
2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 1/25

Daniel Estévez <
https://destevez.net/>
Scientific & Technical Amateur Radio — Home of
EA4GPZ / M0HXM

Simulating delta-range
observations in GMAT

During the DSLWP-B < https://destevez.net/tags/dslwp>

(Longjiang-2 <

https://en.wikipedia.org/wiki/Chang%27e_4#Longjiang_micr

osatellites>) mission, we made a number of VLBI observations

< https://destevez.net/2019/05/results-of-dslwp-b-amateur-

vlbi-experiment-on-2018-11-21/> of the spacecraft’s UHF

signal by performing GPS-synchronized recordings at Dwingeloo

(The Netherlands), Shahe and Harbin (China), and Wakayama

(Japan). The basic measurement for these observations is the time

difference of arrival (TDOA), which measures the differences

between the time that it takes the spacecraft’s signal to arrive to

each of the groundstations. This can be interpreted in terms of

https://destevez.net/
https://destevez.net/tags/dslwp
https://en.wikipedia.org/wiki/Chang%27e_4#Longjiang_microsatellites
https://destevez.net/2019/05/results-of-dslwp-b-amateur-vlbi-experiment-on-2018-11-21/

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 2/25

the difference of distances between the spacecraft and each

groundstation, so this measurement is also called delta-range.

One very interesting practical application of the VLBI

observations is to perform orbit determination. The delta-range

measurements can be used to constrain and determine the state

vector of the spacecraft. This would give us an autonomous

means of tracking Amateur deep-space satellites, without relying

on ranging by a professional deep-space network. Even though

the measurements we made showed good agreement with the

ephemerides computed by the Chinese deep-space network,

during the mission we never ran orbit determination with the

VLBI observations, mainly due to the lack of appropriate software.

While GMAT has good support for orbit determination, it doesn’t

support delta-range measurements. Its basic orbit determination

data type is two-way round-trip time between a groundstation

(or two) and the satellite, as shown in the orbit determination

tutorial <

http://gmat.sourceforge.net/doc/R2018a/html/Orbit_Estimat

ion_using_DSN_Range_and_Doppler_Data.html> .

I have started to modify GMAT in the gmat-dswlp <

https://github.com/daniestevez/gmat-dslwp> Github

repository to implement the support for this kind of VLBI

http://gmat.sourceforge.net/doc/R2018a/html/Orbit_Estimation_using_DSN_Range_and_Doppler_Data.html
https://github.com/daniestevez/gmat-dslwp

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 3/25

observations. As a first step, I am now able to create and simulate

delta-range observations.

Mathematical setting

Here I describe the equations that need to be computed to

simulate a delta-range observation. In the observation there are

two participating groundstations, which I call the reference station

and the other station. These stations give rise to two

measurement legs. Measurements are time-tagged with respect

to the reference station. Let , and denote the positions

of the reference station, the other station and the spacecraft in

some inertial reference frame. In GMAT this frame will be centred

on the Earth if the spacecraft is Earth-orbiting, and the solar

system barycentre if not (groundstations are assumed to be

located near the surface of the Earth, so in this way a common

intertial frame for all the participants is chosen).

For the reference leg, if is the time at which the spacecraft’s

signal is received in the reference groundstation, then the

reference range at is

Here denotes the time of flight or light-time of the signal, so

that the signal was transmitted by the spacecraft at time ,

xR xO xS

tR

tR

= ∥ ()– (−)∥ + c .rR xR tR xS tR τR δR

τR

–tR τR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 4/25

and denotes additional corrections such as atmospheric and

relativistic corrections. The light-time is computed as a solution of

the equation

which can be solved iteratively. Note that this equation doesn’t

include the additional corrections . This is an approximation

that is usual to make. It is also possible to include all or some of

the corrections that form part of . The fact that to compute

the satellite position is not evaluated at time but rather at time

 is called the light-time correction.

For the other leg, the time of transmission is taken to coincide

with the time of transmission of the reference leg. Therefore, the

other range at measurement time is

where now the light-time is a solution of

and denotes the additional corrections for this leg.

The delta-range at time is the difference of ranges, .

Note that the roles of the groundstations are not quite

δR

c = ∥ ()– (−)∥,τR xR tR xS tR τR

δR

δR rR

tR

–tR τR

tR

= ∥ (– +)– (–)∥ + c ,rO xO tR τR τO xS tR τR δO

τO

c = ∥ (– +)– (–)∥,τO xO tR τR τO xS tR τR

δO

tR –rR rO

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 5/25

interchangeable, since the reception time at the other station is

not exactly in general.

Implementation in GMAT

GMAT already has all the basic building blocks that are needed to

calculate delta ranges, since it has code that can be used

compute ranges, including light-time corrections, in a very

flexible way. This code is contained in the Estimation Plugin, and

its C++ object-oriented architecture makes it easy to add new

measurements to extend the functionality.

I have based my work on the GMAT-R2019aBeta1 <

https://sourceforge.net/projects/gmat/files/GMAT/GMAT-

R2019a-Beta/> release, which has important changes to the

Estimation Plugin in comparison to GMAT-R2018a, such as the

addition of measurements for orbit estimation with angular

quantities (azimuth, elevation, right ascension and declination).

I haven’t been able to find the code for GMAT-R2019aBeta1 in

GMAT’s git repository <

https://sourceforge.net/p/gmat/git/ci/GMAT-R2018a/tree/>

, so I’ve set up a new repository in Github to work with the code.

This repository, called gmat-dslwp <

https://github.com/daniestevez/gmat-dslwp> , contains

submodules with the binary release and source code release of

tR

https://sourceforge.net/projects/gmat/files/GMAT/GMAT-R2019a-Beta/
https://sourceforge.net/p/gmat/git/ci/GMAT-R2018a/tree/
https://github.com/daniestevez/gmat-dslwp

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 6/25

GMAT-R2019aBeta1. By having the binary release, it is only

necessary to rebuild the Estimation plugin and link it against this

binary release. Also, this makes it possible to ship the binary

release with the modified Estimation Plugin to users that don’t

necessarily want to build the code.

In the Estimation Plugin, different measurements are

implemented by classes derived from the TrackingDataAdapter

< https://github.com/daniestevez/gmat-dslwp-

source/blob/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/TrackingDataAdapter.hpp> class. The range calculations are

implemented by a class called GNRangeAdapter <

https://github.com/daniestevez/gmat-dslwp-

source/blob/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/GNRangeAdapter.hpp> , that derives from

TrackingDataAdapter through RangeAdapterKm.

GNRangeAdapter uses under the hood the

CalculateMeasurement() <

https://github.com/daniestevez/gmat-dslwp-

source/blob/387a2c148e82bbbd92796d21c9d624d40b834ba8

/GMAT-

https://github.com/daniestevez/gmat-dslwp-source/blob/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/TrackingDataAdapter.hpp
https://github.com/daniestevez/gmat-dslwp-source/blob/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/GNRangeAdapter.hpp
https://github.com/daniestevez/gmat-dslwp-source/blob/387a2c148e82bbbd92796d21c9d624d40b834ba8/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/measurementmodel/MeasureModel.cpp#L1164

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 7/25

R2019aBeta1/plugins/EstimationPlugin/src/base/measur

ementmodel/MeasureModel.cpp#L1164> method of the

MeasureModel < https://github.com/daniestevez/gmat-

dslwp-source/blob/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/measur

ementmodel/MeasureModel.hpp> class to do all the range and

light-time calculations.

Actually, adapter classes rely on MeasureModels <

https://github.com/daniestevez/gmat-dslwp-

source/tree/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/measureme

ntmodel> to do all the heavy lifting calculation, and there are

currently only two MeasureModels: the MeasureModel class,

which does computations in terms of ranges between spacecrafts

and/or groundstations, and the GPSPointMeasureModel <

https://github.com/daniestevez/gmat-dslwp-

source/blob/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/measur

ementmodel/GPSPointMeasureModel.hpp> , which is a rather

different approach that uses GPS ECEF state vectors for orbit

determination.

https://github.com/daniestevez/gmat-dslwp-source/blob/387a2c148e82bbbd92796d21c9d624d40b834ba8/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/measurementmodel/MeasureModel.cpp#L1164
https://github.com/daniestevez/gmat-dslwp-source/blob/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/measurementmodel/MeasureModel.hpp
https://github.com/daniestevez/gmat-dslwp-source/tree/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/measurementmodel
https://github.com/daniestevez/gmat-dslwp-source/blob/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/measurementmodel/GPSPointMeasureModel.hpp

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 8/25

To implement delta-range measurements, I have added a new

class DeltaRangeAdapter <

https://github.com/daniestevez/gmat-dslwp-

source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6

/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/DeltaRangeAdapter.hpp> which is inspired on

GNRangeAdapter and also takes some ideas from

TDRSDopplerAdapter <

https://github.com/daniestevez/gmat-dslwp-

source/blob/upstream/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/TDRSDopplerAdapter.hpp> about how to handle different

propagation paths (or legs) in the same TrackingDataAdapter

class.

The CalculateMeasurement() <

https://github.com/daniestevez/gmat-dslwp-

source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6

/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/DeltaRangeAdapter.cpp#L469> method of

DeltaRangeAdapter follows the mathematical description

https://github.com/daniestevez/gmat-dslwp-source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/DeltaRangeAdapter.hpp
https://github.com/daniestevez/gmat-dslwp-source/blob/upstream/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/TDRSDopplerAdapter.hpp
https://github.com/daniestevez/gmat-dslwp-source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/DeltaRangeAdapter.cpp#L469

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 9/25

outlined above, calling

GNRangeAdapter::CalculateMeasurement() to compute the

ranges and using the correct timestamps.

The way to define the measurement strand in the GMAT script is

as {reference_groundstation, spacecraft,

other_groundstation}. There is some code <

https://github.com/daniestevez/gmat-dslwp-

source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6

/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/trackingfile

/TrackingFileSet.cpp#L2735> in the TrackingFileSet class

that takes care of constructing the reference and other legs

accordingly.

Error modelling for the delta-range measurements is also new. In

the other kinds of measurements supported by GMAT, the error

model is associated with the receiving groundstation. Here it

makes more sense to have an error model which is associated

with the baseline (i.e., the pair of participating groundstations). To

accomplish this, in the script editor an ErrorModel with Type =

'DeltaRange' can be created to represent the error model of a

baseline. This ErrorModel should be assigned to exactly the two

stations participating in the baseline. The DeltaRangeAdapter

rR rO

https://github.com/daniestevez/gmat-dslwp-source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/trackingfile/TrackingFileSet.cpp#L2735

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 10/25

class includes new implementations of the methods

ComputeMeasurementBias() <

https://github.com/daniestevez/gmat-dslwp-

source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6

/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/DeltaRangeAdapter.cpp#L667> and

ComputeMeasurementNoiseSigma() <

https://github.com/daniestevez/gmat-dslwp-

source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6

/GMAT-

R2019aBeta1/plugins/EstimationPlugin/src/base/adapte

r/DeltaRangeAdapter.cpp#L783> which are similar to those in

TrackingDataAdapter but search for an ErrorModel which is

assigned to the two groundstations in the path.

Test GMAT script

There is a GMAT script <

https://github.com/daniestevez/gmat-

dslwp/blob/master/scripts/test-deltarange.script> that can be

used to test the DeltaRangeAdapter class with a GMAT

simulation. The script includes real DSLWP-B ephemeris from 28

Jun 2019 (the first I could find in my old DSLWP-B script files,

https://github.com/daniestevez/gmat-dslwp-source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/DeltaRangeAdapter.cpp#L667
https://github.com/daniestevez/gmat-dslwp-source/blob/bb160973960c906bbb0b472a1f1d037ae07bf4d6/GMAT-R2019aBeta1/plugins/EstimationPlugin/src/base/adapter/DeltaRangeAdapter.cpp#L783
https://github.com/daniestevez/gmat-dslwp/blob/master/scripts/test-deltarange.script

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 11/25

actually), and the groundstation definitions for PI9CAM

(Dwingeloo) and Shahe. A single delta-range measurement

between PI9CAM (as the reference station) and Shahe (as the

other station) is simulated. The output is saved to the file DSLWP-

B.gmd in GMAT’s output/ folder. This file contains the following:

The last column is the simulated delta-range in km.

The simulation contains all the corrections such as light-time,

relativistic effects, ET-TAI, and tropospheric corrections. It doesn’t

include the ionospheric correction because the IRI2007 model

data bundled with GMAT-R2019aBeta1 only covers until 2018-03-

22. I’m looking for a way to update this file.

Worked example

The debug branch < https://github.com/daniestevez/gmat-

dslwp-source/tree/debug> of gmat-dslwp-source <

https://github.com/daniestevez/gmat-dslwp-source> enables

additional debug output for the Estimation Plugin that can be

used with the GMAT script described above to check manually

that all the intermediate calculations are correct.

% GMAT Internal Measurement Data File

28662.7087615740740740771674 DeltaRange -1 22222 1111

https://github.com/daniestevez/gmat-dslwp-source/tree/debug
https://github.com/daniestevez/gmat-dslwp-source

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 12/25

The full debug output can be seen in this gist <

https://gist.github.com/daniestevez/7f6c77293b2adb7761dd

eb4abdfa5710> . Here I will go through the more relevant

calculations.

The measurement needs to be computed at the time given 28

Jun 2019 05:00:00 UTC, which corresponds to 2019-06-28

05:00:37 TAI, which gives a Julian date of 2458662.708761574235.

This is equivalent to GMAT’s MJD 28662.708761574235. Now,

internally GMAT uses the time A.1 for its calculations, which is

defined by A.1 = TAI + 0.0343817 seconds. This gives an A.1 MJD

of 28662.70876197217.

In the debug output one of the first things we can see is the line

The A.1 MJD timestamp given there differs from the

measurement timestamp by only 13.8 us (and the error is most

likely caused by me doing the calculations carelessly with

Astropy’s Time < https://docs.astropy.org/en/stable/time/> ,

since the error when writing a Julian date in double precision is

on the order order of 21 us).

Range, relativity correction, and ET-TAI correction c

tR

https://gist.github.com/daniestevez/7f6c77293b2adb7761ddeb4abdfa5710
https://docs.astropy.org/en/stable/time/

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 13/25

So we see that GMAT is computing the reference leg for the

appropriate reception time . Then we see

Here GMAT computes the positions of DSLWP-B (in the

LunaMJ2000 system) and PI9CAM (in the EarthMJ2000 system) at

time , and relates them through the positions of the Moon and

Earth in the SSBMJ2000 system (which is centred on the solar

system’s barycentre). The distance between these positions is

387661.907 km, which corresponds to 1.293101 s of light-time.

Now GMAT goes ahead and uses 1.293101 s to set the first

approximation of , computing the positions of DSLWP-B and

the Moon at . This yields

As we can see, by updating the transmission time in -1.293101 s,

the distance between the positions has now changed to

387629.16872742 km. This is a change of -32.7458 km in the

distance, which gives a change of -109.230 us in the light-time.

Compute Range Vector before light time correction for
...

DeltaT for light travel over distance 387661.907 km =

Light Time range = 387629.161154257366 km

Relativity correction = 0.007573161548 km

===> dEpoch = -1.293100933975e+00 second, dR = 387629

tR

tR

τR

–tR τR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 14/25

The relativistic correction works out to 7.57 additional metres of

range, which gives an additional light-time of 25.26 ns, so the

total change is -109.204 us of light-time. The approximation for

 is updated with this change to give 1.29299172939 s.

The algorithm continues a couple of iterations more, updating

the value of until obtaining

which is deemed a good enough approximation for the light-time

, as the last update was already on the order of 1e-12 seconds.

This final value is taken as the correct value for and the

spacecraft and Moon’s positions are recomputed to obtain the

final solution for this leg.

Light Time range = 387629.163919469516 km

Relativity correction = 0.007573161601 km

===> dEpoch = -1.292991738614e+00 second, dR = 387629

Compute Range Vector after light time correction for
...

Summary for signal leg from DSLWP_B to PI9CAM:

. Geometric range = 387661.907438495546 km

. Light time solution range = 387629.163919478131 km

. Relativity correction = 0.007573161601 km

. ET-TAI correction = 32.978179363250 km

. Feasibility = true

τR

τR

τR

τR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 15/25

The geometric range of 387661.907 km was the first distance

ignoring the light-time correction, while the distance taking into

account the light-time correction is 387629.164 km. The

difference of 32.744 km shows the importance of taking into

account the light-time correction.

Note the slight difference of 8.6 micrometers between the light-

time solution obtained in this step and the light-time solution

obtained in the previous step. I think this happens because for

the calculation of the light-time correction the positions of

DSLWP-B and the Moon are updated by propagating in a straight

line, using their velocity vectors at . However, here the

positions are computed again using the full numerical

propagator. However, I haven’t checked if the source code

actually does this.

The relativity correction is 7.6 m, so it is a small correction, and

the ET-TAI correction, which I haven’t understood completely yet,

is rather large. The feasibility flag indicates that the measurement

path is not obstructed.

After this step, we have the calculation of atmospheric

corrections. First, the frequencies of the signals are worked out.

The arrival frequency shown below should be ignored, as it is only

valid when the leg starts from a spacecraft transponder, to which

tR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 16/25

a signal has arrived. In this case, the spacecraft only has a

transmit frequency. Range rate as seen by the groundstation is

approximated as the projection of the velocity vector onto the

line-of-sight vector in order to compute the Doppler shifted

frequency received in the groundstation. The atmospheric

corrections are computed for this receive frequency (the

frequency doesn’t matter for the troposphere correction, but it

does matter for the ionosphere correction which we are not

computing here).

After this low-level calculations, the GNRangeAdapter finishes its

work of computing and prints out a summary:

+++
++++ Signal Frequency calculation for leg from DSLWP_
+++
. Arrival frequency : -1.000000000000e+00 Mhz

. Transmit frequency : 4.354000000000e+02 Mhz

. Doppler shift frequency: 4.353999891583e+02 Mhz

+++
++++ Media corrections calculation for leg from DSLWP
+++
.Frequency : 4.353999891583e+02 Mhz

.Troposphere range correction : 0.004284564790 m

.Troposphere elevation correction : 0.000471377966 ra

rR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 17/25

Note that noise and bias haven’t been added to this range

measurement, despite what the printout says. They will be added

by DeltaRangeAdapter in a final step.

Now it is time for the computation of , the range of the other

leg. The interesting thing is that this is done somehow in reverse.

The transmit time at the spacecraft is fixed to coincide with the

transmit time computed for the reference leg. The

===
==== GNRangeAdapter (DSNsimData_{DSLWP_B,PI9CAM}_Rang
===
. Path : DSLWP_B, PI9CAM,

. Measurement epoch : 28662.708761972011

. Measurement type : <DeltaRange>

. C-value w/o noise and bias : 387662.153956567810 km
. Noise adding option : true

. Bias adding option : true

. C-value with noise and bias : 387662.153956567810 k
. Measurement epoch A1Mjd : 28662.708761972011

. Transmit frequency at receive epoch : 4.35400000000
. Transmit frequency at transmit epoch : 4.3540000000
. Measurement is feasible

. Feasibility reason : N

. Elevation angle : 34.728773536118 degree

. Covariance matrix : <0x55bf39780460>

. Covariance matrix size = 1

[1.000000e+00]

rO

−tR τR

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 18/25

receive time is unknown and is updated by iterating an

approximation of the light-time. This starts as

Note that the time given is A.1 MJD

28662.7087470068282567825742, which is the time of

transmission, approximately 1.293 seconds before the time of

reception at PI9CAM.

The positions of DSLWP and Shahe at this time are computed,

and the distance between these positions gives a light-time of

approximately 1.298 seconds. The reception time at Shahe is

updated (note that now dT is positive) and its position at the new

reception, as well as the position of the Earth, are calculated

again to refine the light-time.

After a couple of iterations, the approximation converges,

yielding

+++
++++ Range, relativity correction, and ET-TAI correct
+++
Compute Range Vector before light time correction for
...

DeltaT for light travel over distance 389263.327 km =
Starting: dEpoch = 0.000000000000e+00 second, dR = 38

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 19/25

Note that the light-times between DSLWP-B and PI9CAM, and

DSLWP-B and Shahe are not exactly the same. This difference is

precisely what the delta-range is measuring, and it implies that

the reception time at Shahe is not the measurement timestamp.

As before, the positions of Shahe and the Earth are computed a

final time with this light-time correction, obtaining

Summary for signal leg from DSLWP_B to Shahe:

. Geometric range = 389263.327458642016 km

. Light time solution range = 389230.782847323397 km

. Relativity correction = 0.007605963255 km

. ET-TAI correction = 33.451455045338 km

. Feasibility = true

As before, there is a considerable difference of 32.545 km

between the geometric range (which ignores the light-time

correction) and the light-time solution. The relativity correction is

again nearly 7.6 m, while the ET-TAI correction is large.

Since we are subtracting and to compute the delta-range,

the correction terms for each of the legs are subtracted, so

corrections that are very similar cancel out. In this way, the

difference between considering the light-time correction and

ignoring it manifests as a difference of 199 metres in delta-range.

===> dEpoch = 1.298334164409e+00 second, dR = 389230.

rR rO

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 20/25

The difference between relativistic corrections is only 3.2cm. Such

small value is to be expected. Now, the difference between ET-TAI

corrections is 473 metres, which I find surprisingly high. I don’t

know if this is correct or even if it is meaningful to apply the ET-

TAI correction to this simulation.

As before, we have the calculation of receive frequency and

atmospheric corrections at Shahe. The tropospheric correction is

7.6 m, which is larger than the 4.3 m at PI9CAM, owing to the

lower elevation of 18.5º at Shahe versus the 34.7º at PI9CAM. The

effect of the ionosphere is also significative at this low frequency,

and any precision work would need to model it.

+++
++++ Signal Frequency calculation for leg from DSLWP_
+++
. Arrival frequency : -1.000000000000e+00 Mhz

. Transmit frequency : 4.354000000000e+02 Mhz

. Doppler shift frequency: 4.353992753690e+02 Mhz

+++
++++ Media corrections calculation for leg from DSLWP
+++
.Frequency : 4.353992753690e+02 Mhz

.Troposphere range correction : 0.007635640939 m

.Troposphere elevation correction : 0.000968731245 ra

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 21/25

The summary for the GNRangeAdapter calculation of the other

leg looks like this:

Now it’s the turn for the DeltaRangeAdapter to subtract both

ranges and apply noise and bias. It prints the following output:

===
==== GNRangeAdapter (DSNsimData_{DSLWP_B,Shahe}_Range
===
. Path : DSLWP_B, Shahe,

. Measurement epoch : 28662.708747006829

. Measurement type : <DeltaRange>

. C-value w/o noise and bias : 389264.249543972895 km
. Noise adding option : true . Bias adding option : t
. C-value with noise and bias : 389264.249543972895 k
. Measurement epoch A1Mjd : 28662.708747006829

. Transmit frequency at receive epoch : 4.35400000000
. Transmit frequency at transmit epoch : 4.3540000000
. Measurement is feasible . Feasibility reason : N

. Elevation angle : 18.503745381468 degree

. Covariance matrix : <0x55bf39781f30>

. Covariance matrix size = 1

[1.000000e+00]

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 22/25

The measurement epoch is taken correctly as the the reception

time at PI9CAM. The C-values for the reference and other legs are

===
==== DeltaRangeAdapter (DSNsimData_{PI9CAM,DSLWP_B,Sh
===
. Path : [DSLWP_B -> PI9CAM] - [DSLWP_B -> Shahe]
. Measurement epoch : 28662.708761972011

. Measurement type : <DeltaRange>

. Reference leg C-value w/o noise and bias : 387662.1
. Other leg C-value w/o noise and bias : 389264.24954
. C-value w/o noise and bias : -1602.095587405085 km

. Reference leg corrections : 32.990037089641 km

. Other leg corrections : 33.466696649532 km

. Corrections : -0.476659559891 km

. Noise adding option : true

. Bias adding option : true

. Range noise sigma : 1.100000000000 km

. Range bias : -3.000000000000 km

. Multiplier : 0.000000000000

. C-value with noise and bias : -1605.728116406530 km
. Measurement epoch A1Mjd : 28662.708761972011

. Transmit frequency at receive epoch : 0.00000000000
. Transmit frequency at transmit epoch : 0.0000000000
. Measurement is feasible

. Feasibility reason : N

. Elevation angle : 18.503745381468 degree

. Covariance matrix : <0x55bf3976b0d0>

. Covariance matrix size = 1

[1.210000e+00]

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 23/25

taken correctly from the GNRangeAdapter calculations. These

include the corrections, but the corrections are also handled

separately, so we can see their magnitude. We see that the delta-

range computation amounts to -1602.096 km, of which 477

metres are corrections (mainly due to ET-TAI).

For the noise and bias we use a noise sigma of 1.1 km and a bias

of -3 km. We can see these get applied to the delta-range.

The handling of the transmit and receive frequencies by this class

is not yet implemented. The elevation angle is chosen as the

minimum elevation of the two stations (since this is used as an

indication of goodness of the measurement). The covariance

matrix is computed correctly as the square of 1.1 km.

Conclusion

This post shows that, contrary to my first impression when I

considered tackling this problem during the DSLWP-B mission,

extending the orbit determination code in GMAT is not that

difficult. After some familiarization with the class architecture it is

easy to move things around, and the detailed debug information

is really helpful to see what is going on.

Of course this work is just the first step to have a fully functional

orbit determination pipeline for the DSLWP-B VLBI observations.

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 24/25

The code shown here needs to be tested with more simulations,

and be used also for state estimation. Additionally, a

measurement class for delta-range rates needs to be

implemented. After the first experience, all this seems a natural

and mostly straightforward continuation of this line of work.

One comment

This site uses Akismet to reduce spam. Learn how your

comment data is processed < https://akismet.com/privacy/>

.

Pingback: Advances with delta-range and delta-range rate
observations in GMAT – Daniel Estévez <
https://destevez.net/2020/06/advances-with-delta-range-
and-delta-range-rate-observations-in-gmat/>

https://akismet.com/privacy/
https://destevez.net/2020/06/advances-with-delta-range-and-delta-range-rate-observations-in-gmat/

2/12/22, 9:43 PM Simulating delta-range observations in GMAT – Daniel Estévez

https://destevez.net/2020/05/simulating-delta-range-observations-in-gmat/#more-8231 25/25

Daniel Estévez < https://destevez.net/>

Proudly powered by WordPress < https://en-gb.wordpress.org/> .

https://destevez.net/
https://en-gb.wordpress.org/

