm

• Further investigate the affects of chief attitude motion on chief and deputy
uncertainty, which result from the tracking controller

• Investigate the affects of relative translational motion between the chief and
deputies on data fusion and state uncertainty

In the area of sensor tasking in disaggregated attitude determination systems, the

author recommends exploration of the following topics:

• Investigate the affects of chief translational and rotation dynamics on the greedy
tasking algorithm

• Develop the state models and cost functions to derive optimal sensor tasking
algorithms for attitude resource sharing

• Develop sensor tasking algorithms that account for fuel consumption in addition to
uncertainty
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