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| Effect of Finite Thrusting Time in Orbital Maneuvers
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The effect of finite thrusting time in orbital maneuvers is investigated for Hohmann-type
transfers. A closed form solution of the trajectory during thrusting is obtained by assuming
that a constant thrust is applied normal to the focal radius and that the change of the radial
position of the rocket is small. A numerical example is presented to show the thrusting time,
thrust level, propellant consumption, and the conic trajectories following the powered flight
paths, etc., in comparison with the ordinary impulsive thrust case. Finally, calculations of the
lead angle and the lead time are introduced based on the analysis presented in this paper.

Nomenclature

A = &/ Mogo, dimensionless

B = (/M) (r0/90)*'%, dimensionless

C = V./(gors)V?, dimensionless

¢ = effective average exhaust velocity of the jet, fps

D = V./(gore) 2, dimensionless

E = energy per unit mass of rocket, ft-1b/slug

e = eccentricity of the elliptical transfer orbit, dimension-
less or base of natural logarithms

F = ¢ = total thrust, 1b

go = acceleration due to gravity at distance r, from the center
of attraction, ft/sec?

g. = acceleration due to gravity at earth surface, say, 32.2
fps

l = semilatus rectum of the transfer elliptical orbit, ft

m = constant flow rate of propellant mass, slug/sec

M, = mass of rocket at the beginning of thrusting, slug

M, = propellant mass consumed, slug

AM, = additional propellant mass consumed due to finite
thrusting time, slug

n = number denoting initial acceleration or thrust level,
dimensionless

r = distance from the center of attraction to the rocket at
any time during thrusting, ft

r = radius of final circular orbit, {t

ry = distance from the center of attraction to the rocket at
the end of thrusting, ft

7o = distance from the center of attraction to the rocket at
the beginning of thrusting, ft

¢ = time measured from the beginning of thrusting, sec

ts = finite thrusting time, sec

i = lead time (time required to travel the lead angle), sec
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Ve = (gmo)¥? = ecircumferential velocity of a circular orbit
with radius 7o, fps

V; = velocity of the rocket after the impulsive thrust or at
the end of thrusting, fps

V. = (dr/dt), = radial velocity of the rocket at the beginning
of thrusting, fps

Ve = ri(d8/dt)o = transverse velocity of the rocket at the
beginning of thrusting, fps

0 = polar angle, measured from the initial line coincided
with the radius vector o, rad

8; = angular displacement of the rocket at the end of thrust-
ing, rad

¥ = lead angle, angle between the radius vector ro and the
apsides line of transfer orbit, rad

p = r/ry, dimensionless

pr = ry/re, dimensionless

T = (go/ro)V2%, dimensionless

m = gravitational constant, ft3/sec?
( )o = denotes the quantity in the parentheses at ¢ = 0

Subscript

= impulsive thrust case

1
IT is generally assumed that the thrusting time is zero for
all impulsive thrusts in orbital maneuvers. However,
for practieal reasons, this case does not exist, and nonzero .
thrusting times must be considered. Transfer orbits then
consist of powered flight paths, which are the trajectories of a
rocket during the finite thrusting time intervals, and non-
powered flight or conic paths.

If, at a certain point in an orbit, a constant thrust-is ap-
plied to a rocket, different thrust levels will result in different
powered flight paths, even though the total propellant con-
sumption (or the total impulse that is the product of the
thrust and the thrusting time) remains the same. The
conic paths following the powered flight paths will also change
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accordingly. Thus, the thrusting time is closely related to
the various elements of orbital maneuvers.

For most cases of practical interest, the Hohmann-type
transfer is often employed as the optimum orbital transfer
by impulses (1,2).2 If the effect of finite thrusting time on
orbital transfers is conceived as that of perturbations, then
the investigations on orbital maneuvers based on the im-
pulsive thrust assumption should be valid to a certain degree,
as has been demonstrated by Wang (3). Although Wang’s
results are derived from a constant thrust acceleration
maneuver, the case of constant thrust seems to be of more
practical importance. Thus, the present paper deals with
the effect of finite thrusting time due to a constant thrust
for Hohmann-type transfers, and this yields some basic
information required for both rocket engine and guidance
system design.

Analysis

For Hohmann-type transfers, it can be assumed that, at
the beginning of thrusting, a rocket is near the apogee or the
perigee of an elliptical orbit or at any point on a circular orbit,
and the following assumptions are justified:

1 The direction of the thrust is normal to the focal radius
of the trajectory.

2 The change of focal radius of the trajectory is very small
during the thrusting time interval.

It was further assumed that:

1 The magnitude of thrust is constant during the entire
thrusting time interval, as is the usual case of a liquid chemi-
cal rocket.

2 The rocket is under the influence of the gravitational
attraction of a single body, say, the earth.

Based on these assumptions, the equations of motion of a
rocket in polar coordinates are (see Fig. 1)

& (G0N _ s
az " <dt) 72 8
d de mé
- 2 - _— 3
a@ (" dz) My — (21
Let
p= 1/r T = (go/ro) V%
A = i/ Moge B = (/Mo)(ro/ge)"/?
and Eqgs. [1] and [2] become
dp gy 1
e~ * (d‘r> p? 18]
d , df A
hedl ) = =
dr <p dT> 1=B:" [4]

The initial conditions for Eqs. [1]and [2] are

dr oy Ve N
<%)o_ V, <Et>o_ T atr =17y t=20

And the corresponding initial conditions for Eqs. [3] and [4]
are
dp V. de Vo
Yy o Y _p sl =
<d7’>0 (goro) V2 (dT >0 (goro) /2

2 Numbers in parentheses indicate References at end of paper.

3 The plus sign in Eq. [2] shows that the thrust is in the direc-
tion of increasing # (positive thrust), and the minus sign has the
opposite sense (negative thrust). From here on throughout this
paper, whenever a term has two signs in front of it, the “upper
sign” represents the positive thrust case, and the “lower sign”
is for the negative thrust case.
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Fig. 1 Notation of powered flight path

at p = 1, 7 = 0. Another initial condition is obtained from
Eq. [3], ie., '

(d2p/dry)y = C? — 1
By combining Eqs. [3]and [4], one gets

df L dp, \ 4
(’ijr.(psd—#+p> =E T gor 5]

Based on assumption 2, that p is nearly equal to unity, Eq.
[5] can be simplified as

d dzp 1/2 A
(£ = +
dr (dr2 + 1) 1 — Br [6]

Integrating Eq. [6] with the initial condition (d2p/dr%), =
C? — 1lat + = 0, the resulting equation is

2 1/2
(Z_T’;+1> =:|:%ln(1—BT)+O {71

Squaring Eq. [7] and simplifying, one has

d?p _ Az 421 B _
dr: B (n(l — Br)]2 =+ 2 B In(1 Br) + (2 1 8]

Integrating Eq. [8] with the initial condition (dp/dr)y =
D at r = Oyields
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Fig. 2 Position of rocket at end of powered flight path
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dp Al 2
2 = =% (= B0 - B +
?’% (% + C)(l — Br)[ln(1 — Br) — 1]+

© - 1)T+[D+%‘ij <% n C)] 9]

Integrating Eq. [9] and making use of the initial condition p
= lat7 = Ogives

p=

2B4

" (1 — Br)n(l — BOJ + & (Z‘; 43 o) X

(1 — B2 — %—3 <:§4 =+ C’> (1 - B7)?In(1 — Br) +

5(02—1)724-[1)-}—2—[21(%:!:0)]74‘
4 (Ei 0> [10]

B3

Combining Eqgs. {10] and [4] and integrating once with
respect to 7 results in
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oo = 435 " (1 — B[l — B +
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Fig. 3 Angular and radial velocities at end of powered flight
path
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where p is calculated from Eq. [10], and the constant term is
obtained by applying the initial condition (df/dr), = C at
p=17=20

Based on the assumption that p is nearly equal to unity and
the initial condition # = 0 at r = 0, after integrating, Eq.
[11] becomes

0 = + o5 (= Brln(l — BOJ
4 (138% - c) (1 — Br)*In(l — Br) =
(85 0) -
%2[2—32«12— D+Z+i+ S ;Bi] x

[ln(1 — Br) — 1](1 —Br) = @ (€ — s F

AT b, 4/ 4 .
3[43(0 1)+2+32<Bi0>:|7+
A? (114
CT:I:E(EE_:!:O>T_
c

A 734° A 1 D
ﬁ[*z—mm"g—gﬁiﬁz(o‘”%*q [12]

It is noted that 4, B, C, and D in the previous equations
are known values from the given data. With the results of
Eqs. [9-12], the location and the velocity of the rocket at
the end of thrusting can be found. Eqgs. [10] and [12]
describe the powered flight path of the rocket during the
finite thrusting time, and the conic path of the rocket follow-
ing the powered flight path can be determined by usual
means (4).

Example

In order to bring out the effect of finite thrusting time in
orbital maneuvers, the following example is studied. It is
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Fig. 4 Variation of geometric elements of conic path
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Fig. 5 Propellant consumption and energy deficiency

noted that the setup of this example is to form a skeleton for
the general discussion of the problem rather than the par-
ticular problem of the example itself.

A rocket is originally in a 300-naut mile curcular orbit
around the earth, and it is desired to transfer the rocket to a
coplanar 2000-naut mile circular orbit. The powered flight
path at the point where the first impulse would be applied
will be analyzed.

The given data are as follows:

70(300-naut mile orbit) = 2.273 X 107 ft
71(2000-naut mile orbit) = 3.307 X 107 ft

u(earth gravity constant) = 1.40643 X 10 ft3/sec?
¢ = 10 fps

V., = (u/r)V? = 24,875 fps

For the impulsive thrust case, the following figures are
computed according to well-known formulas in orbital me-

chanics:
y 20 (L LV = or0s2t
(I)I—['U'<T~o_7‘1+ro>] = 27,082 fps
AV = (V) — V. = 2207 fps
Er = HV)2 — (u/r) = 0.40734044
I = 2.69423 X 107 ft ’
er = (.1853191
(d—0> = Vi = 0.00119146 rad/sec
dt I To _
M, = My[l — e~ (AV/9] = 0.1981M,

Based on the same amount of propellant consumption, the
resulting powered flight paths due to different thrust levels

are investigated.
For
F = mé = ng. M,
and
, - Mo _01981¢ _ 615

m ng. n

the finite thrusting time ¢; can be calculated according to the
different thrust levels n (or initial acceleration).
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Fig. 6 Thrust-on time and lead time

Fig. 2 shows the angular and radial displacements of the
rocket at the end of the powered flight paths at different
thrust levels n. Fig. 3 gives the corresponding angular and
radial velocities.

Fig. 4 shows the variations of three geometric elements
(semilatus rectum, eccentricity, and the angle between the
line of apsides and the initial line) of the conic paths following
the powered flight paths resulting from different thrust levels.

The characteristic velocity, which is basically a function of
geometry of the related orbits, is quite familiar to the readers
in the investigations of orbital transfer by impulses. During
the application of impulses, no change in r (distance between
the rocket and the center of attraction) is involved. How-
ever, for the case of finite thrusting time, the rocket changes
its velocity as well as its distance r from the center of attrac-
tion continuously along the powered flight path. 1f one real-
izes the effect of changes in velocity at different » by im-
pulses, it is naturally concluded that the energy level E
(which includes both the characteristics of the velocity and
the distance ) rather than the characteristic velocity (which
is only a measure of change in velocity) should be used in the
study of the effect of finite thrusting time in orbital maneu-
vers.

During the power flight the rocket moves against gravity,
and a certain amount of energy is spent to overcome this
gravitational action; therefore, the resulting energy level
would be lower in comparison with the impulsive thrust case
if the same amount of propellant is consumed. Fig. 5
shows the relationship between the energy deficiency defined
as

energy level (impulsive thrust) — energy level (finite thrust)
energy change (impulsive thrust)

and the thrust level.

In order to reach the same energy level as the impulsive
thrust case, a rocket using finite thrusting time will require
additional propellant, which is computed by the following
equations:

AE = Vf’AVf -+ (,U./Tj2)'ATf ~ Vj‘AVf
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M, = (1 — 0.1981) My(1 — e~ @V#/9) =
0.8019Mo(1 — e~ (AV//2)

where AE is energy level difference. The relationship be-
tween AM,/M, and various values of n is also plotted in
Fig. 5.

As was mentioned, investigations on orbital transfer by
impulses are valid to a certain degree, and the present study
on the effect of finite thrusting time may be conceived as a
refinement. If a certain scheme of orbital transfer is to be
maintained as a result of the investigations based on the as-
sumptions of impulsive thrust, which is particularly im-
portant from the guidance system point of view, then the
effect of finite thrusting time in orbital maneuvers based on
this scheme can be brought out.

It is recalled that, for Hohmann-type transfers, the lines of
apsides for original, transfer, and final orbits are colinear.
For finite thrusting time assumptions, a rocket must com-
mence thrusting before it reaches the apsides. The angle
between the radius vector at start of thrusting and the line of
apsides is known as “lead angle,” which is ¢ in the present
example. However, if the original orbit is an ellipse, the
“lead angle’” must be found by cut-and-try.

The time required for the rocket traveling the angular dis-
placement ¥ is known as “lead time (¢,),” which is the time
prior to reaching the apsides of the original and transfer
orbits. In the present example, one apside is the perigee of
the transfer orbit. The “lead time” is computed by Eg.
[12]. The finite thrusting time and the “lead time”’ for vari-
ous thrust levels are plotted in Fig. 6.
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Conclusion

The effect of finite thrusting time in orbital maneuvers
for Hohmann-type transfers can be studied by the analytical
approach presented in this paper. The characteristics of the
powered flight paths resulting from various thrust levels may
be examined according to different practical purposes. As
a result of the typical example studied in this paper, the
following conclusions could be drawn:

1 Any error analysis based on impulsive thrust cases is -
of doubtful value, for the effect of finite thrusting time does
yield different conic paths at different thrust levels as shown
in Fig. 4.

2 TFinite thrusting time has little effect on propellant
consumption for Hohmann-type transfers in comparison with
the impulsive thrust case.

3 Because of the existence of finite thrusting time, the
lead angle and the lead time will play an important role in
maintaining the orientation of the line of apsides of orbits
which should be particularly prominent when transferring
between highly elliptical orbits.
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